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A. Gómez Nicola,a J. Ruiz de Elvirab and A. Vioque-Rodŕıgueza
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1 Introduction and motivation

The rich topological structure of the QCD vacuum is encoded in the θ-angle dependence

of the vacuum energy density

evac = − 1

βV
lnZ(θ) , with ZQCD(θ) =

∫
[dG][dψ̄][dψ] eSQCD(θ) (1.1)

the QCD generating functional in a θ-vacuum, β = 1/T is the inverse of the temperature,

V the volume of the system and the QCD action is written as

SQCD(θ) =

∫
d4x [LQCD − θ(x)ω(x)] (1.2)

with LQCD the QCD Lagrangian at θ = 0 and

ω(x) =
g2

32π2
TrcGµνG̃

µν , (1.3)

the winding number topological charge density, responsible for the UA(1) anomaly.

The expansion of the vacuum energy density around θ = 0 can be expressed as

εvac(θ) =
∞∑
n=1

c2n

(2n)!
θ2n (1.4)

– 1 –
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with c2 = χtop the topological susceptibility and c4 the fourth-order cumulant, which in

Euclidean space-time read

χtop =

∫
T

dx 〈T ω(x)ω(0)〉 ,

c4 = −
∫
T

dx dy dz
[
〈T ω(x)ω(y)ω(z)ω(0)〉 − 3 〈T ω(x)ω(0)〉2

]
, (1.5)

with
∫
T dx =

∫ β
0 dτ

∫
d3~x.

The topological susceptibility is meant to be connected with the η′ mass through the

UA(1) anomaly. More specifically, in the quenched approximations where quarks loops

are absent, χquenchedtop is related to the mass of the η′ (or rather its singlet part η0) for Nf

massless quarks as [1, 2]

χquenched
top =

1

2Nf
F 2M2

0 =
F 2
[
M

mq=0
η0

]2

2Nf
, (1.6)

where M0 denotes the anomalous contribution to the η′ mass and F is the pion decay

constant in the chiral mu = md = ms = 0 limit. The quenched approximation is formally

valid in the Nc →∞ limit, where meson-loop contributions are suppressed and the mass of

the η0 becomes of the same order than the other members of the Nambu-Goldstone boson

(NGB) meson octet, since the U(1)A anomaly scales with 1/Nc.

However, even when the fluctuation of the winding number is directly linked to the

U(1)A anomaly, meson-loop corrections are indeed very relevant and one of the reasons

why the QCD topological charge can be analyzed using low-energy effective field theories.

This can be seen by looking at the leading-order (LO) low-energy chiral prediction for the

topological susceptibility, a well-known result in Chiral Perturbation Theory (ChPT) that

for three light flavors Nf = 2 + 1 reads [3–5]

χ
SU(3),LO
top = Σ

[
1

mu
+

1

md
+

1

ms

]−1

≡ Σm̄, (1.7)

where Σ = B0F
2 = −〈q̄q〉 is the single-flavor quark condensate in the chiral limit and

B0 = M2
0π±/(mu +md), with M0π± the mass of the charged pions. The result in (1.7) can

be easily extended to a larger number of flavors [3, 5], while the two-flavor result can be

recovered by taking the ms � mu,d limit.

One of the main consequences of (1.7) is that the topological susceptibility is linearly

proportional to the quark mass and hence, unlike the pure gluonic quenched result (1.6),

it vanishes in the chiral limit. Thus, meson loop corrections generate terms that cancel the

contribution in (1.6). This fact is actually crucial to understand why the QCD topological

charge can be reliable described just by including the lightest degrees of freedom.

In addition, (1.7) also shows that at LO in the chiral expansion the topological suscepti-

bility is proportional to the quark condensate. This property has been used in several lattice

analyses to extract the value of 〈q̄q〉 in the chiral limit from χtop, both for Nf = 2 [6, 7]

and Nf = 2 + 1 [8, 9]. In these analyses, χtop is determined at different quark-mass values

– 2 –
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and then fitted using ChPT predictions to extract the quark condensate. This relation

has been emphasized in [10] to study the strange mass paramagnetic suppression of the

three-flavor condensate. Recent values of the quark condensate obtained with this method

can be found in [11], while direct lattice measurements of χtop are provided in [12–14] for

Nf = 2 + 1, in [15] for Nf = 2 and in [16] within the framework of two fermion families.

Therefore, obtaining explicit analytic expressions for χtop and studying its quark mass de-

pendence within the effective Lagrangian framework under different approximations is of

the utmost importance from the point of view of lattice analyses.

Nevertheless, higher order corrections change the simple linear dependence of χtop with

the quark condensate given in (1.7). In this sense, an important result that hints towards

more complicated dependencies is the existence of the following family of Ward Identities

(WI) connecting quark condensates with the topological and pseudoscalar susceptibilities

in the isospin limit [17–20]:1

χtop = −1

4

[
mq 〈q̄q〉l +m2

qχ
ll
P

]
(1.8)

= −
[
ms〈s̄s〉+m2

sχ
ss
P

]
, (1.9)

where 〈q̄q〉l = 〈ūu + d̄d〉, mq = mu = md and χllP , χssP are the pseudoscalar susceptibil-

ities corresponding to the quark bilinear operators ηl = i
(
ūγ5u+ d̄γ5d

)
and ηs = i s̄s,

respectively.

The identities (1.8) and (1.9) have been verified in U(3) ChPT up to next-to-next-

leading order (NNLO) in [18]. Furthermore, the identity (1.8) has been used in lattice

works to determine χtop indirectly at finite temperature [21, 22] and in [23] to justify

that U(1)A restoration approaches the O(4) phase transition when the chiral symmetry is

exactly restored.

Now, note that for Nf = 2 in the isospin limit, the first term in the r.h.s. of (1.8)

corresponds to the LO ChPT expression (1.7) when ms � mq. Therefore, the term pro-

portional to χllP necessarily includes higher order corrections in the chiral series and/or

terms suppressed as mq/ms for Nf = 2 + 1 flavors. An immediate conclusion is that χtop

is not necessarily proportional to the light quark condensate to all orders. In fact, as we

will see here in detail, the dependence with temperature of the two terms in the r.h.s.

of (1.8) is completely different. Namely, the condensate term drops with T signaling chiral

restoration while the χllP term shows a much smoother behavior.

Higher order corrections to the topological susceptibility within the chiral Lagrangian

framework have been obtained in [24] to next-to-leading order (NLO) (one-loop) in SU(Nf)

ChPT. This result has been incorporated in the lattice analysis of [7] to extract the quark

condensate and in [25, 26] to provide a numerical estimate of χtop in terms of the low-

energy constants (LECs) of the O(p4) effective Lagrangian. Higher order isospin-breaking

corrections as well as an analysis of χtop within the so called resummed ChPT can be found

in [10], whereas in the recent work [26] NNLO and electromagnetic corrections in SU(2)

ChPT have been computed.

1We acknowledge a misprint in eq. (31) of [20] where 〈q̄q〉l should read 〈s̄s〉.
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Another important motivation for the study of the topological susceptibility is its

relation with the Peccei-Quinn axion [27, 28] and hence with various cosmological and

astrophysical implications. The axion mass is directly proportional to χtop, which allows

for numerical estimates based on chiral Lagrangians [25, 26, 29]. In addition, the fourth-

order self-coupling of the axion field can be obtained from the fourth-order cumulant c4 of

the εvac(θ) expansion in (1.4), which has been thoroughly analyzed within SU(Nf) ChPT

up to NLO [24, 30, 31] and computed in the lattice [9, 32–34].

In addition, the large-Nc behavior of the topological susceptibility and the fourth-

order cumulant have been recently analyzed in [35] and compared with the lattice results

provided at different large-Nc values in [32].

