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Abstract

The interaction rate of an ultrarelativistic active neutrino at a temperature below the electroweak 
crossover plays a role in leptogenesis scenarios based on oscillations between active neutrinos and GeV-
scale sterile neutrinos. By making use of a Euclideanization property of a thermal light-cone correlator, we 
determine the O(g) correction to such an interaction rate in the high-temperature limit πT � mW , find-
ing a ∼ 15...40% reduction. For a benchmark point, this NLO correction decreases the lepton asymmetries 
produced by ∼ 1%.
© 2019 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Completing the Standard Model with GeV-scale sterile neutrinos has become popular in recent 
years, given that they may account for the observed active neutrino mass differences and mixing 
angles through the seesaw mechanism [1–3], play a role in cosmology [4,5], and be searched 
for experimentally (for a review cf., e.g., ref. [6]). Apart from generating a baryon asymmetry 
(cf., e.g., refs. [7–12] and references therein), their dynamics could lead to the generation of 
lepton asymmetries larger than the baryon asymmetry [13–16], which could influence late-time 
cosmology, such as dark matter production [17–19].

If right-handed neutrinos are added to the Standard Model in a minimal renormalizable way, 
without introducing any other dynamical fields, then the neutrino sector is fully characterized by 
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the values of Majorana mass parameters and neutrino Yukawa couplings. Even if this amounts 
to a large-dimensional parameter space, the values of the parameters start to be constrained. 
Therefore, it is important to scrutinize the precision of the theoretical computations on which the 
cosmological significance of this model relies. This is the goal of the present study. Specifically, 
we aim to determine one of the important rates, defined in eq. (2.1), up to next-to-leading order 
(NLO) in the weak-coupling expansion.

The computation of NLO corrections to real-time rates is a challenging task in the so-called 
ultrarelativistic regime πT � mi , where mi refers to the masses of the plasma particles, ham-
pered as it is by powerlike infrared divergences which lead to the breakdown of the naive loop 
expansion.1 In general, a nested resummation of the loop expansion is necessary for generating a 
consistent weak-coupling expansion. An important breakthrough was achieved in ref. [25], where 
it was realized that for many ultrarelativistic observables the real-time problem can be reduced to 
a static one. Then resummations can be implemented in a tractable fashion, which permitted for 
ref. [25] to recover previous results [26] in a simple way and to push the computation one order 
higher in the coupling. This insight has subsequently inspired, for instance, NLO determinations 
of the thermal photon [27] and soft dilepton [28] production rates from a QCD plasma; an es-
timate of the NLO contribution to its shear viscosity [29]; as well as attempts at incorporating 
the contribution of soft modes on a non-perturbative level, through numerical simulations of an 
effective theory [30–33].

The goal of the present paper is to adapt these techniques to the electroweak theory. Even 
though the SU(2) gauge coupling g2 ∼ 2

3 is smaller than the QCD one, the NLO corrections 
are only suppressed by g2

2T/(πmi) ∼ g2/π (assuming mi ∼ g2T ), and could come with large 
prefactors. Previously, they have been determined for so-called susceptibilities, relating chemical 
potentials to lepton asymmetries. As they were found to be numerically significant [34,35], it 
appears well motivated to extend the exercise to a genuine rate observable.

2. Formulation of the problem

Denoting by K = (ω, k) the four-momentum of an active neutrino propagating through a 
medium at a temperature T and by /� its (advanced) self-energy, the chiral nature of gauge inter-
actions (cf. eq. (2.2)) implies that we may write [36]

Re/� = a /K + b /u , Im/� = 1

2

(
�K /K + �u/u

)
, (2.1)

where u ≡ (1, 0) denotes the four-velocity of the plasma in the local rest frame. The function 
a represents a radiative “wave function correction”, whereas b can be interpreted as a thermal 
correction to a dispersion relation [36] (the full propagator is ∝ (/K + /�)−1). In the following, 
we are concerned with the interaction rate �u. The rate �K is relevant for the subleading helicity-
flipping active-sterile transitions [37], however it was found in ref. [37], drawing upon earlier 
work in the QCD context [38,39], that only the interaction rate �u is susceptible to a simplified 
Euclideanized treatment à la ref. [25].

We assume that the neutrino is, to a good approximation, ultrarelativistic: k ≡ |k| ∼ πT � M , 
where M = √

ω2 − k2 denotes its virtuality. It interacts via weak interactions,

1 There are challenges also in the relativistic (πT ∼ m
i
) and non-relativistic (πT � m

i
) regimes but those are of a 

different nature and parametrically less severe, cf. e.g. refs. [20–24].
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LM = �̄Liγ
μDμ�L , Dμ = ∂μ − ig1Bμ

2
− ig2 σaAa

μ

2
, �L ≡

(
νL

eL

)
, (2.2)

where g1 is the hypercharge coupling, Bμ is the corresponding gauge potential, σa are the Pauli 
matrices, g2 is the weak coupling and Aa

μ are the SUL(2) gauge potentials.
In order to isolate the relevant helicity components, we employ the Weyl representation of 

the Dirac matrices: γ 0γ i = diag(−σ i, σ i), aL = diag(1, 0). Going to momentum space, ∂μ →
iKμ, and aligning the momentum in the z-direction, the free part LM ⊃ ν†

L (−ω1 − kzσ z)νL +
e†

L (−ω1 −kzσ z)eL implies that the lower (negative-helicity) components of νL and eL go on-shell 
for ω = kz. In the following we denote this component by ψ for νL, and by χ for eL. For these 
components, the coefficients of eq. (2.1) appear in the effective action as

SM,eff ⊃
∫
K

ψ†(K)

[(−ω + kz
)(

1 + a + i�K
2

)
−

(
b + i�u

2

)]
ψ(K)

+
∫
K

χ†(K)

[(−ω + kz
)(

1 + ã + i�̃K
2

)
−

(
b̃ + i�̃u

2

)]
χ(K) , (2.3)

where ã, b̃, �̃K, �̃u refer to the properties of left-handed electrons.
Following ref. [25], the idea now is to expand in fluctuations around the on-shell point, and 

then to rotate the light-like propagation into a static one. Simultaneously, we go over to Euclidean 
conventions, viz. AM

0 = iAE

0 , and define a Euclidean Lagrangian as L
E

≡ −L
M

. Linear combi-
nations of gauge potentials are denoted by W±

μ ≡ (A1
μ ∓ iA2

μ)/
√

2, g̃Zμ ≡ g1Bμ + g2A
3
μ, 

g̃Z′
μ ≡ g1Bμ − g2A

3
μ, where g̃ ≡

√
g2

1 + g2
2 . Then static fluctuations around the on-shell point 

are described by

L
E

= −
(

ψ

χ

)†{ i∂z + g̃
2

(
iZ0 + Z3

) g2√
2

(
iW+

0 + W+
3

)
g2√

2

(
iW−

0 + W−
3

)
i∂z + g̃

2

(
iZ′

0 + Z′
3

) }(ψ

χ

)
. (2.4)

The “large” ω and kz have cancelled against each other, so the “residual” momentum generated 
by i∂z in eq. (2.4) can be taken to be small (it is denoted by kz and is ∼ g̃2T ).

