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1 Introduction

Understanding the structure of infrared (IR) singularities of gauge-theory scattering ampli-

tudes is an important problem. On one hand, this helps in unveiling the deeper structure

of quantum field theory in higher orders of perturbation theory. On the other, it also has

many practical applications. In particular, the ability to predict the IR singularities of

n-particle amplitudes enables one to systematically resum large logarithmic corrections to

cross sections and differential distributions for many important collider processes, leading

to a higher precision in the calculation of these observables.

The problem of predicting the structure of IR singularities of on-shell n-particle scatter-

ing amplitudes in massless QCD simplifies, if one realizes that they can be put in one-to-one

correspondence with ultraviolet (UV) divergences of operators defined in soft-collinear ef-

fective theory (SCET) [1]. This relation implies that IR divergences can be studied by

means of standard renormalization-group techniques — a concept that had been developed

earlier in the context of theories of Wilson lines [2]. The IR divergences of n-point scat-

tering amplitudes can be absorbed into a multiplicative renormalization factor Z, which

can be derived from an anomalous dimension Γ. Both objects are matrices in color space,

i.e. they mix amplitudes with the same particle content but different color structures. The
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predictive power of this approach relies on the fact that the anomalous dimension is tightly

constrained by the structure of the effective field theory: soft-collinear factorization implies

that it is given by the sum of a soft and a collinear contribution,

Γ({s}, µ) = Γs({β}, µ) +

n∑
i=1

Γic(Li, µ) 1 , (1.1)

and given that there are no interactions among different collinear sectors of SCET [3–6],

all non-trivial color and momentum dependence is encoded in the soft anomalous

dimension Γs.

The total anomalous dimension Γ depends on the n(n − 1)/2 kinematical variables

sij ≡ 2σij pi · pj + i0, where the sign factor σij = +1 if the momenta pi and pj are both

incoming or outgoing, and σij = −1 otherwise. We denote the collection of these variables

by {s}. It also depends on the color generators Ti of the n particles. We suppress this

dependence in the argument of the anomalous dimension but indicate it by the use of the

boldface symbol Γ, which shows that the anomalous dimension is a matrix in color space.

We use the color-space formalism, in which amplitudes are treated as n-dimensional vectors

in color space [7]. Ti is the color generator associated with the ith particle in the scattering

amplitude, which acts as an SU(Nc) matrix on the color indices of that particle.

The soft anomalous dimension Γs is the anomalous dimension of an operator built

out of n soft Wilson lines, one for each external particle, directed along the momentum

of that particle and defined in the appropriate representation of SU(Nc). The dependence

of the soft anomalous dimension on the external momenta pi of the particles is encoded

via so-called cusp angles βij (with i 6= j), which for slightly off-shell, massless particles are

defined as

βij = ln
(−sij)µ2

(−p2
i − i0)(−p2

j − i0)
= Li + Lj − ln

µ2

−sij
. (1.2)

The collinear anomalous dimensions Γic are single-particle terms, which are diagonal in

color space and each depend on a single collinear scale Li = ln[µ2/(−p2
i − i0)]. To all

orders in perturbation theory, they have the form [8]

Γic(Li, µ) = −Γicusp(αs)Li + γic(αs) , (1.3)

where the coefficients Γicusp(αs) is called the cusp anomalous dimension of particle i [9]. The

fact that the total anomalous dimension must be independent of the collinear scales p2
i when

we combine the soft and collinear contributions implies the differential equation [10, 11]

dΓs({β}, µ)

dLi
=
∑
j 6=i

∂Γs({β}, µ)

∂βij
= Γicusp(αs) 1 , (1.4)

where the expression on the right-hand side is a unit matrix in color space.

This relation provides an important constraint on the momentum and color structures

that can appear in the soft anomalous-dimension matrix. Because the kinematical invari-

ants sij can be assumed to be linearly independent, relation (1.4) implies that Γs depends

– 2 –
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only linearly on the individual cusp angles βij . The only exception would be a more compli-

cated dependence on combinations of cusp angles, in which the collinear logarithms cancel.

The simplest such combination is

βijkl = βij + βkl − βik − βjl = ln
(−sij)(−skl)
(−sik)(−sjl)

, (1.5)

which coincides with the logarithm of the conformal cross ratio ρijkl defined in [10]. For

simplicity, we will use the term “conformal cross ratio” in the following also when referring

to βijkl. This quantity obeys the symmetry properties

βijkl = βjilk = −βikjl = −βljki = βklij . (1.6)

It is easy to show that any combination of cusp angles that is independent of collinear

logarithms can be expressed via such cross ratios. Moreover, given four particle momenta

there exist only two linearly independent conformal cross ratios, since

βijkl + βiklj + βiljk = 0 , (1.7)

and all other index permutations can be obtained using the symmetry properties in (1.6).

Any function of conformal cross ratios provides a solution to the homogeneous differential

equation associated with (1.4), and hence it can always be added to any particular solution

of the equation.

Another powerful constraint arises from the non-abelian exponentiation theorem [12,

13], which implies that only the color structures associated with fully connected gluon

webs, whose ends can be attached in arbitrary ways to the n Wilson lines, contribute to

the soft anomalous dimension [10, 11]. This severely restricts the color structures that can

arise in higher orders of the loop expansion. The generalization of the concept of “webs”

to multi-particle amplitudes has been discussed in detail in [14, 15].

Up to two-loop order, the constraints mentioned above imply that a simple dipole

formula describes the anomalous dimension for arbitrary scattering processes of n massless

particles [1, 10, 11], in accordance with explicit calculations [16, 17]. A more compli-

cated formula describes processes in which some or all of the participating particles are

massive [18–20]. Here we reconsider the case of massless particles, where starting from

three-loop order non-trivial correlations between three or more particles arise [21]. The

explicit structure of the three-loop three- and four-particle correlations was derived in [22].

The functional form of the multi-particle correlations and their dependence on the

kinematic variables sij and βijkl is further constrained by collinear factorization [11]. When

two particles in either the initial or the final state of a scattering process become collinear,

an n-particle scattering amplitude splits into an (n−1)-particle amplitude times a process-

independent splitting amplitude Sp({p1, p2}, µ), which involves the momenta and color

generators of the collinear particles only [23–26]. The fact that the anomalous dimension

of the splitting amplitude defined as

d

d lnµ
Sp({p1, p2}, µ) = ΓSp({p1, p2}, µ) Sp({p1, p2}, µ) , (1.8)

– 3 –
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must be independent of the momenta and color generators of the particles not involved in

the splitting process yields the non-trivial constraint [11]

ΓSp({p1, p2}, µ) = Γ({p1, . . . , pn}, µ)− Γ({P, p3 . . . , pn}, µ)
∣∣
TP→T1+T2

, (1.9)

where also the right-hand side must be independent of the momenta p3, . . . , pn and the

corresponding color generators. Collinear factorization is known to be violated in the space-

like region, when one of the collinear particles is in the initial state while the other belongs

to the final state [27, 28]. For our purposes, however, we can always assume that the two

collinear particles 1 and 2 both belong to the final state. The high-energy (“Regge”) limit

imposes an interesting additional constraint on n-particle scattering amplitudes [29, 30].

The point is that the leading IR singularities of the Regge slopes are correctly described

by the dipole conjecture, so extra contributions from multi-particle correlation terms must

only give rise to subleading logarithms.

In this paper we revisit our previous analyses [11, 21] of the structure of the anomalous-

dimension matrix Γ for n-particles scattering amplitudes in massless Yang-Mills theory. We

begin with some comments on the workings of non-abelian exponentiation and the defini-

tion of connected webs for n-particle amplitudes. We then show how these webs can be

decomposed into color structures that are symmetrized with respect to the external particle

indices. Our master formula for the anomalous dimension Γ, which has been simplified

compared to earlier expressions due to the fact that we have unravelled some new color iden-

tities, is presented in relation (4.1) in section 4, where we also summarize the present knowl-

edge of the various perturbative coefficient functions entering the result. The constraints on

the coefficient functions implied by the proper factorization in two-particle collinear limits

are derived in section 6. Two interesting phenomenological consequences of our results are

discussed in section 7, where we quote the anomalous dimension relevant for the resumma-

tion of large logarithms in collider cross sections at N3LL order as well as the anomalous

dimensions governing the IR singularities of three-particle scattering amplitudes.

2 Non-abelian exponentiation and connected webs

Since the color structure of the collinear anomalous dimension is trivial, the hard anomalous

dimension inherits the color structures of the soft anomalous dimension Γs({β}, µ) in (1.1).