The thermal dependence of the vacuum energy density ε(θ) is important for several

reasons: as stated above χtop(T ) plays an important role in the relation between chiral

and U(1)A restoration. In addition, the connection of χtop with the light- and strange-

quark condensate as a function of temperature is relevant for lattice analyses and for the

understanding of the temperature dependence of the different contributions in the WI (1.8)–

(1.9). Thermal corrections to the axion potential and its mass are also of importance in the

cosmological and astrophysical context [25]. A ChPT analysis for χtop(T ) for Nf = 2 has

been performed in [25]. In that paper, the fact that for Nf = 2 the one-loop corrections to

χtop can be encoded in the physical pion mass and decay constant is used to establish the

scaling χtop(T )/χtop(0) = 〈q̄q〉l (T )/ 〈q̄q〉l (0), valid at that order. Actually, that scaling

law is nothing but the first term in the r.h.s. of (1.8), which opens the question of how

relevant are the additional corrections provided by the second term in that identity. As we

have already mentioned, we will discuss that particular aspect in detail in the present work.

As for lattice results at finite temperature, direct measurements of the topological

susceptibility have typically large errors. Results can be found e.g. in [12–14, 36]. As

commented above, indirect measurements can be obtained precisely through (1.8). Higher

order cumulants at finite temperature in the lattice have been analyzed in [12, 37].

With the above motivation in mind, we will carry out here a ChPT-based analysis of

the topological susceptibility and the fourth-order cumulant, concentrating in particular in

the following aspects:

• We will provide a NNLO calculation of the topological susceptibility and the fourth-

order cumulant within the formalism of U(3) ChPT, in which the singlet η0 is incor-

porated as a ninth pseudo-Goldstone boson within the large-Nc framework [1, 38, 39].

This approach allows us to study η′ meson effects and to assess its contribution. For

instance, the inclusion of η′ will help to understand the relevance of meson-loop cor-

rections to the quenched result (1.6) and their role on the vanishing of χtop in the

chiral limit, as already noticed in [5]. Our calculation will also allow us to estimate

numerically the effect of the additional U(3) corrections in terms of the LECs in-

volved. As mentioned above, many lattice analyses of the quark condensate rely on

the chiral expansion of χtop. In that respect, studying the influence of an additional

heavier degree of freedom is important. The η′ case is especially significant due to its

direct connection with the axial anomaly and its relevant role in the Ward identities

– 4 –
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described above. In addition, our U(3) analysis will provide a natural way to estab-

lish contact with recent large-Nc analysis of the topological susceptibility and the

fourth-order cumulant. Our study will also have the advantage of including explicitly

the dependence of those quantities on the η − η′ mixing angle.

• We will also calculate the leading isospin-breaking mu 6= md corrections within the

U(3) formalism, thus extending previous SU(3) works. The importance of isospin

breaking corrections to the topological susceptibility and the fourth-order cumulant

stems from the vacuum misalignment induced by the combined mu 6= md and θ 6= 0

effects [3, 4, 24, 26, 31]. It implies corrections proportional to (mu−md)/(mu +md),

hence much larger than the typical isospin-breaking correction in other quantities,

such as quark condensates or the π0η mixing [40], which are proportional to (mu −
md)/ms. Recent estimates within the SU(2) formalism show that these isospin con-

tributions give rise to around a 4% correction to χ
1/4
top . As a natural extension to

those analysis, we will include isospin breaking in the LO U(3) correction to εvac(θ)

to estimate its numerical effect.

• We will extend our analysis to finite temperature. In this way, we will account for

corrections both within the SU(3) and U(3) formalisms for the different contributions

in the Ward identities (1.8) and (1.9). This will also allow us to test the robustness of

the Nf = 2 scaling performed in [25] when corrections from mq/ms and η, η′ loops are

properly incorporated. As commented before, the evolution of quark condensates and

susceptibilities towards chiral restoration makes it interesting to clarify their relation

with the topological susceptibility as the temperature grows, within the context of

chiral and (1)A restoration. In addition, we recall that the finite temperature depen-

dence of the η′ mass has been analyzed within the U(3) ChPT formalism in [41, 42], in

fermion models [43] and in the lattice [44], confirming the U(1)A restoring behavior,

as in the recent analysis of the η − η′ mixing angle [20].

For that purpose, the paper is organized as follows. In section 2 we will discuss

the U(3) ChPT calculation of the topological susceptibility, providing explicit analytic

expressions up to NNLO. We will also analyze its various limits of interest. In section 3

we will extend the calculation to the fourth order cumulant. In section 4 we will provide

numerical estimates and compare to previous approaches. The isospin breaking corrections

to the U(3) susceptibility and the fourth-order cumulant will be calculated in section 5. In

section 6 we will study in detail their finite temperature dependence and their connection

with chiral and U(1)A restoration. Some of the explicit analytic U(3) expressions will be

collected in appendix A.

2 The topological susceptibility to NNLO in U(3) chiral perturbation

theory

Within U(3) ChPT one follows a similar approach as in standard ChPT [4]. The chiral

power counting in terms of momenta and quark masses is used to construct the most

– 5 –
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general effective Lagrangian for SU(Nf) pseudo-Goldstone bosons up to a given order,

which ensures renormalizability order by order in the expansion. Nevertheless, in the U(3)

formalism the singlet η0 is also included as the ninth pseudo-Goldstone boson. Given the

large η′ mass value, this can be done consistently only in the large-Nc framework, since

the winding number charge density ω(θ) defined in (1.3), responsible for the anomalous

contribution of the η′ mass, is suppressed within the large-Nc counting [1, 3, 38, 39, 45].

Thus, the expansion is performed in terms of a small parameter δ such that

{M2, p2, T 2,mq,ms, 1/Nc} = O(δ), where M and p denote typical meson masses and mo-

menta. In this counting, the tree-level pion decay constant F 2 = O(Nc) = O(1/δ), which

hence suppresses loop diagrams. The counting of the different LECs according to their

O(Nc) trace structure is given in detail in [38, 46–48].

Following the same steps as in [49, 50], the topological susceptibility can be calculated

by taking functional derivatives with respect to the vacuum angle θ. Thus, taking into

account the θ-vacuum coupling in the QCD action defined in (1.2) and (1.3), one can

derive expectation values or thermal correlators involving the winding number density. In

this way, the topological susceptibility reads

χtop =

∫
T

dx
δ

δθ(x)

δ

δθ(0)
logZ(θ)

∣∣∣∣
θ=0

=

∫
T

dx

{〈
δLeff(x)

δθ(x)

δLeff(0)

δθ(0)

〉
θ=0

+

〈
δ

δθ(x)

δ

δθ(0)
Leff(x)

〉
θ=0

δ4(x)

}
, (2.1)

where 〈·〉 denotes Euclidean vacuum expectation values for T = 0 or thermal correlators

for T 6= 0 and where we have used that 〈ω(0)〉 = 0.

In the effective Lagrangian Leff , θ(x) appears through the operator

X(x) = log [detU(x)] + iθ(x), (2.2)

with U = exp(iΦ/F ) = exp(iλaφa/F ) the NGB matrix field including the singlet con-

tribution (i.e., detU 6= 1), φi the Goldstone fields, λa=1,...8 the Gell-Mann matrix and

λ0 =
√

2/3 1 [38],

Φ =


π0 + 1√

3
η8 +

√
2
3η0

√
2π+

√
2K+

√
2π− −π0 + 1√

3
η8 +

√
2
3η0

√
2K0

√
2K−

√
2K̄0 −2√

3
η8 +

√
2
3η0

 . (2.3)

Nevertheless, due to the η− η′ mixing the flavor eigenstates η8 and η0 are not mass eigen-

states even at LO in the chiral Lagrangian. Thus, we use the angle θ̂ to describe their

mixing at LO

η8 = cθ η + sθ η
′ , η0 = −sθ η + cθ η

′, (2.4)

where cθ = cos θ̂ and sθ = sin θ̂.

The combination (2.2) ensures that Leff will be invariant under local U(Nf )L×U(Nf )R
transformations. The effective Lagrangians containing the X field entering in χtop and the

– 6 –
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fourth-order cumulant up to the order needed for our purposes here read

O(δ0) : L(0)
eff =

F 2

12
M2

0 X
2 , (2.5)

O(δ) : L(1)
eff =

−F 2

12
Λ2X Tr

(
U †χ− χ†U

)
, (2.6)

O(δ2) : L(2)
eff =

F 2

4

[
v

(0)
4 X4+ v

(2)
2 X2 Tr

(
U †χ+χ†U

)]
+ L25X Tr

(
U †χU †χ−χ†Uχ†U

)
,

(2.7)

where M2
0 is the contribution to the tree-level mass of the singlet η0 in the chiral limit, i.e.,

its anomalous contribution as given in (1.6), and χ = 2B0M with M = diag(mu,md,ms)

the quark mass matrix. The constants Λ2 = O(δ), v
(2)
2 = O(δ2), v

(0)
4 = O(δ3) and L25 =

O(δ0) are LECs associated to the η − η′ mixing. As in the standard SU(3) formalism, the

LECs are renormalized to absorb divergences coming from the loops.