With the Lagrangian of eq. (2.4), we compute the Euclidean version of eq. (2.3). For nearly 
on-shell neutrinos, it takes the form2

S
E,eff ⊃

∫
k

ψ†(k)
[
kz +�(kz)

]
ψ(k) , �(kz) = kz

(
a+ i�K

2

)
+b+ i�u

2
+O(k2

z ) . (2.5)

It turns out that within the effective theory, the real part of � is odd in kz and the imaginary 
part is even in kz, guaranteeing that correlations decay exponentially (i.e. that the pole is on the 
imaginary axis). Consequently, only a and �u are generated within our computation, as already 
alluded to above.

It can be deduced from eq. (2.5) that the free neutrino and electron propagators have the forms

〈ψ(k)ψ†(q)〉0 = (2π)dδ(d)(k − q)

kz + i0+ = 〈χ(k)χ†(q)〉0 , (2.6)

2 The original ψ has been scaled by a factor T 1/2 so that ψ(x) has the dimension GeV and ψ(k) the dimension 
GeV−2. The same dimensions apply to the gauge potentials Aa

μ(x) and Aa
μ(k), respectively.
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where d = 3 − 2ε. The other propagators are those of the dimensionally reduced theory for the 
Standard Model [40], with the temporal gauge field components Aa

0 and B0 kept as dynamical 
fields. We carry out computations in a general Rξ gauge, whereby the spatial W± propagator 
reads (a′, b′ ∈ {1, 2})〈

Aa′
i (k)Ab′

j (q)
〉
0

= δa′b′
T (2π)dδ(d)(k + q)

{
δij

k2 + m2
W

+ kikj

m2
W

(
1

k2 + m2
W

− 1

k2 + ξm2
W

)}
.

(2.7)

There are similar propagators for the neutral components Zi and Qi which, as usual, are obtained 
from A3

i and Bi by a rotation with the mixing angle sin(2θ) = 2g1g2/(g
2
1 + g2

2).
For the temporal components Z0 and Q0, the mixing is modified by thermal (Debye) masses. 

Let us denote the mixing angle of the temporal components by θ̃ . Following ref. [41], the masses 
of the diagonalized modes are denoted by m2

Z̃
and m2

Q̃
. The original gauge fields can be expressed 

in the new basis as

Z0 = cos(θ − θ̃ ) Z̃0 + sin(θ − θ̃ ) Q̃0 , Z′
0 = − cos(θ + θ̃ ) Z̃0 + sin(θ + θ̃ ) Q̃0 , (2.8)

and the corresponding propagators take the forms〈
W+

0 (k)W−
0 (q)

〉
0 = T (2π)dδ(d)(k + q)

1

k2 + m2
W̃

, (2.9)

〈
Z0(k)Z0(q)

〉
0 = T (2π)dδ(d)(k + q)

[
cos2(θ − θ̃ )

k2 + m2
Z̃

+ sin2(θ − θ̃ )

k2 + m2
Q̃

]
, (2.10)

〈
Z′

0(k)Z′
0(q)

〉
0 = T (2π)dδ(d)(k + q)

[
cos2(θ + θ̃ )

k2 + m2
Z̃

+ sin2(θ + θ̃ )

k2 + m2
Q̃

]
. (2.11)

The masses m2
W̃

, m2
Z̃

, m2
Q̃

and the angles θ, θ̃ satisfy identities which are not always easy to 
recognize at first sight, e.g.

m2
Z̃

− m2
W̃

= m2
W tan(θ) tan(θ̃ ) , m2

W̃
− m2

Q̃
= m2

W tan(θ) cot(θ̃ ) . (2.12)

Let us end this section by commenting upon differences with respect to the observable ana-
lyzed in the QCD context [25]. The quantity considered there was a Wilson loop rather than a 
single propagator (which can be interpreted as a Wilson line). The transverse coordinate of the 
loop, r⊥, served to define a “collision kernel”, C(q⊥), and the so-called jet quenching parameter, 
q̂ , is a weighted integral over C(q⊥). The weighting by q2⊥ implies that the soft contribution to q̂
is UV divergent. In our case there is no such weighting, and �u is UV finite. On the other hand, 
the absence of weighting makes �u more IR sensitive than q̂, and therefore �u is perturbatively 
computable only in the Higgs phase.

3. Leading-order computation

The leading contribution to �u originates at 1-loop level, through the graphs shown in Fig. 1.
Inserting the propagators from eqs. (2.6), (2.7), (2.9) and (2.10) and denoting the internal 

momentum by p = p⊥ + pzez, we are faced with integrals of the type

I (kz) = T

∫
1

kz − pz + i0+
1

p2
z + ε2

p

, ε2
p ≡ p2⊥ + m2 . (3.1)
p



G. Jackson, M. Laine / Nuclear Physics B 950 (2020) 114870 5
Fig. 1. Leading-order contributions to self-energy. A double line denotes a neutrino (ψ ) propagator from eq. (2.6); a filled 
blob an electron (χ ) propagator; a wiggly line a spatial gauge field; and a solid line a temporal gauge field, which in the 
effective theory has turned into an adjoint scalar field.

Noting that the external momentum kz ∼ g̃2T is small compared with the mass scales mi ∼ g̃T , 
we can expand in kz. Evaluating the integral over pz with the residue theorem, or with

1

pz − kz − i0+ =P
(

1

pz − kz

)
+ iπδ(pz − kz) , (3.2)

where P denotes a principal value, yields

I (kz) ≈ T

{
i

2

∫
p⊥

1

ε2
p

+ kz

∫
p

P

[
1

p2
z (p

2
z + ε2

p)

]
+O(k2

z )

}
. (3.3)

The first term contributes directly to the width, whereas the second one gives a wave function 
correction, proportional to kz (cf. eq. (2.5)). The wave function corrections are gauge depen-
dent and IR-sensitive, but they do play a role in cancelling similar effects from loop diagrams. 
Therefore they need to be accounted for at NLO, as discussed in Appendix A.7.

Focussing now on the leading-order (LO) width, which originates from the first term in 
eq. (3.3), it is straightforward to verify that there is no gauge parameter dependence. Summing 
together the graphs, we obtain (�i ≡ (p2⊥ + m2

i )
−1)

�(LO)
u = g̃2T

4

∫
p⊥

{
�

Z
− cos2(θ − θ̃ )�

Z̃
− sin2(θ − θ̃ )�

Q̃
+ 2 cos2(θ)

(
�

W
− �

W̃

)}
. (3.4)

It remains to carry out the integral over the transverse momentum p⊥. Even if the whole 
integral is UV finite, it was argued in ref. [37] that it is reasonable to adopt a phenomenological 
cutoff |p⊥| ≤ 2k ∼ 2πT . Adopting this prescription, which amounts to a partial inclusion of 
higher order contributions in an expansion in ∼ m2

i /k2, transverse integrals evaluate to∫
|p⊥|≤2k

1

p2⊥ + m2
= ln

(
1 + 4k2/m2

)
4π

. (3.5)

Thereby eq. (3.4) reproduces the LO result for �u as given in eq. (5.23) of ref. [37].