The soft anomalous dimension governs the ultraviolet (UV) poles of a soft function S, which

is given by a matrix element of a product of soft light-like Wilson lines in the directions of

the external particles. Figure 1 shows a few representative Feynman graphs contributing

to S at O(α3
s) in perturbation theory. The soft anomalous dimension is derived from the

coefficient of the 1/ε pole in the exponent S̃ defined through S = exp(S̃).

The higher-order corrections to the soft function are severely constrained. In fact,

in an abelian theory (with massive fermions), soft Wilson-line matrix elements are almost

trivial, since the higher-order contributions are obtained by exponentiating the one-loop re-

sult, and hence S̃ is saturated at one-loop order. This simple exponentiation does not hold

in non-abelian theories, but the higher-order corrections to the exponent only arise from a
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M M M

Figure 1. Representative three-loop diagrams contributing to the soft function S associated with

a four-particle scattering amplitude. The light-like soft Wilson lines are represented by double lines

and multiply the hard amplitudeM indicated by the gray blob. The left diagram is fully connected

and therefore also color connected. The middle diagram is connected but not fully connected. It

has a color-connected part with the same color structure as the diagram on the left. The right

diagram is disconnected.

Figure 2. Color-connected webs appearing up to four-loop order in the soft anomalous dimension

Γs. The webs represented by these graphs are the color structures that arise if the wavy lines are

replaced by gluons in the corresponding (fully connected) tree-level Feynman graphs.

restricted set of color structures, as first demonstrated by Gatheral [12]. The color struc-

tures arising up to four-loop order are shown in figure 2. They were called “color-connected

webs” by Frenkel and Taylor [13]. In the following, it will be important to distinguish the

terms “fully connected” and “color connected”. The exponent S̃ also gets contributions

from diagrams, in which the gluons are not directly connected with each other, but whose

color structure is equal to the color structure of a fully connected diagram after using the

group identity [T a,T b] = ifabc T c to “connect” two gluons. A diagram is called “fully con-

nected”, if it stays connected when one cuts Wilson-line propagators. The first graph in

figure 1 shows an example. By definition, a fully connected diagram is also color connected,

but also diagrams which are not fully connected can contain color-connected pieces. An

example is shown by the second graph in the figure. Only disconnected diagrams such as

the third one cannot give rise to color-connected contributions.

The original papers [12, 13] on non-abelian exponentiation were focussing on the form-

factor case, which involves soft emissions from only two Wilson lines. The generalization

to multiple Wilson lines has been developed in [14, 15, 31–35]. It is based on an effi-
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cient method to evaluate the diagrammatic contributions to the exponent S̃ introduced

in [14, 36]. The technique is called the “replica trick” and is well known in statistical

physics (see e.g. [37]), where it can be used to compute the logarithm of the partition

function. It is based on the identity

S̃ = lnS = lim
N→0

SN − 1

N
. (2.1)

The trick consists in evaluating SN with N replicas of QCD. The contribution to the expo-

nent S̃ is then obtained after expanding the result for SN in a Taylor series in N and picking

up the linear term. To get the N th power of S, one has to order the color matrices of the

different replicas on the Wilson line, i.e. one starts with the color matrices associated with

the first copy and ends with the ones of the N th copy when moving along the Wilson line.

An efficient way to compute the diagrams of the replicated theory is to draw the usual

(non-replicated) QCD Wilson-line diagrams and then assign different replicas to different

gluons in the diagram. To get the result in the replicated theory, one then has to add

the proper combinatorial factor for each replica assignment. For example, if the diagram

is fully connected, only a single replica can contribute, because the different replicas are

independent copies of QCD and do not interact with each other. Since there are N replicas,

the combinatorial factor is N and the diagram directly contributes to S̃. This gives the

basic, but important statement that fully connected diagrams contribute to the exponent

S̃. Given that these diagrams are color connected, it is clear that the structures shown in

figure 2 are indeed present in S̃. What remains to be shown is that the exponent does not

involve any color-disconnected contributions from other diagrams.

It is easy to show that disconnected diagrams do not give a contribution to the expo-

nent, since they scale as N2, as each part of the diagram can involve a different replica. The

interesting class of diagrams, which we will study in the following, are connected diagrams

which become disconnected by cutting one or more Wilson lines, i.e. diagrams which are

connected but not fully connected. For such diagrams the appropriate combinatorial factor

for a contribution with M different replicas is

N !

M ! (N −M)!
=

(−1)M−1

M
N +O(N2) . (2.2)

There are in general M ! factorial possibilities to order the replicas in the diagram. For

example, in a diagram in which cutting Wilson lines leads to two disconnected pieces, one

can assign two different replicas I and J , but we can have I < J or J < I, each of which

contributes according to (2.2) with a factor −1/2 to the exponent S̃.

Let us evaluate one example in detail, namely a contribution with two disjoint con-

nected gluon clusters attaching to a single Wilson line at leg i. The corresponding type of

diagram is depicted on the left-hand side of figure 3 and has the form

D = F CaDb T a
i T

b
i . (2.3)

The function F contains the kinematic information of the diagrams, while Ca and Db

account for the color structures of the two connected clusters. The factors Ca and Db

– 6 –
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...
...

C

D

...
...

E

D

Figure 3. Two examples of gluon clusters connecting to a Wilson line.

are functions of the color generators of other lines, but since the clusters are disjoint and

themselves fully connected, they will be the same in the replicated theory. If we assign

replica numbers I and J to the two clusters, there are three cases to consider: I = J ,

I < J , and I > J . The associated contributions to the exponent are as follows:

I = J : F CaDb T a
i T

b
i ,

I < J : −1

2
F CaDb T a

i T
b
i ,

I > J : −1

2
F CaDb T b

i T
a
i .

(2.4)

Note that the color matrices in the third contribution were replica-ordered, i.e. reordered

so that the replica-number increases along the Wilson line. Summing up the three terms,

one obtains for the contribution of the diagram to the exponent S̃

D̃ =
1

2
F CaDb [T a

i ,T
b
i ] =

i

2
FfabcCaDb T c

i , (2.5)

which has a fully-connected color structure, as expected. Of course, we could have split up

the original diagram into a color-connected piece and a remainder by rewriting

T a
i T

b
i =

1

2
[T a
i ,T

b
i ] +

1

2
{T a

i ,T
b
i } . (2.6)

The replica treatment eliminates the contribution of the symmetric, color-disconnected

piece to the exponent. More generally, the replica method acts in the space of color

structures related to each other by permuting color generators on the Wilson lines. Within

this space, it acts as a projection onto the structures in the exponent. In [14] the map

onto color structures in the exponent S̃ was written in matrix form, and one finds that

the corresponding mixing matrices R are indeed projections, i.e. R2 = R. In our trivial

example above, the mixing matrix reads

R =
1

2

(
1 −1

−1 1

)
(2.7)

and acts on the two color structures T a
i T

b
i and T b

i T
a
i . Many explicit examples of such

matrices were provided in [14].

The result of our computation (2.4) can be compactly summarized as a substitution rule

T a
i T

b
i →

i

2
fabc T c . (2.8)

– 7 –
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The analogous result for attaching three different clusters to a single Wilson line reads

T a
i T

b
i T

c
i →

1

6

(
2fadef bce − facef bde

)
T d
i . (2.9)

This color structure consists of two contracted structure constants, i.e. two instances of the

third color structure in figure 2. Repeating the exercise with four gluons, the maximum

number which can arise at four-loop order, we obtain a linear combination of terms with

three connected fabc symbols, corresponding to the last color structure in figure 2.

Let us consider a more interesting example, in which two lines of a connected gluon

cluster are attached to the same Wilson line, as depicted on the right-hand side of figure 3.

This gives rise to the color structure EabDc T a
i T

b
i T

c
i , where a and b connect to the same

cluster and thus must be part of the same replica. In analogy with (2.4), the replica trick

leads to

T a
i T

b
i T

c
i →

1

2

(
T a
i T

b
i T

c
i − T c

i T
a
i T

b
i

)
=
i

2

(
f bcd T a

i T
d
i + facd T d

i T
b
i

)
. (2.10)

Through the replica procedure gluon c gets color-connected to either a or b, which are part

of the same cluster. The final result is thus again a fully color-connected structure.

We have automated the replica procedure and have studied a large variety of three-

and four-loop diagrams, in which gluons attach in different ways to Wilson lines. We find

in all cases that only the color-connected structures shown in figure 2 contribute to the

exponent S̃ and hence to the soft anomalous dimension Γs. A formal proof of this result

has been put forward in [15] based on a generalized Baker-Campbell-Hausdorff formula.