The first non-vanishing contribution to the topological susceptibility is O(δ0). On

the one hand, the second term in the r.h.s. of (2.1) gives rise at this order to a constant

term, which is nothing but the contribution (1.6) with
[
M

mq=0
η0

]2
= M2

0 and Nf = 3.

On the other hand, the first term in the r.h.s. of (2.1) gives rise to terms of the type

M4
0

∫
dx〈η(′)(x)η(′)(0)〉 ∼M4

0 /M
2
η(
′) , i.e., tree level two-point functions at p = 0, where η(′)

denotes generically η or η′ fields. Gathering the two types of contribution yields in the

isospin limit

χ
U(3),LO, IL
top =

F 2M2
0

6

[
1− M2

0

M2
0η

s2
θ −

M2
0

M2
0η′
c2
θ

]
, (2.8)

where M0η and M0η′ are respectively the η and η′ masses at tree level. They depend on

the quark (or meson) masses and on M0. Their explicit expressions in the isospin limit

mu = md = mq can be found e.g. in [48]. Thus, in terms of quark masses, (2.8) can be

recast as:

χ
U(3),LO, IL
top =

F 2M2
0B0mqms

(2ms +mq)M2
0 + 6B0mqms

=
ΣM2

0 m̄IL

M2
0 + 6B0m̄IL

= Σm̂IL , (2.9)

where m̄IL denotes the isospin limit value of m̄ in (1.7), i.e.,

m̄IL =
mqms

2ms +mq
, (2.10)

and

m̂IL =
M2

0 m̄IL

M2
0 + 6B0m̄IL

. (2.11)

Note that in this work we use the symbol m̂, as in (2.11), with a different meaning

than the light-quark mass, which we denote here by mq. The result in (2.8) and (2.9) is

the extension to Nf = 2 + 1 flavors of the result given in [5] for Nf degenerated flavors in

the large-Nc limit. Note that our U(3) LO result can be obtained from the SU(3) one by

replacing m̄ with m̂, which also holds when including isospin breaking corrections at LO,

as we will see in section 5. In the M0 →∞ limit one recovers the SU(3) expression in (1.7)

– 7 –
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for mu = md = mq, since m̂IL → m̄IL in this limit. Furthermore, χ
U(3),LO
top vanishes in the

chiral limit, as it also does in the SU(3) case. Actually, in this limit the second and third

terms in the r.h.s. of (2.8)(coming from η, η′ propagators) cancel the first term, as one can

check from the chiral limit behavior of sθ,M0η,M0η′ .

Our present U(3) calculation has also the advantage that one can formally recover the

quenched result in (1.6) by taking the limit M0 � m̄. This limit can also be achieved

by re-expanding (2.9) in the 1/Nc expansion. Taking into account the 1/Nc scaling of the

different constants involved, namely F 2 = O(Nc), M
2
0 = O(1/Nc) and so on, the 1/Nc LO

contribution to (2.9) gives

χ
U(3),IL
top =

F 2M2
0

6
+O

(
1

Nc

)
=
F 2

6

(
M2

0η′ +M2
0η − 2M2

0K

)
+O

(
1

Nc

)
, (2.12)

which coincides with the result in (1.6) for Nf = 3. The last equality in (2.12) reproduces

the result given in [2], where M0i denote tree-level meson masses.

The NLO (O(δ)) and NNLO
(
O(δ2)

)
results require including the higher-order effective

Lagrangians (2.6)–(2.7) in (2.1). They involve one-loop corrections to the η- and η′-meson

propagators at zero momentum, which include the LECs L6, L7, L25, C19, C31, Λ2 and

v
(2)
2 [48]. The renormalization of these LECs and the constant B0 [38, 39, 48] allows

one to absorb all one-loop divergences, rendering the result finite and independent of the

renormalization scale µ. In addition, the calculation of χtop, χllP , χssP and 〈q̄q〉l up to

NNLO in the U(3) expansion allow one to verify the Ward Identities (1.8)–(1.9). The

explicit results for the topological susceptibility at NLO and NNLO in U(3) ChPT are

given explicitly in appendix A in the isospin limit. Note that the NLO and NNLO U(3)

results do not correspond to simply perform the replacement m̄→ m̂ as it happened at LO.

In order to compare with the SU(3) calculation in ChPT, as given for instance in [10,

24, 25], we recall that the NLO order ChPT result is included distributed among the

NLO and NNLO U(3) outcome. On the one hand, we have checked that the M0 →
∞ limit of χ

U(3),NLO
top in (A.1) yields the contribution proportional to the renormalized

LEC Lr8 in [10, 24, 25] while χ
U(3),NNLO
top in (A.2) for M0 → ∞ provides the rest of the

SU(3) contributions, proportional to Lr6, L7 and log
(
M2
π,K,η/µ

2
)
. On the other hand, the

surviving term proportional to log
(
M2
η′/µ

2
)

is absorbed in Lr6.

Finally, we remark that our present U(3) formalism allows us to study systematically

the large Nc corrections in (2.12), corresponding to the Witten-Veneziano result. Perform-

ing the 1/Nc expansion on the different orders in the U(3) ChPT expansion we obtain the

O(1/Nc) correction to (2.12), namely

χ
U(3),IL
top =

F 2M2
0

6

{
1 +

1

3
M2

0

(
1

M2
0π − 2M2

0K

− 2

M2
0π

)
+

16M2
0L

r
8

F 2
− 2Λ2

+
2
(
2M2

0K +M2
0π

)
3F 4M2

0

[
24C19F

2M4
0 + 16C31F

2M4
0 + 9F 4v

(2)
2 + 16F 2Λ2M

2
0L

r
8

+24F 2M2
0L

r
25 − 128M4

0 (Lr8)2
]}

+O
(

1

N2
c

)
+O

(
δ3
)
. (2.13)

The above result is consistent with the large-Nc scaling analysis of the topological

susceptibility provided in [35].
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Figure 1. LO topologies for each of the five different connected contributions of the fourth-order

cumulant in (3.1). Following the notation in [30], θ-induced vertices are denoted by its number of

derivatives with respect to θ applied to the effective Lagrangian Leff . Note that we only refer to

the LO for each different connected topology, irregardless of their corresponding counting in the δ

expansion.

3 Fourth-order cumulant to NNLO in U(3) ChPT

The fourth-order cumulant is defined in (1.5) and involves the difference between the four-

and two-point function square of the winding number density. Similarly to χtop, it can

be computed by taking functional derivatives with respect to the θ-vacuum angle. Taking

into account again the θ-angle coupling in the QCD action as defined in (1.2) and (1.3),

the fourth-order cumulant can be written as

c4 =−
∫
T

dx dy dz

[
δ

δθ(x)

δ

δθ(y)

δ

δθ(z)

δ

δθ(0)
logZ(θ)

∣∣∣∣
θ=0

− 3

(
δ

δθ(x)

δ

δθ(0)
logZ(θ)

∣∣∣∣
θ=0

)2
]

=−
[〈

δ4Leff(0)

δθ(0)4

〉
θ=0

+

∫
T

dx

{
4

〈
δ3Leff(x)

δθ(x)3

δLeff(0)

δθ(0)

〉
θ=0

+ 3

〈
δ2Leff(x)

δθ(x)2

δ2Leff(0)

δθ(0)2

〉
θ=0

− 3

〈
δ2Leff(x)

θ(x)2

〉2

θ=0

}
+ 6

∫
T

dx dy

{〈
δ2Leff(x)

δθ(x)2

δLeff(y)

δθ(y)

δLeff(0)

δθ(0)

〉
θ=0

−
〈
δ2Leff(x)

δθ(x)2

〉
θ=0

〈
δLeff(y)

δθ(y)

δLeff(0)

δθ(0)

