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Abstract: It was recently observed that boundary correlators of the elementary scalar

field of the Liouville theory on AdS2 background are the same (up to a non-trivial pro-

portionality coefficient) as the correlators of the chiral stress tensor of the Liouville CFT

on the complex plane restricted to the real line. The same relation generalizes to the con-

formal abelian Toda theory: boundary correlators of Toda scalars on AdS2 are directly

related to the correlation functions of the chiral W-symmetry generators in the Toda CFT

and thus are essentially controlled by the underlying infinite-dimensional symmetry. These

may be viewed as examples of AdS2/CFT1 duality where the CFT1 is the chiral half of a

2d CFT; we shall refer to this as AdS2/CFT
1/2
2 . In this paper we demonstrate that this

duality applies also to the non-abelian Toda theory containing a Liouville scalar coupled to

a 2d σ-model originating from the SL(2,R)/U(1) gauged WZW model. Here the Liouville

scalar is again dual to the chiral stress tensor T while the other two scalars are dual to

the parafermionic operators V ± of the non-abelian Toda CFT. We explicitly check the

duality at the next-to-leading order in the large central charge expansion by matching the

chiral CFT correlators of (T, V +, V −) (computed using a free field representation) with the

boundary correlators of the three Toda scalars given by the tree-level and one-loop Witten

diagrams in AdS2.
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1 Introduction and summary

Quantum field theories in rigid AdS2 background (studied from different perspectives, e.g.,

in [1–6]) were recently discussed in the context of AdS5/CFT4: a conformal “defect” model

describing correlators of operators inserted on a straight or circular Wilson line [7–10] is

represented at strong coupling by an effective 2d σ-model in AdS2 background that follows

from the AdS5 × S5 superstring action expanded near the corresponding minimal surface.

To find strong coupling corrections to Wilson line correlators requires computing loop

corrections in AdS2 [8, 10]; this is, in general, a challenging problem (cf. e.g. [11–14] and

refs. there).

As the theory in AdS2 originating [8] from the AdS5 × S5 superstring action should

be quantum scale-invariant (having no 2d UV divergences), one may hope to learn some

important lessons by first investigating simpler examples of Lagrangian conformal 2d field

theories (like Liouville or Toda) defined on rigid AdS2 background. Having conformal

(Weyl) invariance, one may expect the bulk correlators in curved conformally flat space

– 1 –
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like AdS2 to be directly related to the correlators in flat space. A novel feature in non-

compact AdS space is that while the elementary fields (like scalars of Toda theory) are

not good conformal fields in flat space, their boundary correlators in AdS2 (which are the

observables in AdS) are well defined and thus are of interest.

Somewhat surprisingly, they happen to be directly related [15–17] to the correlators of

chiral (holomorphic) primary operators in the 2d CFT defined by the same action in flat

space. For example, the boundary correlators of the Liouville scalar in AdS2 have the same

form as the correlators of the holomorphic stress tensor on a plane and thus are essentially

controlled by the underlying Virasoro symmetry. Thus here the chiral half of 2d CFT may

be identified with the effective 1d CFT dual to the conformal field theory in AdS2. We

shall refer to this relation as the AdS2/CFT
1/2
2 duality.1

Examples of models exhibiting AdS2/CFT
1/2
2 duality are conformal abelian Toda field

theories with exponential potentials associated with a finite Lie algebra g. This correspon-

dence was first noticed at the level of the classical AdS2 theory (or large c CFT) in [15]

for the g = A1 Liouville theory and also in the particular rank-2 examples of g = A2 and

B2. The case of g = An was discussed in [17]. The generalization to AdS2 loop level (or

subleading 1/c corrections) was presented for the Liouville theory in [16] where also the

exact expression for the map between the AdS2 scalar and CFT stress tensor correlators

was found. Below we shall extend the Liouville theory loop-level results of [16] to the case

of the A2 Toda theory.

One reason why the duality between the elementary scalars in AdS2 (ds2 = dz2+dt2

z2 )

and chiral CFT operators on the plane is possible is that expanded near the minimum of its

potential the AdS2 action describes massive (m2 = ∆(∆− 1)) scalar fields ϕ∆ that should

correspond to the dimension ∆ = 2, 3, . . . operators V∆ at the boundary (with V2 ≡ T ).

Another is that the Weyl symmetry of the AdS2 theory suggests enhancement of the global

1d conformal SL(2,R) symmetry to the Virasoro symmetry. Then the boundary correlators

of ϕ∆ (with z→ 0 asymptotics z∆Φ∆) that we shall denote as ⟪Φ∆1(t1) . . .Φ∆k
(tk)⟫ may

be related (on symmetry grounds) to the chiral CFT correlators ⟪V∆1(z1) . . . V∆k
(zk)⟫

restricted to the boundary of half-plane (z = t + iy → t). A non-trivial question is a

mechanism that determines the proportionality coefficients in this duality relation (i.e.,

symbolically, κ∆ in Φ∆ → κ∆V∆). Using the Weyl invariance of the AdS2 theory one

may map it to the flat-space theory on the upper half-plane and then try to relate the

half-plane boundary asymptotics of the scalar fields to the CFT operators using their

free-field (quantum Miura) representation. The free fields are, in general, related to the

elementary bulk scalars by a non-linear differential (quantum) Bäcklund transformation,

but this relation should effectively simplify in the boundary limit. Details of this remain

to be understood.

1This is thus an example of AdS2/CFT1 where the boundary 1d conformal symmetry is enhanced from

SL(2,R) to the chiral half of the 2d Virasoro symmetry. This happens when a Weyl-covariant theory is

put on a rigid AdS2 background. While superficially similar, this is to be distinguished from what happens

when one considers quantum gravity in AdS2 [18] where the bulk diffeomorphism symmetry implies an

enlarged asymptotic global symmetry corresponding to 1d reparametrizations or Virasoro symmetry in the

boundary theory [19, 20] (which may be spontaneously broken [21–24]).

– 2 –
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The main focus of the present paper will be on the demonstration of the AdS2/CFT
1/2
2

duality in the case of the non-abelian conformal Toda theory of [25]. Here the derivative

part of the Lagrangian is no longer free but is described by an effective σ-model originating

from the SL(2,R)/U(1) gauged WZW model [26, 27]. This theory comes closer to the

string-theory related AdS2 model in [8] (containing derivative interactions) and turns out

to be much more non-trivial than the abelian Toda one.

Below we shall first review (in section 1.1) the AdS2/CFT
1/2
2 duality in the case of the

Liouville theory and then summarize the analogous statements for the abelian Toda theory

in section 1.2. A summary of our results for the non-abelian Toda theory will be given

in section 1.3.

Section 2 will contain details of new one-loop AdS2 boundary correlator computations

in the A2 abelian Toda model providing solid check of the AdS2/CFT
1/2
2 duality in this

case. Section 3 will be devoted to a systematic discussion of the duality in the non-

abelian Toda theory. In appendix A we will present a heuristic proposal for the all-order

proportionality coefficient between the boundary correlators of the second scalar of the

A2 abelian Toda theory in AdS2 and correlators of the dual spin 3 chiral generator in

the CFT. In appendix B we will collect useful relations that are used to compute some

AdS2 integrals. Appendices C and D will contain details of the one-loop AdS2 calculations

of the coefficients in the three-point boundary correlators that are required to check the

AdS2/CFT
1/2
2 duality in the A2 abelian and non-abelian Toda theories.

1.1 Liouville theory

The action of the Liouville theory defined on a 2d space with curvature R is [28, 29]

S =
1

4π

∫
d2x
√
g
[
(∂ϕ)2 + µ2 e2 b ϕ +QRϕ

]
, Q = b−1 + b . (1.1)

For the above value of Q this model is Weyl-covariant with central charge

c = 1 + 6Q2 = b−2 + 13 + b2 . (1.2)

Considering the unit-radius Euclidean AdS2 background with x = (t, z) and the Poincaré

plane metric

ds2 =
1

z2
(dt2 + dz2) , R = −2 , (1.3)

the Liouville field ϕ can be expanded near its constant vacuum expectation value,

ϕ = ϕ0 + ζ , ϕ0 =
1

2b
log

Q

bµ2
, (1.4)

and then the fluctuation ζ has classical mass m2 = 2. Perturbation theory in the AdS2 bulk

was studied previously in [2, 5, 30]. One may also compute [16] the boundary correlators

of ζ (relevant from the usual AdS/CFT point of view) by assuming the Dirichlet boundary

conditions for ζ at the boundary line z = 0, i.e.

ζ(t, z)
∣∣
z→0

= z2Φ(t) + . . . . (1.5)

– 3 –
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The 1d field Φ(t) is associated to a boundary conformal operator with the scaling dimension

∆ = 2 (here m2 = ∆(∆− 1) = 2). Then the boundary correlators are defined as

⟪
N∏
i=1

Φ(ti)⟫ def
= lim

zi→0
〈
N∏
i=1

z−2
i ζ(ti, zi)〉. (1.6)

As was noticed in [15], the tree level (b→ 0) Witten diagrams computing (1.6) in pertur-

bation theory match the leading large c limit of the correlators of the chiral part of stress

tensor T (z) of the flat-space CFT (the generator of the Virasoro algebra with the central

charge c given by (1.2))

⟪
N∏
i=1

Φ(ti)⟫ = κN 〈
N∏
i=1

T (zi)〉
∣∣∣
zi→ti

, (1.7)

where κ = κ(b) is the constant in the identification Φ(t) → κT (t). Here the r.h.s. may

be viewed as a chiral stress tensor correlator restricted to the real-line boundary of the

half-plane zi = ti + iyi → ti. The relation (1.7) was demonstrated also to hold [16] at the

one-loop in AdS2 (i.e. subleading order in large c expansion). Furthermore, it was argued

in [16] using boundary CFT considerations that the all-order expression for κ(b) is given by

κ = −4Q

c
= − 4 b(1 + b2)

(3 + 2 b2)(2 + 3 b2)
= −2

3
b+

7

9
b3 + · · · . (1.8)

Using that

〈T (z1)T (z2)〉 =
c

2z4
12

, 〈T (z1)T (z2)T (z3)〉 =
c

z2
12z

2
23z

2
31

, (1.9)

the duality relation (1.7) means that the coefficients in the perturbative expansion of the

two-point and three-point boundary correlators (with the structure controlled by the con-

formal symmetry)2

⟪Φ(t1) Φ(t2) ⟫ =
C22

t412

, ⟪Φ(t1) Φ(t2) Φ(t3) ⟫ =
C222

t212 t
2
13 t

2
23

, (1.10)

should be given by

C22 = κ2 c

2
=

8 (1 + b2)2

(3 + 2b2)(2 + 4b2)
=

4

3
− 2

9
b2 +

13

27
b4 + · · · ,

C222 = κ3 c = − 64 b (1 + b2)3

(3 + 2b2)2(2 + 3b2)2
= −16

9
b+

64

27
b3 − 100

27
b5 + · · · . (1.11)

These expansions were checked directly (for the leading tree and one-loop terms) in [16].

The four-point boundary correlators may be decomposed into the disconnected and con-

nected parts

⟪Φ(t1) · · · Φ(t4)⟫ = ⟪Φ(t1) · · · Φ(t4)⟫disc + ⟪Φ(t1) · · · Φ(t4)⟫conn . (1.12)

2Indices of coefficients indicate dimensions of operators involved.
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Since the four-point function for the chiral part of the stress tensor T is controlled by the

Virasoro symmetry

〈T (z1) · · ·T (z4)〉 =
c2

4

(
1

z4
12 z

4
34

+
1

z4
13 z

4
24

+
1

z4
14 z

4
23

)
+ c

(
1

z2
12 z

2
23 z

2
34 z

2
14

+
1

z2
13 z

2
24 z

2
14 z

2
23

+
1

z2
12 z

2
24 z

2
34 z

2
13

)
(1.13)

the relation (1.7) implies that

⟪Φ(t1) · · ·Φ(t4)⟫disc = (C22)2

(
1

t212 t
2
34

+
1

t213 t
2
24

+
1

t214 t
2
23

)
,

⟪Φ(t1) · · ·Φ(t4)⟫conn = C2222

(
1

t212 t
2
23 t

2
34 t

2
14

+
1

t213 t
2
24 t

2
14 t

2
23

+
1

t212 t
2
24 t

2
34 t

2
13

)
, (1.14)

where according to (1.8)

C2222 = κ4 c =
256 b2 (1 + b2)4

(3 + 2b2)3(2 + 3b2)3
=

32

27
b2 − 80

27
b4 + · · · . (1.15)

This was also verified in [16] (using numerical computation for one-loop integrals appearing

in the computation of the four-point boundary correlator (1.14)).

To conclude, the relation (1.7) found in the Liouville model in AdS2 provides the

simplest example of the AdS2/CFT
1/2
2 duality. The fact that the bulk theory is conformal

implies that the structure of the boundary correlators is essentially fixed by the Virasoro

symmetry.3 While this duality may be viewed as being essentially kinematical, the non-

trivial expression for κ in (1.8) receiving corrections from all orders in the small b expansion

provides an important constraint on how the higher-loop Witten AdS2 diagrams are to be

evaluated in order to maintain the underlying infinite-dimensional Virasoro symmetry.