3 Reduction to symmetrized color structures

One can further simplify the connected webs shown in figure 2 by symmetrizing the at-

tachments to the Wilson lines, as we did in [11]. Explicitly, the corresponding symmetrized

color structures are (sums over repeated color indices are implied)1

Dij = T a
i T

a
j ≡ Ti · Tj , starting at one-loop order,

Tijk = ifabc
(
T a
i T

b
j T

c
k

)
+
, starting at two-loop order,

Tijkl = fadef bce
(
T a
i T

b
j T

c
kT

d
l

)
+
, starting at three-loop order,

DRijkl = dabcdR T a
i T

b
j T

c
kT

d
l , starting at four-loop order,

Tijklm = ifadff bcgf efg
(
T a
i T

b
j T

c
kT

d
l T

e
m

)
+
, starting at four-loop order.

(3.1)

Here

da1...anR = TrR
(
T a1 . . .T an

)
+
≡ 1

n!

∑
π

Tr
(
T
aπ(1)
R . . .T

aπ(n)
R

)
(3.2)

are symmetric invariant tensors given in terms of traces over symmetrized products of

group generators in the representation R. The (. . . )+ prescription only acts on generators

1Compared with [21] we have included an extra factor of i in the definition of the 5-index symbol Tijklm.
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attached to the same particle line, e.g. Tijij = fadef bce (T a
i T

c
i )+(T b

j T
d
j )+ for i 6= j. For the

structures Dij... there is no need to write a (. . . )+ prescription, because they are totally

symmetric in their color indices. Note that (at least up to four-loop order) symmetric

structures with an odd number of indices do not arise. In particular, the color-symmetric

three-gluon web dabcR T a
i T

b
j T

c
k does not appear in perturbative calculations of the three-

gluon vertex function up to four-loop order [38–40]. In [40], an argument based on Bose

symmetry and charge-conjugation invariance was given that this should hold to all orders

in perturbation theory.

While the color structures Dij and DRijkl are totally symmetric in their indices, the

various T structures have more complicated symmetry properties. Tijk is totally antisym-

metric in its indices, and it vanishes if two or three indices coincide. The structure Tijkl
obeys the same symmetry relations as the conformal cross ratios βijkl in (1.6), i.e.

Tijkl = Tjilk = −Tikjl = −Tljki = Tklij . (3.3)

It vanishes if three or four indices coincide. For two identical indices, the non-vanishing

symbols are [11]

Tiijj = −Tijij = fadef bce
(
T a
i T

b
i

)
+

(
T c
j T

d
j

)
+
,

Tiijk = −Tijik = −Tjiki = Tjkii = fadef bce
(
T a
i T

b
i

)
+
T c
j T

d
k .

(3.4)

Useful identities for the 5-index symbol Tijklm have been derived in [21]. In particular, it

satisfies the relations

Tijklm = −Tikjlm = −Tljkim = −Tjilkm , (3.5)

which allow us to move any one of the first four indices to first place. Note that the fifth

index is special. The Tijklm symbols vanish unless at least three indices are different from

each other. For the case of three different indices i, j, k, the symmetry properties allow us

to reduce all possible structures to Tiijki and Tiikjj , where the first one is antisymmetric

in j, k, while the second one is antisymmetric in i, j. For the case of four different indices

i, j, k, l, the symmetry properties imply that all structures can be reduced to Tiijkl and

Tijkli, both of which are antisymmetric in j, k.

Very useful additional relations can be derived using the Jacobi identity

fabef cde + facefdbe + fadef bce = 0 . (3.6)

We find
Tijkl = Tijlk − Tiklj ,
Tijklm = Tijmlk − Tikmlj = Tijkml − Tljkmi .

(3.7)

The latter set of identities allows us to move the last index of the symbol Tijklm.

The reduction of the color factors associated with the connected webs to the sym-

metrized structures in (3.1) uses the Lie algebra [T a,T b] = ifabc T c and the group-theory

– 9 –
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identities (recall that in the adjoint representation of the gauge group (T a)bc = −ifabc)

TrA

(
T aT b

)
= facdf bcd = CA δ

ab ,

TrA

(
T aT bT c

)
= ifadef begf cgd =

iCA
2

fabc ,

TrA

(
T aT bT cT d

)
= faeff bfgf cghfdhe = dabcdA +

CA
6

(
fadef bce − fabef cde

)
.

(3.8)

In deriving these expressions one uses the Jacobi identity (3.6). Let us first consider the

primary structure

Tijk = ifabc T a
i T

b
j T

c
k (3.9)

for the three-gluon web shown by the second graph in figure 2, where no symmetrization

is applied. If all three indices i, j, k are different, we obviously have Tijk = Tijk. For two

different indices, we find

Tiji = −Tiij = −Tijj =
CA
2
Dij . (3.10)

If all indices are the same, then

Tiii = −CA
2
CRi 1 , (3.11)

whereRi is the color representation of the i th particle. CF =(N2
c−1)/(2Nc) and CA=Nc are

the quadratic Casimir invariants in the fundamental and the adjoint representation, respec-

tively. Hence, the color structure Tijk associated with the three-gluon web can be reduced

to the symmetrized structure Tijk and the lower-order symmetrized structures Dij and 1.

The primary structure for the four-gluon web shown by the third graph in figure 2 reads

Tijkl = fadef bce T a
i T

b
j T

c
kT

d
l , (3.12)

where again no symmetrization is applied. If all four indices i, j, k, l are different, then

Tijkl = Tijkl. For three different indices, we find

Tiijk = −Tijik = −Tjiki = Tjkii = Tiijk −
CA
4
Tijk , Tijki = Tjiik =

CA
2
Tijk . (3.13)

For two different indices, we obtain the relations

Tiijj = −Tijij = Tiijj +
C2
A

8
Dij , Tijji = −

C2
A

4
Dij ,

Tiiij = Tjiii =
C2
A

4
Dij , Tiiji = −Tijii = 0 .

(3.14)

Finally, if all indices are the same, then

Tiiii =
C2
A

4
CRi 1 . (3.15)

In all cases the primary color structure Tijkl can be reduced to the symmetrized structures

Tijkl and the lower-order symmetrized structures Tijk, Dij and 1.

As a more complicated case, we now study the four-gluon webs induced by loops of

internal particles (in color representation R), as shown by the first two graphs in the second

line of figure 2. They give rise to the primary color structures

DR
ijkl = TrR

(
T aT bT cT d

)
T a
i T

b
j T

c
kT

d
l , (3.16)

– 10 –



J
H
E
P
0
1
(
2
0
2
0
)
0
2
5

where the trace is taken over color generators in the representation R of the gauge group.

Using group-theoretic identities, one can show that [41]

TrR
(
T aT bT cT d

)
= dabcdR +

i

2

(
dadeR f bce−dbceR fade

)
+
I2(R)

6

(
fadef bce−fabef cde

)
, (3.17)

where I2(R) is the second index of the representation R, with I2(F ) = TF = 1
2 and

I2(A) = CA = Nc. Note that (3.17) introduces the 3-index symbol dabcR , which is known not

to contribute to the three-gluon vertex function. However, charge-conjugation invariance

ensures that, when one sums over all relevant Feynman diagrams, one always encounters

the combination

DR,sym
ijkl =

1

2
TrR

(
T aT bT cT d + T dT cT bT a

)
T a
i T

b
j T

c
kT

d
l , (3.18)

with

1

2
TrR

(
T aT bT cT d + T dT cT bT a

)
= dabcdR +

I2(R)

6

(
fadef bce − fabef cde

)
. (3.19)

It follows from this relation that

DR,sym
ijkl = DRijkl +

I2(R)

6
(Tijkl + Tilkj) + CA

I2(R)

12

[
(δjl − 2δkl)Tijk + δjk Tilj

]
, (3.20)

where the structures Tijk and Tijkl have been defined in (3.9) and (3.12). Note that the

3-index dabcR symbol has disappeared. Consequently, it is indeed sufficient to study the

symmetrized color structures DRijkl, since the extra terms in (3.20), which have already

been considered above, give rise to symmetric structures of lower order.

