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1 Introduction

Photons and lepton-antilepton pairs produced in a heavy ion collision are experimentally

measurable (cf., e.g., refs. [1–3]) and, given that they do not interact after production,

offer for a probe of the inner dynamics of strong interactions in this environment. To

leading order in the electromagnetic fine-structure constant αem, the thermal parts of both

production rates can be related to the spectral function ρV , associated with the QCD vector

current [4–6],

dΓγ(k)

d3k
=
αem nB(k)

2π2k

Nf∑
i=1

Q2
i ρV (k, k) +O(α2

em) , (1.1)

dΓ`¯̀(ω, k)

dω d3k
≈ α2

emnB(ω)

3π3M2

Nf∑
i=1

Q2
i ρV (ω, k) +O(α3

em) . (1.2)

Here nB is the Bose distribution; M ≡
√
ω2 − k2, ω and k are the invariant mass, energy,

and momentum, respectively, of a virtual photon; Qi is the charge of a quark of flavour i in

units of the elementary charge; disconnected contributions proportional to (
∑

iQi)
2 have

been omitted; and we have simplified eq. (1.2) by considering energies 2m` �M � mZ .

There is a long history of perturbative determinations of ρV in various kinematic do-

mains. Focussing first on massless quarks, a next-to-leading order (NLO) computation at
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vanishing momentum (k = 0) initially suggested that perturbation theory works well [7–9].

However, pushing the energy towards a soft regime (ω � πT , k = 0) and implement-

ing Hard Thermal Loop (HTL) resummation, a large enhancement was found [10, 11].

Subsequently the focus shifted to the more typical hard momenta (k ∼ πT ), where a

logarithmic singularity, shielded by HTL-resummation, was identified when approaching

the light cone (M � πT ) [12–14]. In addition, there are non-logarithmic terms of sim-

ilar magnitude [15], originating from amongst others multiple scatterings with collinear

enhancement (the so-called LPM effect [16]), whose systematic handling necessitated a

major effort [17–20]. By now these resummed results have been extended up to NLO close

to the light cone [21, 22]. With different methods, the NLO level has also been reached

above the light cone (M ∼ πT ) [23, 24], and the corresponding results have been shown

to permit for a smooth interpolation towards the light-cone ones [25]. Far above the light

cone, the spectral function is considerably simpler [26], and can in fact be determined to

a high precision [27], by making use of N4LO vacuum results [28, 29]. Finally, quark mass

effects have been included up to the NLO level at finite temperature, both for m� πT [30]

and for m . πT [31].

Diverse as the progress is, it should be clear that eventually we need to go beyond

perturbation theory in the determination of ρV . Lattice QCD entails the measurement of

an imaginary-time correlation function GV (τ, k), which is related to ρV through

GV (τ, k) =

∫ ∞
0

dω

π
ρV (ω, k)

cosh[ω(β2 − τ)]

sinh[ωβ2 ]
, β ≡ 1

T
. (1.3)

The inversion of this relation is notoriously challenging (cf., e.g., ref. [32]). A recent attempt

was made in ref. [33], for continuum-extrapolated quenched QCD. It is clear from eq. (1.3)

that, apart from the physical domain ω > k, lattice results are also affected by the spacelike

domain ω < k. However it can be argued that, in infinite volume, ρV should be smooth

across the light cone [34]. Thus ref. [33] made use of perturbative information at M & πT

and a fitted interpolating polynomial at 0 ≤ ω .
√
k2 + (πT )2. A subsequent work

considered Nf = 2 data [35], noting that for the photon channel the contribution of a

longitudinal polarization can be subtracted and replacing the interpolating polynomial

through a Padé ansatz. Further ideas at implementing analytic continuation have also

been put forward [36, 37].

The purpose of the present paper is to scrutinize the spectral reconstructions of

refs. [33, 35]. With this aim we improve the status of perturbative predictions in two

respects: we incorporate full NLO results for ω < k [38], and consider separately the trans-

verse and longitudinal polarizations as proposed in ref. [35]. After implementing proper

resummation close to light cone, these expressions can be inserted on the right-hand side

of eq. (1.3), and subsequently the left-hand side can be compared with lattice data. The

perturbative results depend on a parameter, namely the value of the renormalized gauge

coupling, and these comparisons permit to “calibrate” the choice made.

