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Nonlocal charges from marginal deformations of 2D CFTs:
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In this paper we study generic features of nonlocal charges obtained from marginal deformations of
Wess-Zumino-Novikov-Witten models. Using free-field representations of CFTs based on simply laced Lie
algebras, one can use simple arguments to build the nonlocal charges; but for more general Lie algebras
these methods are not strong enough to be generally used. We propose a brute force calculation where the
nonlocality is associated to a new Lie algebra valued field, and from this prescription we impose several
constraints on the algebra of nonlocal charges. Possible applications for Yang-Baxter and holographic TT̄
and TJ̄ deformations are also discussed.
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I. INTRODUCTION AND STATEMENT
OF THE PROBLEM

A. Marginal deformations

Integrable deformations of conformal theories form a
powerful method to probe physics near a fixed point theory.
When the deformation is exactly marginal, we still have, by
definition, the constraints imposed by conformal sym-
metries. When one can additionally consider supersym-
metry, gauge symmetry and so on, the final deformed
theory can still be manageable from the computational
viewpoint. On top of that, integrability may also be taken
into account, and in that case it is possible to compute the
S-matrix, correlation functions and other observables with a
certain degree of generality, although the integrable
deformed models are not, obviously, completely tamed.
Deformations of the boundary CFTd−1 correspond, from

the AdS/CFT correspondence viewpoint [1], to deforma-
tions of the dual AdSd ×M10−d string solution. When the
CFTmodification is definedby an exactlymarginal operator,
the AdS part of the string background remains unchanged,
which means that only the internal manifoldMd−10 suffers
modifications, as expected. On the other hand, it might
happen that the boundary CFTs are deformed by (margin-
ally) relevant or irrelevant operators, and it implies that the
deformations necessarily modify the AdSd space.

We are obviously interested in all these situations.
Exactly marginal deformation is a necessary tool to classify
CFTs and understand the geometrical and physical aspects
of the moduli spaces. In two dimensions (2D), it is the first
step towards a complete classification of the string theory
solutions which may ultimately describe the Universe we
live in. But we also need to consider the possibility that
marginal deformations also receive quantum corrections
and break the conformal symmetries. Therefore it is
mandatory to develop methods to study the resulting
symmetries when we leave the fixed point theory, and it
means that we need to consider relevant deformations of
CFTs. The resulting massive theories are quite generally
harder than the undeformed models, but one might hope for
some progress towards their understanding if we assume
integrable deformations of the CFTs.
One remarkable example of an exactly marginal pertur-

bation in four dimensions is given by the Leigh-Strassler
deformations of N ¼ 4 Super Yang-Mills [2], which give
conformal theories withN ¼ 1 supersymmetry. Within the
AdS/CFT context [1], the four-dimensional Leigh-Strassler
theories provide examples of CFTs with corresponding
AdS5 ×M5 dual solutions obtained as deformations of
the AdS5 × S5 solution. The gravity dual to the Leigh-
Strassler theories are not known in general, but for real
β-deformations the dual supergravity solution has been built
through sequence of a T-duality followed by a shift, and a
second T-duality (TsT-transformation) of the AdS5 × S5

solution, while for complex β-deformations we use either
an SLð3;RÞ transformation or an STsTS [3]; see also [4,5].
Moreover, the Lax pairs of the TsT-transformed solu-

tions have been found in [5], and these objects settle the
classical integrability of the deformed models. Interestingly

*thgr.araujo@gmail.com

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 101, 025008 (2020)

2470-0010=2020=101(2)=025008(27) 025008-1 Published by the American Physical Society

https://orcid.org/0000-0001-5792-2530
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.101.025008&domain=pdf&date_stamp=2020-01-15
https://doi.org/10.1103/PhysRevD.101.025008
https://doi.org/10.1103/PhysRevD.101.025008
https://doi.org/10.1103/PhysRevD.101.025008
https://doi.org/10.1103/PhysRevD.101.025008
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


enough, the TsT transformation is just one example of a
bigger and more powerful set of integrable deformations,
namely the so-called Yang-Baxter deformations [6–10].
Associating these new integrable backgrounds to their
elusive holographic dual, one can learn a great deal about
the surprising mathematical and physical aspects of a vast
collection of quantum field theories; see [11–42] for a
nonexhaustive list of references.

B. Nonlocal charges from marginal deformations

Two-dimensional theories are of great interest for string
theorists and statistical physicists. Fortunately enough,
conformal symmetry and integrability in two dimensions
are much more restrictive thanks to holomorphicity proper-
ties. As one important example of the power of two-
dimensional theories for our present work, there is a
theorem which determines the necessary and sufficient
conditions for exactly marginality of 2D CFT deformations
given by a product of holomorphic and antiholomorphic
currents, namely Oð1;1Þ ¼ JðzÞJ̄ðz̄Þ [43,44]; see also [45].
Additionally, it has been argued that this class of marginal
deformations can be written as Oðd; dÞ transformations
[41,42,45–51]. In this respect, the authors [42] extended
important results on integrable exactly marginal deforma-
tions of two-dimensional CFTs using Oðd; dÞ deforma-
tions, and they have also shown how to build the nonlocal
Lax pairs of the deformed models which guarantee their
classical integrability.
We should remark that integrable theories are often