We finally focus on the five-gluon web shown by the last graph in figure 2, which gives

rise to the primary color structure

Tijklm = ifadff bcgf efg T a
i T

b
j T

c
kT

d
l T

e
m . (3.21)

Once again, it is straightforward to show that it suffices to consider the symmetrized color

structures Tijklm, since all commutator terms can be reduced structures already encoun-

tered in lower orders, including Tijkl and DAijkl. For the purpose of illustration, we quote

the relevant relations for the cases where exactly two indices coincide. We find

Tijkim = −Tjiikm =
CA
2
Tijkm ,

Tiiklm = −Tikilm = Tkilim = −Tkliim = Tiiklm −
1

2
DAiklm −

CA
12

(Tikml + Tilmk) ,

Tijkli = −Tljkii = Tijkli +
CA
4
Tijkl ,

Tijklj = −Tikjlj = Tijklj −
CA
4
Tijkl .

(3.22)

If three or more indices coincide, the corresponding relations also contain the color struc-

tures Tijk, Dij and 1. As a corollary, note that while at four-loop order in QCD the color

structure DFijkl only arises from the four-gluon vertex with an internal quark loop, the

corresponding structure DAijkl in the adjoint representation receives contributions also from

diagrams without closed gluon (or ghost) loops.
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4 Anomalous dimension up to four-loop order

Combining the constraints imposed by soft-collinear factorization and non-abelian expo-

nentiation, we find that the most general form of the anomalous-dimension matrix up to

four-loop order can be written as

Γ({s}, µ) =
∑
(i,j)

Ti · Tj
2

γcusp(αs) ln
µ2

−sij
+
∑
i

γi(αs) 1

+ f(αs)
∑

(i,j,k)

Tiijk +
∑

(i,j,k,l)

Tijkl F (βijlk, βiklj ;αs)

+
∑
R

gR(αs)

[∑
(i,j)

(
DRiijj + 2DRiiij

)
ln

µ2

−sij
+
∑

(i,j,k)

DRijkk ln
µ2

−sij

]
+
∑
R

∑
(i,j,k,l)

DRijklGR(βijlk, βiklj ;αs) +
∑

(i,j,k,l)

TijkliH1(βijlk, βiklj ;αs)

+
∑

(i,j,k,l,m)

TijklmH2(βijkl, βijmk, βikmj , βjiml, βjlmi;αs) +O(α5
s) .

(4.1)

Here (i, j, . . . ) refer to unordered tuples of distinct particles indices (all running from 1 to

n). For terms involving the symmetric color structures DRijkl we have included a sum over

the color representation R of the particles in the theory (R = F,A for QCD).

The first line of (4.1) contains the so-called dipole form of the anomalous dimension [1,

10, 11]. The coefficients γcusp and γi start at one-loop order. Note the important fact

that the 3-index symbol Tijk does not appear in the anomalous dimension. It would have

to be multiplied by a totally antisymmetric kinematic function built out of the invariants

βij , βjk and βki. The constraint (1.4) implies that this function must be linear in all three

invariants. However, it is easy to show that such a function does not exist [11]. As a

consequence, the dipole form still holds at two-loop order.

The terms in the second line start at three-loop order and have been given in eq. (6.17)

of [11]. Note that the function F (βijlk, βiklj) remains invariant under the index permuta-

tions {ijkl} → {jilk} and {klij}, under which Tijkl is also invariant, while F (βijlk, βiklj)→
F (βiklj , βijlk) under the permutations {ijkl} → {ikjl} and {ljki}, under which Tijkl
changes sign. It follows that without loss of generality we can choose

F (x1, x2;αs) = −F (x2, x1;αs) (4.2)

to be an odd function under exchange of its arguments. This also follows more directly

from the first relation in (3.7). The terms shown in the last three lines of (4.1) start at

four-loop order and have been adapted from eq. (3.16) in [21]. The antisymmetry of the

color structure Tijkli in j, k implies that without loss of generality we can choose

H1(x1, x2;αs) = −H1(x2, x1;αs) . (4.3)

Likewise, the function GR must satisfy

GR(x1, x2;αs) = GR(x2, x1;αs) = GR(x1 − x2,−x2) = GR(x2 − x1,−x1) . (4.4)
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We emphasize the important fact that starting at four-loop order new terms involving

the so-called “cusp logarithms” ln[µ2/(−sij)] appear in (4.1), which are not governed by

the universal cusp anomalous dimension γcusp(αs) in the first line. These terms involve new

two- and three-particle color correlations. The constraint (1.4) imposed by soft-collinear

factorization enforces that they appear in a certain linear combination multiplying the

functions gR(αs).

Concerning the structure of the five-particle correlations in the last line of (4.1), we

note that for five different indices i, j, k, l,m there exist five subsets of four indices, and in

each subset one can define two linearly independent conformal cross ratios. Among these

ten cross ratios there exist five linear relations [21], which allow us to write H2 as a function

of five kinematic variables. With the choice made in (4.1), the relations for the other five

cross ratios read
βiklj = βikmj + βjlmi ,

βjklm = −βijmk + βjiml − βjlmi ,
βjlmk = −βijkl + βijmk − βikmj ,
βiklm = −βijmk + βikmj + βjiml ,

βimkl = βijkl − βjiml + βjlmi .

(4.5)

The symmetry relations (3.5) imply that, without loss of generality, we can impose the

conditions

H2(y1, y2, y3, y4, y5;αs) = −H2(y1, y4, y5, y2, y3;αs)

= −H2(−y1, y3, y2, y4 − y2 + y3, y5 + y1 − y2 + y3;αs)

= −H2(−y1, y2 − y4 + y5, y3 + y1 − y4 + y5, y5, y4;αs) ,

(4.6)

the first one of which is particularly simple.

In the color-space formalism, color conservation translates into the statement that one

gets zero when summing over the particle index of the right-most color generator in a given

color structure, i.e.

. . .
n∑
i=1

T a
i = 0 . (4.7)

We can use this relation to derive some additional non-trivial conditions on the function

H2, which are based on the color identities (for five different indices i, j, k, l,m)∑
m 6=i,j,k,l

Tijklm = −Tijkli − Tijklj − Tijklk − Tijkll ,∑
l 6=i,j,k,m

Tijklm = −Tijkjm − Tijkkm − Tijkmm .
(4.8)

To derive these identities, we have expressed Tijklm in terms of products of color generators

contracted with fabc symbols, performed the sums over m and l using (4.7) after moving the

corresponding color generators all the way to the right, and rewritten the answer in terms

of symmetrized color structures. It is remarkable that, contrary to (4.14) below, no lower-

order color structures appear in these relations, even though they appear in intermediate
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steps of the calculation. Analogous sums over the indices i, j, k can be derived from the

second relation through the symmetry relations (3.5), which allow us to move any one of

the first four indices to fourth place. Consider now the following color sums:

S1 =
∑

(i,j,k,l,m)

TijklmH(βijlk, βiklj) , S2 =
∑

(i,j,k,l,m)

TijklmH(βijmk, βikmj) (4.9)

with some function H(x1, x2). The antisymmetry of the color symbols under j ↔ k implies

that we can impose the condition H(x1, x2) = −H(x2, x1). The two sums are defined such

that one summation index does not appear in the arguments of the function H, so this

index can be summed over using color conservation. Using the corresponding expressions

in (4.8) and renaming some summation indices, we find that

S1 = 0 , S2 =
∑

(i,j,k,l)

[
− TijkliH(βijlk, βiklj) + Tiijkl Ĥ(βijlk, βiklj)

]
, (4.10)

where the new function Ĥ is related to H by

Ĥ(x1, x2) = H(x2 − x1,−x1)−H(x1 − x2,−x2) = −Ĥ(x2, x1) . (4.11)

To proceed further, we use the second relation in (3.7), which follows from the Jacobi

identity (3.6). Setting m = i, this relation gives Tijkli = Tiiklj − Tiijlk, which can be used

to derive that ∑
(i,j,k,l)

TijkliH(βijlk, βiklj) =
∑

(i,j,k,l)

Tiijkl Ĥ(βijlk, βiklj) . (4.12)

Combining this result with the second relation in (4.10), we find that

S2 = 0 . (4.13)

The fact that S1 = S2 = 0 shows that any contribution to the function H2 which only

depends on a subset of four different particle indices gives a vanishing result and can be

dropped. In this sense, the function H2 parametrizes genuine five-particle correlation terms.

In our master formula (4.1) we have cleaned up the notation compared with the origi-

nal expressions given in our earlier papers [11, 21] and we have used some color identities to

eliminate two structures arising at four-loop order. The precise relations between the coef-

ficient functions in (4.1) and those used in our previous work can be found in appendix A.