Our presentation is organized as follows. In section 2 we define the basic quantities

considered. In section 3 we consider various limits, theoretical constraints, and resumma-

– 2 –
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tions that pertain to their perturbative determination. Comparisons with quenched and

unquenched lattice data comprise section 4, whereas conclusions are offered in section 5.

2 Basic setup

Consider the Euclidean vector correlator

Πµν(K) ≡ −
∫
X
eiK·X

〈
(ψ̄γµψ)(X) (ψ̄γνψ)(0)

〉
T
, (2.1)

where K = (kn,k), X = (τ,x), {γµ, γν} = 2δµν , and 〈. . .〉T denotes a thermal average on

a volume with a temporal extent τ ∈ (0, β). Correspondingly kn is a bosonic Matsubara

frequency, viz. kn = 2πnT , with n ∈ Z. We denote K2 ≡ k2
n + k2, with k ≡ |k|. An overall

minus sign has been inserted in eq. (2.1) for later convenience.

We are mostly interested in a spectral function, which can be obtained as an imaginary

part of the Euclidean correlator,

ρµν(K) = Im
[
Πµν(K)

]
kn→−i[ω+i0+]

. (2.2)

Its argument is the Minkowskian four-momentum K ≡ (ω,k), with K2 ≡M2.

Following ref. [35], we are particularly interested in the linear combinations

ρV ≡ ρµµ , ρH ≡ ρV +
(D − 1)M2

k2
ρ00 , (2.3)

where repeated indices are summed over. Here D ≡ 4− 2ε is the dimension of spacetime.

On the light cone, ρV and ρH coincide, so that we may replace ρV through ρH in eq. (1.1).

At leading order (cf., e.g., ref. [39]),

ρV =
NcM

2

4πk

{
2T
[
l1f(k+)− l1f(|k−|)

]
+ k θ(k−)

}
, (2.4)

ρ00 = − Nc

12πk

{
24T 3

[
l3f(k+)− l3f(|k−|)

]
+ 12kT 2

[
l2f(k+) + sign(k−) l2f(|k−|)

]
+ k3 θ(k−)

}
,

where we have defined k± ≡ (ω ± k)/2 and introduced the polylogarithms

l1f(ω) ≡ ln
(

1 + e−ω/T
)
, l2f(ω) ≡ Li2

(
−e−ω/T

)
, l3f(ω) ≡ Li3

(
−e−ω/T

)
. (2.5)

Denoting by g2 = 4παs the gauge coupling, by Nc the number of colours, by CF ≡
(N2

c −1)/(2Nc) the quadratic Casimir coefficient, and by Σ
∫
{P} a sum-integral with fermionic

Matsubara momenta, the NLO expressions for ΠV ≡ Πµµ and Π00 can be cast in the forms

ΠV (K) = 2(D − 2)Nc
∑∫
{P}

[
2

P 2 −
K2

P 2(P −K)2

]

+ 4(D − 2)g2NcCF

∑∫
{PQ}

{[
D − 2

P 4 −
2

P 2(P −K)2
− (D − 2)K2

P 4(P −K)2

][
1

Q2 −
1

(Q− P )2

]

− D − 4

Q2(Q− P )2

[
1

P 2 −
1

(P −K)2

]
−

1
2
(D − 7)K2

P 2(P −K)2Q2(Q−K)2

+
(D − 6)K2 − 2(D − 2)K ·Q
P 2(P −K)2Q2(Q− P )2

+
K4

P 2(P −K)2Q2(Q−K)2(Q− P )2

}
, (2.6)

– 3 –



J
H
E
P
1
1
(
2
0
1
9
)
1
4
4

Π00(K) = 2Nc
∑∫
{P}

[
2

P 2 −
K2 + 4pn(pn − kn)

P 2(P −K)2

]

+ 4g2NcCF

∑∫
{PQ}

{
(D − 2)

[
1

P 4 −
K2 + 4pn(pn − kn)

P 4(P −K)2

][
1

Q2 −
1

(Q− P )2

]

− D − 4

Q2(Q− P )2

[
1

P 2 −
1

(P −K)2

]
−

1
2
(D − 6)(K2 − k2n)

P 2(P −K)2Q2(Q−K)2

+
(D − 6)K2 − 2(D − 2)K ·Q− 4(D − 4)pnkn + 4(D − 2)qnkn

P 2(P −K)2Q2(Q− P )2

+
K4 − 2K2k2n − 2(D − 4)K2pnqn + 2(D − 2)K2p2n

P 2(P −K)2Q2(Q−K)2(Q− P )2

}
. (2.7)

The spectral functions corresponding to all structures here are worked out in ref. [38].