4. NLO result and some of its features

Proceeding to the NLO level, there are a number of contributions, listed in Appendix A. 
Summing them together, the result can be expressed as

�(NLO)
u = g̃4T 2

8
lim

mQ→0

∫
p⊥

{∑
i

(
ciAi

+ ċi Ȧi

)+
∑
i,j

(
cijBij

+ cT

ijBT,ij
+ ċij Ḃij

)}
, (4.1)

where ci, ċi , cij , c
T

ij , ċij are coefficients and i, j = {H, Z, . . .} label particles appearing in the 
loops. The “photon mass” m

Q
was introduced as an intermediate IR regulator (see below). Mak-
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ing use of the notation of Appendix A.1, simplified further by denoting A
i
≡ A(mi), etc., the 

linear combinations needed in eq. (4.1) read3∑
i

ciAi
= (4.2)

{
A

H
+ m2

Z

m2
H

[
(d − 1)A

Z
+ cos2(θ − θ̃ )A

Z̃
+ sin2(θ − θ̃ )A

Q̃

]
+ 2m2

W

m2
H

[
(d − 1)AW + A

W̃

]}
×

{
�2

Z
− [

cos2(θ − θ̃ )�
Z̃

+ sin2(θ − θ̃ )�
Q̃

]2 + 2 cos4(θ)
(
�2

W
− �2

W̃

) }
− 4 cos4(θ)

[
(d − 2) cos2(θ)A

Z
+ cos2(θ̃)A

Z̃
+ sin2(θ̃)A

Q̃
+ (d − 2)A

W
+ A

W̃

]
× (

�2
W

− �2
W̃

)
+ 4 cos2(θ)

[
(d − 2)A

W
+ A

W̃

]
×{[

cos(θ̃ ) cos(θ − θ̃ )�
Z̃

− sin(θ̃) sin(θ − θ̃ )�
Q̃

]2 − cos2(θ)�2
Z

}
+ AW sin(2θ)

{
sin(2θ)�2

Z + sin(2θ̃ )
[
sin2(θ − θ̃ )�2

Q̃
− cos2(θ − θ̃ )�2

Z̃

]
− cos(2θ̃ ) sin[2(θ − θ̃ )]�

Q̃
�

Z̃

}
,∑

i

ċi Ȧi
= (4.3)

8 cos4(θ)
[
cos2(θ)Ȧ

Z
− cos2(θ̃)Ȧ

Z̃
+ sin2(θ)Ȧ

Q
− sin2(θ̃)Ȧ

Q̃
+ Ȧ

W
− Ȧ

W̃

](
�

W̃
− �

W

)
+ 8 cos3(θ)

(
Ȧ

W
− Ȧ

W̃

)[
cos(θ̃) cos(θ − θ̃ )�

Z̃
− sin(θ̃ ) sin(θ − θ̃ )�

Q̃
− cos(θ)�

Z

]
,∑

i,j

cijBij
= (4.4)

2m2
Z
B

HZ
�2

Z

− 2m2
Z

[
cos2(θ − θ̃ )B

HZ̃
+ sin2(θ − θ̃ )B

HQ̃

][
cos2(θ − θ̃ )�

Z̃
+ sin2(θ − θ̃ )�

Q̃

]2

+ 4m2
W

cos4(θ)
[ (

B
HW

+ B
ZW

)
�2

W
− (

B
HW̃

+ B
ZW̃

)
�2

W̃

]
− 4m2

W
cos2(θ)

[
cos2(θ + θ̃ )B

Z̃W
+ sin2(θ + θ̃ )B

Q̃W

]
�2

W̃

+ 16 cos4(θ)
{

p2⊥
[

cos2(θ)
(
B

ZW
�2

W
− B

ZW̃
�2

W̃

)+ sin2(θ)
(
B

QW
�2

W
− B

QW̃
�2

W̃

)
− [

cos2(θ̃ )B
Z̃W

+ sin2(θ̃)B
Q̃W

]
�2

W̃

]
+ [

cos2(θ̃)B
Z̃W̃

+ sin2(θ̃)B
Q̃W̃

]
�W

}
− 4m2

W
(4 cos2 θ − 1)

[
B

WW
�2

Z
+ cos2(θ)B

ZW
�2

W

]+ 8 cos4(θ)
(
B

WW
+ B

W̃W̃

)
�

Z

+ 4B
WW̃

m2
Z

{
cos2(θ) − 2m2

W

[
cos2(θ − θ̃ )�

Z̃
+ sin2(θ − θ̃ )�

Q̃

]
− [

(m2
W

− m2
W̃
)2 + 2p2⊥(m2

W
+ m2

W̃
) + p4⊥

]
× [

cos(θ − θ̃ ) cos(θ̃ )�
Z̃

− sin(θ − θ̃ ) sin(θ̃)�
Q̃

]2
}

,

3 A c-program for this expression is available as an ancillary file at https://arxiv.org /abs /1910 .12880.

https://arxiv.org/abs/1910.12880
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∑
i,j

cT

ijBT,ij
= (4.5)

2
{
B

T,HZ
+ [

4(d − 2) cos4(θ) + cos2(2θ)
]
B

T,WW
+ 4 cos4(θ)B

T,W̃W̃

}
�2

Z

+ 4 cos4(θ)
{
BT,HW + [

4(d − 2) cos2 θ + 1
]
BT,ZW + 4 cos2(θ̃ )B

T,Z̃W̃

+4(d − 2) sin2(θ)B
T,QW

+ 4 sin2(θ̃ )B
T,Q̃W̃

}
�2

W
,∑

i,j

ċij Ḃij
= (4.6)

8 cos4(θ)
{

cos2(θ)
(
ḂZW − Ḃ

ZW̃

)+ cos2(θ̃)
(
Ḃ

Z̃W̃
− Ḃ

Z̃W

)
+ sin2(θ)

(
Ḃ

QW
− Ḃ

QW̃

)+ sin2(θ̃ )
(
Ḃ

Q̃W̃
− Ḃ

Q̃W

)+ 1
2

(
Ḃ

WW
+ Ḃ

W̃W̃

)− Ḃ
W̃W

}
.

The final integral over p⊥ is best performed numerically, within the domain of eq. (3.5).
Our result for �(NLO)

u passes a number of crosschecks. A simple one is that all gauge dependent 
pieces have cancelled. A less trivial test can be obtained by looking at the value of the integrand 
at p2⊥ � m2

i . The leading term of the Taylor expansion, obtained by inserting eq. (A.6) as well 
as the asymptotics from eqs. (A.7) and (A.8), comes from the part 

∑
i,j cT

ijBT,ij
in eq. (4.5). Here 

the different pieces add up, whereas all other structures contain a cancellation between spatial 
and temporal contributions. This yields

�(NLO)
u ⊃ g̃4T 2

8

∫
|p⊥| � mi

4[3(2d − 1) cos4(θ) + sin4(θ)]BT,00

p4⊥

d=3= − g̃4T 2

8

∫
|p⊥| � mi

15 cos4(θ) + sin4(θ)

16p3⊥
, (4.7)

where on the first line B
T,00 indicates that masses can be put to zero. This agrees perfectly with 

the NLO part of eq. (D.6) of ref. [41], which was obtained by considering the IR asymptotics of 
a fully relativistic but unresummed computation.