1.2 Abelian Toda theory

The generalization to abelian Toda theory for A2 and B2 algebras was discussed in [15]

and for An algebras in [17]. A novel feature is that in addition to the Liouville field here

the Lagrangian contains other scalar fields that are massive in AdS2 and are dual to the

chiral generators of the Wn symmetry of the Toda theory.4

In section 2 of this paper we will extend the discussion of the corresponding

AdS2/CFT
1/2
2 duality to the one-loop level on the example of the A2 theory with main

results summarized below.

The action of the A2 abelian Toda theory in curved 2d background contains in addition

to the Liouville field ϕ another scalar ψ, i.e. is given by the following generalization of (1.1)

S =
1

4π

∫
d2x
√
g
[
(∂ϕ)2 + (∂ψ)2 + µ e2bϕ cosh(2

√
3 b ψ) +QRϕ

]
, (1.16)

Q = b−1 + 4 b , c = 2 + 6Q2 . (1.17)

3In particular, the four-point boundary correlators of operators that have protected dimension here do

not contain logarithms of 1d cross ratio, etc.
4Toda field theories associated with a finite (non-affine) Lie algebra g of rank n (see, e.g., [31–33]) may

be formulated in curved space, see, for instance, [34].

– 5 –
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This theory is Weyl-covariant at the quantum level: the required value of Q in (1.17) can

be determined, e.g., by viewing (1.16) as a string model in a linear dilaton and tachyon

backgrounds and solving the corresponding tachyon β-function equation [35, 36].

Considering the AdS2 background (1.3) and expanding near the constant vacuum value

for ϕ as in the Liouville theory (with ϕ0 given again by (1.4)) one can develop the pertur-

bation theory in small b, i.e. in powers of the fluctuation fields ζ ≡ ϕ − ϕ0 and ψ. These

happen to have masses m2
ζ = 2 and m2

ψ = 6 corresponding (according to m2 = ∆(∆− 1))

to the dual operator dimensions ∆ζ = 2 and ∆ψ = 3. Let us label the boundary fields as

Φ and Φ3 (cf. (1.5))5

ζ(t, z)
∣∣
z→0

= z2Φ(t) + . . . , ψ(t, z)
∣∣
z→0

= z3Φ3(t) + . . . . (1.18)

In this case the dual CFT is isomorphic to the chiral sector of the W3 extension of the

Virasoro algebra [37, 38], with Φ dual to the dimension 2 stress tensor T and Φ3 to the

dimension (or spin) 3 generator V3 of the W3 symmetry algebra. Defining the boundary

correlators as in (1.6)

⟪
N∏
i=1

Φ(ti)
M∏
j=1

Φ3(t′j)⟫ ≡ lim
zi,z′j→0

〈
N∏
i=1

z−2
i ζ(ti, zi)

M∏
j=1

z′−3
j ψ(t′j , z

′
j) 〉, (1.19)

the expected correspondence is expressed by a generalization of (1.7), i.e.

⟪
N∏
i=1

Φ(ti)
M∏
j=1

Φ3(t′j)⟫ = κN κM3 〈
N∏
i=1

T (zi)
M∏
j=1

V3(z′j)〉
∣∣∣
zi,z′j→ti,t′j

. (1.20)

Here κ has the same form as in the Liouville theory (cf. (1.8)) and the coefficient κ3 in the

duality between Φ3 and V3 turns out to be a non-trivial function of b

κ = −4Q

c
= −2

3
b+

26

9
b3 + · · · , κ3 =

24Q2

c
√

5c+ 22
=

2
√

2√
15

(
b− 73

15
b3 + · · ·

)
. (1.21)

We shall verify (1.20) and (1.21) by the one-loop AdS2 computations in section 2 and

present an argument for the above expression for κ3 in appendix A.

The CFT 2- and 3-point functions are constrained by the conformal invariance to have

the form (we adopt the standard normalization for the spin 3 generator V3)6

〈T (z1)T (z2)〉 =
c

2 z4
12

, 〈T (z1)T (z2)T (z3)〉 =
c

z2
12z

2
13z

2
23

,

〈V3(z1)V3(z2)〉 =
c

3 z6
12

, 〈T (z1)V3(z2)V3(z3)〉 =
c

z2
12z

2
13z

4
23

. (1.22)

5The index of Φ3 indicates the dimension of the associated operator (we omit index 2 on the Liou-

ville field Φ).
6In general, given a primary field V∆ with the dimension ∆ and the two-point function 〈V∆(z1)V∆(z2)〉 =

C
z2∆
12

the conformal symmetry Ward identity implies that 〈T (z1)V∆(z2)V∆(z3)〉 = C∆

z2
12 z

2
13 z

2∆−2
23

. This is

consistent with the values of the coefficients in (1.22) (note that in the 〈TTT 〉 case the central term in the

OPE of T (z)T (0) does not contribute to the three-point function as 〈T 〉 = 0).

– 6 –
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The corresponding boundary correlators can be parametrized as in (1.10)

⟪Φ(t1)Φ(t2)⟫ =
C22

t412

, ⟪Φ(t1)Φ(t2)Φ(t3)⟫ =
C222

t212t
2
13t

2
23

,

⟪Φ3(t1)Φ3(t2)⟫ =
C33

t612

, ⟪Φ(t1)Φ3(t2)Φ3(t3)⟫ =
C233

t212t
2
13t

4
23

. (1.23)

We shall explicitly check the relations implied by (1.20), (1.21)

C22 =
c

2
κ2 =

4

3
− 4

9
b2 + · · · , C33 =

c

3
κ2

3 =
16

15
− 112

75
b2 + · · · ,

C233 = c κ κ2
3 = −32

15
b+

2752

225
b3 + · · · , C222 = c κ3 = −16

9
b+

224

27
b3 + · · · , (1.24)

by the one-loop computations in AdS2 in section 2.

The non-vanishing four-point correlators ⟪ΦΦΦΦ⟫, ⟪ΦΦΦ3Φ3⟫, and ⟪Φ3Φ3Φ3Φ3⟫ were

considered at the tree level in [15] confirming the expected AdS2/CFT
1/2
2 relations. While

no conceptual difficulties are expected at the one-loop level where the computation is similar

to the one in the Liouville theory in [16] here will not discuss it because of technical limi-

tations.7

Similar results should hold also for higher rank abelian Toda models where there are

more scalar fields with different masses corresponding to the higher-spin generators of the

underlying W-algebra symmetry. One implication of the AdS2/CFT
1/2
2 duality (1.20) is

that it can then be used to compute the higher-loop AdS2 boundary correlators for the

Toda theory using purely W-algebraic methods.

1.3 Non-abelian Toda theory

In the abelian Toda theory the chiral CFT operators (conserved currents) have protected

dimensions so their correlators are constrained by W symmetry modulo overall normal-

izations and thus the corresponding AdS2/CFT
1/2
2 duality is a direct generalization of the

Liouville theory case. The story becomes more intricate in the case of the conformal non-

abelian Toda (NAT) theory [25] (see also [39, 40]) that we shall discuss in detail in section 3

below. Here we will summarize the main results.

Keeping only the leading order (one-loop) terms in the corresponding Weyl-invariant

target space metric and dilaton (cf. (3.8)) the NAT action is the following generalization

of the Liouville (1.1) or abelian Toda (1.16) actions

S =
1

4π

∫
d2x
√
g
[
(∂ϕ)2 + (∂r)2 + tanh2(br) (∂y)2 (1.25)

+ µ2 e2bϕ cosh(2br) +R
(
Qϕ− log cosh(br)

)]
, Q = b−1 + 3b.

7The coefficients C233 and C222 in the three-point functions in (1.23) are expressed in terms of finite

AdS2 integrals. Most of them may be computed analytically, but a few have to be evaluated numerically

because the available analytic tools turn out not to be sufficient. In the case of the coefficients in the four-

point correlators the number of diagrams to be evaluated numerically is larger and the expected numerical

accuracy is too low to be reliable.

– 7 –
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Here in addition to the Liouville field ϕ with linear dilaton term we have the (r, y) sector

with the kinetic term originating from the SL(2,R)/U(1) gauged WZW model and the

dilaton term R log cosh(br) required for the Weyl invariance of this σ-model [27]. The

expression for Q is fixed by the condition of quantum Weyl invariance of the potential

term, i.e. by satisfaction of the tachyon equation (3.10) [35, 41]. The (exact) relations

between the constant b, the WZW level k and the total central charge are (cf. (3.9), (3.17))

b =
1√
k − 2

, c = 3 + 6Q2 + 6b2 = 6b−2 + 39 + b2 , (1.26)

so that the small b expansion is the same as the large k or large c expansion.

Expanding (1.25) around the minimum of the potential for ϕ on the AdS2 background

as in (1.4), one finds the action for 3 massive fluctuation fields ζ and ξ1, ξ2 (related to r, y

as in (3.13) with a = b). They have the same mass m2 = 2 (to leading order in b), i.e.

should be dual to the boundary operators with the classical dimension 2. We shall denote

the corresponding boundary fields as Φ and Φ± (cf. (1.5), (1.18))

ζ(t, z)
∣∣
z→0

= z2Φ(t) + . . . , ξ±(t, z)
∣∣
z→0

= z∆
V Φ±(t) + . . . , ξ± ≡ 1√

2
(ξ1 ± iξ2) ,

(1.27)

where ∆V = 2+ . . . (anticipating possible anomalous dimension). At the classical level, the

NAT model in flat space has three conserved holomorphic currents with dimension 2: the

stress tensor Tcl and a U(1) doublet of “parafermions” V ±cl [39] (generalizing the classical

parafermions of the gWZW model [26]). A natural suggestion is that the corresponding

quantum operators T and V ± should be related, respectively, to the AdS2 boundary fields

Φ and Φ±. To check the AdS2/CFT
1/2
2 duality in this case we will compute the AdS2 bound-

ary correlators using Witten diagrams and compare them to the chiral CFT correlators

of T and V ±.

The CFT correlators can be found using an explicit free field representation for T and

parafermions V ± that we shall present in section 3.2. A novel feature compared to the

abelian Toda theory is that the dimension of the primaries V ± is not protected, i.e. they

have a non-zero anomalous dimension

∆V = 2 + γV , γV =
1

k
=

b2

1 + 2b2
. (1.28)

Defining the boundary correlators as in (1.6), (1.19)8

⟪
N∏
i=1

Φ(ti)
M±∏
j±=1

Φ±(t±j )⟫ ≡ lim
zi,z
±
j →0
〈
N∏
i=1

z−2
i ζ(ti, zi)

M±∏
j±=1

(z±j )−∆
V ξ±(t±j , z

±
j )〉 , (1.29)

the statement of the AdS2/CFT
1/2
2 duality should be (cf. (1.7), (1.20))

⟪
N∏
i=1

Φ(ti)
M±∏
j±=1

Φ±(t±j )⟫ = κN κM
++M−

± 〈
N∏
i=1

T (zi)

M±∏
j±=1

V ±(z±j )〉
∣∣∣
zi,z
±
j →ti,t

±
j

, (1.30)

where κ and κ+ = κ− are the coefficients in the correspondence Φ→ κT, Φ± → κ±V
±.

8Here we use a short-cut notation: the ± products are, of course, independent.
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As the dimension 2 of the stress tensor is protected, its normalization is universal:

〈T (z1)T (z2)〉 = c
2z4

12
. As a result, as in the Liouville (1.8) or the abelian Toda theory (1.21),

the coefficient κ has the scheme-independent expression in terms of Q and c

κ = −4Q

c
= − 4 b (1 + 3 b2)

3 (1 + 4 b2)(2 + 5 b2)
= −2

3
b+

7

3
b3 + · · · . (1.31)

At the same time, as V ± has the non-zero anomalous dimension (1.28), the coefficient C+−

in the corresponding 2-point function

〈V +(z1)V −(z2)〉 =
C+−

z
2∆

V
12

, (1.32)

is scheme-dependent (it, in general, contains a factor of Λ−2∆
V where Λ is a renormalization

scale). We shall assume a scheme in which C+− is given by

C+− =
c

∆V

=
3k(k + 2)

k − 2
, (1.33)

where k is the WZW level related to b by (1.26). In this scheme our proposed exact

expression for κ± is (cf. (1.28)

κ± =
2b

3(1 + 4b2)
2γV =

2

3
b− 2

3

(
4− log 2

)
b3 + · · · . (1.34)

Representing the AdS2 boundary two-point correlators as

⟪Φ(t1) Φ(t2)⟫ =
C22

t412

, ⟪Φ+(t1) Φ−(t2)⟫ =
C+−

(t212)∆
V
, (1.35)

the correspondence (1.30) implies the following relations

C22 = κ2 c

2
=

8 (1 + 3b2)2

3 (1 + 4b2)(2 + 5b2)
=

4

3
− 2

3
b2 + · · · , (1.36)

C+− = κ2
±C

+− = κ2
±

3 (1 + 2b2)(1 + 4b2)

b2
=

4

3
+

8

3
(log 2− 1) b2 + · · · . (1.37)

The conformal invariance (Virasoro algebra) fixes the three-point functions of the chiral

primary operators to have the following form (after using the Ward identity in footnote 6

and (1.32), (1.33))

〈T (z1)T (z2)T (z3)〉 =
c

z2
12 z

2
13 z

2
23

, 〈T (z1)V +(z2)V −(z3)〉 =
c

z2
12 z

2
13 z

2∆
V
−2

23

. (1.38)

With the AdS2 boundary three-point correlators written as

⟪Φ(t1)Φ(t2)Φ(t3)⟫ =
C222

t212 t
2
13 t

2
23

, ⟪Φ(t1)Φ+(t2)Φ−(t3)⟫ =
C2+−

t212 t
2
13 t

2∆
V
−2

23

, (1.39)
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the duality (1.30) then rests on the validity of the following relations

C222 = κ3 c = − 64 b (1 + 3b)3

9 (1 + 4b2)2(2 + 5b2)2
= −16

9
b+

64

9
b3 + · · · ,

C2+− = κκ2
± c = −C+−

4b (1 + 3b2)

3 (1 + 2b2)(1 + 4b2)
= −16

9
b+

16

9

(
5− 2 log 2

)
b3 + · · · . (1.40)

We shall verify these predictions in section 3 by the tree and one-loop Witten diagram

calculations of (1.39) starting with the AdS2 action (1.25) in expanded in powers of b. This

provides strong evidence for the consistency of the duality (1.30).