3 Theoretical considerations

3.1 OPE limit

We now take an imaginary part of eqs. (2.6) and (2.7) according to eq. (2.2). Analytic

results can be obtained by considering |ω±k| � πT [26]. Limiting values for the “master”

structures in eq. (2.6) were given in appendix B of ref. [44]. The additional ones appearing

in eq. (2.7) can be determined by making use of techniques described in ref. [45], and are

listed in ref. [38].

Inserting the expansions, we find that all 1/ε-divergences, the corresponding loga-

rithms, as well as thermal corrections proportional to
∫
p

nB
16πp or

∫
p

nF
16πp , cancel (nB and nF

are the Bose and Fermi distributions, respectively). The remainders read

ρV =
NcM

2

4π
+ 4g2CFNc

{
3M2

4(4π)3
+

∫
p

p

π

(4nF − nB)(ω2 + k2

3 )

3M4

}
+O

(
T 6

M4

)
, (3.1)

ρ00 = −Nck
2

12π
− 4g2CFNc

{
k2

4(4π)3
+

∫
p

p

π

(4nF − nB)k2

9M4

}
+O

(
T 6

M4

)
. (3.2)

Thereby, in accordance with the general argument in ref. [35], the combination in eq. (2.3)

displays only a thermal correction:

ρH = 4g2CFNc

∫
p

p

π

4(4nF − nB)k2

9M4
+O

(
T 6

M4

)
. (3.3)

The integrals evaluate to
∫
p
p nB
π = πT 4

30 and
∫
p
p nF
π = 7πT 4

240 , so that ρH approaches zero from

the positive side. We note, however, that the Operator Product Expansion (OPE) shows

poor convergence; the actual ρH switches from negative to positive only around ω ∼ 20T .

3.2 LPM limit

We next consider an “opposite” limit to that in section 3.1, namely M2 → 0±. The spatial

momentum is kept fixed, with a value k ∼ πT . In this limit the spectral function needs to

be resummed in order to account for the Landau-Pomeranchuk-Migdal (LPM) effect.

– 4 –



J
H
E
P
1
1
(
2
0
1
9
)
1
4
4

Close to the light cone, it is often convenient to represent the two polarizations in a basis

different from that in eq. (2.3). Specifically, we define the “transverse” and “longitudinal”

spectral functions as

ρT ≡
∑
i⊥k

ρii , ρL ≡ ρ‖ + ρ00 , (3.4)

where ⊥ and ‖ refer to the components perpendicular and parallel to k. Current conser-

vation implies that ρL = −(M2/k2)ρ00, and in this basis eq. (2.3) becomes

ρV = ρT + ρL , ρH = ρT − (D − 2)ρL . (3.5)

Following ref. [19], the LPM-resummed spectral functions ρi, with i = T, L, read

ρi|
full
LPM
≡ −Nc

π

∫ ∞
−∞

dε
[
1− nF(ε)− nF(ω − ε)

]
× lim

y→0
P

{
M2δi,L Im[g(y)]

ω2
+

[ω2 − 2ε(ω − ε)]δi,T Im[∇⊥ · f(y)]

2ε2(ω − ε)2

}
, (3.6)

where P stands for a principal value, and g and f are Green’s functions satisfying(
Ĥ + i0+

)
g(y) = δ(2)(y) ,

(
Ĥ + i0+

)
f(y) = −∇⊥δ(2)(y) . (3.7)

The operator Ĥ acts in the plane transverse to light-like propagation,

Ĥ = −M
2

2ω
+
ω(m2

∞ −∇2
⊥)

2ε(ω − ε)
+ ig2

ECF

∫
d2q

(2π)2

(
1− eiq·y

)( 1

q2
− 1

q2 +m2
E

)
, (3.8)

where m2
∞ is an “asymptotic” quark thermal mass, given in eq. (3.15), whereas g2

E ' g2T

and m2
E ' g2T 2(Nc

3 +
Nf
6 ) are parameters of a dimensionally reduced effective theory [40–42].