It is also good to check that the resummed expression is IR finite. As charged particles appear 
in the loops, massless photons do affect the NLO result. Some of their contributions are unprob-
lematic, but there are certain terms where it needs to be verified that the limit m

Q
→ 0 can indeed 

be taken in eq. (4.1). For this we note that

lim
mQ→0

[
Ḃ(m

Q
,m) − Ȧ(m

Q)

p2 + m2

]
d=3= m2 − p2

8πm(p2 + m2)2 . (4.8)

Indeed all m
Q

-dependence of eqs. (4.3) and (4.6) appears in this IR-safe combination.
We plot the result from eq. (4.1), both as an integrand and after the integration, in Fig. 2. For 

this, the parameters have been fixed as in ref. [37]. A partial cancellation between contributions 
from various domains of p⊥ can be observed, as a result of which the final magnitude of the 
negative NLO correction remains at a modest ∼ 15% level at high temperatures. It reaches ∼
40% at low temperatures, mostly because the LO contribution is anomalously small there due to 
a cancellation between the spatial and temporal contributions in eq. (3.4), viz. �(LO)

u ∼ g̃4T 3/m2
i

at g̃T � mi , however in that region the approximation mi � πT inherent to our effective theory 
approach gradually breaks down.
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Fig. 2. Left: the integrands from eqs. (3.4) (LO), (4.1) (NLO full) and (4.7) (NLO asymptotics), at T ≈ 140 GeV. Right: 
the corresponding integrals, as a function of T and k (the latter originates as discussed around eq. (3.5)). At high T the 
NLO correction is seen to reduce the LO rate by ∼ 15%, at low T by ∼ 40%.

5. Summary and outlook

We have reported a thermal NLO computation of a neutrino interaction rate �u, defined 
through eq. (2.1), in the temperature range πT � m

W
. The final result is given in eq. (4.1) and 

plotted numerically in Fig. 2, whereas many technical details are relegated into Appendix A. The 
result passes a number of crosschecks, in particular it is gauge independent and displays the UV 
asymptotics predicted by an earlier unresummed computation. By taking g1 → 0, it can partially 
also be contrasted with the QCD result of ref. [25],4 even if the presence of a Higgs expectation 
value prohibits an unambiguous comparison.

The coefficient �u is but one of a set of mass corrections and interaction rates entering a 
complete GeV-scale leptogenesis framework [37].5 It is, however, the first ultrarelativistic rate 
that has been computed up to NLO for thermal neutrino physics. Even though it will take time 
before all other coefficients are known at the same level, we hope that the knowledge of one of 
them helps to motivate such efforts.

A leptogenesis computation typically comes with two goals: determining the baryon asymme-
try, which is fixed at T ∼ 130 GeV when sphaleron processes switch off [43], and determining 
lepton asymmetries, which continue to be produced when T < 130 GeV. As the rate that we com-
puted only concerns processes that are active in the Higgs phase (cf. eq. (5.1)), it is no surprise 
that it has little effect on the baryon asymmetry: we only observe a variation on the per mille 

4 Or better still, with an N = 4 SYM result [42], which includes the contribution of scalar fields.
5 More precisely, �u determines the rate of helicity-conserving active-sterile oscillations, as

� � h2
νv2M2�u

2[(M2 + 2ωb)2 + (ω�u)2] , (5.1)

where hν is a neutrino Yukawa coupling, v is the Higgs expectation value, ω ≡
√

k2 + M2, M is the mass of a right-
handed neutrino, and b is the correction parametrizing the real part of eq. (2.1).
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level. The influence on lepton asymmetries is a bit larger, however by considering the bench-
mark point � from ref. [37], chosen because lepton asymmetry production continues for a long 
time in this case, we found a reduction of lepton asymmetries by ∼ 1%. Hence it appears that 
for practical applications it is sufficient to use the simple leading-order expression for �u from 
eq. (3.4).

Closing on a conceptual note, our computation can be interpreted as amounting to determin-
ing the exponential fall-off of a single light-like Wilson line. Even though we have verified the 
independence of the result on the gauge fixing parameter up to NLO, the observable itself is 
not manifestly gauge invariant. Another possible starting point would be to consider a Wilson 
loop (like in ref. [32] but in the Higgs phase), which is gauge invariant. In this setup, the infor-
mation relevant for us could be extracted by pulling the sides of the Wilson loop far from each 
other (r⊥ → ∞), and interpreting the coefficient of the resulting decay as twice the width �u/2
that we are interested in. Our approach has the technical advantage that it could be generalized, 
graph-by-graph, to determining the complete NLO self-energy of an active neutrino beyond the 
ultrarelativistic regime, even if the practical implementation of this generalization is challenging, 
given that a full 4d computation is required.
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Appendix A. Contributions from NLO diagrams

In this appendix we record the separate contributions to the function �(kz), defined in 
eq. (2.5). For momentum dependence, specifically �′(0), it is sufficient to remain at 1-loop 
(“LO”) level (cf. sec. A.7), whereas �(0) is needed up to 2-loop level (“NLO”). For complete-
ness we list results for a general Rξ gauge. The gauge parameter appears in the masses of the 
longitudinal gauge bosons and Goldstone modes, which are denoted by

m′ 2 ≡ ξ m2 . (A.1)

In terms which are not manifestly IR finite, we denote by m
Q

a fictitious photon mass, which is 
taken to zero at the end of the computation.

A.1. Master functions

Denoting q = (q⊥, qz), d ≡ 3 − 2ε, 
∫

q ≡ ∫ ddq
(2π)d

, and 
∫

q⊥ ≡ ∫ dd−1q⊥
(2π)d−1 , the NLO result can 

be expressed in terms of the two master integrals

A(m) ≡
∫
q

1

q2 + m2 =
∫

q⊥

1

2εq

d=3= − m

4π
, (A.2)

B(m1,m2) ≡
∫
q

1

(q2 + m2
1)[(p + q)2 + m2

2]
pz=0=

∫
q⊥

1

2εq1εpq2(εq1 + εpq2)

d=3= i
ln

m1 + m2 − ip⊥ = 1
arctan

( p⊥ )
, (A.3)
8πp⊥ m1 + m2 + ip⊥ 4πp⊥ m1 + m2
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where ε2
q1 ≡ q2⊥ + m2

1 and ε2
pq2 ≡ (p⊥ + q⊥)2 + m2

2. Sometimes we need the mass derivatives of 
these functions, defined as

Ȧ(m) ≡ dA(m)

dm2 , Ḃ(m1,m2) ≡
(

∂

∂m2
1

+ ∂

∂m2
2

)
B(m1,m2) . (A.4)