We will also compute (at tree level) the non-vanishing four-point correlators:

⟪Φ(t1)Φ(t2)Φ(t3)Φ(t4)⟫ (which has the same form as in (1.12), (1.14), cf. (1.13)) and also

⟪Φ(t1)Φ(t2)Φ+(t3)Φ−(t4)⟫, ⟪Φ+(t1)Φ−(t2)Φ+(t3)Φ−(t4)⟫ . (1.41)

The expressions for the latter are only partially constrained by the conformal invariance.

Nevertheless, we will demonstrate that their dependence on the conformally invariant cross

ratio, the structure of kinematical singularities and the conformal block expansions are in

full agreement with the AdS2/CFT
1/2
2 relations (1.30). It would be interesting to evaluate

the four-point functions in (1.41) also at the one-loop level, but like in the abelian Toda

theory, this would require developing more efficient computational tools (see footnote 7).

2 A2 abelian Toda theory

Here we will discuss loop corrections in the A2 Toda theory in AdS2 with the action (1.16)

with the aim to test the duality relation (1.20). The exact expressions for the coefficients

in (1.21) can be argued for by adapting the conformal Ward identity method used in the

Liouville theory case in [16] as explained in appendix A.

2.1 Perturbation theory

As discussed in detail in [16], the perturbation theory of an abelian Toda theory in AdS2

may be set up in two natural ways that are equivalent at the level of the expressions for the

boundary correlators. In the first approach, proposed in the context of the Liouville theory

in [5] (and thus named ZZ in [16]), one starts with the Toda action in flat space and expands

around a non-trivial solution corresponding to an effective AdS2 geometry. In the second

(AdS) approach the theory is put on AdS2 background from the very beginning and the

perturbation theory is developed around the constant minimum of the effective potential

that includes the curvature coupling term. Technically, the difference between the two

schemes happens to be in the treatment of the short distance singularity of the Toda field

propagator or the value of g∆(z, z). In the ZZ scheme, this is a non-trivial quantity, while

in the AdS scheme it is set to zero. Equivalence between the two approaches is possible

thanks to special identities that ensure a compensation between the tadpole contributions

(present in the ZZ and absent in the AdS case) and the different effective couplings in the

two schemes.9

9In the Liouville theory, the basic identity is in eq. (A.9) of [16]. Completely similar results can be

proved in the A2 Toda theory; in general, this should be a consequence of the equations of motion.
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Here we shall adopt the AdS scheme which is simpler as one can simply ignore all

tadpole contributions. Thus we start with the action (1.16) on the AdS2 background (1.3)

and expand ϕ near its vacuum value as in (1.4)

S =
1

2π

∫
dt dz

[
1

2
(∂aζ)2 +

1

2
(∂aψ)2 +

Q

2b z2
e2bζ

(
cosh(2

√
3bψ)− 2bζ − 1

)]
. (2.1)

Here the interaction terms in (2.1) are multiplied by the common factor Q
b = 1

b2
(1 + 4b2)

(see (1.17)). The values of the masses m2
ζ = 2, m2

ψ = 6 correspond to the dimensions of

the boundary operators being ∆ζ = 2 and ∆ψ = 3.

In general, the AdS2 propagator for a free scalar field ϕ∆(x) = ϕ∆(t, z) with mass m2 =

∆(∆−1) and kinetic term normalized as in (2.1) is 〈ϕ∆(x)ϕ∆(x′)〉free = 2πG∆(x, x′) where

G∆ =
C∆

(4u)∆ 2F1

(
∆,∆, 2∆,−4

u

)
,

C∆ =
Γ(∆)

2
√
πΓ(∆ + 1/2)

,

u(x, x′) =
(z− z′)2 + (t− t′)2

4zz′
.

(2.2)

In particular, for the free propagators for the fields ζ and ψ are10

g(x,x′)≡〈ζ(x)ζ(x′)〉free = =−1

2

(1+η

1−η
logη+2

)
, η≡ η(x,x′) =

u(x,x′)

1+u(x,x′)
,

h(x,x′)≡〈ψ(x)ψ(x′)〉free = =−3(1−η2)+(η2+4η+1)logη

2(η−1)2
. (2.3)

As was mentioned above, in the AdS approach we shall use a particular AdS2 covariant

UV regularization in which

g(x, x) = 0, h(x, x) = 0 , (2.4)

and thus may ignore all tadpole contributions.

The explicit computations of the AdS2 loop integrals will be often performed by chang-

ing the coordinates from the Poincaré half plane x = (t, z) to the unit disk |z| < 1 as follows

w ≡ t + iz = −iz + 1

z − 1
, z =

w − i
w + i

, ds2 = − 4 dw dw̄

(w − w̄)2
=

4 dzdz̄

(1− zz̄)2
. (2.5)

Then the action (2.1) becomes (z = x1 + ix2, d2z = dx1dx2)

S =
1

2π

∫
d2z

[
1

2
(∂aζ)2 +

1

2
(∂aψ)2 +

2Q

b (1− zz̄)2
e2bζ

(
cosh(2

√
3bψ)− 2bζ − 1

)]
. (2.6)

The mass and interaction terms in (2.6) have the following explicit expansion in b∫
d2z

Q

b

(
e2bζ cosh(2

√
3bψ)− 2bζ − 1

)
=

∫
d2z (1 + 4b2)

(
2ζ2 + 6ψ2

+ 12b ζψ2 +
4

3
b ζ3 + 12b2 ζ2ψ2 + 6b2 ψ4 +

2

3
b2 ζ4 + · · ·

)
,

d2z ≡ d2z

π(1− zz̄)
. (2.7)

10In the following, we shall often omit the arguments in u ≡ u(x, x′) and η ≡ η(x, x′).
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2.2 Two-point functions

Let us now discuss quantum corrections to the two-point functions of the ζ and ψ fields,

first in the bulk, and then in the boundary limit defined as in (1.18), (1.19). We shall use

the disk coordinates (2.5), (2.6) and apply the results of appendix B.

Bulk two-point function of ζ and its boundary limit ⟪ΦΦ⟫
The non-vanishing one-loop contributions to the two-point function of the ζ field are

given by11

〈ζ(z1)ζ(z2)〉 = + + + + · · · , (2.8)

g(z1, z2) Σζζ(z1, z2) Σψψ(z1, z2) Σ
(ζ)
ins.(z1, z2)

where

Σζζ =
(−8b)2

2
Dζζ(z1, z2), Σψψ =

(−24b)2

2
Dψψ(z1, z2), Σ

(ζ)
ins. = −16 b2 Σ̂ζ(z1, z2).

(2.9)

Here, Dζζ is the bubble diagram with virtual ζ fields, Dψψ is the similar diagram with

virtual ψ fields. The additional order b2 contribution Σins. is associated with the insertion

of the vertex b2ζ2 coming from the 1 + 4b2 factor in (2.7). Let us give the expressions for

the various contributions. The ζ loop correction Dζζ is

Dζζ(z1, z2) = z1 z2 =

∫
d2z′g(z1, z

′)B(z′, z2) , (2.10)

where

B(z1, z2) =

∫
d2z′

[
g(z1, z

′)
]2
g(z′, z2) =

1

8
− η log2 η

8(1− η)2
. (2.11)

As a result,

Dζζ =
1

576

[
15 +

π2 (η + 1)

η − 1

]
− η log η

48 (η − 1)
+

η2 log2 η

64 (η − 1)2 +
log (1− η)

48

[
1− (η + 1) log η

η − 1

]
− (η + 1)Li2(η)

96(η − 1)
. (2.12)

Similarly, the ψ loop contribution Dψψ reads

Dψψ(z1, z2) = z1 z2 =

∫
d2z′g(z1, z

′)C(z′, z2), (2.13)

where

C(z1, z2) =

∫
d2z′[h(z1, z

′)]2g(z′, z2) =
η2 − 6η + 1

16(η − 1)2
−
η
[
2− 2η2 + (η2 + 1) log η

]
log η

8(η − 1)4
.

(2.14)

11Since we assume the vanishing of simple tadpoles (2.4) only connected one-loop diagrams will contribute

(for a general discussion of tadpole contributions see [16]).
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Thus we obtain

Dψψ(z1,z2) =
π2(η2−1)+12η2−20η+12

576(η−1)2
− η(η2−η+2)logη

144(η−1)3
+
η2(5η2−10η+9)log2 η

576(η−1)4

+
log(1−η)

72

[
1

2
− (η+1)logη

η−1

]
− (η+1)Li2(η)

96(η−1)
. (2.15)

Finally, the insertion diagram in (2.9) is determined by

Σ̂ζ =

∫
d2z′g(z1,z

′)g(z′,z2)

=− η logη

6(η−1)
+

log(1−η)

6

[
1+

(η+1)logη

2(η−1)

]
+

(η+1)Li2(η)

6(η−1)
− 1

6
−π

2(η+1)

36(η−1)
. (2.16)

Then (2.8), (2.9) give the one-loop bulk two-point function. Going back to the Poincaré

plane parametrization (cf. (2.2)) let us define the boundary correlator on the real line as

in (1.18), (1.19). As a result, we get

⟪Φ(t1)Φ(t2)⟫ = lim
z1,z2→0

z−2
1 z−2

2 〈ζ(t1, z1)ζ(t2, z2)〉 =
1

t412

(
4

3
− 4

9
b2 + · · ·

)
. (2.17)

This expression is in agreement with the expected value of C22 in (1.23), (1.24).

Bulk two-point function of ψ and its boundary limit ⟪Φ3Φ3⟫
The corresponding two-point function reads

〈ψ(z1)ψ(z2)〉conn = + + + · · · (2.18)

h(z1, z2) Σζψ(z1, z2) Σ
(ψ)
ins.(z1, z2)

The non-trivial diagram is Σζψ(z1, z2) = (−24b)2Dζψ(z1, z2), while the insertion contribu-

tion is Σ
(ψ)
ins.(z1, z2) = −48 b2 Σ̂ψ(z1, z2). The bubble is given by

Dζψ(z1, z2) = z1 z2 =

∫
d2z′h(z1, z

′)Bψ(z′, z2) . (2.19)

Here

Bψ(z1, z2) =

∫
d2z′h(z1, z

′)g(z′, z1)h(z′, z2) =
1 + η

16(1− η)
− η log η

8(η − 1)2
+
η(1 + η) log2 η

8(η − 1)3
.

(2.20)

As a result

Dζψ(z1,z2) =−
15
(
η2−1

)
+π2(η(η+4)+1)

2880(η−1)2
− η

2(η+3)log2 η

192(η−1)3
+
η(2η+1)logη

160(η−1)2

+
1

80
log(1−η)

[
−η+1

η−1
+

(η(η+4)+1)logη

2(η−1)2

]
+

(η(η+4)+1)Li2(η)

480(η−1)2
. (2.21)
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The insertion contribution in (2.18) is proportional to

Σ̂ψ =

∫
d2z′ h(z1, z

′)h(z′, z2)

=
15
(
η2 − 1

)
+ 2π2(η(η + 4) + 1)

120(η − 1)2
+
η(3η + 4) log(η)

20(η − 1)2

+ log(1− η)

[
− 3(η + 1)

20(η − 1)
− (η(η + 4) + 1) log(η)

20(η − 1)2

]
− (η(η + 4) + 1)Li2(η)

10(η − 1)2
. (2.22)

Defining again the boundary correlator according to (1.18), (1.19) we finish with

⟪Φ3(t1)Φ3(t2)⟫ = lim
z1,z2→0

z−3
1 z−3

2 〈ψ(t1, z1)ψ(t2, z2)〉 =
1

t612

(
16

15
− 112

75
b2 + · · ·

)
, (2.23)

which is in agreement with the expression for C33 in (1.23), (1.24).

2.3 Three-point functions

We can also check the relations (1.30) for the three-point functions

⟪ΦΦΦ⟫ = κ3 〈TTT 〉, ⟪ΦΦ3Φ3⟫ = κκ2
3 〈TV3V3〉 (2.24)

by reproducing the one-loop perturbative expansions of the coefficients C222 and C233

in (1.24). The relevant one-loop diagrams can be computed using the disc parametrization

of AdS2. The only type of bulk diagram that cannot be computed analytically is the one

with a triangle loop but it can be evaluated numerically with good precision well below

one percent level. As a result, we confirmed the duality predictions in (1.24). The details

can be found in appendix C.

3 Non-abelian Toda theory

Another non-trivial example of AdS2/CFT
1/2
2 duality is provided by the non-abelian Toda

(NAT) theory of [25] (see also [39, 40]). This theory may be viewed as a special case

of a conformal model with a 3-dimensional target space with the kinetic term given by

a scalar plus a σ-model originating from the SL(2,R)/U(1) gauged WZW model [26, 27]

supplemented by a potential analogous to the abelian Toda model one.