3.3 Prediction for IR-singularities around the light cone

An interesting application of eqs. (3.6)–(3.8) is that by re-expanding them as a power series

in g2, we can find out what kind of singularities the strict 2-loop results [38] should contain

close to the light cone. For this purpose, we follow a procedure described in section 5.1 of

ref. [25]. At zeroth order in g, the expressions become

ρT

∣∣(g0)

LPM
=
NcM

2

4πω3

(
I1 − I2

)
, ρL

∣∣(g0)

LPM
=
NcM

2

4πω3
I2 , (3.9)

where

I1 ≡
{
θ(M2)

∫ ω

0
dε− θ(−M2)

[∫ 0

−∞
+

∫ ∞
ω

]
dε

}[
nF(ε− ω)− nF(ε)

]
ω2

= θ(M2)ω3 + 2ω2T
[
l1f(ω)− l1f(0)

]
, (3.10)

I2 ≡
{
θ(M2)

∫ ω

0
dε− θ(−M2)

[∫ 0

−∞
+

∫ ∞
ω

]
dε

}[
nF(ε− ω)− nF(ε)

]
2ε(ω − ε)

= θ(M2)
ω3

3
+ 4ωT 2

[
l2f(ω) + sign(M2) l2f(0)

]
+ 8T 3

[
l3f(ω)− l3f(0)

]
. (3.11)

– 5 –
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The polylogarithms appearing here were defined in eq. (2.5). Even though I1,2 are not

analytic around the light cone, eq. (3.9) vanishes there.

Given that the last term in eq. (3.8) is of O(g4), the corrections of O(g2) are propor-

tional to the parameter m2
∞. For ρL, we find no such correction:

ρL

∣∣(g2)

LPM
= 0 . (3.12)

For ρT , a correction is found which contains a well-known logarithmic divergence as well

as a finite part which is discontinuous across the light cone:

ρT

∣∣(g2)

LPM
=
Ncm

2
∞

2π

{[
1

2
− nF(ω)

](
ln

∣∣∣∣m2
∞

M2

∣∣∣∣− 1

)
+

[
θ(M2)

∫ ω

0
dε− θ(−M2)

(∫ 0

−∞
+

∫ ∞
ω

)
dε

]
×
[
nF(ε)− nF(0) + nF(ω − ε)− nF(ω)

ε
+
nF(ε− ω)− nF(ε)

ω

]}
. (3.13)

The integral on the last row is defined in the sense of a principal value at large |ε|, where

terms ∼ 1/ε cancel due to contributions from negative and positive ε. Eq. (3.13) predicts

that the strict 2-loop spectral function is discontinuous across the light cone, specifically{
lim
ω→k+

− lim
ω→k−

}
ρT

∣∣(g2)
=
g2T 2NcCF

8π

∫ ∞
−∞

dεP

{[
nF(ε− k)− nF(ε)

](1

k
− 1

ε

)}
, (3.14)

where we inserted the definition of m2
∞ from eq. (3.15).

3.4 Matching of IR-singularities around the light cone

It is a basic premise of LPM resummation that close to the light cone it eliminates the

IR singularities that plague the perturbative series. In other words, when eq. (3.13) is

subtracted from the 2-loop expression, the remainder should be non-singular.1

The logarithmic singularities and discontinuities originate from two structures, both

contained in eq. (2.6). The first source are the factorized terms on the second line. Setting

D → 4 and identifying

m2
∞ ≡ g2CF(D − 2)

∑∫
{Q}

[
1

(Q− P )2
− 1

Q2

]
D=4
=

g2CFT
2

4
, (3.15)

the discontinuity from the second line is

ρV |disc ⊃ 8Ncm
2
∞ Im

[∑∫
{P}

1

P 2(P −K)2

]
kn→−i[ω+i0+]

. (3.16)

1The 2-loop expressions and their IR singularities can also be checked in the regime ω, k � πT , where

they match the imaginary part of the photon HTL self-energy, computed up to NLO in ref. [43].