In addition it is convenient to define the tensor integral

Bij ≡
∫
q

qiqj

(q2 + m2
1)[(p + q)2 + m2

2]
≡

(
δij − pipj

p2

)
B

T
+ pipj

p2 B
L

. (A.5)

In practice we need Bzz at pz = 0, which is then given by Bzz|pz=0 = BT . It is possible to express 
B

T
in terms of the integrals in eqs. (A.2) and (A.3), as

B
T
(m1,m2) = 1

4(d − 1)p2⊥

{[
p2⊥ − m2

1 + m2
2

]
A(m1) + [

p2⊥ + m2
1 − m2

2

]
A(m2)

− [
p4⊥ + 2p2⊥(m2

1 + m2
2) + (m2

1 − m2
2)

2]B(m1,m2)

}
, (A.6)

however it is more compact to display results in terms of B
T
, thereby avoiding inverse powers of 

p2⊥ and d − 1. We note that B
T

is symmetric in m1 ↔ m2.
For understanding the UV asymptotics of the result, we need an expansion of the master 

integrals in inverse powers of p2⊥. Whereas A and Ȧ are independent of p2⊥, for B and Ḃ from 
eqs. (A.3) and (A.4) these limiting behaviours read

B(m1,m2) ≈ B(0,0) + A(m1) + A(m2)

p2⊥
+O

( 1

p4⊥

)
, B(0,0)

d=3= 1

8p⊥
, (A.7)

Ḃ(m1,m2) ≈ Ȧ(m1) + Ȧ(m2)

p2⊥
+O

( 1

p4⊥

)
. (A.8)

A.2. Z0 self-energy

The Z0 self-energy diagrams can be depicted as

, (A.9)

where the self-energies are

, (A.10)

.

(A.11)
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Here a wiggly line represents a spatial gauge field, a dotted line a ghost, a dashed line a Higgs 
field, and a solid line a temporal gauge field. The result reads

�(0) ⊃ g̃4T 2

4

i

2

∫
p⊥

{
�Z

T

(p2⊥ + m2
Z)2

− cos2(θ − θ̃ )�Z̃

(p2⊥ + m2
Z̃
)2

− sin2(θ − θ̃ )�Q̃

(p2⊥ + m2
Q̃
)2

− sin[2(θ − θ̃ )]�Z̃Q̃

2(p2⊥ + m2
Z̃
)(p2⊥ + m2

Q̃
)

}
. (A.12)

The transverse spatial self-energy reads

�Z

T
= A(m

H
)

[
1

2

]

+ A(m
Z
)

[
(d − 1)m2

Z

2m2
H

]

+ A(m
W
)

[
2(2 − d) cos4(θ) − 2(p2⊥ + m2

W
) cos2(θ)

m2
Z

+ (d − 1)m2
W

m2
H

]

+ A(m′
W
)

[
2 cos2(θ)

p2⊥ + m2
Z

m2
Z

]

+ A(mW̃ )

[
−2 cos4(θ) + m2

W

m2
H

]

+ A(mZ̃)

[
m2

Z
cos2(θ − θ̃ )

2m2
H

]

+ A(mQ̃)

[
m2

Z
sin2(θ − θ̃ )

2m2
H

]

+ B(m
H
,m

Z
)
[
m2

Z

]
+ B(mW,mW)

[
2p2⊥(p2⊥ + 4m2

W
) cos2(θ)

m2
Z

]

+ B(m
W
,m′

W
)

[
−2(p2⊥ + m2

Z
)(p2⊥ + 2m2

W
− m2

Z
) cos2(θ)

m2
Z

]
+ B

T
(m

H
,m

Z
)
[
1
]

+ B
T
(m

W
,m

W
)

[
4(d − 2) cos4(θ) + (p2⊥ + 2m2

W)2

m4
Z

]

+ B
T
(m

W
,m′

W
)

[
−2(p2⊥ + m2

Z
)(p2⊥ + 2m2

W
− m2

Z
)

m4
Z

]

+ BT (m′
W,m′

W)

[
p4⊥ − m4

Z

m4
Z

]

+ B
T
(mW̃ ,mW̃ )

[
4 cos4(θ)

]
, (A.13)

whereas the temporal parts can be expressed as
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�Z̃ = A(m
H
)

[
cos2(θ − θ̃ )

2

]

+ A(m
Z
)

[
(d − 1)m2

Z
cos2(θ − θ̃ )

2m2
H

]

+ A(mW)

[
2(2 − d) cos2(θ) cos2(θ̃) − 2(p2⊥ + m2

W̃
) cos2(θ̃)

m2
Z

+ (d − 1)m2
W

cos2(θ − θ̃ )

m2
H

]

+ A(m′
W)

[
2(p2⊥ + m2

Z̃
) cos2(θ̃ )

m2
Z

]

+ A(mW̃)

[
−2 cos2(θ) cos2(θ̃) + m2

W
cos2(θ − θ̃ )

m2
H

]

+ A(mZ̃)

[
m2

Z cos4(θ − θ̃ )

2m2
H

]

+ A(mQ̃)

[
m2

Z
cos2(θ − θ̃ ) sin2(θ − θ̃ )

2m2
H

]

+ B(m
H
,m

Z̃
)
[
m2

Z
cos4(θ − θ̃ )

]
+ B(m

H
,m

Q̃
)
[
m2

Z
cos2(θ − θ̃ ) sin2(θ − θ̃ )

]

+ B(m
W̃
,m

W
)

[
2(p4⊥ + 2p2⊥(m2

W
+ m2

W̃
) + (m2

W
− m2

W̃
)2) cos2(θ̃ )

m2
Z

]

+ B(m
W̃
,m′

W
)

[
−2(p2⊥ + m2

Z̃
)(p2⊥ + 2m2

W̃
− m2

Z̃
) cos2(θ̃)

m2
Z

]
, (A.14)

�Z̃Q̃ = A(m
H
)

[
sin(2(θ − θ̃ ))

2

]

+ A(m
Z
)

[
(d − 1)m2

Z
sin(2(θ − θ̃ ))

2m2
H

]

+ A(m
W
)

[
2(d − 2) cos2(θ) sin(2θ̃ ) + 2(p2⊥ + m2

W̃
) sin(2θ̃ )

m2
Z

+ (d − 1)m2
W

sin(2(θ − θ̃ ))

m2
H

]

+ A(m′
W
)

[
− (2p2⊥ + m2

Z̃
+ m2

Q̃
) sin(2θ̃ )

m2
Z

]

+ A(mW̃)

[
2 cos2(θ) sin(2θ̃ ) + m2

W
sin(2(θ − θ̃ ))

m2
H

]

+ A(mZ̃)

[
m2

Z
cos2(θ − θ̃ ) sin(2(θ − θ̃ ))

2

]

2mH
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+ A(mQ̃)

[
m2

Z
sin2(θ − θ̃ ) sin(2(θ − θ̃ ))

2m2
H

]

+ B(m
H
,m

Z̃
)
[
m2

Z
cos2(θ − θ̃ ) sin(2(θ − θ̃ ))