We shall discuss the quantum conformal properties of the NAT model, in particular,

give a free field representation for its 3 conserved currents: the stress tensor T and a pair

of “parafermions” V ±. This will allow us to compute their CFT correlators. One novel

feature will be that in contrast to the W symmetry generators in the abelian Toda case

here V ± will have a non-trivial anomalous dimension (1.28). This will allow us to compare

the CFT correlators with the boundary correlators of the corresponding elementary fields

in the NAT Lagrangian in AdS2 (1.25). The boundary correlators given by the Witten

diagrams will be computed at the tree and one-loop level. As as result, we will verify the

AdS2/CFT
1/2
2 correspondence (1.30).
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3.1 Definition of the model on AdS2 background

Let us start with a σ-model like theory on a curved 2d background

S =
1

4π

∫
d2z
√
gL , L = Gµν(x) ∂ax

µ∂axν + T(x) +RΦ(x) . (3.1)

Here µ, ν = 1, . . . , D, R is 2d curvature, Φ is a “dilaton” and T is a “tachyon”. The

standard Weyl-invariance conditions of decoupling of the conformal factor of the 2d metric

are [42, 43]

Rµν + 2∇µ∇νΦ+ . . . = 0 , −1
2∇

2Φ+ (∂Φ)2 + · · · = c−D
6 , (3.2)

−1
2∇

2T +Gµν∂µΦ∂νT− 2 T + . . . = 0 . (3.3)

Here we presented only the leading one-loop terms in the corresponding Weyl-anomaly

coefficients and ignored O(T2) terms in the β-functions corresponding to non-perturbative

divergences [35, 36] that will not be relevant for the model discussed below (with T given

by a sum of exponentials with non-constant products).

The D = 3 model (3.1) (with xµ = (ϕ, r, y)) we will be interested in will be

L = (∂ϕ)2 + (∂r)2 +G(r)(∂y)2 + T(ϕ, r) +RΦ(ϕ, r) , (3.4)

with G,Φ,T given by a particular solution of the leading-order equations (3.2), (3.3)

G(r) = tanh2(ar) , Φ = Qϕ− log cosh(ar), (3.5)

T = µ2 e2bϕ cosh(2ar) . (3.6)

Here the constants a, b and Q are related by

1 + b2 − bQ+ 2a2 = 0 , i.e. Q = b−1(1 + 2a2) + b , c = 3 + 6Q2 + 6a2 . (3.7)

The case of a = 0 brings us back to the Liouville theory (plus two extra free fields).

In general, the leading-order metric coefficient G and the dilaton Φ in (3.5) require a

modification in order to satisfy the Weyl-invariance equations (3.2) at the 2-loop level [44].

Including the 3- and 4-loop terms in the β-functions requires further modifications [45]

(whose form depends, in general, on a renormalization scheme [46]). Recognizing that (3.5)

is the “classical” background for the SL(2,R)/U(1) gWZW model corresponding to a coset

CFT allows one to determine the exact metric and dilaton [47]

G(r) =
tanh2(ar)

1− 2
k tanh2(ar)

, Φ=Qϕ−logcosh(ar)− 1
4 log

[
1− 2

k tanh2(ar)
]
, (3.8)

c= 3+6Q2+6a2 = 6Q2+
3k

k−2
, a=

1√
k−2

. (3.9)

Here k is the level of the gWZW theory so that the total central charge is the sum of the one

for the linear dilaton ϕ-theory and the SL(2,R)/U(1) coset theory: c = (1+6Q2)+( 3k
k−2−1).

The exact background (3.8) was first found [47] by identifying the “point-particle” probe
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equation (L0T = 2 T) in the coset CFT with the leading-order tachyon equation (3.3).12

This corresponds to the choice of a “CFT scheme” in which the tachyon equation is not

modified by quantum (or α′) corrections [46], i.e. its exact form is the leading-order one

in (3.3) or

− 1√
Ge−2Φ

∂µ(
√
Ge−2ΦGµν∂ν)T− 4 T = 0 . (3.10)

As the potential T in (3.4) is assumed not to depend on the isometric y coordinate and

since for the exact background (3.8) one gets no corrections to the combination
√
Ge−2Φ =

e−2Qϕ sinh(ar) cosh(ar) we conclude that the corresponding exact solution for T is still

given by (3.6) with b related to a and Q by (3.7).

Below we will only consider the leading order terms in loop expansion, i.e. will ignore

finite quantum counterterms coming from 1/k expansion of (3.8) (which are, in general,

required for the preservation of the conformal invariance and also integrability [51] beyond

the 1-loop order). We shall thus start with the following Lagrangian (3.4) on a unit-radius

AdS2 background (R = −2)

L = (∂ϕ)2 + (∂r)2 + tanh2(ar)(∂y)2 + µ2e2bϕ cosh(2ar) − 2Qϕ+ 2 log cosh(ar) . (3.11)

Here the last two terms come from the dilaton coupling in (3.4). The coupling constants

a and b are a priori independent with Q expressed in terms of them by (3.7). As in the

Liouville or abelian Toda model the presence of an extra “dilaton” term in the action on the

AdS2 background implies the existence of a constant extremum of the resulting potential

(see (1.4)): ϕ0 = 1
2b log Q

bµ2 , r = 0. The perturbation theory near this vacuum is then

described by (ϕ = ϕ0 + ζ)

L = (∂ζ)2 + (∂r)2 + tanh2(ar)(∂y)2 + Q
b

[
e2bζ cosh(2ar)− 2bζ

]
+ 2 log cosh(ar) . (3.12)

Introducing the new coordinates (r, y) → (ξ1, ξ2) (with y-isometry becoming rotation in

the ξi plane)

ξ1 = a−1 sinh(ar) cos(ay), ξ2 = a−1 sinh(ar) sin(ay) , ξ2 ≡ ξ2
1 + ξ2

2 , (3.13)

the Lagrangian (3.12) takes the following SO(2) invariant form

L = (∂ζ)2 +
(∂ξ1)2 + (∂ξ2)2

1 + a2 ξ2
+ Q

b

[
e2bζ(1 + 2a2 ξ2)− 2bζ

]
+ log(1 + a2ξ2) . (3.14)

Expanding to quadratic order in the fluctuation fields (ζ, ξ1, ξ2) we find that their masses are

m2
ζ = 2 bQ = 2 (1 + 2a2 + b2) , m2

ξ1,2 =
a2

b
(b+ 2Q) =

2a2

b2
(1 + 2a2 + 3

2b
2) .

(3.15)

We observe that in the special case when

a = b , (3.16)

12The same background (3.8) can be found also from the quantum effective action for the gWZW

model [48–50].
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all masses have the same value m2 = 2 at leading order in expansion in the coupling b.

With (3.16) we get from (3.7) (see also (1.25), (1.26))

Q = b−1 + 3b , c = 3 + 6Q2 + 6b2 = 6b−2 + 39 + b2 . (3.17)

The case of (3.11) with (3.16) corresponds to the NAT model of [25] with the exact con-

formal background given by (3.6), (3.8) and b = 1√
k−2

.13

This is the model we shall study below. It can be also obtained by a Hamiltonian

reduction [52–54] of the B2 = SO(5) WZW model over a nilpotent subgroup [25]. It should

be possible to derive it directly from a gauged WZW model obtained by “null” gauging of

a solvable subgroup (similarly to how that was done for the abelian Toda models in [55]).

This should give a σ-model with a 5d target space, containing, in addition to the first three

terms in (3.11), also ∆L = [e2b(ϕ+r) + e2b(ϕ−r)]−1∂+u∂−v. Solving for the two extra fields

u and v as in [55] will then reproduce the e2bϕ cosh(2br) potential in (3.11).

Our starting point in the computation of the AdS2 boundary correlators will thus be

the Lagrangian (3.14) with a = b expanded to quartic order in the fluctuation fields or to

b2 order in the coupling14

L = 1
2(∂ζ)2 + 1

2(∂ξi)
2 + (1 + 3b2) ζ2 + (1 + 7

2 b
2) ξ2

+ b(1 + 3b2)
(
2 ζ ξ2 + 2

3 ζ
3
)

+ b2
[
2 ζ2 ξ2 + 1

3 ζ
4 − 1

2 ξ
2 (∂ξi)

2
]

+O(b4) . (3.18)

Note that the expansion of higher order terms in 1
k = b2

1+2b2
in the exact background (3.8)

which we ignored in (3.12) produces only higher order O(b4) terms in (3.18) that will not

contribute to the computations performed in this paper.

3.2 Underlying flat-space CFT

Following [25], the classical integrable structure of the NAT model was elucidated in [39].

It was shown to admit three conserved holomorphic (plus anti-holomorphic) quantities: the

stress tensor T and the two currents V ± with the same classical dimension 2. Using a non-

trivial change of variables they may be written in terms of free fields. After quantization T

and V ± should represent primary operators in the underlying CFT. The chiral half of this

CFT should then play the role of the boundary CFT in the AdS2/CFT
1/2
2 correspondence.

Since our application of the free-field construction to the quantum NAT model appears

to be new, let us start with recalling first the free-field representation for the SL(2,R)/U(1)

gWZW model (see, e.g., [56–58]), i.e. for the (r, y) subsector of (3.11) with no tachyon

coupling. The classical conserved quantities in this case are

T
0,cl

= −1

2
(∂ϕ1)2 − 1

2
(∂ϕ2)2, U±

cl
=

1√
2

(
∂ϕ1 ± i ∂ϕ2

)
e
±i
√

2√
k
ϕ2 , (3.19)

13Let us mention that the misleading claim in [40] that the leading-order model of [25] defined by the

metric and tachyon in (3.5), (3.6) is not conformally invariant was due to ignoring the contribution of the

dilaton coupling in (3.5) (see also [41]).
14Here we redefine L by 1

2
to restore the standard normalization of the fields, i.e. the action is now given

by S = 1
2π

∫
d2z
√
gL.
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where k is the level. The quantization is performed by assuming that ϕi (i = 1, 2) are two

free quantum fields with the standard OPE

∂ϕi(z) ∂ϕj(0) ∼ − 1

z2
δij . (3.20)

The conserved stress tensor and the parafermions U± of the quantum gWZW model are

given by the following generalizations of the classical quantities in (3.19) (see, e.g., [58])

T0 = −1

2
: (∂ϕ1)2 : −1

2
: (∂ϕ2)2 : − 1√

2
√
k − 2

∂2ϕ1 , (3.21)

U± =
1√
2

:

(√
k−2
k ∂ϕ1 ± i ∂ϕ2

)
e
±i
√

2√
k
ϕ2 : . (3.22)

This T0 obeys the Virasoro algebra with the central charge of the gWZW theory

c0 =
3k

k − 2
− 1 , (3.23)

while U± turn out to be the primary fields with dimension ∆U , i.e.

T0(z)U±(0) ∼ ∆U

z2
U±(0) +

1

z
∂U±(0) + . . . , ∆U = 1 +

1

k
. (3.24)

The operators U+ and U− have a non-trivial OPE

U+(z)U−(0) ∼ 1

z2∆
U

[
−1− 2∆U

c0
T0(0) + . . .

]
. (3.25)

Going back to the NAT theory, this free-field construction may be generalized by adding

another free field ϕ3 (again obeying (3.20)). Then the analogs of the classical conserved

quantities T
cl

and V ±
cl

found in [39] are proposed to be (cf. (3.21), (3.22))

T = T0 −
1

2
: (∂ϕ3)2 : − 1√

2
Q∂2ϕ3

= −1

2

3∑
i=1

: (∂ϕi)
2 : − 1√

2
√
k − 2

∂2ϕ1 −
1√
2
Q∂2ϕ3 , (3.26)

V ± =
(
∂ϕ3 − p ∂

)
U± = :

(
∂ϕ3 − p ∂

) 1√
2

(√
k−2
k ∂ϕ1 ± i ∂ϕ2

)
e
± i
√

2√
k
ϕ2 : , (3.27)

where Q and p are constants to be fixed as functions of the level k. Note that the classical

dimension of V ±(z) in (3.27) differs by 1 from that of U± in (3.22). The stress tensor T

in (3.26) obeys the Virasoro algebra with the central charge (cf. (3.9))

c = c0 + 1 + 6Q2 =
3k

k − 2
+ 6Q2 . (3.28)

Requiring that this matches the NAT central charge in (3.17) (where b = 1√
k−2

) gives the

same value of Q as in (3.17), i.e.

Q = b−1 + 3b =
k + 1√
k − 2

. (3.29)
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Computing the OPE of T (z)V ±(0) (generalizing the one in (3.24)) one finds that the leading

singularity is O(z−3) with the residue ∼ (
√

2 k − 2
√
k − 2 p), i.e. the necessary condition

for V ± to be primary is

p =
k√

2
√
k − 2

. (3.30)

This turns out to be also the sufficient condition, i.e. assuming (3.30) we find that V ± are

primary with the same dimension ∆V = ∆U + 1 = 2 + 1
k (cf. (3.24)), i.e.

T (z)V ±(0) ∼ ∆V

z2
V ±(0) +

1

z
∂V ±(0) + . . . , ∆V = 2 +

1

k
. (3.31)

The OPE for V + and V − is found to be (cf. (3.25), (1.32))

V +(z)V −(0) ∼ C+−

z2∆
V

[
1 + z2 2∆V

c
T + z3 ∆V

c
∂T + z4 Ω4 + . . .