– 6 –
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Carrying out the Matsubara sum and taking the cut, we find

Im

[∑∫
{P}

1

P 2(P −K)2

]
kn→−i[ω+i0+]

=
1

16πk

{
θ(M2)

∫ k+

k−

dε− θ(−M2)

[∫ k−

−∞
+

∫ ∞
k+

]
dε

}[
nF(ε− ω)− nF(ε)

]
. (3.17)

The discontinuity of this expression precisely matches the terms ∝ 1/k in eq. (3.14).

The other terms of eq. (3.14) match the spectral function denoted by

ρIh’ ≡ Im

[∑∫
{PQ}

2K ·Q
P 2(P −K)2Q2(Q− P )2

]
kn→−i[ω+i0+]

, (3.18)

which in ref. [24] was shown to reproduce the logarithmic singularity shown on the first row

of eq. (3.13). Here we focus on the discontinuity. The expression obtained after carrying

out the Matsubara sums is given in eq. (B.84) of ref. [44], with σ1 = σ2 = σ4 = −, σ5 = +.

The discontinuity comes from the “virtual” part of ρIh’ (the last lines of eq. (B.84)).

If we define

Φ(ω, εp,k · p) ≡
∫
q

[
1− nF(εq) + nB(Eqp)

4εqEqp

(
ωεq + k · q
εp + εq + Eqp

+
−ωεq + k · q
−εp + εq + Eqp

)
+
nF(εq) + nB(Eqp)

4εqEqp

(
ωεq − k · q
εp − εq + Eqp

+
ωεq + k · q
εp + εq − Eqp

)]
, (3.19)

and denote for brevity δx ≡ δ(x), the virtual part reads

ρ
(v)
Ih’ =

∫
p

2π

4εpεpk
(3.20)

×
{

Φ(ω, εp,k · p)
[
δω−εp−εpk

[
1− nF(εp)− nF(εpk)

]
+ δω−εp+εpk

[
nF(εp)− nF(εpk)

]]
− Φ(−ω, εp,k · p)

[
δω+εp+εpk

[
1− nF(εp)− nF(εpk)

]
+ δω+εp−εpk

[
nF(εp)− nF(εpk)

]]}
.

Now, the δ constraints in eq. (3.20) are equivalent to those emerging from eq. (3.16).

Recalling εpk ≡ |p− k|, a key observation is that if we approach the light cone from

above (ω → k+), only the first channel contributes, and the contribution emerges from

the domain εpk ≈ k − εp, i.e. p ‖ k and εp < k. If we approach the light cone from below

(ω → k−), there is a contribution from the second channel, which emerges from the domain

εpk ≈ εp − k, i.e. p ‖ k and εp > k. Below the light cone there is also a contribution from

the fourth channel, but now it emerges from the domain εpk ≈ εp + k, i.e. −p ‖ k and

εp > 0. In total we get

{
lim
ω→k+

− lim
ω→k−

}
ρ

(v)
Ih’ =

1

8πk

∫ ∞
0

dεp

{[
nF(εp − k)− nF(εp)

]
Φ(k, εp, kεp)

+
[
nF(εp)− nF(εp + k)

]
Φ(−k, εp,−kεp)

}
. (3.21)

– 7 –
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Carrying out the angular integral in eq. (3.19) and setting subsequently ω and k ·p to the

values required by eq. (3.21), it can be verified that the UV-divergent vacuum term and

the IR-sensitive2 thermal terms drop out. Moreover, the integral over q yields

Φ(k, εp, kεp) = −Φ(−k, εp,−kεp) =
k

2εp

∫
q

nF(εq) + nB(εq)

εq
=
kT 2

16εp
. (3.22)

Going over to a variable ε = ±εp for convenience, we subsequently find

{
lim
ω→k+

− lim
ω→k−

}
ρ

(v)
Ih’ =

T 2

128π

∫ ∞
−∞

dεP

{
nF(ε− k)− nF(ε)

ε

}
. (3.23)

Multiplying by −16g2NcCF from eq. (2.6), the part ∝ −1/ε of eq. (3.14) is reproduced.