]
+ B(m

H
,m

Q̃
)
[
m2

Z
sin2(θ − θ̃ ) sin(2(θ − θ̃ ))

]
+ B(m

W̃
,m

W
)

[
−2(p4⊥ + 2p2⊥(m2

W
+ m2

W̃
) + (m2

W
− m2

W̃
)2) sin(2θ̃ )

m2
Z

]

+ B(m
W̃
,m′

W
)

[2(p4⊥ + 2p2⊥m2
W̃

+ m2
W̃
(m2

Z̃
+ m2

Q̃
) − m2

Q̃
m2

Z̃
) sin(2θ̃ )

m2
Z

]
, (A.15)

�Q̃ = A(m
H
)

[
sin2(θ − θ̃ )

2

]

+ A(m
Z
)

[
(d − 1)m2

Z
sin2(θ − θ̃ )

2m2
H

]

+ A(m
W
)

[
2(2 − d) cos2(θ) sin2(θ̃) − 2(p2⊥ + m2

W̃
) sin2(θ̃)

m2
Z

+ (d − 1)m2
W

sin2(θ − θ̃ )

m2
H

]

+ A(m′
W)

[2(p2⊥ + m2
Q̃
) sin2(θ̃ )

m2
Z

]

+ A(mW̃ )

[
−2 cos2(θ) sin2(θ̃) + m2

W
sin2(θ − θ̃ )

m2
H

]

+ A(mZ̃)

[
m2

Z
cos2(θ − θ̃ ) sin2(θ − θ̃ )

2m2
H

]

+ A(mQ̃)

[
m2

Z
sin4(θ − θ̃ )

2m2
H

]

+ B(m
H
,m

Z̃
)
[
m2

Z
cos2(θ − θ̃ ) sin2(θ − θ̃ )

]
+ B(m

H
,m

Q̃
)
[
m2

Z
sin4(θ − θ̃ )

]
+ B(m

W̃
,m

W
)

[
2(p4⊥ + 2p2⊥(m2

W
+ m2

W̃
) + (m2

W
− m2

W̃
)2) sin2(θ̃ )

m2
Z

]

+ B(m
W̃
,m′

W
)

[
−2(p2⊥ + m2

Q̃
)(p2⊥ + 2m2

W̃
− m2

Q̃
) sin2(θ̃)

m2
Z

]
. (A.16)

A.3. W± self-energy

The contribution of the W± self-energy diagrams, viz.

, (A.17)
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can be written as

�(0) ⊃ g̃4T 2 cos4(θ)

2

i

2

∫
p⊥

{
�W

T

(p2⊥ + m2
W)2

− �W̃

(p2⊥ + m2
W̃
)2

}
. (A.18)

The transverse spatial self-energy reads

�W

T
= A(m

H
)

[
1

2

]

+ A(m
Z
)

[(
2 − d − p2⊥ + m2

W

m2
Z

)
cos2(θ) + (d − 1)m2

Z

2m2
H

]

+ A(m′
Z
)

[
(p2⊥ + m2

W
) cos2(θ)

m2
Z

]

+ A(m
W
)

[
2 − d − p2⊥ + m2

W

m2
W

+ (d − 1)m2
W

m2
H

]

+ A(m′
W
)

[
p2⊥ + m2

W

m2
W

]

+ A(mW̃ )

[
−1 + m2

W

m2
H

]

+ A(mZ̃)

[
− cos2(θ̃ ) + m2

Z
cos2(θ − θ̃ )

2m2
H

]

+ A(mQ̃)

[
− sin2(θ̃) + m2

Z
sin2(θ − θ̃ )

2m2
H

]

+ B(m
H
,m

W
)
[
m2

W

]
+ B(m

Z
,m

W
)

[
(m2

W
+ m2

Z
)
p4⊥ + 2p2⊥(m2

W
+ m2

Z
) + (m2

W
− m2

Z
)2

m4
Z

]

+ B(m
Z
,m′

W
)

[
− (p2⊥ + m2

W
)(p2⊥ + 2m2

Z
− m2

W
)

m2
Z

]

+ B(m′
Z
,m

W
)

[
− (p2⊥ + m2

W)2 cos2(θ)

m2
Z

]

+ B(0,m
W
)

[
(p4⊥ + 4p2⊥m2

W
− m4

W
) sin2(θ)

m2
W

]

+ B(0,m′
W)

[
(m4

W
− p4⊥) sin2(θ)

m2
W

]

+
[
B(m

W
,m

Q
) − B(m

W
,m′

Q
)

m2
Q

+ A(m′
Q
) − A(m

Q
)

m2
Q(p2⊥ + m2

W)

][
(p2⊥ + m2

W)2 sin2(θ)
]

+ BT (mH,mW)
[
1
]

+ B
T
(m

Z
,m

W
)

[
4(d − 2) cos2(θ) + p4⊥ + 2p2⊥(m2

W
+ m2

Z
) + (m2

W
+ m2

Z
)2

4

]

mZ
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+ B
T
(m

Z
,m′

W
)

[
− (p2⊥ + m2

W
)(p2⊥ + 2m2

Z
− m2

W
)

m4
Z

]

+ B
T
(m′

Z
,m

W
)

[
− (p2⊥ + m2

W
)2

m4
Z

]

+ B
T
(m′

W
,m′

Z
)

[
p4⊥ − m4

W

m4
Z

]

+ B
T
(0,m

W
)

[
4(d − 2) sin2(θ) + 2(p2⊥ + m2

W) sin2(θ)

m2
W

]

+ B
T
(0,m′

W
)

[
−2(p2⊥ + m2

W
) sin2(θ)

m2
W

]

+ B
T
(mZ̃,mW̃ )

[
4 cos2(θ̃)

]
+ B

T
(mQ̃,mW̃ )

[
4 sin2(θ̃)

]
+ B

T
(m′

W
,m

Q
) − B

T
(m′

W
,m′

Q
)

m2
Q

[
(m4

W
− p4⊥) sin2(θ)

m2
W

]

+ B
T
(m

W
,m

Q
) − B

T
(m

W
,m′

Q
)

m2
Q

[
(p2⊥ + m2

W
)2 sin2(θ)

m2
W

]
, (A.19)

whereas the temporal part can be expressed as

�W̃ = A(m
H
)

[
1

2

]

+ A(m
Z
)

[(
2 − d − p2⊥ + m2

W̃

m2
Z

)
cos2(θ) + (d − 1)m2

Z

2m2
H

]

+ A(m′
Z
)

[
(p2⊥ + m2

W̃
) cos2(θ)

m2
Z

]

+ A(mW)

[
2 − d − (p2⊥ + m2

Z̃
) cos2(θ̃ )

m2
W

− (p2⊥ + m2
Q̃
) sin2(θ̃)

m2
W

+ (d − 1)m2
W

m2
H

]

+ A(m′
W
)

[
p2⊥ + m2

W̃

m2
W

]

+ A(mW̃ )

[
−1 + m2

W

m2
H

]

+ A(mZ̃)

[
− cos2(θ̃) + m2

Z
cos2(θ − θ̃ )

2m2
H

]

+ A(mQ̃)