〉
θ=0

}
+

∫
T

dx dy dz

{〈
δLeff(x)

δθ(x)

δLeff(y)

δθ(y)

δLeff(z)

δθ(z)

δLeff(0)

δθ(0)

〉
θ=0

− 3

〈
δLeff(x)

δθ(x)

δLeff(0)

δθ(0)

〉2

θ=0

}]
, (3.1)

where we have used once more that 〈ω(0)〉 = 0. The last terms of each integral are asso-

ciated to the square of χtop and hence they provide disconnected contributions, i.e., terms

proportional to the Euclidean four-dimensional volume that should cancel out exactly with

the disconnected contributions coming from the four-point function. Thus, the calcula-

tion of the fourth-order cumulant involves five connected contributions associated to all

possible combinations of a total even number of derivatives with respect to θ applied to

the effective lagrangian. The LO topologies for each of these five connected contributions

are depicted in figure 1.2 Following the notation given in [30], the θ-induced vertices are

2Note that we only refer about the LO topology for each connected contribution in (3.1) independently

of their corresponding counting in the U(3) expansion.
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classified in terms of their number of derivatives with respect to the θ-vacuum angle. Me-

son lines are always coupled to one θ-induced source coming from a single, second or third

derivative with respect to the vacuum angle,3 which in the isospin limit involve η and η′

meson propagators at zero momentum. The four different θ-induced vertices contributing

to the topologies in figure 1 read

δLeff(x)

δθ(x)

∣∣∣∣
θ=0

= − F√
6

[
M2

0

(
cθ η

′(x)− sθ η(x)
)

+
2

3
Λ2B0

(
(2mq +ms)

(
cθ η

′(x)− sθ η(x)
)

+
√

2(mq −ms)
(
cθ η

′(x) + sθ η(x)
))

+ 12B0v
(2)
2 (2mq +ms)

(
cθ η

′(x)− sθ η(x)
)]

+ 16

√
2

3

B2
0

F
L25

[(
2m2

q +m2
s

)(
cθ η

′(x)− sθ η(x)
)

+
√

2(m2
q −m2

s)
(
cθ η

′(x)− sθ η(x)
)]

+
1

9
√

3F
B0Λ2

[
1

3

(
(mq − 4ms)c

3
θ − 3

√
2(mq + 2ms)c

2
θsθ

+ 6(mq −ms)cθs
2
θ −
√

2(2mq +ms)s
3
θ)
)
η(x)3

+
(√

2(mq + 2ms)c
3
θ − 3mqc

2
θsθ

− 3
√

2mscθs
2
θ + 2(mq −ms)s

3
θ)
)
η(x)2η′(x)

+
(

2(mq −ms)c
3
θ + 3msc

2
θsθ

− 3
√

2mqcθs
2
θ −
√

2(mq + 2ms)s
3
θ)
)
η(x)η′(x)2

+
1

3

(√
2(2mq +ms)c

3
θ + 6(mq −ms)c

2
θsθ

+ 3
√

2(mq + 2ms)cθs
2
θ + (mq − 4ms)s

3
θ)
)
η′(x)3

]
+

2

F

√
2

3
B0v

(2)
2

(
cθ η

′(x)− sθ η(x)
)

×
[(

(mq + 2ms)c
2
θ − 2

√
2(mq −ms)cθsθ + (2mq +ms)s

2
θ)
)
η(x)2

+ 2(mq −ms)
(√

2c2
θ − cθsθ −

√
2s2
θ)
)
η(x)η′(x)

+
(

(2mq+ms)c
2
θ + 2

√
2(mq −ms)cθsθ + (mq + 2ms)s

2
θ)
)
η′(x)2

]
+

6
√

6

F
v

(4)
4

(
cθ η

′(x)− sθ η(x)
)3

+ · · ·+O
(
δ9/2

)
(3.2)

δ2Leff(x)

δθ(x)2

∣∣∣∣
θ=0

= − F 2

[
M2

0

6
+ (2mq +ms)B0v

(2)
2

]
+

2

3
v

(2)
2 B0

[(
(mq + 2ms)c

2
θ − 2

√
2(mq −ms)cθsθ + (2mq +ms)s

2
θ)
)
η(x)2

+ 2(mq −ms)
(√

2c2
θ − cθsθ −

√
2s2
θ)
)
η(x)η′(x)

3The fourth derivative is just a contact term without any meson line up to NNLO in the δ expansion.
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Figure 2. Topologies entering in c4 from higher-order contributions to the four-point interaction

vertex. Diagram (a) denotes a LECs contribution, while diagram (b) and (c) represent a tadpole

or rescattering topology, respectively.

+
(

(2mq+ms)c
2
θ + 2

√
2(mq −ms)cθsθ + (mq + 2ms)s

2
θ)
)
η′(x)2

]
+ 18v

(0)
4

(
cθη
′(x)− sθη(x)

)2
+ · · ·+O

(
δ4
)
, (3.3)

δ3Leff(x)

δθ(x)3

∣∣∣∣
θ=0

= 6
√

6Fv
(4)
4

(
cθ η

′(x)− sθ η(x)
)

+O
(
δ7/2

)
, (3.4)

δ4Leff(x)

δθ(x)4

∣∣∣∣
θ=0

= 6F 2v
(0)
4 +O

(
δ3
)
, (3.5)

where the ellipses denote further terms involving π’s and K’s fields, which do not contribute

to connected contributions. The diagram displayed in figure 1 (a) is generated from the

fourth-order derivative induced vertex in (3.5). It implies a contact term proportional to

F 2v
(0)
4 and hence it only contributes at O(δ2). The diagram (b) in figure 1 comes from the

third-order derivative induced vertex (3.4) and the LO contribution in the δ expansion to

the single-derivative vertex, i.e., first term in (3.2). It involves a single η(′) propagator at

vanishing momentum and hence terms proportional to F 2M2
0 v

(0)
4 /M2

0η(
′) , where η(′) stands

for a η or η′ field, that contribute at O(δ2). Diagram (c) is coming from the product of

two second-order derivative vertices at NLO in the δ expansion, hence involving two η(′)

propagators. Nevertheless, it contributes only at O(δ4) and it will not enter in the NNLO

U(3) calculation for the fourth-order cumulant. The topology shown in figure 1 (d) is

produced from the NLO U(3) contribution of the second derivative vertex in (3.3) and two

single-derivative vertices at LO in the δ expansion. It involves two η(′) propagators and

terms proportional to M4
0 v

(2)
2 /M4

0η(
′) and M4

0 v
(0)
4 /M4

0η(
′) . Thus, it contributes at O(δ2).

Finally, diagrams (e) and (f) involve four single-derivative vertices. Diagram (e) requires

one of the vertices to emit three η(′) lines, i.e., the last three terms in brackets in (3.2),

and the three remaining producing only one meson line, which in total entails three η(′)

propagators. It involves terms proportional to M6
0 Λ2/M

6
0η(
′) , which are O(δ), and terms

multiplying M6
0 v

(2)
2 /M6

0η(
′) , M

6
0 v

(0)
4 /M6

0η(
′) and M4

0 Λ2
2/M

6
0η(
′) , contributing at O(δ2). Fi-

nally, at LO in U(3) diagram (f) implies an interaction vertex with four internal legs,

which in turn involves four η(′) propagators evaluated at zero momentum. It implies that

only mass terms contribute to the interaction vertex, leading to a total contribution pro-

portional to F 2M8
0mq,s/M

8
0η(
′) at O(1), F 2M6

0 Λ2m
2
q,s/M

8
0η(
′) at O(δ) or terms proportional

F 2M6
0 v

(2)
2 m2

q,s/M
8
0η(
′) and F 2M4

0 Λ2
2m

3
q,s/M

8
0η(
′) at O(δ2).
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Figure 3. Topologies entering in c4 from thee NLO contribution to the η and η′ propagators.