3.5 Sum rules

A traditional further constraint on spectral functions is offered by sum rules (cf., e.g.,

ref. [46] and references therein). Unlike the OPE and LPM limits, the sum rules are

sensitive to the complete frequency domain. However, for ρV they are of limited value, as

they require the subtraction of poorly known vacuum parts (containing a dense spectrum

of resonances). In contrast, a nice and convergent sum rule can be obtained for ρH [35]:∫ ∞
0

dω ω ρH(ω, k) = 0 . (3.24)

We have used our perturbative results in order to test which frequency domain gives a

contribution to eq. (3.24). It must be noted that ρH displays a highly non-trivial structure,

changing sign twice: ρH is positive at ω ≤ k, becomes negative at ω & k as is necessary for

the cancellation required by eq. (3.24), but then again becomes positive when |ω−k| � πT ,

as shown by eq. (3.3). While we have verified that the sum rule is satisfied within numerical

uncertainties by our strict 2-loop result and can also be imposed once resummations are

included (cf. below), we also see that the asymptotics plays an important role, with the

domain ω ≥ 20T giving a substantial contribution to the absolute value of the integral.

4 Comparison with lattice data

4.1 Summary: resummed spectral functions

Having discussed various limits and crosschecks of the spectral functions, we are now ready

to put together estimates for phenomenological purposes. The full resummed spectral

functions (i ∈ {V,H, T, L}) are defined as

ρi|resummed
NLO ≡ ρi|strict

2-loop +
(
ρi|full

LPM − ρi|
expanded
LPM

)
× φ , (4.1)

where ρi|strict
2-loop is from ref. [38]; ρi|full

LPM is from section 3.2; and ρi|
expanded
LPM ≡ ρi|

(g0)
LPM+ρi|

(g2)
LPM is

from section 3.3. The function φ, which should be unity if resummations were implemented

2It is practical to regularize IR divergences by setting E2
qp ≡ (q− p)2 + λ2, with λ→ 0 at the end.
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Figure 1. Left: the modification of ρV (cf. eq. (2.3)) by LPM-resummation (cf. section 3.2), for

µ̄ = µ̄opt. The re-expanded version of the LPM result (cf. section 3.3) has been subtracted in order

to avoid double-counting once the result is combined with the full unresummed 2-loop expression,

cf. eq. (4.1). The logarithmic singularity cancels in this combination. Right: the same for ρH (cf.

eqs. (2.3), (3.5)).

“exactly”, and must in any case equal unity in the IR domain, can be used to correct for

the fact that kinematic simplifications pertinent only to the IR domain have been employed

in order to implement the resummation. Outside of this domain, we can use φ to switch off

the resummation more rapidly than it would switch off otherwise. We find it practical to

define φLO ≡ θ(ω∗−ω), where ω∗ is chosen so that the second structure of eq. (4.1) satisfies

eq. (3.24) (just like the first structure does). The superscript LO stands for leading-order

LPM resummation, as described in sections 3.2 and 3.3, and we find that numerically

ω∗ ∼ 15 . . . 25T , depending on k. We also incorporate NLO LPM-resummed results from

ref. [22], however for these the “expanded” version is not available, and we thus impose a

faster cutoff away from the light cone, inspired by discussions in ref. [22],

φNLO ≡ θ(k − ω)
eω/T − 1

e k/T − 1
+ θ(ω − k)

e k/T

eω/T
. (4.2)

In order to display the practical effect of the resummation, consider the difference

ρi|full
LPM− ρi|

expanded
LPM at leading order. Results are shown in figure 1. Prominent features are

a logarithmic divergence around light cone, cancelling the one from ρi|strict
2-loop, as well as the

vanishing of the correction when ω → 0 or ω → ∞ (in figure 1 the spectral function is

divided by ω).

A practical evaluation of the spectral function necessitates a choice of the renormaliza-

tion scale for the gauge coupling. Motivated by the arguments in ref. [34], we may expect

that the physics of the IR domain is represented by a dimensionally reduced description,
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whereby a fastest apparent convergence criterion suggests [47, 48]

µ̄
(Nf = 0)
opt = 6.74T , µ̄

(Nf = 2)
opt = 8.11T . (4.3)

Away from the IR domain, the scale should be set by virtuality. In order to smoothly

interpolate between these two possibilities, we choose

µ̄opt ≡
√

(ξπT )2 + |M2| , (4.4)

taking ξ = 1 for Nf = 0 and a larger ξ = 2 for Nf = 2. As these are on the low side

compared with eq. (4.3), we vary µ̄ in the range (1.0 . . . 2.0)× µ̄opt, noting that the gauge

coupling grows uncontrollably large for µ̄ = 0.5µ̄opt (αs > 0.5). The gauge coupling is

solved for from 5-loop evolution [49–51]. We have verified that the results are stable if

resorting to lower-order running or modifying the interpolation in eq. (4.4) while keeping

the limits at πT � |M | and πT � |M | fixed.