]
,

C+− =
3k(k + 2)

k − 2
,

(3.32)

where c is the NAT central charge in (3.28). Ω4 is a dimension 4 operator that may be

decomposed in a dimension 4 descendent of the identity plus a primary of dimension 4.15

Computing the OPE of V +(z)V +(0) we find that there are no poles in z and first

regular term is

V +(z)V +(0) ∼ z2/k Ω0(0) + . . . , (3.33)

where the operator Ω0 has somewhat complicated expression (that will not be needed

below).16 One can check that Ω0 is a primary field with dimension

∆Ω0
= 4 +

4

k
. (3.34)

3.3 Two-point and three-point functions

To check the AdS2/CFT
1/2
2 duality (1.30) let us start with two-point functions. The coeffi-

cient C22 in the boundary correlator of ζ fields in (1.35) can be computed as in the Liouville

theory [16], but noting that now we can have also the fields ξ1,2 propagating in the loop.

Taking into account the coefficients of the interaction terms in the Lagrangian (3.18) and

the fact that to leading order ξi has the same mass as ζ, the one-loop result is obtained

multiplying by 3 the one-loop correction in the Liouville theory

C22 =
4

3

(
1− 3× 1

6
b2
)

+ . . . =
4

3
− 2

3
b2 + · · · , (3.35)

which is indeed in agreement with (1.36).

15Note that in the pure SL(2,R)/U(1) gWZW model (without extra Liouville ϕ field and potential) the

dimension 3 operator in the corresponding OPE (3.25) is not simply ∂T , but the spin 3 generator of the

W3 extension of the Virasoro algebra (see, for instance, [58, 59]). In the NAT case the first non-trivial

correction in (3.32) appears at order z4 in the square brackets. It would be interesting to explore if this is

an indication of an underlying W4 symmetry (cf. [60]).
16It is the normal ordered product of several monomials in ϕ1, ϕ2, ϕ3 with total of 4 derivatives times

exp
(

2 i
√

2√
k
ϕ2

)
.
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The correlator of the ξi fields can also be found by a simple modification of the previous

calculations (cf. (2.8), (2.18)):

〈ξi(z1)ξj(z2)〉conn = δij ĝ(z1, z2) ,

ĝ = + + + · · · (3.36)

= g(z1, z2) + (−8b)2Dζζ(z1, z2) +
7

2
· (−4)b2 Σ̂ζ(z1, z2) + . . . ,

where Dζζ and Σ̂ζ are given in (2.12) and (2.16). In the limit when one point is sent to

the boundary, z2 → 0, the expression for (3.36) gets simplified to

〈ξ+(z1, t1)ξ−(z2, t2)〉conn = ĝ(z1, t1; z2, t2)

=
4

3

[
z1z2

z2
1 + t212

+O
(
z2

2

)]2+b2 [
1 + 2b2(log 2− 1)

]
+O(b4), (3.37)

where we kept only the leading order term in z2 → 0 and defined ξ± = 1√
2
(ξ1 ± iξ2) as

in (1.27). The above expression is consistent with the field ξ being dual to an operator

with dimension

∆V = 2 + γV , γV = b2 +O(b4) , (3.38)

in agreement with (1.28) obtained from the CFT. Then the 1-loop corrected bulk-to-

boundary propagator turns out to be

ĝ(t′; t, z) = lim
z′→0

1

z′∆V
〈ξ+(z, t)ξ−(z′, t′)〉conn

=
4

3

(
z

z2 + (t− t′)2

)∆V [
1 + 2b2(log 2− 1)

]
+O(b4) . (3.39)

Setting both legs to the boundary z, z′ → 0, we get the boundary limit of this correlator

(cf. (1.27), (1.29)) with the coefficient in (1.35) being

C+− =
4

3

[
1 + 2b2(log 2− 1) + · · ·

]
. (3.40)

This is also in agreement with (1.37) where we substituted (3.32) and the 1-loop expression

for κ± in (1.34).

The exact form of κ± proposed in (1.34) is motivated by the free-field representa-

tion (3.27) of V ± and the OPE (3.32). Following the argument used to determine κ3 of

the abelian Toda theory (1.21) in appendix A, one may conjecture that

κ± = 2
√

2
p

C+− 21/k =
21+1/k

√
k − 2

3 (k + 2)
, (3.41)

where the factor 21/k takes into account the anomalous dimension (3.31) of V ± and the

overall coefficient is fixed by matching with known tree level value κ± = 2
3 b+ · · · . Written

in terms of b = 1√
k−2

, eq. (3.41) becomes the same as (1.34) (see also (1.28)).
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Next, let us consider the three-point correlator in (1.29), i.e. ⟪ΦΦΦ⟫ ∼ 〈TTT 〉. Again,

we can use the result in the Liouville theory since the virtual ξ1,2 fields behave as copies

of the Liouville field, taking into account the values of the coupling coefficients in (3.18).

Thus we find for C222 in (1.39)

C222 = −16b

9
+ 3× 64b3

27
+ · · · = −16

9
b+

64

9
b3 + · · · . (3.42)

This agrees with the expected expression in (1.40).

Turning to the second three-point function ⟪ΦΦ+Φ−⟫ ∼ 〈TV +V −〉, using (3.40), the

prediction for its coefficient in (1.39) is given in (1.40), i.e.

C2+−(b) = −16

9
b+

16

9

(
5− 2 log 2

)
b3 + · · · . (3.43)

We have confirmed it by a detailed computation described in appendix D.

3.4 Four-point functions

The structure of 〈TTTT 〉 is fully determined by the conformal symmetry (1.13). The

AdS2/CFT
1/2
2 correspondence (1.30) then predicts that the corresponding boundary corre-

lator should be given by (1.14), (1.15). These predictions can be checked in the same way

as in the Liouville theory, taking into account the multiplicity of virtual exchanges of ζ

and ξi. Indeed, for the coefficient of the connected part in (1.14) we have in the Liouville

and in the non-abelian Toda cases

C2222 = κ4c =
256Q4

c3
=

{
32
27 b

2 − 80
27 b

4 + 496
81 b

6 + · · · , Liouville
32
27 b

2 − 3× 80
27 b

4 + 464
9 b6 + · · · , NAT

(3.44)

where we used the model-dependent specific values of Q and c (see (1.1), (1.2), (1.25),

(1.26)). As expected (cf. (3.40), (3.42)), the one-loop b4 correction in the NAT model is

simply three times that of the Liouville theory. There is no such simple relation at higher

orders in b.

The expressions for 〈TTV +V −〉 and 〈V +V −V +V −〉 related to the boundary correla-

tors in (1.41) are not fully fixed by the conformal symmetry and thus represent a particular

interest. In the first case the dual four-point correlator ⟪ΦΦΦ+Φ−⟫ has a disconnected

contribution that is just ⟪ΦΦ⟫⟪Φ+Φ−⟫ and it then obeys AdS2/CFT
1/2
2 as a consequence

of the relation between the two-point functions. In the connected part, at the tree O(b2)

level, the fields ξi play again the same role as the Liouville field ζ and the matching can

be easily checked.

The story is more complicated for the remaining non-vanishing correlator

⟪Φ+Φ−Φ+Φ−⟫ which according to (1.30) should be proportional to the CFT correlator

〈V +V −V +V −〉 restricted to the real line. The latter is non-trivial because of the non-

locality in the OPE of V V in (3.32) and (3.33). To compute this correlator one should use

the free field representation (3.27) perturbatively in small b or large k.
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AdS2 boundary correlator ⟪Φ+Φ−Φ+Φ−⟫
The boundary correlators in AdS2 have, in general, the same form as correlators in 1d CFT.

If we have four primary operators O in 1d CFT of the same dimension ∆, their correlator

is constrained by the global SO(2, 1) conformal invariance to take the following form

⟪O1(t1)O2(t2)O3(t3)O4(t4)⟫ =
1

(t12 t34)2∆
G(χ) , χ =

t12 t34

t13 t24
. (3.45)

Here χ is 1d conformally invariant cross-ratio. The function G(χ) in (3.45) admits the

s-channel expansion (see, e.g., [61])

G(χ) =
∑
h

ch Fh(χ) , Fh ≡ χh 2F1(h, h, 2h, χ) , (3.46)

where h labels the conformal dimension of the fields appearing in the OPE O1O2 = [Oh] +

[Oh′ ] + · · · , and the coefficients ch may be expressed in terms of the coefficients in the

2-point and 3-point functions of O1,O2 and the exchanged field.

Let us consider the AdS2 boundary correlator of for fields ξi using the notation Φi for

their boundary values as in (1.27), (1.29). According to (3.45) the result should read

⟪Φi1(t1) Φi2(t2) Φi3(t3) Φi4(t4)⟫ =
1

(t12t34)2∆
V
Gi1i2i3i4(χ) , ∆V = 2 + b2 + . . . , (3.47)

where in general we should have ∆V = 2+ b2

1+2b2
(see (1.28), (3.31)). At order O(b2) we have

trivial disconnected contributions where the two-point function ⟪ΦiΦj⟫ includes propagator

loop corrections. These contributions automatically respect the structure in (3.45) and also

are consistent with AdS2/CFT
1/2
2 as discussed in section 3.3 above. Indeed, the disconnected

part can be written in the generalized free field form

Gdisc
i1i2i3i4(χ) = C2

+−

[
δi1i2δi3i4 + χ2∆

V δi1i3δi2i4 +

(
χ

1− χ

)2∆
V

δi1i4δi2i3

]
, (3.48)

where (cf. (1.37))

C+− = C +O(b2) , C = 2π
2

3π
=

4

3
(3.49)

is the coefficient in the two-point function of Φi in (1.35). The disconnected O(b2) con-

tributions can be found from the tree-level disconnected diagrams where the pairs of Φi

fields are connected by a tree propagator and the b2 correction comes from the expansion

of the prefactor in (3.45) depending on the coupling b because of the non-zero anomalous

dimension in ∆V .

The disconnected contribution can be represented as (cf. (3.49))

Gdisc
i1i2i3i4(χ) = C2 (t12t34)2(2+b2+···)

[
δi1i2δi3i4

(t12t34)2(2+b2+···) +2 crossed terms + self-energy loops

]
=G

(0)disc
i1i2i3i4

(χ)+
[
G

(1)disc
i1i2i3i4

(χ)+G
(1)self
i1i2i3i4

(χ)
]
+O(b4). (3.50)
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Φi1

Φi2

Φi3

Φi4

ζ
+ crossed diagrams

(a)

Φi1

Φi2

Φi3

Φi4

(b)

Figure 1. Connected diagrams of order O(b2) contributing to ⟪Φi1(t1) · · ·Φi4(t4)⟫.

In particular,

G
(0) disc
i1i2i3i4

(χ) = C2

[
δi1i2δi3i4 + χ4 δi1i3δi2i4 +

χ4

(1− χ)4 δi1i4δi2i3

]
,

G
(1) disc
i1i2i3i4

(χ) = b2 C2 χ4

[
2 logχ δi1i3δi2i4 + 2

logχ− log(1− χ)

(1− χ)4
δi1i4δi2i3

]
,

G
(1) self
i1i2i3i4

(χ) = 2 (2 log 2− 2) b2G
(0) disc
i1i2i3i4

(χ) . (3.51)

There are also connected O(b2) tree diagrams of the two types (see figure 1): the

exchange diagrams of the form (a) and the contact diagram (b) where the internal vertex

is the derivative-dependent ξ2(∂ξ)2 σ-model interaction in (3.18), i.e. the leading-order

connected contribution is

Gconn
i1i2i3i4 = G

(1) exch
i1i2i3i4

(χ) +G
(1) cont
i1i2i3i4

(χ) + · · · . (3.52)

The contribution of the exchange diagrams in figure 1 (a) sums up to

G
(1) exch
i1i2i3i4

(χ) =
1

2π
16 b2 C4

[
δi1i2δi3i4

D1122

4t212

+ δi1i3δi2i4
D1212

4t213

+ δi1i4δi2i3
D1122

4t212

]
, (3.53)

where the D-functions are defined by the AdS2 integral [62–64]

D∆1∆2∆3∆4(t1, t2, t3, t4) =

∫
dt dz

z2

4∏
i=1

[
z

z2 + (t− ti)2

]∆i

. (3.54)

Using the known explicit expressions for the D-functions in (3.53) we obtain

G
(1)exch
i1i2i3i4

(χ) =
b2

4
C4

{
δi1i2δi3i4

[
χ4 logχ

(χ−1)2
− χ2

χ−1
−(χ+2) χ log(1−χ)

]
+δi1i4δi2,i3

[
−(χ−3)χ4 logχ

(χ −1)3
+

χ3

(χ−1)2
+χ2 log(1−χ)

]
+δi1i3δi2i4

[
(2χ −3)χ4 logχ

(χ−1)2
+
χ3

χ−1
−(2χ+1)χ2 log(1−χ)

]}
. (3.55)
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The contact diagram in figure 1 (b) evaluates to

G
(1)cont
i1i2i3i4

(χ) =
b2

4
C4

{
δi1i4δi2i3

[
− (2χ−3)(3χ−2)(3χ2+2χ+3)χ

4(χ−1)2 (3.56)

− 1

2
(3χ2−4χ+3)(3χ2+4χ+3)log(1−χ)− (3χ−5)(3χ2−4χ+3)χ4 logχ

2(1−χ)3

]
+δi1i3δi2i4

[
− (χ−3)(χ+2)(8χ2−8χ+3)χ

4(1−χ)3 +
1

2
(2χ+3)(2χ2−2χ+3)log(1−χ)

− (2χ−5)(2χ2−2χ+3)χ4 logχ

2(1−χ)4

]
+δi1i2δi3i4

[
− (2χ+1)(3χ−1)(3χ2−8χ+8)χ2

4(1−χ)3

+
1

2
(3χ+2)(3χ2−2χ+2)χ log(1−χ)− (3χ2−10χ+10)(3χ2−2χ+2)χ4 logχ

2(1−χ)4

]}
.