Furthermore, since diagram (f) is the only one contributing at O(1) and O(δ), it

can be also dressed at higher orders in two different ways. On the one hand, the four-

point interaction vertex can be dressed by including the higher-order diagrams depicted

in figure 2. Namely, the LO four-point vertex can be replaced by its NLO counterpart in the

U(3) expansion, i.e., by including a LEC, figure 2(a). Since the propagators are evaluated

at p = 0 this diagram only involves the LECs L6, L7, L8 from the L4 Lagrangian and C19,

C31 from L6. In addition, one might add a loop to the vertex either by including a π, K

or η(′) tadpole, figure 2(b), or a rescattering diagram figure 2(c). Note that in these two

cases off-shell momentum-dependent terms enter. In addition, the one-loop contribution

in figure 2(c) is evaluated at p = 0, which leads to the function M2n
0i logM2

0i/µ
2, where

M0i denote a π, K, η or η′ and n = 0, 1, 2 depending on the fields and derivatives running

in the loop. Terms proportional to the LEC L8 are O(δ). The remaining LECs and loop

topologies enter only at O(δ2). On the other hand, one or more of the η(′) propagators can

be dressed at NLO in the U(3) expansion. The η(′) self energies were computed in [48] in

U(3) ChPT. At zero momentum they involve the LECs Λ2, L8 at O(δ) and L6, L7, L25, v2
2,

L2
8, L8Λ2, Λ2

2 at O(δ2), figure 3(a), as well as further π, K or η(′) tadpole diagrams entering

at O(δ2), figure 3(b). Finally, the product of the topology in figure 2(a) proportional to

L8 and in figure 3(a) multiplying Λ2 and L8 also contribute at O(δ2).

All together, the LO contribution in the δ expansion to the fourth-order cumulant in

the isospin limit reads

c
U(3),LO, IL
4 = F 2M8

0B0

[
s4
θ

162M8
0η

(
mq

(
c4
θ − 4

√
2c3
θsθ + 12c2

θs
2
θ − 8

√
2cθs

3
θ + 4s4

θ

)
+2ms

(
4c4
θ + 8

√
2c3
θsθ + 12c2

θs
2
θ + 4

√
2cθs

3
θ + s4

θ

))
−

2cθs
3
θ

81M6
0ηM

2
0η′

(
mq

(√
2c4
θ − 5c3

θsθ + 3
√

2c2
θs

2
θ + 2cθs

3
θ − 2

√
2s4
θ

)
−2ms

(
2
√

2c4
θ + 2c3

θsθ − 3
√

2c2
θs

2
θ − 5cθs

3
θ −
√

2s4
θ

))
+
c2
θs

2
θ(mq + 2ms)

27M4
0ηM

4
0η′

(
2c4
θ − 2

√
2c3
θsθ − 3c2

θs
2
θ + 2

√
2cθs

3
θ + 2s4

θ

)
+

2c3
θsθ

81M2
0ηM

6
0η′

(
mq

(
−2
√

2c4
θ − 2c3

θsθ + 3
√

2c2
θs

2
θ + 5cθs

3
θ +
√

2s4
θ

)
+2ms

(√
2c4
θ − 5c3

θsθ + 3
√

2c2
θs

2
θ + 2cθs

3
θ − 2

√
2s4
θ

))
+

c4
θ

162M8
0η′

(
mq

(
4c4
θ + 8

√
2c3
θsθ + 12c2

θs
2
θ + 4

√
2cθs

3
θ + s4

θ

)
+2ms

(
c4
θ − 4

√
2c3
θsθ + 12c2

θs
2
θ − 8

√
2cθs

3
θ + 4s4

θ

))]
. (3.6)
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Expressing once more the tree-level η and η′ masses and mixing angle in terms of M0,

mq and ms, (3.6) simplifies remarkably leading to

c
U(3),LO, IL
4 = −

B0F
2M8

0mqms(m
3
q + 2m3

s))

(M2
0 (mq + 2ms) + 6B0mqms)4

= −
Σm̄4

IL

m̄
[3]
IL

(
M2

0 + 6B0m̄IL

)4 = −
Σm̂4

IL

m̄
[3]
IL

,

(3.7)

where m̄IL and m̂IL were defined in (2.10) and (2.11), respectively, and

m̄
[n]
IL =

[
2

mn
q

+
1

mn
s

]−1

. (3.8)

Like the topological susceptibility, c4 vanishes in the chiral limit mq → 0 pointing out

once more that it is a chiral quantity. The SU(3) result for the fourth-order cumulant

at LO in the chiral expansion can be recovered by taking the limit M0 → ∞. In that

case m̂IL → m̄IL and one retrieves the results in [24, 30]. In addition, one can also study

the opposite limit, i.e., the quenched approximation for which M0 � m̂. In that case

one obtains

c
U(3), LO, IL
4 = − F 2M8

0

1296B3
0m̄

[3]
IL

+O
(

1

N4
c

)
. (3.9)

The NLO O(δ) results are always proportional to the O(Nc) LECs Λ2 and L8, while

NNLO O(δ2) results involve the remaining pieces. Namely, terms proportional to the LECs

L6, L7, L25, C29, C31, v
(0)
4 , v

(2)
2 , L2

8, L8Λ2, Λ2
2 and meson logarithms. The renormalization

of the LECs [38, 39, 48] render a finite and scale-independent result. The explicit formulas

are too long to be displayed here and they are provided as supplementary material. In

addition, in the SU(3) M0 → ∞ limit we recover the NLO results in the chiral expansion

given in [30].

Finally, we can also study the large-Nc expansion of the fourth-order cumulant. While

the LO Nc behavior of χtop was well established time ago [1, 2, 5], the large-Nc behavior

of c4 is still under debate. On the one hand, in [32, 34] it was argued from the large-Nc

structure of the vacuum energy density that the fourth-order cumulant should scale as

O(1/N2
c ). On the other hand, an explicit calculation based on U(Nf ) ChPT at NLO in

the chiral expansion for degenerate quark masses [35] suggests that it goes as O(1/N3
c ).

Our LO O(1) and NLO O(δ) results do indeed reproduce the predictions in [35], since we

obtain that they are O(1/N3
c ) and O(1/N4

c ), respectively. Nevertheless, at NNLO O(δ2)

the fourth-derivative contribution in (3.5) involves the contact term −6F 2v0
4 ∼ O(1/N2

c ).

In fact, one can show that it is the only term contributing to c4 at this large-Nc order.

Namely, the leading-Nc dependence of any U(Nf ) chiral operator Ô(X) involving the field

X in (2.2) is given by [38, 51]

Ô(X) = N2−#(Tr)−#(X)
c , (3.10)

where #(Tr) and #(X) denote the number of chiral flavor traces and powers of the operator

X in (2.2), respectively. Thus, any higher order operators in X will be suppressed both
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by their large-Nc counting and the pion decay constants F . It also implies that any nth-

order cumulant of the topological charge distribution should scale as N2−n
c . All together,

we obtain

c
U(3), IL
4 =− 6F 2v0

4 −
F 2M8

0

1296B3
0m̄

[3]
IL

− 4F 2M2
0

m̄ILB0

[
v0

4 +
M2

0

216

(
v

(2)
2 − Λ2

2

)
+

M6
0

27F 4

(
3Cr19 + 4Cr31 +

160

3
Lr 2

8

)]
+O

(
1

N4
c

)
+O(δ3). (3.11)

where, as explained, the first term in the r.h.s. is O
(
1/N2

c

)
and the rest of the displayed

terms are O
(
1/N3

c

)
.

4 Numerical results

In table 1 we provide the numerical results for χ
1/4
top , (−c4)1/4 and b2 = c4/(12χtop) (the

latter is defined following standard lattice analyses, see below) calculated in ChPT for

SU(2), SU(3) and U(3) at different orders in the chiral or δ expansion. The numerical

values for the parameters involved, i.e., F , M0, meson masses and the LECs Lr6, Lr7, Lr8,

Λ1, Λ2, C19 and C31 are taken from [48]. Note that the U(3) LECs do not correspond to

the usual SU(3) ChPT quantities, but larger differences might be expected between them.

More precisely, we consider the values of the NNLOFit-B, i.e., their best fit to lattice results

for the η and η′ masses. However, the constants Lr25, v
(0)
4 and v

(2)
2 are not included in [48].