[
− sin2(θ̃) + m2

Z
sin2(θ − θ̃ )

2m2
H

]

+ B(mH,m
W̃
)
[
m2

W

]
+ B(m

Z
,m

W̃
)

[
(p4⊥ + 2p2⊥(m2

W̃
+ m2

Z) + (m2
W̃

− m2
Z)2) cos2(θ)

2

]

mZ
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+ B(m′
Z
,m

W̃
)

[
− (p2⊥ + m2

W̃
)2 cos2(θ)

m2
Z

]

+ B(m
Z̃
,m

W
)

[
(p4⊥ + 2p2⊥(m2

W
+ m2

Z̃
) + (m2

W
− m2

Z̃
)2) cos2(θ̃)

m2
W

]

+ B(m
Q̃
,m

W
)

[
(p4⊥ + 2p2⊥(m2

W
+ m2

Q̃
) + (m2

W
− m2

Q̃
)2) sin2(θ̃ )

m2
W

]

+ B(m
Z̃
,m′

W
)

[
− (p2⊥ + m2

W̃
)(p2⊥ + 2m2

Z̃
− m2

W̃
) cos2(θ̃)

m2
W

]

+ B(m
Q̃
,m′

W
)

[
− (p2⊥ + m2

W̃
)(p2⊥ + 2m2

Q̃
− m2

W̃
) sin2(θ̃)

m2
W

]

+
[
B(m

W̃
,m

Q
) − B(m

W̃
,m′

Q
)

m2
Q

+ A(m′
Q
) − A(m

Q
)

m2
Q(p2⊥ + m2

W̃
)

][
(p2⊥ + m2

W̃
)2 sin2(θ)

]
+ B(0,m

W̃
)
[
2(p2⊥ − m2

W̃
) sin2(θ)

]
. (A.20)

A.4. Triple gauge vertex

The contribution of triple gauge vertex diagrams, viz.

, (A.21)

can be written as

�(0) ⊃ g̃4T 2 cos3(θ)

2

i

2

∫
p⊥

{
ϒZ

p2⊥ + m2
Z

+ ϒW

p2⊥ + m2
W

− ϒZ̃

p2⊥ + m2
Z̃

− ϒQ̃

p2⊥ + m2
Q̃

− ϒW̃

p2⊥ + m2
W̃

}
, (A.22)

where

ϒZ = cos(θ)
[
θzz(mW

,m
W
) + 2B(m

W̃
,m

W̃
)
]

, (A.23)

ϒW = 2 cos(θ)
[
cos2(θ)θzz(mZ

,m
W
) + 2 cos2(θ̃)B(m

Z̃
,m

W̃
)
]

+ 2 cos(θ)
[
sin2(θ)θzz(mQ

,m
W
) + 2 sin2(θ̃)B(m

Q̃
,m

W̃
)
]

, (A.24)

ϒZ̃ = 2 cos(θ̃ ) cos(θ − θ̃ ) θz0(mW
,m

W̃
) , (A.25)

ϒQ̃ = −2 sin(θ̃ ) sin(θ − θ̃ ) θz0(mW
,m

W̃
) , (A.26)

ϒW̃ = 2 cos(θ)
[
cos2(θ)θz0(mZ

,m
W̃
) + cos2(θ̃)θz0(mW

,m
Z̃
)
]

+ 2 cos(θ)
[
sin2(θ)θz0(mQ

,m
W̃
) + sin2(θ̃)θz0(mW

,m
Q̃
)
]

. (A.27)
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Here we have denoted

θzz(m1,m2) ≡
∫
q

P

{
γ3ij (p, q)

qz

�3i (q,m1)�3j (p + q,m2)

}
pz=0

(A.28)

= A(m1) − A(m′
1)

m2
1

+ A(m2) − A(m′
2)

m2
2

+ p2⊥[B
T
(m1,m2) − B

T
(m′

1,m
′
2)]

m2
1m

2
2

+ p2⊥ + m2
1

m2
2

[
B(m1,m

′
2) − B(m1,m2) + B

T
(m1,m

′
2) − B

T
(m1,m2)

m2
1

]

+ p2⊥ + m2
2

m2
1

[
B(m′

1,m2) − B(m1,m2) + BT (m′
1,m2) − BT (m1,m2)

m2
2

]
,

(A.29)

θz0(m1,m2) ≡
∫
q

P

{
γ̃3ij (p, q)

qz

�ij (q,m1)�00(p + q,m2)

}
pz=0

(A.30)

= B(m1,m2) + A(m1) − A(m′
1)

m2
1

+ p2⊥ + m2
2

m2
1

[
B(m′

1,m2) − B(m1,m2)

]
, (A.31)

where

γ3ij (p, q) ≡ δ3i (qj − pj ) + δ3j (qi + 2pi) − δij (2qz + pz) , (A.32)

γ̃3ij (p, q) ≡ δ3j (qi + 2pi) , (A.33)

�00(p,m) ≡ 1

p2 + m2 , (A.34)

�ij (p,m) ≡ δij

p2 + m2 + pipj

m2

(
1

p2 + m2 − 1

p2 + m′ 2

)
. (A.35)

We note that θzz is symmetric in m1 ↔ m2.

A.5. Crossed fermion self-energy

For the “crossed” NLO self-energy diagrams, viz.

(A.36)

the result can be written as

�(0) ⊃ g̃4T 2

16

{
φzz(mZ

,m
Z
)

−2 cos2(θ − θ̃ )φ (m˜,mZ
) − 2 sin2(θ − θ̃ )φ (m˜,mZ

)
0z Z 0z Q
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+ cos4(θ − θ̃ )φ00(mZ̃
,m

Z̃
) + sin4(θ − θ̃ )φ00(mQ̃

,m
Q̃
)

+2 cos2(θ − θ̃ ) sin2(θ − θ̃ )φ00(mZ̃
,m

Q̃
)

+ 4 cos2(θ)
[
cos(2θ)

(
φz0(mZ

,m
W̃
) − φzz(mZ

,m
W
)
)

+ cos(θ − θ̃ ) cos(θ + θ̃ )
(
φ0z(mZ̃

,mW) − φ00(mZ̃
,m

W̃
)
)

+ sin(θ − θ̃ ) sin(θ + θ̃ )
(
φ00(mQ̃

,m
W̃
) − φ0z(mQ̃

,m
W
)
)]}

, (A.37)

where

φij (m1,m2) ≡
∫

p,q

�ii(p,m1)�jj (q,m2)

(pz − i0+)(pz + qz − i0+)(qz − i0+)
, (A.38)

and the propagators are from eqs. (A.34) and (A.35). The integrals over pz, qz can be carried 
out by contour integration, most simply by closing in the lower half-plane so that the denomi-
nators in eq. (A.38) have no pole, or alternatively by inserting eq. (3.2). For the part ∝ p2

z from 
eq. (A.35), this yields contributions which are directly identified with the master functions A, B
from sec. A.1. The other parts require some more work, either by writing 1/p2

z = ∂pz
(−1/pz)

and carrying out a partial integration, or by resorting to contour integration. In this way we obtain 