At very large ω, we let ρV continuously cross into vacuum-like N4LO perturbative

behaviour [27]. Such results can be inserted into eq. (1.3), in order to construct GV . For

ρH the vacuum tail is absent, nevertheless the results for GH are quite sensitive to a broad

frequency range 0 ≤ ω . 30T .

4.2 Comparison with lattice data for Nf = 0 [33]

We start the lattice comparison with the data that were produced and analyzed in ref. [33].

The correlator measured was

GV (τ, k) ≡
∫
x
e−ik·x

〈∑3
i=1V

i(τ,x)V i(0)− V 0(τ,x)V 0(0)
〉

c
, (4.5)

where V µ is the (Minkowskian) vector current and 〈. . .〉c stands for the connected con-

tractions. In the continuum limit this correlator diverges at small τ and is conveniently

normalized to the free result

Gnorm,V

6T 3
≡ π(1− 2τT )

1 + cos2(2πτT )

sin3(2πτT )
+

2 cos(2πτT )

sin2(2πτT )
. (4.6)

For scale setting, we use Tc/ΛMS ' 1.24, which has ∼ 10% uncertainty [52].

Resummed NLO spectral functions ρV are shown for three momenta in figure 2(left),

and the corresponding imaginary-time correlators GV obtained from eq. (1.3) in fig-

ure 2(right), where they are also compared with lattice data. Despite the low temperature,

we observe a remarkable agreement. On close inspection, the perturbative curves are above

the lattice ones, requiring a non-perturbative suppression of ρV . The same qualitative fea-

tures persist at T = 1.3Tc (not shown), however the difference between the perturbative

and lattice results is slightly smaller, as may be expected from a gradually decreasing αs.

The conclusions that we draw from these observations are summarized in section 5.
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Figure 2. Results for ρV (left) and GV (right) at T = 1.1Tc for Nf = 0, the latter normalized

to eq. (4.6). LPMLO refers to results from sections 3.2 and 3.3, employing the two scale choices

µ̄ = µ̄opt and µ̄ = 2µ̄opt (cf. eq. (4.4)). The notation LPMNLO indicates that the contribution from

ref. [22] has been added; in this case we use µ̄ = µ̄opt. The black squares are lattice results from

ref. [33]. The spectral function can become negative at very small ω due to the subtraction of ρ00
(cf. eq. (4.5)); the related physics is discussed in more detail around eq. (5.1).

4.3 Comparison with lattice data for Nf = 2 [35, 53]

Finally we move on to unquenched lattice data, obtained recently for Nf = 2 in refs. [35, 53].

In this case we concentrate on the ultraviolet finite correlator (k ≡ kez)

GH(τ, k) ≡
∫
x
e−ikz

〈∑2
i=1V

i(τ,x)V i(0)− 2
[
V z(τ,x)V z(0)− V 0(τ,x)V 0(0)

]〉
c
. (4.7)

Let us stress again that the spectral functions corresponding to GV and GH agree on the

light cone but are substantially different away from it (cf. figure 2(left) vs. figure 3(left)).

Again a comparison between perturbative and lattice results requires relating physical

scales. According to eq. (3.1) of ref. [54], Tc ' 167(25) MeV, with units set through

r0 = 0.503(10) fm [55]. Adopting a community average from ref. [56], viz. r0ΛMS ≈
0.75(10), yields Tc/ΛMS ' 0.56 for Nf = 2, but with substantial ∼ 25% uncertainties.

For the comparison, a susceptibility is needed as well; we employ the recent continuum

extrapolation χ = 0.88(1)T 2 from ref. [53], consistent with classic expectations [57].