Note that expression (4.1) for the anomalous dimension can be rewritten in equivalent ways

using color conservation. For example, the term proportional to f in the second line could

be recast into the form

f(αs)
∑

(i,j,k)

Tiijk = −f(αs)
∑
(i,j)

Tiijj +
C2
A

8
f(αs)

∑
i

CRi 1 , (4.14)

where the latter term can be absorbed into the one-particle anomalous dimensions γi

in (4.1). We prefer to keep the original form on the left-hand side of (4.14), because it

shows that f only contributes if there are at least three different particles involved in the

process. Likewise, using (4.12) with H = H1, the term proportional to the function H1

in (4.1) could be rewritten in the alternative form∑
(i,j,k,l)

TijkliH1(βijlk, βiklj) =
∑

(i,j,k,l)

Tiijkl Ĥ1(βijlk, βiklj) . (4.15)
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We close this section with an important remark. Using conformal transformations, a

relation between soft functions for multi-parton scattering at small transverse momentum

and soft functions arising in jet processes was established in [42]. Based on this relation,

it was argued that only irreducible color structures containing an even number of color

generators Ti can appear in the soft anomalous-dimension matrix Γs [43]. While the

absence of color structures with three generators is a simple consequence of the symmetry

properties of the associated coefficient function (see above) [1, 10, 11, 44], the observation

made in [43] — if true — would imply that the functions H1 and H2 in (4.1) vanish

identically. The relation derived in [42] applies to soft functions which can be written as

matrix elements of time-ordered products of Wilson lines. Such soft functions are associated

with inclusive cross sections and much more restricted than the general amplitude-level

soft functions considered here. It is therefore not obvious to us that the relation in [42] is

sufficient to exclude the five-particle correlations in (4.1).

5 Coefficient functions and cusp anomalous dimensions

Thanks to the efforts of several groups, much is known about the various coefficient func-

tions entering the anomalous dimension in (4.1). Remarkably, the universal cusp anomalous

dimension γcusp(αs) is known at four-loop order. The expansion coefficients up to three-

loop order are given in appendix B. Except for two constants, which are presently only

available in numerical form, the four-loop coefficient γcusp
3 is known analytically. From the

calculations of the cusp anomalous dimension in the large-Nc limit performed in [45, 46],

combined with the calculation of the nfC
2
F terms in [47] and the evaluation of the con-

tributions involving quartic Casimir invariants in [48–51], one can determine the terms

proportional to C3
A as well as nfCFCA and nfC

2
A. The contributions proportional to n2

fCF
and n2

fCA were obtained in [52–54], while those proportional to n3
f were first calculated

in [55]. Combining all these ingredients, we find

γcusp
3 =C3

A

(
84278

81
− 44416π2

243
+

20992ζ3

27
+

902π4

45
−352ζ5−

292π6

315
− 176π2ζ3

9
−32ζ2

3−
k1

12

)
+2TFnf

[
C2
F

(
572

9
+

592ζ3

3
−320ζ5

)
+CFCA k2

+C2
A

(
−41170

81
+

13130π2

243
− 17536ζ3

27
− 44π4

27
+

2816ζ5

9
+

128π2ζ3

9
− k2

2

)]
+(2TFnf )2

[
CF

(
2392

81
− 640ζ3

9
+

16π4

45

)
+CA

(
923

81
− 304π2

243
+

2240ζ3

27
− 56π4

135

)]
+(2TFnf )3

(
−32

81
+

64ζ3

27

)
≈ (610.26±0.1)C3

A−31.0554nfC
2
F +(38.75±0.2)nfCFCA−(440.64±0.1)nfC

2
A

−21.3144CFn
2
f+58.3674n2

fCA+2.45426n3
f , (5.1)

where the constants

k1 = −(253.5± 1.0) , k2 = 38.75± 0.2 (5.2)
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have been obtained numerically in [48, 49]. Note that k1 is related to quartic Casimir

invariants, which do not contribute to the universal cusp anomalous dimension γcusp but

to the cusp anomalous dimensions of quarks and gluons, see (5.11) and (5.12) below.

Recently, the conjecture

k2 = −34066

81
+

220π2

9
+

3712ζ3

9
− 88π4

45
+ 160ζ5 −

64π2ζ3

3
≈ 38.7954 (5.3)

was presented in [56], which is in excellent agreement with the numerical result in (5.2).

When this is used, the coefficient of the nfC
2
A term in (5.1) becomes

− 24137

81
+

10160π2

243
− 23104ζ3

27
− 88π4

135
+

2096ζ5

9
+

224π2ζ3

9
≈ −440.667 . (5.4)

The single-particle anomalous dimensions γi for quarks and gluons (i = q, g) are known

to three-loop order and are given in appendix B. Explicit expressions for the function

F (x1, x2;αs) and the coefficient f(αs) can be derived from the three-loop results for the soft

anomalous dimension for three-particle amplitudes obtained in the pioneering paper [22].

This yields

F (x1, x2;αs) = 2F(ex1 , ex2)
(αs

4π

)3
+O(α4

s) ,

f(αs) = 16 (ζ5 + 2ζ2ζ3)
(αs

4π

)3
+O(α4

s) ,

(5.5)

where the function F(x, y) can be expressed in terms of Brown’s single-valued harmonic

polylogarithms [57, 58]. Defining a complex variable z such that zz̄=x and (1−z)(1−z̄)=y,

one finds that F(x, y)=L(1− z)− L(z), where

L(z) = L10101(z) + 2ζ2 [L001(z) + L100(z)] . (5.6)

Of the remaining terms in (4.1), which start at four-loop order, only the coefficients

gR can be determined from presently available calculations. To this end, we exploit the

fact that the anomalous dimension Γ simplifies drastically for the case of n = 2 particles.

We obtain (with i = q, g)

Γ(s12, µ) = −
[
CRiγcusp(αs) + 2

∑
R

gR(αs)DRiiii
]

ln
µ2

−s12
+ 2γi(αs) +O(α5

s) , (5.7)

where the right-hand side is proportional to the unit matrix in color space, and from here

on we omit the symbol 1 to indicate such terms. For i = q, g these quantities are the

anomalous dimensions of the quark and gluon form factors. The structure

DRiiii = dabcdR T a
i T

b
i T

c
i T

d
i = dabcdR

(
T aT bT cT d

)
Ri
≡ C4(Ri, R) (5.8)

defines a quartic Casimir invariant, which commutes with all generators in the representa-

tion R of the gauge group. If R is irreducible, then Schur’s lemma implies that C4(Ri, R)

is proportional to the unit matrix. One finds

C4(Ri, R) =
dabcdRi

dabcdR

NRi

≡
d

(4)
RiR

NRi

, (5.9)
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where the symbol d
(4)
RiR

was introduced in [49], and NRi is the dimension of the represen-

tation Ri (with NF = Nc and NA = N2
c − 1). For an SU(Nc) gauge theory the relevant

combinations are (we use TF = 1
2)

d
(4)
FF =

(N4
c − 6N2

c + 18)(N2
c − 1)

96N2
c

,

d
(4)
FA = d

(4)
AF =

Nc(N
2
c + 6)(N2

c − 1)

48
,

d
(4)
AA =

N2
c (N2

c + 36)(N2
c − 1)

24
.

(5.10)

The coefficient of the logarithm in (5.7) is called the cusp anomalous dimension for

particle i, which should be distinguished from the universal cusp anomalous dimension

γcusp. We find

Γicusp(αs) = CRiγcusp(αs) + 2
∑
R

C4(Ri, R) gR(αs) +O(α5
s) . (5.11)

The four-loop terms proportional to the quartic Casimir invariants C4(Ri, R) violate the

simple (quadratic) Casimir scaling relation Γqcusp(αs)/CF = Γgcusp(αs)/CA. Indeed, using

arguments based on the AdS/CFT correspondence, results for the cusp anomalous di-

mension obtained in the strong-coupling limit were known to be inconsistent with simple

Casimir scaling for a long time [59–61]. It was also found recently that simple Casimir

scaling is violated in N = 4 supersymmetric Yang-Mills theory [62, 63]. Here we have

shown that these terms still obey a generalized form of Casimir scaling, meaning that the

same two functions gF and gA appear in both Γqcusp and Γgcusp, and their weights are gov-

erned by the quartic Casimir invariants C4(Ri, R). This fact has first been observed in [49],

where the authors have obtained the four-loop coefficients of the coefficients gR for QCD

in numerical form. The coefficient gF has later also been calculated analytically [50, 51].