All the three of the above contributions (disconnected (3.51), exchange (3.53) and con-

tact (3.56)) are separately crossing invariant. In particular, if we consider ⟪Φ+Φ−Φ+Φ−⟫
where Φ± = 1√

2
(Φ1 ± iΦ2) correspond to bulk fields ξ±, we can check the 1 ↔ 3 crossing

invariance relation for each of the contributions

G+−+−(χ) =
( χ

1− χ

)2(2+b2+··· )
G+−+−(1− χ) . (3.57)

The total O(b2) term in G = Gdisc +Gconn turns out to be

G+−+−(χ) = C2
+−

[
1 +

χ4

(1− χ)4

]
+ b2

[
− 16χ (6− 19χ+ 19χ2)

27 (1− χ)3

− 32

9

[
1 +

χ4

(1− χ)4

]
log(1− χ)

]
+ · · · . (3.58)

Notice the cancellation of the log χ terms which is a non-trivial fact (cf. [8, 10]). This is in

agreement with the OPE (3.32) where the first exchanged primary has dimension 4 with

no anomalous contribution.

Another interesting case is the four-point function ⟪Φ+Φ+Φ−Φ−⟫. Its coefficient func-

tion G++−− is related to the above one in (3.58) by the 2↔ 3 crossing transformation

G++−−(χ) = χ2(2+b2+··· )G+−+−(χ−1) . (3.59)

From (3.55) one finds

G++−−(χ) =C2
+−

[
χ4+

χ4

(1−χ)4

]
+b2

{
16(6χ2−19χ+19)χ4

27(1−χ)3
(3.60)

− 32

9

[
χ4+

χ4

(1−χ)4

]
[log(1−χ)−2 logχ]

}
+O(b4).

Expanding in conformal blocks (cf. (3.46))

G++−−(χ) =

∞∑
n=4

(an + b2dn + · · · ) Fhn(χ) , hn = n+ b2 γn + · · · , (3.61)
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we find non-zero contributions only with even values of index n. The leading order coeffi-

cients a2n are

a2n =

√
π 43−2n (2n− 1)(2n− 3)(n− 1)Γ(2n+ 3)

81 Γ(2n− 1
2)

, (3.62)

while the first few values of d2n are

d4 =
304

27
, d6 =

5056

729
, d8 =

219320

61347
, . . . . (3.63)

Remarkably, all anomalous dimensions γn of the exchanged operators are equal, i.e.

γn = 4 . (3.64)

This follows from the fact that the b2 logχ term in (3.60) is proportional to the tree level

disconnected contribution. Again, this feature has a simple explanation on CFT side —

from the point of view of the OPE of V +V +. All operators in this OPE have a common

exponential factor of the form exp(i2
√

2√
k
ϕ2) that is just the squared exponential in V +

in (3.27) and this is the origin of the common anomalous contribution 1
2(2
√

2√
k

)2 = 4
k . In

particular, this is true for n = 4, in agreement with (3.34), i.e. h4 = ∆Ω0
= 4 + 4

k =

4 + 4b2 + · · · .

CFT correlator 〈V +V −V +V −〉

We can now test AdS2/CFT
1/2
2 by comparing the above result for ⟪Φ+Φ−Φ+Φ−⟫ in (3.47),

(3.60) with the CFT correlator 〈V +V −V +V −〉. The latter can be found using the free field

representation (3.27) and expanding in large k. This reduces to a purely Wick contraction

calculation since after the 1/k expansion the exponential operators in (3.27) become a sum

of polynomial local operators. Representing the large k expansion as

〈V +V −V +V −〉 = k2 G0(χ) + k G1(χ) + · · · , (3.65)

we find

G0 = 9

[
1 +

χ4

(1− χ)4

]
,

G1 =
3 (24− 102χ+ 169χ2 − 134χ3 + 67χ4)

(1− χ)4
− 18

[
1 +

χ4

(1− χ)4

]
log(1− χ) . (3.66)

Notice that the logarithmic term in (3.66) arises from the contraction of two ϕ2 fields with

no derivatives which appear from the large k expansion of the exponential in (3.26). As a

result, the coefficient of this logarithmic term is proportional to G0.

To satisfy the AdS2/CFT
1/2
2 relation (1.30) we should have

C2
+− G0 + b2G1 + · · · = κ2

±(k2G0 + kG1 + · · · ) , (3.67)

where from (3.55)

G0 = 1 +
χ4

(1− χ)4
,

G1 = −16χ (6− 19χ+ 19χ2)

27 (1− χ)3
− 32

9

[
1 +

χ4

(1− χ)4

]
log(1− χ) . (3.68)
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Expanding (3.67) in small b = 1
k + . . . using the values of κ± and C+−(b) from (1.34)

and (1.37) gives

G0 = 9G0, G1 = 81
16 G1 + 72G0 . (3.69)

Comparing (3.66) with (3.68) we find that these relations are indeed satisfied.
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A Expression for κ3 in A2 Abelian Toda theory

To suggest an exact expression for κ3(b) in (1.21) we shall use similar considerations as in

the Liouville case in [16]. We shall start with a free field realization of the spin 2 and spin

3 W3 symmetry generators (T, V3) based on two real free bosons φ1,φ2 with normalization

(different by
√

2 from the one in (3.20))

φi(z)φj(0) ∼ −2 δij log z . (A.1)

Explicitly (conformal normal ordering is understood in all composite operators) [65]

T = −1

4
(∂φ1)2 − 1

4
(∂φ2)2 + i α0 ∂

2φ1, (A.2)

V3 =
β

12 i

[
(∂φ2)3 − 3 (∂φ1)2 ∂φ2 + 3 i α0 ∂

2φ1 ∂φ2 + 9 i α0 ∂φ1∂
2φ2 + 6α2

0 ∂
3φ2

]
, (A.3)

where (cf. (1.17))

α0 =

√
2− c

24
= − i

2
Q, β = − 4√

5c+ 22
, c = 2 + 6Q2 . (A.4)

Naively, if we could ignore the contribution of the potential term in the flat-space Toda

action (1.16) to its stress tensor (or assume that the stress tensor becomes traceless at the

quantum level) we could formally identify the fields in (A.2) as (φ1, φ2) = 2 (ϕ,ψ).17

In the semiclassical limit starting with (1.16) one may formally eliminate the conformal

factor of the AdS2 metric by redefining the Liouville field as ϕ(t, z)→ φ(t, z) +Q log z, i.e.

transform the action into the flat-space one. This leads to the Toda CFT for the field

(φ, ψ) defined on a flat upper half-plane (w = t + i z, z > 0) with the stress tensor

T (w) = −(∂wφ)2 − (∂wψ)2 + Q∂2
wφ (where ∂w = 1

2(∂t − i ∂z)). The field φ has then the

boundary asymptotics φ(t, z)
∣∣
z→0

= z2 Φ(t) − Q log z + . . . . Taking the boundary limit in

T (w → t) gives T (t) = −3
2 QΦ(t) +O(z2). This is precisely the operator relation which is

required for the validity of the expression for κ in (1.8), i.e. κ(b) = −2
3 b+ · · · . Identifying

17In fact, the transformation between the fields in the Liouville or Toda action and the free fields involves

a non-trivial Bäcklund transformation [66].
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(φ1, φ2) = 2 (ϕ,ψ) we get in the boundary limit z→ 0: φ1 → 2 z2Φ−2Q log z, φ2 → 2 z3Φ3.

The boundary limit of the product V3φ2 is then

V3(w)φ2(0)
∣∣∣
z→0
→ 2V3(t) z3Φ3(0) = 2 z3 κ3 V3(t)V3(0) , (A.5)

where we replaced Φ3 → κ3V3 as it should be in the correlation functions in (1.20). Hence,

using that V3(w)V3(0) ∼ c
3w
−6 + · · · we can write κ3 in terms of the coefficient K in the

leading singularity in the OPE (A.5)

κ3 =
3

2 c
K , V3(w)φ2(0)

∣∣∣
z→0
∼ z3K

t6
+ · · · . (A.6)

A straightforward computation using the free-field representation (A.3) gives

V3(w)φ2(0) ∼ 2 i β α2
0

w3
+

3

2

β α0 ∂φ1(0)

w2
+

β

w

[
− i

12
X (0) +

3

2
α0∂

2φ1(0)

]
, (A.7)

where X = 6 (∂φ1)2 − 6 (∂φ2)2 − 6 i α0 ∂
2φ1. Then contributions to (A.6) come from the

first ∼ w−3 term and also terms originating from the −2Q log z piece in φ1, i.e.

∂φ1 =
iQ

z
+ · · · , − i

12
X +

3

2
α0∂

2φ1 =
3 iQ2

4z2
+ · · · . (A.8)

To find the latter one has to take into account the upper half plane mirror poles in the

OPE (see, for instance, [67]) and expand near the boundary z→ 0 according to18

1

(t− i z)3
− 1

(t + i z)3
= · · · − 20 i z2

t6
+ · · · ,

1

z

[
1

(t− i z)2
+

1

(t + i z)2

]
= · · ·+ 10 z2

t6
+ · · · ,

1

z2

[
1

(t− i z)
− 1

(t + i z)

]
= · · ·+ 2 i z2

t6
+ · · · . (A.9)

This gives in total the following expression for the coefficient K in the OPE in (A.6)

K = 2 i β α2
0 × (−20 i) +

3

2
β α0 × iQ× 10 i+ β × 3i

4 Q
2 × 2i = −4Q2 β . (A.10)

As a result,

κ3 =
3

2 c
K = −6Q2 β

c
=

24Q2

c
√

5c+ 22
, (A.11)

which is the expression given in (1.21).

18The Dirichlet boundary conditions for the free fields φ1 and φ2 require a non trivial gluing map for

the odd spin chiral generators, i.e. the non-trivial reflection relation V3(z) = −V 3(z) for the odd spin field

V3. The same happens in the familiar example of the spin 1 current J(z) = i ∂φ when φ has a Dirichlet

boundary condition, see, e.g., section 4.1 of [68].
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B Fourier expansion of the ∆ = 3 propagator in AdS2

A useful tool to compute the AdS2 integrals in disk parametrization (2.5) is the Fourier

representation of the ∆ = 2, 3 propagators (2.3). As illustrated in [69], see also appendix

A of [16], the simplest diagrams that occur in the calculations of this paper are multiple

AdS2 integrals that depend on a number of fixed points and on internal points that are

integrated in SU(1, 1) covariant way. Using a Fourier representation, one first integrates

the relative angles of involved points and performs radial integration as the last step. The

coefficients of the Fourier expansion in the ∆ = 2 case of g(x, x′) are given in [69]. Here

we need the generalization to the ∆ = 3 case, i.e. the propagator h(x, x′) in (2.3). Using

the disk coordinates (x ≡ z, x′ ≡ z′) we have η in (2.3) given by η =
∣∣∣ z−z′1−zz′

∣∣∣2. The Fourier

expansion of h(z, z′) then reads

h(z, z′) =

∞∑
n=0

hn(|z|2, |z′|2) cos(nϑ(z, z′)), (B.1)

hn(x, y) = θ(x− y) cn(y) dn(x) + θ(y − x) cn(x) dn(y) , (B.2)

where ϑ(z, z′) is the angle between the disc points z and z′. The coefficients cn(x) are given

by (for any n ≥ 0)

cn(x) =
xn/2

(1− x)2

[
1− 2 (n− 2)

n+ 1
x+

(n− 1)(n− 2)

(n+ 2)(n+ 1)
x2

]
. (B.3)

The coefficients dn(x) take the following special values for n = 0, 1, 2

d0(x) =
3(x+ 1)

2(x− 1)
− (x2 + 4x+ 1) log x

2(x− 1)2
,

d1(x) =
−x2 − 10x− 1

(x− 1)
√
x

+
6
√
x(x+ 1) log x

(x− 1)2
,

d2(x) =
x3 − 7x2 − 7x+ 1

2x− 2x2
− 6x log x

(x− 1)2
, (B.4)

while for all n ≥ 3

dn(x) =
1

n(n−1)(n−2)xn/2 (1−x)2

[
−(n−2)(n−1)xn+2+2(n−2)(n+2)xn+1

−(n+1)(n+2)xn+(n+1)(n+2)x2−2(n−2)(n+2)x+(n−2)(n−1)
]
. (B.5)

C Perturbative calculation of C222 and C233 in A2 abelian Toda theory

To compute three-point boundary correlators in (2.24) it is useful first to recall the form

of the tree level bulk-to-boundary scalar propagator in AdS2 in disc parametrization. On

the Poincaré half plane, assuming Dirichlet boundary conditions, for generic mass or ∆

(m2 = ∆(∆− 1)) we may define (here w = (t, z))

g∆(t, w′) = z−∆ g∆(w,w′)
∣∣∣
z→0

, (C.1)
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where for the ∆ = 2, 3 fields ζ and ψ of the A2 abelian Toda theory (cf. (2.3))

g(t, w′) ≡ g2(t, w′) =
4

3

[
z′

z′2 + (t− t′)2

]2

, h(t, w′) ≡ g3(t, w′) =
16

15

[
z′

z′2 + (t− t′)2

]3

.