The spectral function ρH is shown in figure 3(left), and the corresponding imaginary-

time correlator GH in figure 3(right). Like in figure 2(right), the lattice correlators fall in

general below the perturbative curves. The uncertainties of the perturbative imaginary-

time correlators, as reflected by the scale dependence and the difference between LPMLO

and LPMNLO resummations, are relatively speaking larger for Nf = 2, a manifestation

of the fact that the dominant vacuum UV tail is absent and therefore the data is more
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Figure 3. Results for ρH (left) and GH (right) at T ' 1.2Tc for Nf = 2. The black squares are

lattice data from refs. [35, 53], multiplied by a factor 2χ/T 2, where χ ≈ 0.88T 2 [53], in order to

convert to our units. The notations LPMLO and LPMNLO and the scale choices are as in figure 2.

sensitive to IR physics. Nevertheless it is comforting that the qualitative pattern remains

similar. The conclusions drawn from the comparison are discussed in section 5.

5 Conclusions

Motivated by a comparison with lattice data, unresummed NLO (2-loop) vector spectral

functions have recently been extended into two new domains [38]: below the light cone

(ω < k), and to a longitudinal polarization that vanishes at the light cone but is non-zero

elsewhere. Even if the spacelike domain, corresponding to deep inelastic scattering off a

thermal medium, sounds academic, it is essential for a comparison with lattice data, given

that imaginary-time measurements get a large contribution from this region (cf. eq. (1.3)).

The longitudinal polarization, in turn, is useful in the UV domain, as it permits to subtract

the short-distance singularities from the lattice measurement (cf. eq. (3.3)) [35].

With the 2-loop results at hand, they can be resummed close to the light cone as

specified in eq. (4.1) (parametrically, this is needed for |ω − k| . αsT
2/k). Making use

of methods developed in ref. [34], this resummation has been worked out to NLO by

now [21, 22], implying in this context corrections suppressed by
√
αs. We have incorporated

the latter corrections in our results, switching them off away from the light cone when they

lose their validity.

The comparison of the imaginary-time correlators following from the resummed NLO

spectral functions against lattice data can be viewed as the inspection of many separate

“sum rules”, one for each τ . Put together, this constrains the spectral function in a non-

trivial way. In particular, we find that the correlators are affected by the choice of the
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renormalization scale of αs (cf. figures 2 and 3). Reasonable agreement is obtained by scale

choices reminiscent of those originating from dimensional reduction (cf. eq. (4.3)).

After fixing the renormalization scale, the perturbative results lie in general somewhat

above the lattice data. Such a non-perturbative suppression confirms the previous finding

based on a polynomial interpolation of ρV [33]. At the same time the comparison of

figures 2(right) and 3(right) testifies to the improved resolution power of the correlator

GH [35], so we are looking forward to final results from Padé fits of ρH [53].

It would be interesting to investigate if resummed NLO rates embedded in hydrody-

namical simulations of heavy ion collisions also overshoot the experimental results at small

virtualities. To our knowledge this exercise has been implemented only on a rough level

so far [58], supporting however this type of an overall trend. Nevertheless, it could still be

that the physical photon rate is well predicted or even underestimated by the NLO result,

if there is a large suppression of the spectral weigth in some other domain. The general

expectation is that strong interactions should suppress thermal fluctuations particularly at

small ω and k.

We end by noting that ρV of the spacelike domain has an interesting relation to the

diffusion coefficient of hot QCD matter. For ω, k � T , the general theory of statistical

fluctuations applies [59] and permits for a “hydrodynamic” prediction (cf., e.g., ref. [60]),

ρV (ω, k)

ω

ω,k�T
≈

(
ω2 − k2

ω2 +D2k4
+ 2

)
χD . (5.1)

Here D is the diffusion coefficient and χ is a susceptibility, χ ≡
∫ β

0 dτ
∫
x〈V

0(τ,x)V 0(0,0)〉.
It follows that the zero-frequency limit, limω→0 ρV (ω, k)/ω, crosses zero at k = 1/(

√
2D).

The values extracted from our ρV |resummed
NLO this way are perfectly consistent with recent

lattice estimates (DT ∼ 0.2 . . . 0.8 at T = 1.1Tc [61]) but differ from strict LO perturbative

determinations which incorporate further resummations [62] (DT ≈ 2.9 at T = 1.1Tc [33]).3
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