Using these results, we find

gF (αs) = TFnf

(
128π2

3
− 256ζ3

3
− 1280ζ5

3

)(αs
4π

)4
+O(α5

s) ,

gA(αs) = (−253.5± 1.0)
(αs

4π

)4
+O(α5

s) .

(5.12)

The numerical coefficient in the second result coincides with the constant k1 in (5.2).

Note that in the large-Nc limit the ratio

C4(A,R)

C4(F,R)
= 2 +O

(
1

N2
c

)
(5.13)

becomes independent of the representation R, and it approaches the same limiting value

as the ratio CA/CF [64]. As a result, in this limit the quark and gluon cusp anomalous

dimensions do obey the simple Casimir scaling relation at least up to four-loop order,

lim
Nc→∞

Γgcusp(αs)

Γqcusp(αs)

∣∣∣∣∣
4−loop

= lim
Nc→∞

CA
CF

= 2 . (5.14)
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As a final remark, let us mention that, using arguments based on conformal symmetry,

collinear factorization and the Regge limit, the authors of [65] were able to “bootstrap” the

three-loop expression for the function F (x1, x2;αs) in (5.5) up to an overall rational factor.

It would be interesting to explore whether similar arguments allow one to determine (or

constrain) the unknown four-loop functions GR, H1 and H2 in (4.1).

6 Two-particle collinear limits

The result (4.1) can be constrained further by studying two-particle collinear limits. The

conformal cross ratios βijkl either vanish or diverge when two of the four particle momenta

become collinear. In order to study the collinear limit properly, we consider the case in

which the momenta of particles 1 and 2 are almost aligned with each other, such that [11]

pµ1 = zEnµ + pµ⊥ −
p2
⊥

4zE
n̄µ , pµ2 = (1− z)Enµ − pµ⊥ −

p2
⊥

4(1− z)E
n̄µ , (6.1)

where n2 = n̄2 = 0 and n·n̄ = 2, and the ratio p⊥/E serves as a small expansion parameter.

This parameterization is such that p2
1 = p2

2 = 0 remain on-shell, while −s12 = p2
⊥/[z(1−z)].

The collinear limit corresponds to taking p⊥ → 0 at fixed energy E.

After a lengthy calculation, we find that in the limit where particles 1 and 2 (both

assumed to be outgoing) become collinear our result (4.1) implies the following contribution

to the anomalous dimension of the splitting amplitude in (1.9):

ΓSp({p1,p2},µ) = γcusp(αs)

{
T1 ·T2

[
ln

µ2

−s12
+lnz(1−z)

]
+CR1 lnz+CR2 ln(1−z)

}
+γ1(αs)+γ2(αs)−γP (αs)

−f(αs)

[
2T1122−4

∑
i 6=1,2

T12ii+
C2
A

4
T1 ·T2

]
+
∑

(i,j) 6=1,2

8T12ij F (ωij ,0;αs)

+
∑
R

gR(αs)

{[
6DR1122+4

(
DR1112+DR1222

)][
ln

µ2

−s12
+lnz(1−z)

]

+2
[
DR1111 lnz+DR2222 ln(1−z)

]
+
∑

(i,j) 6=1,2

2DR12ij ωij

}

+
∑
R

∑
(i,j) 6=1,2

12DR12ijG
R(ωij ,0;αs)

+contributions involving Tijklm symbols+O(α5
s) , (6.2)

where γP is the anomalous dimension associated with the unresolved particle P . We have

defined the quantity (at leading non-trivial order in p⊥/E)

ωij ≡ β12ij = ln
p2
⊥

4z2(1− z)2E2
+ ln

(−sij)
(−n · pi)(−n · pj)

→ −∞ (6.3)

and used that εij ≡ β1ij2 = O(p⊥/E) vanishes in the collinear limit. We have also used the

symmetry properties (4.2) and (4.4). The appearance of color generators for particles other
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than 1 and 2 in the anomalous dimension of the splitting amplitude would violate collinear

factorization, and hence the corresponding structures must vanish in the above result.

Let us focus first on the terms in the third line. It was assumed in [11] and [44] that the

coefficients of the terms violating collinear factorization vanish individually, i.e. f(αs) = 0

and F (ωij , 0;αs)→ 0 for ωij → −∞. There is, however, a more general solution based on

the color identity ∑
(i,j) 6=1,2

T12ij = −
∑
i 6=1,2

T12ii − T1122 −
C2
A

8
T1 · T2 . (6.4)

If we impose the condition

lim
ω→−∞

F (ω, 0;αs) =
f(αs)

2
, (6.5)

then collinear factorization holds. The explicit expression for F obtained in [22] shows that

this condition is indeed satisfied.

Concerning the terms shown in the next three lines, we had assumed in [11, 21] that the

coefficients of the terms involving particle indices other than 1 and 2 vanish individually,

i.e. gR(αs) = 0 and GR(ωij , 0;αs) → 0 for ωij → −∞. Under this assumption, the cusp

anomalous dimension in (5.11) would obey Casimir scaling at four-loop order. Once again,

there exists a more general solution, in which we impose that the function GR of conformal

cross ratios obeys the relation

lim
ω→−∞

GR(ω, 0;αs) = −g
R(αs)

6
ω , (6.6)

meaning that it diverges logarithmically in the collinear limit. The coefficients gR(αs) are

then no longer forced to vanish, in accordance with the explicit results in (5.12).

Let us finally comment on the terms in (6.2) involving the 5-index Tijklm symbols,

whose explicit form is discussed in appendix C. There are various contributions to the

anomalous dimension of the splitting amplitude descending from the functions H1 and H2,

see (C.3). The requirement that the sum of these terms must not depend on particle indices

other than 1 and 2 implies the condition

lim
ω→−∞

H1(ω, 0;αs) = 0 (6.7)

as well as a more non-trivial relation given in (C.5). We find that when these relations are

satisfied, the contributions involving the 5-index Tijklm symbols vanish identically.

Combining all pieces, we conclude that up to four-loop order the anomalous dimension

of the splitting amplitude is given by

ΓSp({p1,p2},µ)

=

{
γcusp(αs)T1 ·T2+

∑
R

2gR(αs)
[
3DR1122+2

(
DR1112+DR1222

)]}[
ln

µ2

−s12
+lnz(1−z)

]
+γcusp(αs)

[
CR1 lnz+CR2 ln(1−z)

]
+γ1(αs)+γ2(αs)−γP (αs)

−6f(αs)

(
T1122+

C2
A

8
T1 ·T2

)
+
∑
R

2gR(αs)
[
DR1111 lnz+DR2222 ln(1−z)

]
+O(α5

s) . (6.8)
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This result holds irrespectively of whether or not the five-particle contributions proportional

to H1 and H2 contribute to the anomalous dimension (4.1) (see the discussion at the end

of section 4).

7 Applications

The most important accomplishment of our analysis is that it provides explicit and complete

expressions for the anomalous-dimension matrices needed to perform resummations of large

logarithms in n-jet cross sections with next-to-next-to-next-to-leading logarithmic (N3LL)

accuracy. At this order, one resums logarithms of the form αnsL
k with (n − 2) ≤ k ≤ 2n

in the logarithm of a cross section. This requires that one knows the logarithmically

enhanced terms in the anomalous dimension (the so-called “cusp logarithms”) to four-loop

order and the remaining terms to three-loop accuracy. The appearance of cusp logarithms

is a characteristic feature of anomalous dimensions associated with amplitudes sensitive to

Sudakov double logarithms. Note that N3LL resummation is what is needed to perform

a consistent matching onto NNLO fixed-order expressions for the cross sections, which is

becoming state-of-the-art in perturbative QCD. From our general result (4.1), we obtain

Γ({s}, µ) =
∑
(i,j)

Ti · Tj
2

γcusp(αs) ln
µ2

−sij

+
∑
R

gR(αs)

[∑
(i,j)

(
DRiijj + 2DRiiij

)
ln

µ2

−sij
+
∑

(i,j,k)

DRijkk ln
µ2

−sij

]
+
∑
i

γi(αs) + f(αs)
∑

(i,j,k)

Tiijk +
∑

(i,j,k,l)

Tijkl F (βijlk, βiklj ;αs)

+O
(
α4
s, α

5
s ln

µ2

−sij

)
.

(7.1)

Based on our analysis, the terms involving cusp logarithms are now known to four-loop

order, while the remaining contributions in the third line are known to three-loop order.