(C.2)

Under the map (2.5) the disk boundary |z| = 1 is mapped to the real axis z = 0 of Poincaré

plane as

t(θ) = −ie
iθ + 1

eiθ − 1
= − cot

θ

2
, z = r eiθ . (C.3)

Then the bulk-to-boundary propagators (C.2) become

g(θ, z′) =
4

3

sin4 θ
2 (1− |z′|)2

|eiθ − z′|4
, h(θ, z′) =

16

15

sin6 θ
2 (1− |z′|)3

|eiθ − z′|6
. (C.4)

In general, for three fields of dimensions ∆k we will have

⟪Φ∆1Φ∆2Φ∆3⟫=C∆1∆2∆3K∆1∆2∆3(θ1,θ2,θ3) , (C.5)

K∆1∆2∆3(θ1,θ2,θ3) = |t(θ1)−t(θ2)|∆3−∆1−∆2 |t(θ2)−t(θ3)|∆1−∆2−∆3 |t(θ3)−t(θ1)|∆2−∆1−∆3 .

Let us now consider the Witten diagrams contributing the two non-vanishing three-point

boundary correlators ⟪ΦΦΦ⟫ and ⟪ΦΦ3Φ3⟫.

Coefficient C222 in ⟪ΦΦΦ⟫
Let us start with computing the coefficient C222 of the contributions proportional to K ≡
K222 in (C.5). The expression for ⟪ΦΦΦ⟫ will differ, in general, from the one in the Liouville

theory because here the second field ψ may also appear in virtual exchanges.

Tree level diagram. At leading order in b there is a single diagram

C
(0)
222 b = =

1

K
(−8b)

∫
d2w g(t1, w)g(t2, w)g(t3, w) =

2

9
(−8b) = −16

9
b . (C.6)

This is a special case of the general expression

1

K

∫
d2w g∆1(t1, w)g∆2(t2, w)g∆3(t3, w)

=
π

8

Γ(∆1+∆2−∆3
2 )Γ(∆1+∆3−∆2

2 )Γ(∆2+∆3−∆1
2 )Γ(∆1+∆2+∆3−1

2 )

Γ(1
2 + ∆1)Γ(1

2 + ∆2)Γ(1
2 + ∆3)

, (C.7)

giving 2
9 for ∆1 = ∆2 = ∆3 = 2.

Diagrams with dressed propagators. These diagrams give

C
(1)
222,1 b

3 = + + 2 permutations . (C.8)

Their contribution is

C
(1)
222,1 = 3

(
−1

3

)
C

(0)
222 = −C(0)

222. (C.9)
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Diagrams with ζ loop. The contribution of the diagrams

C
(1)
222,2b

3 =

θ1

θ2 θ3

+ 2 permutations, (C.10)

may be found by taking the boundary limit of (the propagator on the r.h.s. is bulk-to-

boundary one)

lim
z1→0

1

z2
1

z1 z2 =
1

8
θ1 z2 . (C.11)

This gives

C
(1)
222,2b

3 =
1

8
(−8b) (−16b2)

1

2
C

(0)
222b

(
− 1

8b

)
× 3 = −3C

(0)
222 b

3. (C.12)

Diagrams with ψ loop. Similarly, the diagrams

C
(1)
222,3b

3 =

θ1

θ2 θ3

+ 2 permutations , (C.13)

may be computed from

lim
z1→0

1

z2
1

z1 z2 =
1

24
θ1 z2 , (C.14)

and give

C
(1)
222,3b

3 =
1

24

(
− 12b 2!

) (
−12b2 2! 2!

) 1

2
C

(0)
222b

(
− 1

8b

)
× 3 = −9C

(0)
222 b

3. (C.15)

Diagram with vertex insertion. According to the structure of the interaction La-

grangian in (2.7), at order b3 we need to include also a special tree diagram

C
(1)
222,4 b

3 = , (C.16)

where the insertion represents the b3 vertex appearing due to the overall factor 1 + 4b2

in (2.7). This gives (cf. (C.6))

C
(1)
222,4 = 4C

(0)
222. (C.17)

Triangle diagram with ζ loop. This non-trivial diagram is the same as in the Liouville

theory and thus can be found from [16]:

C
(1)
222,5 = b−3 =

7

6
C

(0)
222 = −56

27
. (C.18)
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Triangle diagrams with ψ loop. This diagram is given by the following finite disk

integral

C
(1)
222,6 b

3 = (C.19)

=

(
− 24b

)3
K

∫
d2w1d

2w2d
2w3 g(t1, w1)g(t2, w2)g(t3, w3)h(w1, w2)h(w1, w3)h(w2, w3).

Its numerical calculation by the same method as discussed in [16] gives19

C
(1)
222,6 = −5.619± 0.011. (C.20)

Total coefficient of three-point correlator. The duality prediction (1.24) amounts to

C
(1)
222

C
(0)
222

≡
6∑

a=1

C
(1)
222,a

C
(0)
222

= −14

3
. (C.21)

Thus, we should have the following exact value of the contribution C
(1)
222,6 in (C.20)

C
(1)
222,6 = C

(0)
222

(
−14

3
+ 1− 4 + 3 + 9− 7

6

)
=

19

6
C

(0)
222 = −152

27
= −5.629. (C.22)

Comparing this to (C.20), a relative error is just 0.2%, thus confirming the validity of (1.24).

Coefficient C233 in ⟪ΦΦ3Φ3⟫
Let us now check the prediction (1.24) for C233. Here we shall use the notation K ≡ K233

(see (C.5)).

Tree level diagram. The leading order O(b) contribution is given by

C
(0)
233b =

θ1

θ2 θ3

=
1

K
(−24b)

∫
d2w g(t1, w)h(t2, w)h(t3, w) =

4

45
(−24b)

= −32

15
b . (C.23)

Diagrams with dressed propagators. The diagrams that are obtained from the tree

level diagram by adding loop to one of the propagators are

C
(1)
233,1 b

3 = + + + . (C.24)

19In principle, one could try to use an analytic approach based on an exact integral representation for

the triangle diagram. One such option is the split-representation discussed, e.g., in [14]. However, if one is

interested in the final number and not just in special analytical features (like residues) such representation

does not appear to be very useful.
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Their contribution is

C
(1)
233,1 =

[(
−1

6
− 1

6

)
+ 2 ·

(
−7

5

)]
C

(0)
233 = −47

15
C

(0)
233. (C.25)

Diagram with ζ loop. Taking into account (C.11) we find

C
(1)
233,2b

3 =

θ1

θ2 θ3

(C.26)

=
1

8

(
− 4b

3
3!
)(
− 12b2 2! 2!

) 1

2
C

(0)
233b

(
− 1

24b

)
= −C(0)

233 b
3. (C.27)

Diagram with ψ loop. In a similar way, the diagram

C
(1)
233,3 b

3 =

θ1

θ2 θ3

, (C.28)

may be computed by using (C.14) giving

C
(1)
233,3 b

3 =
1

24

(
− 12b 2!

)(
− 6b2 4!

) 1

2
C

(0)
233 b

(
− 1

24b

)
= −3C

(0)
233 b

3. (C.29)

Diagrams with mixed ζψ loop. The two diagrams

C
(1)
233,4 b

3 =

θ3

θ2 θ1

+

θ2

θ3 θ1

, (C.30)

can be computed using by the relation

lim
z1→0

1

z3
1

z1 z2 =
1

12
θ1 z2 , (C.31)

leading to

C
(1)
233,4 =

1

12

(
− 12b 2!

)(
− 12b2 2! 2!

)
C(0)233b

(
− 1

24b

)
× 2 = −8C

(0)
233 b

3. (C.32)

Diagram with vertex insertion. The diagram

C
(1)
233,5 b

3 = , (C.33)

comes from the b3 cubic vertex in the action (2.7), giving

C
(1)
233,5 = 4C

(0)
233 . (C.34)
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Triangle loop diagrams. The two most complicated diagrams

C
(1)
233,6b

3 = + , (C.35)

correspond to

C
(1)
233,6b

3 = (C.36)

1

K
(−8b) (−24b)2

∫
d2w1d

2w2d
2w3 g(t1, w1)h(t2, w2)h(t3, w3)g(w1, w2)g(w1, w3)h(w2, w3)

+
1

K
(−24b)3

∫
d2w1d

2w2d
2w3 g(t1, w1)h(t2, w2)h(t3, w3)h(w1, w2)h(w1, w3)g(w2, w3) .

These integrals require a numerical evaluation following the same method as in [16] giving

C
(1)
233,6 = −11.47± 0.03. (C.37)

Total coefficient in three-point correlator. From the expected result for C233 in (1.24)

we should have

C
(1)
233

C
(0)
233

≡
6∑

a=1

C
(1)
233,a

C
(0)
233

= −86

15
. (C.38)

This corresponds to the following prediction for the numerical coefficient C
(1)
233,6

C
(1)
233,6 = C

(0)
233

(
−86

15
+

47

15
+ 1 + 3 + 8− 4

)
=

27

5
C

(0)
233 = −288

25
= −11.52 . . . . (C.39)

Compared with the numerical value in (C.37), we find good agreement with a relative error

of about 0.4%. This strongly supports the validity of (1.24).

D Perturbative calculation of C2+− in non-abelian Toda theory

Here we collect the details of the calculation of the coefficient C2+− in the boundary

correlator in (1.39) leading to the result in (1.40), (3.43). The aim is to reproduce the

expansion

⟪Φ+(t1)Φ−(t2)Φ(t3)⟫ =
C(0) b

(t1 − t2)2(t3 − t1)2(t3 − t2)2

[
1 + b2

(
C(1) + C

(1)
log log |t12|

)
+ · · ·

]
,

(D.1)

where

C(0) = −16

9
, C(1) = 2 log 2− 5, C

(1)
log = −2 . (D.2)

We shall consider in turn various classes of loop diagrams contributing to (D.1) starting

with the AdS2 action (3.18). The coefficient C
(1)
log will get contributions only from diagrams

with dressed ξ propagators while C(1) will receive several types of contributions.
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Diagrams with dressed ξ propagator

The diagrams with dressed ξ propagators can be obtained from the three-point tree-level

contact diagrams by replacing one of the bulk-to-boundary ξ-propagator by its loop cor-

rected version g1-loop(t, w) in (3.39). Explicitly it can be computed as follows

(−8b)

∫
d2w g1-loop(t1,w) g1-loop(t2,w) g(t3,w)

= (−8b)
[
1+b2(2 log2−2)

]2 1

4π

(4

3

)3
∫
dtdz

z2

(
z

z2+(t−t1)2

)2+b2( z

z2+(t−t2)2

)2+b2

×
(

z

z2+(t−t3)2

)2

=−16b

9

1

|t12|2|t23|2|t31|2

[
1+b2

(
2log2− 10

3

)
−2b2 log |t12|

]
+O

(
b4
)
, (D.3)

where we used the relation (C.7) written in the form∫
dtdz

z2

3∏
i=1

( z

z2+(t−ti)2

)∆i

=

√
π

2

Γ(∆1+∆2−∆3
2 )Γ(∆2+∆3−∆1

2 )Γ(∆1+∆3−∆2
2 )Γ(∆1+∆2+∆3−1

2 )

Γ(∆1)Γ(∆2)Γ(∆3)|t12|∆1+∆2−∆3 |t23|∆2+∆3−∆1 |t31|∆3+∆1−∆2
.

(D.4)

Comparing with (D.1) we see that the overall coefficient C(0) and the logarithmic coefficient

C
(1)
log already match (D.2) while the coefficient C(1) gets the following contribution

C
(1)
1 = 2 log 2− 10

3
. (D.5)

Diagrams with non-derivative vertices

There is a set of simple diagrams which do not involve the derivative interaction vertex

ξ2(∂ξ)2 in (3.18) and thus do not require new calculations: their contributions can be

obtained from previous results in the Liouville or abelian A2 Toda theory by adjusting

combinatorial coefficients (below we indicate this by using the symbol “×”). These are:

1. Diagrams with dressed ζ propagator:

C
(1)
2 = −1

6
× 3 = −1

2
. (D.6)

2. Diagram with extra cubic vertex from the factor Q
b = 1

b2
(1 + 3 b2) in (3.14):

C
(1)
3 = 3× 1 = 3. (D.7)

3. Triangle diagrams with two possible fields in the loop:

C
(1)
4 = 2× 7

6
=

7

3
. (D.8)

4. Diagrams with a cubic and a non-derivative quartic vertex: (i) for only ζ in the loop

(one cubic ζ3 and one quartic ζ2ξ2 vertex)

C
(1)
5 = −1 , (D.9)

and with both ζ and ξ in the loop (one cubic ζξ2 and one quartic ζ2ξ2 vertices) we get

C
(1)
6 = 2× (−2) = −4. (D.10)
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Diagrams with derivative vertex ξ2(∂ξ)2

This are the diagrams involve the σ-model derivative interaction ξ2(∂ξ)2 in (3.18). There

are different types of them depending on which leg (bulk-to-bulk or bulk-to-boundary) is

acted on by the two derivatives.