Lr25 and v
(2)
2 were estimated in [42] in an additional fit to lattice data for the η and η′

parameters and they enter both in χ
1/4
top and c4. On the contrary, v

(0)
4 remains unknown

and it only contributes to the fourth-order cumulant. In addition, while these LECs play

a very small role on the topological susceptibility, v
(2)
2 and v

(0)
4 have a much more sizable

effect on c4. In fact, taking Lr25 and v
(2)
2 from [42] and assuming the NNLO U(3) correction

for c4 to agree within uncertainties with the NLO estimate, one obtains for v
(0)
4 = 218(10).

Nevertheless, in order to avoid any bias in the behavior of the U(3) expansion, we will set

instead the value of v
(0)
4 to zero. Thus, since there are no current estimates for v

(0)
4 and it

would be inconsistent to include only v
(2)
2 , we simple set the values of Lr25, v

(0)
4 and v

(2)
2 to

zero. Furthermore, we will neglect the NNLO U(3) corrections coming from Λ2
2 since they

are of the same other than the v
(2)
2 and v

(0)
4 effects that we are ignoring.

We also include the LECs uncertainties quoted in [48]. One can see in table 1 that the

uncertainties of the U(3) LECs are much larger than the standard SU(2) and SU(3) errors,

the main source of error coming from F 2. In that sense, let us remark that the SU(3)

and SU(2) values quoted in table 1 are obtained from the U(3) expressions by taking

the M0 → ∞ limit, plus the ms → ∞ one in SU(2), but keeping the numerical values

of the U(3) LECs and their uncertainties. The reason for this is that our main purpose

here is to calibrate the numerical effect of the η′ as compared with the rest of the light

degrees of freedom. Recall that, according to our previous discussion, the NNLO U(3)

contribution includes the NLO SU(3) one in the limit where the η′ is decoupled and the
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NLO SU(2) results when also kaons and eta decouple. This has however the drawback

of losing numerical precision with respect to the corresponding purely SU(2) and SU(3)

LECs. For instance, recent estimates of the pure SU(2) calculation are χ
1/4
top = 75.5(5) MeV

at NLO [25] and χ
1/4
top = 75.44(34) MeV at NNLO [26] for typical LECs values of SU(2) and

SU(3) [52]. Note that the NNLO calculated for SU(2) in [25] includes O(p6) = O(δ3, δ4)

corrections, which are beyond our present analysis. In particular, we do not recover those

corrections when taking the M0 → ∞ and ms → ∞ limits. For that reason, we do

not include those results in table 1 where, as explained, we aim to discuss the different

contributions that are obtained as limiting cases of our present approach. In any case,

it is pointed out in [25], despite the uncertainties in the O(p6) LECs, the NNLO SU(2)

numerical corrections are one order of magnitude smaller than the NLO ones. In the

case of the b2 coefficient, the LO SU(2) and SU(3) expressions are LEC independent and

therefore, they are given without theoretical uncertainty in table 1. The cancellation of the

F 2 dependence in the U(3) LO for b2, e.g. from (2.9) and (3.7), explains also its smaller

error compared to higher orders.

The results in table 1 are obtained in the isospin limit. In the case of the topological

susceptibility they have to be compared with the lattice result
[
χlatttop

]1/4
= 73(9) MeV in

that case [12]. As for lattice results on c4, customarily given in terms of the b2 coefficient,

they are provided only for pure gauge SU(N) theories in [32–34] and for domain-wall

Nf = 2 + 1 fermions with large light quark masses ml/ms ≥ 0.25 [9]. Remarkably, the

value of b2 seems to be quite stable under those different approximations and close to the

simplest SU(2) ChPT value, as pointed out in [12]. We quote for reference the isospin-limit

value for Nc = 3 gluodynamics, b2 = −0.0216(15) [34]. Nevertheless, more accurate lattice

determinations for c4 and b2 for the physical Nf = 2 + 1 case would be needed to make

further claims.

From the results in table 1 we also observe the following features. First, in the three

theoretical frameworks, the perturbative corrections remain reasonably under control. Sec-

ond, although the SU(2) approach already reproduces the main contribution, the η′ meson

and mixing angle corrections that we are including in the present work are actually compa-

rable to the kaon and η ones introduced in the SU(3) approach. For χtop, those corrections

lower the central value and get closer to the lattice prediction and so on for |b2|. Actually,

we see that the full U(3) calculation for both observables remains compatible with the

lattice results within the range provided by the LECs uncertainties, which in the case of

χtop holds also for all the different approximations collected in table 1. The latter confirms

that these are are good chiral quantities in the sense that they can be accurately described

within ChPT.

5 Isospin breaking corrections to χtop and c4

As mentioned in the introduction, isospin breaking corrections can become important for

the topological charge distribution. The main reason is that for θ 6= 0 and mu 6= md, the

constant field configuration that minimizes the vacuum energy density is not U0 = 1, but

generally U0 = diag
(
eφ1 , . . . , e

φNf
)

[3, 4, 24, 31]. In the SU(3) framework, the constraint
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χ
1/4
top [MeV] U(3) SU(2) SU(3)

LO 74(3) 75(3) 75(3)

NLO 74(3) 78(3) 83(2)

NNLO 81(2)

Lattice 73(9) [12]

(−c4)1/4 [MeV] U(3) SU(2) SU(3)

LO 50(3) 53(2) 52(2)

NLO 50(3) 60(2) 61(2)

NNLO 58(2)

b2 = c4
12χtop

U(3) SU(2) SU(3)

LO −0.01737(4) −0.02083 −0.01960

NLO −0.018(2) −0.029(2) −0.025(1)

NNLO −0.023(2)

Lattice −0.0216(15) [34]

Table 1. Topological susceptibility, fourth-order cumulant and the b2 coefficient, calculated in

SU(2), SU(3) and U(3) ChPT to LO, NLO and NNLO in the isospin limit. The lattice values

mentioned in the main text have been also quoted here for reference. The numerical values of the

masses, decay constants and LECs involved, as well as their uncertainties, are taken from [48],

except L25, v
(0)
2 and v

(0)
4 , which are set to zero, (see main text).

detU0 = 1 leads to
∑

j φj = 0. However, within our present U(3) formalism, such constraint

does not hold, since the determinant of U0 is an additional degree of freedom [3]. The U0

configuration should be such that the vacuum energy density εvac(θ) defined in (1.1) is

minimized, which is indeed achieved for a constant value of U0. Therefore, to LO in the

chiral expansion, we have to consider just the usual NGB mass term plus the M2
0 term

in (2.5) for the Euclidean action. Namely,

εLO
vac(θ) = −F

2B0

2
Tr
[
U0M† +MU †0

]
− F 2

12
M2

0 [iθ + log detU0]2

= −F 2B0

Nf∑
j=1

mj cos [φj(θ)] +
F 2M2

0

12

(
θ +

Nf∑
j=1

φj(θ)

)2

, (5.1)

withM = diag(mu,md,ms) the quark mass matrix and φj(θ) are such that they minimize

εLO
vac(θ), i.e.,

B0mk sin [φk(θ)] +
M2

0

6

(
θ +

Nf∑
j=1

φj(θ)

)
= 0 (k = 1, . . . , Nf ) . (5.2)

Note that the solution to (5.2) is equivalent to encode the θ dependence in a com-

plex quark mass matrix M exp(−iθ/Nf ) as in [24, 31] with the change of variable

φj → φj + θ/Nf .

Now, following the same procedure as in [24], in order to solve the minimization prob-

lem we expand cosφj in powers of φj . The reason for this is that we are only interested in

the power expansion of εvac(θ) around θ = 0 and hence around the solution φj = 0 of (5.2)

for θ = 0. For Nf = 2 and M0 = 0 the solution of (5.2) can be found in [24, 31]. The
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solution of the system (5.2) to O(φj) for Nf = 3 is φj(θ) = φ0
jθ +O(θ3) with

φ0
j = −mj

(
6B0

M2
0

+
1

m̄

)
(j = u, d, s) , (5.3)

with m̄ defined in (1.7). Replacing the above linear order in the vacuum energy den-

sity (5.1) yields

εLO
vac(θ) = εvac(0) +

1

2
χ

U(3),LO
top θ2 +O(θ4) , (5.4)

with

χ
U(3),LO
top = Σm̂ , (5.5)

and

m̂ =
M2

0 m̄

M2
0 + 6B0m̄

.