As a second application, we briefly consider the important case of processes involving

only a small number of external particles. While the form-factor case (n = 2) has already

been discussed in section 5, we now study the case of three particles (n = 3). This

is relevant for resumming large QCD corrections to important collider processes such as

e+e− → 3 jets (which involves e+e− → qq̄g at the parton level) and pp → H + jet (which

involves qq̄ → Hg, qg → Hq and gg → Hg at the parton level). For the special case of

three-particle amplitudes, many of the multi-particle correlations do not contribute, and

other terms can be simplified using color conservation. We find that the general form of

the anomalous dimension in (4.1) reduces to

Γ({s}, µ) =
γcusp(αs)

2

[
(CR3 − CR1 − CR2) ln

µ2

(−s12)
+ cyclic permutations

]
+ γ1(αs) + γ2(αs) + γ3(αs) +

C2
A

8
f(αs) (CR1 + CR2 + CR3)

+
∑
(i,j)

[
− f(αs) Tiijj +

∑
R

gR(αs)
(
3DRiijj + 4DRiiij

)
ln

µ2

−sij

]
+O(α5

s) ,

(7.2)
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where CRi are the quadratic Casimir invariants of the three particles. Starting at three-loop

order non-trivial color structures appear, which cannot be simplified further.

8 Conclusions

Using techniques based on soft-collinear factorization in SCET and the non-abelian expo-

nentiation theorem for matrix elements of soft Wilson-line correlators, we have derived the

general form of the anomalous dimension Γ governing the IR divergences of n-particle scat-

tering amplitudes in massless, non-abelian gauge theories up to four-loop order. Our result

for Γ has been given in (4.1). Exploiting non-trivial color identities, we have significantly

simplified the general form compared with previous proposals in the literature by eliminat-

ing two structures in the four-loop result. We find that the four-loop contribution involves

three new color structures multiplying cusp logarithms, which describe color correlations

among two or three particles and whose form is completely determined by a single constant

coefficient gR(αs) for each representation R of the gauge group. For QCD, these coefficients

can be determined from existing calculations of the IR divergences of the quark and gluon

form factors. In addition, three yet unknown functions of conformal cross ratios account

for four-particle (GR and H1) and five-particle (H2) correlations in color and kinematics.

The fact that in the limit where two particles become collinear the anomalous dimen-

sion must obey the relation (1.9) puts highly non-trivial constraints on the functional form

of the coefficient functions, which depend on the external particle’s momenta through so-

called conformal cross ratios. By carefully reevaluating these constraints, we find that at

four-loop order color structures involving contractions of totally symmetric dabcdR tensors

appear along with cusp logarithms ln[µ2/(−sij)]. As a consequence, naive Casimir scaling

of the cusp anomalous dimensions associated with the quark and gluon form factors is

violated, while a generalized form of Casimir scaling still holds.

It has recently been shown that the three-loop expression for the function F in (5.5) can

be derived, up to an overall rational factor, using arguments based on conformal symmetry,

collinear factorization and the Regge limit [65]. It may be possible to derive in an analogous

way expressions for the functions GR and H1, which like F depend on a pair of conformal

cross ratios with the same four indices.

Our results provide for a better understanding of the intricate pattern of IR divergences

of scattering amplitudes in non-abelian gauge theories. At the same time, they are also

important from a practical point of view. The anomalous dimension we have derived pro-

vides an important ingredient for the resummation of large (Sudakov) logarithms in n-jet

processes at N3LL accuracy. At this order, one needs the cusp logarithms in the anoma-

lous dimension to four-loop order and the remaining terms at three-loop level. All of these

ingredients are provided by our analysis independently of the number of external particles.

While the functions GR, H1 and H2 describing multi-particle correlations at four-loop order

and higher are not yet known, our results provide the complete four-loop anomalous di-

mensions for amplitudes with up to three color-charged particles, once the quark and gluon

form factors are known to this order. This will provide non-trivial consistency checks on

amplitude computations for such important processes as e+e− → 3 jets and pp→ H + jet.
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Note added. While this paper was under review, the preprint [66] appeared, in which

a fully analytical result for the cusp anomalous dimension was presented. This fixes the

constant

k1 = −32π2

3
+

64ζ3

3
+

1760ζ5

3
− 496π6

945
− 192ζ2

3 ≈ −253.332

given in numerical form in (5.2) in the main text.

A Connection of (4.1) with results in the literature

In our master formula (4.1) we have cleaned up the notation compared with the origi-

nal expressions given in our earlier papers. Our functions f and F are related to the

corresponding objects in [11] by

f(αs) = −f̄2(αs) ,

F (βijlk, βiklj ;αs) = F (βijkl, βiklj − βiljk)−
f̄1(αs)

4
βijkl .

(A.1)

Furthermore, our functions gR, GR and Hi are connected with the corresponding quantities

in [21] (where we did not write out the representation index R explicitly) by

gR(αs) = −g1(αs) ,

GR(βijlk, βiklj ;αs) = G1(βijkl, βiklj , βiljk) +
g5(αs)

3
,

H1(βijlk, βiklj ;αs) = −iG2(βijkl, βiklj) + 2iG3(βijlk, βilkj) ,

H2(βijkl, βijmk, βikmj , βjiml, βjlmi;αs) = −iG4(βijkl, βiklj , βijkm, βikmj , βijml) .

(A.2)

Contrary to the original definitions of the functions G2, G3 and G4, the new functions H1

and H2 are defined such that their imaginary parts correspond to physical discontinuities.

A non-trivial aspect of the above relations involves the identity∑
(i,j)

DRiijj =
1

3

∑
(i,j,k,l)

DRijkl +
∑
i

DRiiii , (A.3)

which allows us to absorb the contribution involving g5 in eq. (3.16) of [21] into the function

GR. The extra terms proportional to DRiiii can be absorbed into the one-particle anomalous

dimensions γi in (4.1). Another non-trivial relation has been given in (4.12), which allows

us to relate the contributions proportional to the functions G2 or G3 in eq. (3.16) of [21]

to each other and absorb them into a single function H1.
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B Anomalous-dimension coefficients and Z-factor

Given a UV renormalized, on-shell n-particle scattering amplitude |Mn(ε, {s})〉 with IR

divergences regularized in d = 4 − 2ε dimensions, one can obtain the finite amplitude

|Mn({s}, µ)〉, in which all IR are subtracted in a minimal way, from the relation [1]

|Mn({s}, µ)〉 = lim
ε→0

Z−1(ε, {s}, µ) |Mn(ε, {s})〉 . (B.1)

The Z factor is related to the anomalous dimension Γ studied in the present paper by

Γ({s}, µ) = −Z−1(ε, {s}, µ)
d

d lnµ
Z(ε, {s}, µ) . (B.2)

Up to four-loop order, the solution to this equation was derived in [11, 21]. One obtains

ln Z =
αs
4π

(
Γ′0
4ε2

+
Γ0

2ε

)
+
(αs

4π

)2
(
−3β0Γ′0

16ε3
+

Γ′1 − 4β0Γ0

16ε2
+

Γ1

4ε

)
+
(αs

4π

)3
(

11β2
0Γ′0

72ε4
− 5β0Γ′1 + 8β1Γ′0 − 12β2

0Γ0

72ε3
+

Γ′2 − 6β0Γ1 − 6β1Γ0

36ε2
+

Γ2

6ε

)
+
(αs

4π

)4
(
− 25β3

0Γ′0
192ε5

+
13β2

0Γ′1 + 40β0β1Γ′0 − 24β3
0Γ0

192ε4

− 7β0Γ′2 + 9β1Γ′1 + 15β2Γ′0 − 24β2
0Γ1 − 48β0β1Γ0

192ε3

+
Γ′3 − 8β0Γ2 − 8β1Γ1 − 8β2Γ0

64ε2
+

Γ3

8ε

)
+O(α5

s) ,

(B.3)

where we have expanded the anomalous dimension and β-function as

Γ(αs) =
∞∑
n=0

Γn

(αs
4π

)n+1
, β(αs) = −2αs

∞∑
n=0

βn

(αs
4π

)n+1
, (B.4)

and similarly for the function

Γ′(αs) =
∂

∂ lnµ
Γ({s}, µ) = −

∑
i

Γicusp(αs) , (B.5)

where the cusp anomalous dimensions Γicusp(αs) have been given in (5.11). Through re-

lations (4.1) and (5.11), the coefficients Γn and Γ′n can in turn be expressed in terms of

the expansion coefficients of the anomalous dimensions γcusp, γq and γg, as well as of the

coefficient functions of the higher-order terms, all defined in analogy with the first relation

in (B.4).