Type I. The first relevant diagram is

C
(1)
7 C(0)b3 =

θ3

θ2 θ1

ξξ

∂ξ ∂ξ
w

w′ (D.11)

To evaluate it we find it convenient to use the identity in eq. (4.10) of [8], i.e.

gab∂aK̃∆1(z, t; t1) ∂bK̃∆2(z, t; t2)

= ∆1∆2

[
K̃∆1(z, t; t1)K̃∆2(z, t; t2)− 2t212K̃∆1+1(z, t; t1)K̃∆2+1(z, t; t2)

]
, (D.12)

where gab = z2δab is the AdS2 metric and K̃∆(z, t, t′) =
(

z
z2+(t−t′)2

)∆
. This allows us

to transform the expression for the above diagram into another one with ∆ = 3 external

propagators and only non-derivative interactions. Using that (here C2 = 2
3π as in (2.2))∫

d2w ∂ag(w, t1)∂ag(w, t2)g(w, t3) = (2πC2)3

∫
d2w ∂aK̃2(w, t1)∂aK̃2(w, t2)K̃2(w, t3)

= (2πC2)3

∫
d2w 4

(
K̃2(w, t1)K̃2(w′, t2)−2t212K̃3(w, t1)K̃3(w, t2)

)
K̃2(w, t3)

= 4(2πC2)3

(
3

32 |t12|2|t23|2|t31|2
−2t212

15

256 |t12|4|t23|2t31|2

)
=−2

9

1

|t12|2|t23|2|t31|2
, (D.13)

this diagram evaluates to (cf. (2.11), (C.11))∫
d2w ∂ag(w, t1)∂ag(w, t2)

1

z2
3

B(w,w3)
z3→0
=

1

8

∫
d2w ∂ag(w, t1)∂ag(w, t2)g(w, t3)

=
1

8

(
−2

9

)
1

|t12|2|t23|2t31|2
= − 1

36

1

|t12|2|t23|2t31|2
. (D.14)

As a result, its contribution to C(1) is given by

C
(1)
7 C(0)b3 = (−8b) (b2 × 2× 2) 2× 1

2

(
− 1

36

)
= −1

2
C(0)b3 → C

(1)
7 = −1

2
, (D.15)

where the factor of 2 comes from the two species of the fields in the loop and 1
2 is a

symmetry factor.
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Type II. If one derivative from ξ2(∂ξ)2 is on a bulk propagator while the other is on a

bulk-to-boundary propagator, we get the diagram

C
(1)
8 C(0)b3 =

θ3

θ2 θ1

ξ∂ξ

ξ ∂ξ
w

w′ (D.16)

It can be computed in terms of the function defined in (2.11)

B(w,w3) =

∫
d2w′

[
g(w,w′)

]2
g(w′, w3). (D.17)

Taking a derivative over wa gives

∂aB(w,w3) = 2

∫
d2w′ ∂ag(w,w′)g(w,w′)g(w′, w3). (D.18)

On the other hand, sending w3 to the boundary, we have

lim
z3→0

1

z2
3

B(w,w3) =
1

8
g(w, t3) , (D.19)

and thus ∫
d2w′ ∂ag(w,w′)g(w,w′)g(w′, w3) =

1

16
∂ag(w, t3) . (D.20)

These simple manipulations allow us to write the contribution of the above diagram as∫
d2w′ d2w ∂ag(w, t1)∂ag(w,w′)g(w,w′)g(w′, w3)g(w, t2)

=
1

16

∫
d2w ∂ag(w, t1)∂ag(w′, w3)g(w, t2). (D.21)

This is the same expression as for the diagram of Type I (cf. (D.14)) and thus we get

1

16

(
−2

9

)
1

|t12|2|t23|2t31|2
= − 1

72

1

|t12|2t23|2|t31|2
. (D.22)

As a result

C
(1)
8 C(0) b3 = (−8b) (b2 × 2× 2) × 2

(
− 1

72

)
= −1

2
C(0)b3 → C

(1)
8 = −1

2
, (D.23)

where the factor 2 comes from the two possibilities of assigning the derivative (on either

leg 1 or 2).
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Type III. When both derivatives from the σ-model vertex are on the bulk propagators

we obtain

C
(1)
9 C(0)b3 =

θ3

θ2 θ1

∂ξ∂ξ

ξ ξ
w

w′ (D.24)

The diagram requires the calculation of

B∂∂(w,w3) =

∫
d2w′ ∂ag(w,w′)∂ag(w,w′)g(w′, w3). (D.25)

Taking another derivative of (D.18) gives (� ≡ 1√
g∂

a∂a)

�B(w,w3) = 2

∫
d2w′ �g(w,w′)g(w,w′)g(w′, w3) + 2B∂∂(w,w3). (D.26)

The m2 = 2 scalar propagator in AdS2 satisfies

�g(w,w′) = 2g(w,w′)− 1
√
g
δ(2)(w,w′) . (D.27)

Using this in (D.26) the δ-function gives a contact term proportional to the propagator

at coincident points g(w,w) which we set to zero in the AdS scheme (consistent with the

AdS2 symmetry). Thus

B∂∂(w,w3) =
1

2
�B(w,w3)− 2B(w,w3). (D.28)

To compute B∂∂ as a function of the η-invariant in (2.3) we observe that

�B = η(η − 1)2∂η∂ηB + (η − 1)2∂ηB , (D.29)

where we used the relations �η = η(η − 1)2 and ∂aη∂aη = (η − 1)2, that follow from the

definition of η in (2.3). Sending w3 to the boundary, we obtain

lim
z3→0

1

z2
3

B∂∂(w,w3) = −1

8
g(w, t3). (D.30)

Finally, the above diagram thus gives

− 1

8

2

9

1

|t12|2t23|2t31|2
= − 1

36

1

|t12|2t23|2t31|2
, (D.31)

which results in the following contribution to the coefficient C(1)

C
(1)
9 C(0) b3 = (−8b) (b2 × 2× 2)× 2× 1

2

(
− 1

36

)
= −1

2
C(0) b3 → C

(1)
9 = −1

2
, (D.32)

where the factor of 2 accounts for the two possible fields in the loop and 1
2 is the symme-

try factor.
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Total result for C(1)

Summing up all the 9 contributions given above in (D.5), (D.6), (D.7), (D.8), (D.9),

(D.10), (D.15), (D.23), (D.32) we get for the total value of the coefficient C(1) in (D.1)

C(1) =
9∑
i=1

C
(1)
i = 2 log 2− 10

3
−1

2
+ 3+

7

3
− 1− 4−1

2
−1

2
−1

2
= 2 log 2− 5 , (D.33)

which is in agreement with (D.2).

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] E. D’Hoker and R. Jackiw, Space translation breaking and compactification in the Liouville

theory, Phys. Rev. Lett. 50 (1983) 1719 [INSPIRE].

[2] E. D’Hoker, D.Z. Freedman and R. Jackiw, SO(2, 1) Invariant Quantization of the Liouville

Theory, Phys. Rev. D 28 (1983) 2583 [INSPIRE].

[3] T. Inami and H. Ooguri, Dynamical breakdown of sypersymmetry in two-dimensional Anti de

Sitter space, Nucl. Phys. B 273 (1986) 487 [INSPIRE].

[4] C.G. Callan Jr. and F. Wilczek, Iinfrared behaviour at negative curvature, Nucl. Phys. B 340

(1990) 366 [INSPIRE].

[5] A.B. Zamolodchikov and A.B. Zamolodchikov, Liouville field theory on a pseudosphere,

hep-th/0101152 [INSPIRE].

[6] D. Carmi, L. Di Pietro and S. Komatsu, A Study of Quantum Field Theories in AdS at

Finite Coupling, JHEP 01 (2019) 200 [arXiv:1810.04185] [INSPIRE].

[7] N. Drukker and S. Kawamoto, Small deformations of supersymmetric Wilson loops and open

spin-chains, JHEP 07 (2006) 024 [hep-th/0604124] [INSPIRE].

[8] S. Giombi, R. Roiban and A.A. Tseytlin, Half-BPS Wilson loop and AdS2/CFT1, Nucl.

Phys. B 922 (2017) 499 [arXiv:1706.00756] [INSPIRE].

[9] M. Beccaria and A.A. Tseytlin, On non-supersymmetric generalizations of the

Wilson-Maldacena loops in N = 4 SYM, Nucl. Phys. B 934 (2018) 466 [arXiv:1804.02179]

[INSPIRE].

[10] M. Beccaria, S. Giombi and A.A. Tseytlin, Correlators on non-supersymmetric Wilson line

in N = 4 SYM and AdS2/CFT1, JHEP 05 (2019) 122 [arXiv:1903.04365] [INSPIRE].

[11] S. Giombi, C. Sleight and M. Taronna, Spinning AdS Loop Diagrams: Two Point Functions,

JHEP 06 (2018) 030 [arXiv:1708.08404] [INSPIRE].

[12] I. Bertan, I. Sachs and E.D. Skvortsov, Quantum φ4 Theory in AdS4 and its CFT Dual,

JHEP 02 (2019) 099 [arXiv:1810.00907] [INSPIRE].

[13] E.Y. Yuan, Simplicity in AdS Perturbative Dynamics, arXiv:1801.07283 [INSPIRE].

[14] J. Liu, E. Perlmutter, V. Rosenhaus and D. Simmons-Duffin, d-dimensional SYK, AdS

Loops, and 6j Symbols, JHEP 03 (2019) 052 [arXiv:1808.00612] [INSPIRE].

– 38 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1103/PhysRevLett.50.1719
https://inspirehep.net/search?p=find+J+%22Phys.Rev.Lett.,50,1719%22
https://doi.org/10.1103/PhysRevD.28.2583
https://inspirehep.net/search?p=find+J+%22Phys.Rev.,D28,2583%22
https://doi.org/10.1016/0550-3213(86)90255-5
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B273,487%22
https://doi.org/10.1016/0550-3213(90)90451-I
https://doi.org/10.1016/0550-3213(90)90451-I
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B340,366%22
https://arxiv.org/abs/hep-th/0101152
https://inspirehep.net/search?p=find+EPRINT+hep-th/0101152
https://doi.org/10.1007/JHEP01(2019)200
https://arxiv.org/abs/1810.04185
https://inspirehep.net/search?p=find+EPRINT+arXiv:1810.04185
https://doi.org/10.1088/1126-6708/2006/07/024
https://arxiv.org/abs/hep-th/0604124
https://inspirehep.net/search?p=find+EPRINT+hep-th/0604124
https://doi.org/10.1016/j.nuclphysb.2017.07.004
https://doi.org/10.1016/j.nuclphysb.2017.07.004
https://arxiv.org/abs/1706.00756
https://inspirehep.net/search?p=find+EPRINT+arXiv:1706.00756
https://doi.org/10.1016/j.nuclphysb.2018.07.019
https://arxiv.org/abs/1804.02179
https://inspirehep.net/search?p=find+EPRINT+arXiv:1804.02179
https://doi.org/10.1007/JHEP05(2019)122
https://arxiv.org/abs/1903.04365
https://inspirehep.net/search?p=find+EPRINT+arXiv:1903.04365
https://doi.org/10.1007/JHEP06(2018)030
https://arxiv.org/abs/1708.08404
https://inspirehep.net/search?p=find+EPRINT+arXiv:1708.08404
https://doi.org/10.1007/JHEP02(2019)099
https://arxiv.org/abs/1810.00907
https://inspirehep.net/search?p=find+EPRINT+arXiv:1810.00907
https://arxiv.org/abs/1801.07283
https://inspirehep.net/search?p=find+EPRINT+arXiv:1801.07283
https://doi.org/10.1007/JHEP03(2019)052
https://arxiv.org/abs/1808.00612
https://inspirehep.net/search?p=find+EPRINT+arXiv:1808.00612


J
H
E
P
0
9
(
2
0
1
9
)
0
3
6

[15] H. Ouyang, Holographic four-point functions in Toda field theories in AdS2, JHEP 04 (2019)

159 [arXiv:1902.10536] [INSPIRE].

[16] M. Beccaria and A.A. Tseytlin, On boundary correlators in Liouville theory on AdS2, JHEP

07 (2019) 008 [arXiv:1904.12753] [INSPIRE].

[17] M. Beccaria and G. Landolfi, Toda theory in AdS2 and WAn-algebra structure of boundary

correlators, arXiv:1906.06485 [INSPIRE].

[18] A. Strominger, AdS2 quantum gravity and string theory, JHEP 01 (1999) 007

[hep-th/9809027] [INSPIRE].

[19] M. Hotta, Asymptotic isometry and two-dimensional anti-de Sitter gravity, gr-qc/9809035

[INSPIRE].

[20] M. Cadoni and S. Mignemi, Asymptotic symmetries of AdS2 and conformal group in d = 1,

Nucl. Phys. B 557 (1999) 165 [hep-th/9902040] [INSPIRE].

[21] A. Almheiri and J. Polchinski, Models of AdS2 backreaction and holography, JHEP 11 (2015)

014 [arXiv:1402.6334] [INSPIRE].

[22] K. Jensen, Chaos in AdS2 Holography, Phys. Rev. Lett. 117 (2016) 111601

[arXiv:1605.06098] [INSPIRE].

[23] J. Maldacena, D. Stanford and Z. Yang, Conformal symmetry and its breaking in two

dimensional Nearly Anti-de-Sitter space, PTEP 2016 (2016) 12C104 [arXiv:1606.01857]

[INSPIRE].
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