The above result is the extension to mu 6= md of the LO U(3) result in (2.9), which

amounts to the replacement m̄IL → m̄ and reproduces the LO result with isospin breaking

in SU(3) in (1.7) by replacing m̄→ m̂.

In order to provide a numerical estimate of the isospin breaking effect, we write (5.5) as

χ
U(3),LO
top =

F 2M2
0

6 + (1+z)2

z
M2

0

M2
0π0

+
(1+z)M2

0

(1+z)M2
0K0−M2

0π0

(5.6)

where z = mu/md. Using the central value z = 0.485 of the recent lattice analysis [52],

we get
[
χ

U(3),LO
top

]1/4
= 72 MeV, to be compared with the U(3) LO value in table 1, which

corresponds to z = 1 in (5.6). Thus, the isospin correction to LO U(3) is within the 5%

range and lies within the theoretical LO uncertainty. It is therefore numerically safe to

consider isospin breaking only for the LO U(3) result in our present analysis.

Following the same approach to the next order in the θ expansion allows us to calculate

the isospin breaking corrections to the fourth-order cumulant. Thus, we expand (5.2) up

to O(φ3
j ) and write its solution as φj(θ) = φ0

jθ+φ1
jθ

3 +O(θ5) and keep only up to O(θ3) in

the equation, thus solving linearly for the φ1
j . Replacing then the solution in (5.1) yields:

εLO
vac(θ) = εvac(0) +

1

2
χ

U(3),LO
top θ2 +

1

24
c

U(3),LO
4 θ4 +O(θ6) (5.7)

with the fourth order cumulant

c
U(3),LO
4 = −Σ

m̂4

m̄[3]
(5.8)

where, following the notation of [30], we have defined, consistently with (3.8),

m̄[3] =

[
1

m3
u

+
1

m3
d

+
1

m3
s

]−1

. (5.9)
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The result (5.8) for the fourth-order cumulant corresponds again to the SU(3) one

in [24, 30, 31] with the replacement m̄→ m̂. As in the previous case, we also can write in

terms of measurable meson parameters:

c
U(3),LO
4 = −

F 2M8
0 (1 + z)3

[
1[

(1+z)M2
0K0−M2

0π0

]3 + 1+z3

z3M6
0π0

]
[
6 +

(1+z)M2
0

(1+z)M2
0K0−M2

0π0
+ (1+z)2

z
M2

0

M2
0π0

]4 (5.10)

which yields (−cU(3),LO
4 )1/4=53 MeV, so that the correction lies also within the 5% level

when compared with the isospin-limit values in table 1.

Finally, we recall that at the order we are considering the isospin-breaking corrections,

temperature dependence is absent since it only enters through loop contributions.

6 Finite temperature dependence

From our present U(3) ChPT analysis, we can straightforwardly include the temperature

dependence coming from meson loops. In the case of χtop, loop effects only arise at NNLO in

the δ expansion from tadpole contributions coming from the Euclidean tree-level propagator

Gi(x = 0). Its finite part reads

µi(T ) =
M2

0i

32π2F 2
log

M2
0i

µ2
+
g1(M0i, T )

2F 2
, (6.1)

g1(M,T ) =
T 2

2π2

∫ ∞
M/T

dx

√
x2 − (M/T )2

ex − 1
, (6.2)

where i = π,K, η, η′, M0i are the tree level masses and µ is the renormalization scale.

In the case of c4, in addition to tadpoles, which enter again from the Euclidean tree-

level propagator Gi(x = 0) in figure 3(b) but also from the six-point interaction vertex

in figure 2(b), one has to take into account the one-loop function depicted in figure 2(c),

which finite part can be written in terms of

νi(T ) =F 2 d

dM2
0i

µi(T ) =
1

32π2

[
1 + log

M2
0i

µ2

]
− g2(M0i, T )

2
, (6.3)

g2(M,T ) =
1

4π2

∫ ∞
M/T

dx
1

x

1

ex − 1
. (6.4)

That said, we want to remark that the U(3) thermal expansion is based on a pertur-

bative calculation and hence, it is only expected to converge at very low temperatures.

The fact that thermal corrections arise at NNLO in the δ expansion implies that the series

breaks down as soon as thermal effects are sizable. In figure 4, we show the temperature

dependence of χtop(T ) and b2(T ) for the same parameter values and errors used for the

T = 0 results in table 1. In addition, we also plot the lattice data results for the topological

susceptibility obtained in [12] and [14] and for b2 in [12]. In the latter case, lattice errors

are larger than for the susceptibility and we have actually not considered the data set for

a = 0.0824 fm which has even larger errors than those showed in the figure.
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χtop (T)

χtop (0)
U(3) NNLO

Bonati et al a=0.0824 fm

Bonati et al a=0.0707 fm

Bonati et al a=0.0572 fm

Borsanyi et al

0.0 0.5 1.0 1.5 2.0
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T/Tc

-b2(T) U(3) NNLOBonati et al a=0.0707 fm

Bonati et al a=0.0572 fm
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T/Tc

Figure 4. Left: temperature dependence of the topological susceptibility calculated within the

U(3) formalism compared to lattice data from [12] and [14]. Here, we have taken Tc = 155 MeV.

Right: temperature dependence of the b2 coefficient, with lattice data from [12].

We see that the present U(3) ChPT analysis is consistent with the lattice within

uncertainties, even beyond its applicability range, which as mentioned before lies at low

temperatures, well below the transition. Consequently, its extrapolation close and above

Tc has to be taken with care. However, the good agreement with the lattice observed

in figure 4 reveals once more that accounting properly for the lightest meson degrees of

freedom is crucial for the description of the topological susceptibility and the cumulant.

This implies an important difference with other thermodynamic observables like the

quark condensate, which accurate description based on effective theories requires the con-

tribution of many hadronic states, like for instance in the Hadron Resonance Gas ap-

proach [53–56]. Actually, in figure 5 we compare different orders of the finite-T ChPT

approach for the topological susceptibility and we see that the SU(3) and U(3) calculations

represent rather small deviations from the SU(2) one.

In the case of b2, our theoretical U(3) result in figure 4 is quite flat with temperature,

and lattice data are less accurate. This indicates that both quantities χ(T ) and c4(T )

decrease with T in a roughly similar way. Nevertheless, the agreement between theory and

lattice results is also quite remarkable.

As discussed in section 1, another important issue regarding the temperature depen-

dence is to what extent it can be approximated by just the scaling of the quark condensate,

i.e., whether or not the second term in the Ward Identity in (1.8) can be ignored. This

is actually the case if one sticks to SU(2) at NLO in the chiral expansion, what has been

used in [25]. In our present work, we are calculating χtop(T ) in U(3) at NNLO, including

SU(3) and SU(2) NLO as special cases. Thus, we can provide a much more accurate anal-

ysis in that respect. That issue can be also of relevance for lattice analyses. If the quark

condensate terms dominate, the combined use of (1.8) and (1.9) may help to relate χtop

with quantities much better determined in the lattice. Namely,

χtop =
mq

2

(
2−

m2
q

m2
s

)−1 [
2∆l,s −mq

(
χllp − 2χssp

)]
, (6.5)

where

∆l,s = 〈q̄q〉l (T )− 2
mq

ms
〈s̄s〉(T )
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χtop (T)
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U(3) NNLO
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Figure 5. Left: comparison of the U(3), SU(3) and SU(2) limits for the topological susceptibil-

ity. Right: comparison of the topological susceptibility scaling at finite temperature with various

approaches of the light quark condensate scaling.

is the reduced quark condensate used in lattice calculations to eliminate finite-size diver-

gences appearing in individual condensates [21, 36]. The relation (6.5) offers a way to

measure indirectly χtop, which is alternative to the usual method based on the WI

χtop =
m2
q

4

(
χπP − χllP

)
,

which stems directly from (1.8), with χπP = −〈q̄q〉l /mq the pion susceptibility [57].

The reduced quark condensate is a particular example of a well determined quantity in

the lattice.