We now list the expansion coefficients of the quantities γcusp, γq and γg up to three-loop

order in the MS renormalization scheme. The coefficients of the universal cusp anomalous

dimension γcusp are given by [67]

γcusp
0 = 4 ,

γcusp
1 =

(
268

9
− 4π2

3

)
CA−

80

9
TFnf ,

γcusp
2 =C2

A

(
490

3
− 536π2

27
+

44π4

45
+

88

3
ζ3

)
+CATFnf

(
−1672

27
+

160π2

27
− 224

3
ζ3

)
+CFTFnf

(
−220

3
+64ζ3

)
− 64

27
T 2
Fn

2
f .

(B.6)
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The anomalous dimension γq = γ q̄ can be determined from the three-loop expression for

the divergent part of the on-shell quark form factor in QCD [68]. One obtains [69]

γq0 =−3CF ,

γq1 =C2
F

(
−3

2
+2π2−24ζ3

)
+CFCA

(
−961

54
− 11π2

6
+26ζ3

)
+CFTFnf

(
130

27
+

2π2

3

)
,

γq2 =C3
F

(
−29

2
−3π2− 8π4

5
−68ζ3+

16π2

3
ζ3+240ζ5

)
+C2

FCA

(
−151

4
+

205π2

9
+

247π4

135
− 844

3
ζ3−

8π2

3
ζ3−120ζ5

)
+CFC

2
A

(
−139345

2916
− 7163π2

486
− 83π4

90
+

3526

9
ζ3−

44π2

9
ζ3−136ζ5

)
+C2

FTFnf

(
2953

27
− 26π2

9
− 28π4

27
+

512

9
ζ3

)
+CFCATFnf

(
−17318

729
+

2594π2

243
+

22π4

45
− 1928

27
ζ3

)
+CFT

2
Fn

2
f

(
9668

729
− 40π2

27
− 32

27
ζ3

)
. (B.7)

Similarly, the expression for the gluon anomalous dimension can be extracted from the

divergent part of the gluon form factor obtained in [68]. One finds [11]

γg0 = −β0 = −11

3
CA +

4

3
TFnf ,

γg1 = C2
A

(
−692

27
+

11π2

18
+ 2ζ3

)
+ CATFnf

(
256

27
− 2π2

9

)
+ 4CFTFnf ,

(B.8)

γg2 = C3
A

(
−97186

729
+

6109π2

486
− 319π4

270
+

122

3
ζ3 −

20π2

9
ζ3 − 16ζ5

)
+ C2

ATFnf

(
30715

729
− 1198π2

243
+

82π4

135
+

712

27
ζ3

)
+ CACFTFnf

(
2434

27
− 2π2

3
− 8π4

45
− 304

9
ζ3

)
− 2C2

FTFnf

+ CAT
2
Fn

2
f

(
−538

729
+

40π2

81
− 224

27
ζ3

)
− 44

9
CFT

2
Fn

2
f .

(B.9)

Our results for γq and γg are valid in the conventional dimensional regularization scheme,

where polarization vectors and spinors of all particles are treated as d-dimensional objects,

so that gluons have (2−2ε) helicity states. At two-loop order, the corresponding expressions

in the ’t Hooft-Veltman scheme [70], the dimensional reduction scheme [71] and the four-

dimensional helicity scheme [72] have been calculated in [73].
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C Contributions from 5-index color structures to ΓSp

It is straightforward but tedious to work out the contributions to the anomalous dimension

of the splitting amplitude originating from the terms proportional to the 5-index T symbols

in (4.1). We find

ΓSp({p1, p2}, µ) 3 −
∑

(j,k,l) 6=1,2

T1jkl2H1(β1jlk, β1klj ;αs)

+ 2
∑

(k,l) 6=1,2

(
T12kl1 − T12klk

)
H1(ωkl, 0;αs)

+
∑

(j,k) 6=1,2

(
2T1jk21 − T1jk2j − T1jk2k

)
H1(−ωjk,−ωjk;αs)

+ 4
∑

(k,l,m) 6=1,2

T12klmH2(ωkl, ωkm, 0, ωlm, 0;αs)

+ 2
∑

(j,k,m) 6=1,2

T1jk2mH2(0, β1jmk, β1kmj ,−ωjm,−ωjm;αs)

+ 4
∑

(j,k,l) 6=1,2

T1jkl2H2(β1jkl,−ωjk,−ωjk, 0, ωjl;αs)

+ (1↔ 2) .

(C.1)

In a first step, one finds a rather long expression for this result, due to the many different

ways in which one can distribute the index pair (1, 2) onto the color structure Tijklm. We

have simplified the answer using the symmetry properties of the functions H1 and H2 given

in (4.3) and (4.6) along with the identities

β1ijk = β2ijk = ωjk − ωik , (C.2)

which hold up to terms of O(p⊥/E). Moreover, the terms in third and fifth lines vanish

owing to (4.3) and the third equation in (4.6).

We can simplify the result (C.1) further using the Jacobi identity, which implies the

relations shown in the second line of (3.7). This allows us to rewrite T1jkl2 = T12klj−T12jlk.

Given that the antisymmetry under exchange of j ↔ k is already built into the symmetry

properties of the functions H1 and H2 in the first and last lines of (C.1), we can use instead

T1jkl2 → 2T12klj and group three of the terms together to obtain

ΓSp({p1,p2},µ)3
∑

(k,l,m) 6=1,2

(
T12klm+T21klm

)[
−2H1(β1mlk,β1klm;αs)

+4H2(ωkl,ωkm,0,ωlm,0;αs)+8H2(β1mkl,−ωkm,−ωkm,0,ωlm;αs)
]

+2
∑

(k,l) 6=1,2

[(
T12kl1−T12klk

)
+(1↔ 2)

]
H1(ωkl,0;αs) . (C.3)

Several non-trivial cancellations need to take place in order for the various terms

in (C.3) not to depend on particle indices other than 1 and 2. In particular, the first
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term inside the bracket in the first line, which involves a non-trivial kinematic function

H1(β1mlk, β1klm;αs), needs to cancel against the two remaining terms inside the bracket.

Such a cancellation is indeed possible, because ωkm = ωkl + β1lmk and ωlm = ωkl + β1kml.

We can thus rewrite the terms inside the bracket as[
. . .
]

= −2H1(β1mlk, β1klm;αs) + 4H2(ωkl, ωkl + β1lmk, 0, ωkl + β1kml, 0;αs)

+ 8H2(−β1kml,−ωkl − β1lmk,−ωkl − β1lmk, 0, ωkl + β1kml;αs) ,
(C.4)

where ωkl → −∞ while the conformal cross ratios stay fixed. The arguments of H1 can be

related to those of the other functions by β1mlk = −β1lmk and β1klm = β1kml − β1lmk. The

cancellation mentioned above does not need to be complete. All we need to require is2

lim
ωkl→−∞

[
−H1(−β1lmk,β1kml−β1lmk;αs)+2H2(ωkl,ωkl+β1lmk,0,ωkl+β1kml,0;αs)

+4H2(−β1kml,−ωkl−β1lmk,−ωkl−β1lmk,0,ωkl+β1kml;αs)
]

=K(β1kml,β1lmk,ωkl;αs) ,

(C.5)

where the right-hand side must be symmetric under the exchange of k and l. In order

words, the function K can be arbitrary, as long as it satisfies

K(β1, β2, ω;αs) = K(β2, β1, ω;αs) . (C.6)

That this is a sufficient condition follows from the fact that

T12klm + T21klm = T12klm − T12lkm (C.7)

is antisymmetric under k ↔ l, and hence the first sum in (C.3) evaluates to zero as long

as (C.5) holds.

For the term in the last line of (C.3) we must require that the function H1(ωkl, 0;αs)

becomes independent of ωkl in the collinear limit. But this is not enough, since after a

lengthy calculation we find that

∑
(k,l) 6=1,2

[(
T12kl1 − T12klk

)
+ (1↔ 2)

]
=
∑
k 6=1,2

2
(
T112kk + T221kk

)
(C.8)

cannot be reduced to an expression that only depends on the particle indices 1 and 2. Hence,

we must require that the stronger condition (6.7) holds. It then follows that the right-hand

side of (C.3) vanishes. Hence, the structures involving 5-index T symbols in (4.1) do not

contribute to the anomalous dimension of the splitting amplitude.

2While it would be reasonable to expect that in the collinear limit the function K approaches a finite

function K0(β1, β2;αs), we cannot exclude the possibility that it contains divergent terms proportional to

powers of ω, in analogy with (6.6).
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