(εpi ≡
√

p2⊥ + m2
i )

φ00(m1,m2) = − i

4

∫
p⊥,q⊥

1

ε2
p1ε

2
q2(εp1 + εq2)

= i

∫
p⊥

{
Ȧ(m2)

p2⊥ + m2
1

+ Ȧ(m1)

p2⊥ + m2
2

− Ḃ(m1,m2)

}
, (A.39)

where in the last step we substituted integration variables and re-expressed the result in terms of 
the master integrals from sec. A.1, evaluated with pz = 0. The other integrals read

φ0z(m1,m2) = φz0(m2,m1)

= φ00(m1,m2)

+ i

2

∫
p⊥

{
1

m2
2

[
A(m2) − A(m′

2)

p2⊥ + m2
1

+ B(m1,m
′
2) − B(m1,m2)

] }
, (A.40)

φzz(m1,m2) = φ0z(m1,m2)

+ i

2

∫
p⊥

{
1

m2
1

[
A(m1) − A(m′

1)

p2⊥ + m2
2

+ B(m′
1,m2) − B(m1,m2)

]

− B
T
(m1,m2) − B

T
(m′

1,m2) − B
T
(m1,m

′
2) + B

T
(m′

1,m
′
2)

m2
1m

2
2

}
. (A.41)
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A.6. Uncrossed fermion self-energy

The result for the “uncrossed” NLO self-energy diagrams, viz.

can be written as

�(0) ⊃ g̃4T 2

16

{
χzz(mZ

,m
Z
) − cos2(θ − θ̃ )χ0z(mZ̃

,m
Z
) − sin2(θ − θ̃ )χ0z(mQ̃

,m
Z
)

− cos2(θ − θ̃ )χz0(mZ
,m

Z̃
) − sin2(θ − θ̃ )χz0(mZ

,m
Q̃
)

+ cos4(θ − θ̃ )χ00(mZ̃
,m

Z̃
) + sin4(θ − θ̃ )χ00(mQ̃

,m
Q̃
)

+ cos2(θ − θ̃ ) sin2(θ − θ̃ )
[
χ00(mZ̃

,m
Q̃
) + χ00(mQ̃

,m
Z̃
)
]

+ 2 cos2(θ)
[
χzz(mZ

,m
W
) − cos2(θ − θ̃ )χ0z(mZ̃

,m
W
) − sin2(θ − θ̃ )χ0z(mQ̃

,m
W
)

−χz0(mZ,m
W̃
) + cos2(θ − θ̃ )χ00(mZ̃

,m
W̃
) + sin2(θ − θ̃ )χ00(mQ̃

,m
W̃
)
]

+ 4 cos4(θ)
[
χzz(mW,mW) − χ0z(mW̃

,mW) − χz0(mW,m
W̃
) + χ00(mW̃

,m
W̃
)
]

+ 2 cos2(θ)
[
cos2(2θ)χzz(mW

,m
Z
) − cos2(2θ)χ0z(mW̃

,m
Z
)

− cos2(θ + θ̃ )χz0(mW
,m

Z̃
) + cos2(θ + θ̃ )χ00(mW̃

,m
Z̃
)
]

+ 2 cos2(θ)
[
sin2(2θ)χzz(mW

,m
Q
) − sin2(2θ)χ0z(mW̃

,m
Q
)

− sin2(θ + θ̃ )χz0(mW
,m

Q̃
) + sin2(θ + θ̃ )χ00(mW̃

,m
Q̃
)
]}

, (A.42)

where, making use of �ij defined according to eqs. (A.34) and (A.35),

χij (m1,m2) ≡
∫

p,q

�ii(p,m1)�jj (q,m2)

(pz − i0+)2(pz + qz − i0+)
. (A.43)

For dealing with the double pole in eq. (A.43), it is convenient to write

1

(pz − i0+)2(pz + qz − i0+)
= − 1

(pz − i0+)(pz + qz − i0+)(qz − i0+)

+ 1

(pz − i0+)(pz + qz − i0+)

(
1

pz − i0+ + 1

qz − i0+

)
︸ ︷︷ ︸

pz+qz−i0+
(pz−i0+)(qz−i0+)

. (A.44)

Therefore

χ (m ,m ) = −φ (m ,m ) + δχ (m ,m ) , (A.45)
ij 1 2 ij 1 2 ij 1 2
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where φij is from eqs. (A.39)–(A.41) and

δχij (m1,m2) =
∫
p

�ii(p,m1)

(pz − i0+)2

∫
q

�jj (q,m2)

qz − i0+ . (A.46)

These integrals can be carried out by contour integration, or by making use of eq. (3.2), noting 
that �(q, m2) is odd in qz so that only the imaginary part contributes, and removing 1/p2

z from 
the other term through partial integration, like around eq. (A.39). This yields

δχ00(m1,m2) = δχ0z(m1,m2) = i

2

∫
p⊥

1

p2⊥ + m2
2

[
2 Ȧ(m1)

]
, (A.47)

δχz0(m1,m2) = δχzz(m1,m2)

= δχ00(m1,m2) + i

2

∫
p⊥

1

p2⊥ + m2
2

[
A(m1) − A(m′

1)

m2
1

]
. (A.48)

The contributions from δχ are closely related to those in sec. A.7.

A.7. Wave function normalization

The final contribution originates from the second term in eq. (3.3), with the various channels 
of Fig. 1 contributing with coefficients like in eq. (3.4). The tree-level part of the self-energy, kz, 
gets corrected by this term (cf. eq. (2.5)), and the correction needs to be factored out, in order to 
determine the location of the pole of the corresponding propagator. In other words, we write the 
combination appearing in eq. (2.5) as

kz + �(kz) = kz

[
1 + �′(0)

]+ �(0) +O(k2
z )

= [
1 + �′(0)

][
kz + �(0)

1 + �′(0)

]
+O(k2

z ) . (A.49)

This implies that, up to NNLO corrections, the physical width is

�u

2
≈ Im

[
�(0)

1 + �′(0)

]
= Im�LO(0) + {

Im�NLO(0) − �′
LO(0) Im�LO(0)

} +O
(

g̃6T 3

m2
i

)
.

(A.50)

The last term shown reads

−i �′
LO(0) Im�LO(0) = − g̃4T 2

16

i

2

∫
p⊥

{
1

p2⊥ + m2
Z

− cos2(θ − θ̃ )

p2⊥ + m2
Z̃

− sin2(θ − θ̃ )

p2⊥ + m2
Q̃

+2 cos2(θ)

[
1

p2⊥ + m2
W

− 1

p2⊥ + m2
W̃

]}

×
{

A(m
Z
) − A(m′

Z
)

m2
Z

+ 2 cos2(θ)
A(m

W
) − A(m′

W
)

m2
W

+2
[
Ȧ(m

Z
) − cos2(θ − θ̃ )Ȧ(m

Z̃
) − sin2(θ − θ̃ )Ȧ(m

Q̃
)
]

+4 cos2(θ)
[
Ȧ(m

W
) − Ȧ(m

W̃
)
]}

. (A.51)
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