The possible dominance of the quark-condensate term in the WI (1.8) is also relevant

for a current topic of discussion, which has been actively studied both theoretically and in

the lattice [19–23, 58–66]. Namely, whether the chiral and U(1)A restoration temperatures

are close enough. Since χtop and 〈q̄q〉l are meant to vanish at exact U(1)A (asymptotically)

and chiral O(4) restoration, respectively, their difference, encoded in χllP in (1.8), provides

a direct measure of the separation between the two transitions. In this sense, it is useful

to recall the behavior of these quantities near the light chiral limit mq → 0+(Mπ → 0+),

where the effects of chiral symmetry restoration are meant to be enhanced. In NNLO

U(3) ChPT [20], χtop = O(mq), while 〈q̄q〉l (T ) and χllP (T ) are both O(1) quantities in the

mq → 0+ limit. Thus, in the equation

χtop

mq
= −1

4

[
〈q̄q〉l +mqχ

ll
P

]
, (6.6)

only the quark condensate contribution survives in the right-hand side of (6.6) in the chiral

limit, which supports its dominance at low temperatures. However, near the transition

〈q̄q〉l (T ) → 0+ in the chiral limit, while χllP (T ) changes much more slowly, since it is

controlled by a term proportional to T 2/M2
0K . Thus, it brings up the question as to whether

near the transition the χllP term can become important enough for physical masses.

In figure 5, we compare the temperature dependence of the full U(3) topological sus-

ceptibility with the scaling of the light quark condensate calculated in the same framework,

which would correspond to neglect the χll term in the WI (1.8) and (6.6). The values of
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the LECs and other parameters involved are the same as those used in figure 4. In the

same figure, we also show the simple NLO SU(2) scaling used in [25], corresponding just

to the NLO ChPT quark condensate, namely

χ
SU(2),NLO
top (T )

χ
SU(2),NLO
top (0)

=
〈q̄q〉SU(2),NLO

l (T )

〈q̄q〉SU(2),NLO
l (0)

= 1− 3

2F 2
π

g1(Mπ, T ) . (6.7)

The results in figure 5 show that the contribution from the additional χll term in the

WI, although not large, may be significant as T approaches the transition point. The

simple SU(2) description remains also close to the full U(3) one, which is a test of its

robustness despite its simplicity. However, it is very important to point out that, although

the topological susceptibility may be well described within a ChPT analysis including only

the lightest degrees of freedom, that is definitively not the case for the quark condensate.

To show this explicitly, we have plotted in figure 5 the quark condensate resulting from

the HRG approximation provided in [56], which includes hadron states with masses up to

2 GeV and provides a very good fit to lattice condensate data. One can see clearly a much

larger departure from the scaling of the topological susceptibility than the one observed

with the ChPT expressions for the quark condensate, which happen to remain close to the

topological susceptibility. In this sense, we remark that the addition of degrees of freedom

is expected to reduce drastically the chiral condensate, as expected from approximate chiral

restoration at Tc. Nevertheless, that may not be the case for the topological susceptibility,

whose behavior is not directly related to chiral symmetry restoration but includes U(1)A
restoration features, describing lattice data just with the light degrees of freedom. Thus, in

a full description of the hadron gas we do expect large deviations from the quark condensate

scaling and hence significant contributions from the second term in (1.8), which becomes

large close to the transition point. This also indicates that the U(1)A symmetry is still

sizeably broken at the chiral transition for physical quark masses. This analysis should

prevent from the use of the topological susceptibility to extract the quark condensate at

finite temperature.

7 Conclusions

The main conclusions achieved in this work are the following:

• We have provided a full calculation of the topological susceptibility and the fourth-

order cumulant up to NNLO in U(3) Chiral Perturbation Theory. Our result allows

one to consider the effect of the η′ meson consistently, as well as the η − η′ mixing

angle dependence. As limits of interest, we recover the SU(2) and SU(3) results when

M0 →∞. In addition, we have discussed the large-Nc corrections to both quantities.

In the case of the topological susceptibility, we have provided the O(1/Nc) correction

to the Witten-Veneziano formula up to O(δ2) in the U(3) ChPT expansion, and so

on for the O(1/N2
c ) and O(1/N3

c ) corrections to the fourth-order cumulant.

• We have estimated the η′ corrections to χtop and c4 at zero temperature, which turn

out to be of the same order as the K and η contributions. Furthermore, it provides

– 21 –



J
H
E
P
1
1
(
2
0
1
9
)
0
8
6

results compatible with lattice analyses, consistently with the idea that the QCD

topological charge is an observable well described by the expansion around the chiral

limit provided by ChPT.

• Including the dominant isospin breaking effect in the vacuum misalignment, we have

provided both χtop and the fourth cumulant c4 of the vacuum energy density expan-

sion in the θ parameter to LO in the U(3) ChPT expansion. Numerical corrections

due to isospin breaking remain below the 5% level for χ
1/4
top and (−c4)1/4.

• We have calculated χtop and c4 at finite temperature up to NNLO in U(3) ChPT. The

temperature dependence obtained for the topological susceptibility is consistent with

lattice data, supporting again that this quantity is well described by a gas made only

of light mesons, unlike for instance the quark condensate. We have also discussed the

relation between these two quantities, which are connected through a Ward Identity

valid at all temperatures. Although the quark condensate calculated within the same

ChPT formalism seems to scale quite similarly to χtop, we argue that this cannot be

the case for the full hadron gas. It reveals a sizable gap between the chiral transition

and the U(1)A one for physical quark masses, even though recent theoretical analysis

show that those transitions tend to coincide near the chiral limit for exact chiral

restoration.
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A Results for χtop at NLO and NNLO in U(3) ChPT in the isospin limit

We provide here the full results for the topological susceptibility in the U(3) ChPT formal-

ism at NLO and NNLO in the δ expansion.

χ
U(3),NLO
top =

1

9M4
0η′

{
F 2Λ2M

2
0 cθ

[
2M2

0K

(
cθ−
√

2sθ

)
+M2

0π

(
2
√

2sθ+cθ

)](
M2

0 c
2
θ −M2

0η′

)
+8M4

0 c
2
θL

r
8

[
4M4

0K

(
2s2
θ + c2

θ − 2
√

2sθcθ

)
−4M2

0πM
2
0K

(
2s2
θ + c2

θ − 2
√

2sθcθ

)
+ 3M4

0π

]}
+

1

9M4
0η

{
F 2Λ2M

4
0 s

3
θ

[
2M2

0K

(
sθ +

√
2cθ

)
+M2

0π

(
sθ − 2

√
2cθ

)]
+8M4

0 s
2
θL

r
8

[
4M4

0K

(
s2
θ + 2c2

θ + 2
√

2sθcθ

)
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−4M2
0πM

2
0K

(
s2
θ + 2c2

θ + 2
√

2sθcθ

)
+ 3M4

0π

]}
+

1

9M2
0ηM

2
0η′

{
F 2Λ2M

2
0 sθ

×
[(

2M2
0K

(
sθ +

√
2cθ

)
+M2

0π

(
sθ − 2

√
2cθ

))(
M2

0 c
2
θ −M2

0η′

)
+M2

0 sθcθ

[
2M2

0K

(
cθ −

√
2sθ

)
+M2

0π

(
2
√

2sθ + cθ

)]]
+64M4

0 sθcθM
2
0K

(
M2

0K −M2
0π

)
Lr8

(
−
√

2s2
θ +
√

2c2
θ − sθcθ

)}
(A.1)

χ
U(3),NNLO
top = − 16M2

0 Λ2L
r
8

27M6
0ηM

6
0η′

{
8M6

0K

[
cθ

(
c3
θ

√
2sθc

2
θ + 6s2

θcθ − 2
√

2s3
θ

)
×
(

2c2
θM

2
0 −M2

0η′

)
M6

0ηM
2
0η′

(
2cθ

(
c5
θ + 2

√
2sθc

4
θ

−7s2
θc

3
θ − 2

√
2s3
θc

2
θ + 7s4

θcθ −
√

2s5
θ

)
M2

0

+
(
− 2c4

θ −
√

2sθc
3
θ + 6s2

θc
2
θ +
√

2s3
θcθ − 2s4

θ

)
M2

0η′

)
M4

0η

+sθM
4
0η′

(
2
(√

2c5
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4
θ + 2

√
2s2
θc

3
θ − 7s3

θc
2
θ − 2

√
2s4
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θ

)
M2

0

−
(

2
√
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2
θ + 3

√
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θ
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√
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√
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√
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(
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√
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θ
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√
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√
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