defined in terms of commuting local conserved charges,
but for some special models it is known that integrability
can be equivalently formulated in terms of noncommuting
local and nonlocal charges, and it is the most important
concept behind the Yangians. As for the very definition of
integrability, there exist good reasons to study the presence
of nonlocal charges in local field theories, but it is definitely
not limited to this aspect. In other words, nonlocal charges
also have a prominent role in condensed matter theories, in
anyonic and parafermionic statistics, superselection sectors
and in the axiomatization of quantum field theories. As we
see in the text, one may think of these nonlocal objects as
analogues of the ’t Hooft operators; consequently, a better
terminology for these nonlocal charges would be disorder
operators.
The analogy with the ’t Hooft operator becomes even

more conspicuous with the observation by Ricci et al. [52]
that has shown how local (Noether) charges and nonlocal
charges are exchanged by T-duality. This result is similar to
thewell-known fact thatWilson loops and ’t Hooft operators
are exchanged by Hodge duality. Notwithstanding the
limitation of this simple analogy, this idea underpins the
current work at the most fundamental level: Wewant to find
the algebra of a collection of disorder operators obtained
from deformation. Additionally, as the authors of [42]
pointed out, nonlocality of the Lax pair should not be

considered as a surprise since these charges induced by the
nonlocal Lax pairs may be thought of as a result of the
stringy aspects of their approach. In otherwords, it should be
considered as a benefit rather than a drawback of this
analysis.

C. Motivation

The scrutiny of these nonlocal charges cannot be thought
of as a simple refinement of quantum field theories. In the
way we understand these objects nowadays, they suddenly
appear in different corners of physics, but there is no
complete understanding of their general properties what-
soever. On the other hand, the argument that we are
deepening our comprehension of field theories could be
used to justify a very broad variety of research lines. In fact,
the present paper was driven by a series of pragmatic
questions. First of all, as we said before, the authors of
[52] have shown howT-duality exchanges local and nonlocal
charges. Although their analysis was inspired by one specific
scenario, the original AdS5=CFT4 duality, onemay ask if it is
possible to devise a situation where all local charges, and
consequently their algebras, are dualized (or deformed) to
nonlocal charges with a consistent corresponding algebra.
Furthermore, classical nonlocal charges have also

appeared in the Yang-Baxter literature, see for example
Frolov [5] in his analysis of the integrability aspects of the
Maldacena-Lunin background. It has also been suggested
that the resulting symmetries of Yang-Baxter deformed
models are obtained as Drinfel’d twists [10,19,31,32,53–55]
of the original symmetries. Hence, one may also expect the
same twists extended to the Yangian structure of the
N ¼ 4 SYM [56–60]. In other words, when we have an
integrable system with known Yangian symmetry, one may
naturally expect that the resulting deformed model is also
endowed with a Yangian obtained from the twist of the
original one.
These two aspects show how our methods to build

nonlocal charges strongly rely on the integrability ofmodels.
Quite remarkably, Matsumoto and Yoshida [10,53] may
teach us howwecan leave the integrable systems realm. They
have also shown that the deformed currents can bewritten as
nonlocal gauge transformations of local currents. One
important aspect of this particular result is that it closes
the question on the existence of these nonlocal objects after
Yang-Baxter deformations: they are quite ubiquitous.
Consequently, once again we may ask ourselves if it is
possible to consider a model (not necessarily integrable) so
severely deformed that all global conserved charges are
converted into nonlocal ones.

D. Summary of the paper

Therefore we have some distinct but complementary
problems summarized as follows. Given a generic, not
necessarily integrable, deformation of the CFT, we would
like to know if, and how, one can define the nonlocal
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charges of the deformed theory in terms of the undeformed
local ones. This babe problem is summarized in the case (b)
in the table below. Observe that knowing how the nonlocal
charges of the original theory change under deformation is
an important step if we want to know how the Yangians are
deformed; for that reason it would be of great interest to
understand all of the following four maps.

(a) local ↦ local (b) local ↦ nonlocal

(c) nonlocal ↦
?

local (d) nonlocal ↦
?

nonlocal

As for the existence of these charges, inspired by the
ideas of Bernard and LeClair [61], briefly described in
Sec. II C, we propose a very economical approach to define
nonlocality in Sec. III A via free field representations of the
CFTs. As we see, an important consequence of this
construction is that the CFT Hilbert space structure is
preserved. Sadly enough, if the symmetry group is suffi-
ciently large the calculations become cumbersome very
fast, and it is obviously an unavoidable drawback of this
approach.
Inspired by the same methods of [61] and by the defor-

mations via nonlocal gauge transformations of Matsumoto
and Yoshida [10,53], we try a daring proposal to describe the
nonlocal currents in Sec. III B.We conjecture the existence of
a ĝk-algebra valued field which defines the massive theory
obtained by deformations. The CFT limit of this new field is
given by the sum of left and right currents which define the
Kac-Moody algebras ĝL × ĝR. More specifically, the field
can be written asA ¼ Lþ R̄ and satisfies our beloved free-
field equation of motion ∂∂̄A ¼ 0 at the fixed point. In other
words, A is fairly trivial as an object in the CFT, but it may
become a fundamental dynamical object in the deformed
theory, and understanding its role for nonlocal charges is part
of our proposal in Sec. III B.
Additionally, this second brute force proposal is much

more general and allows us to understand the Hilbert space
structure of the deformed theory. As a matter of fact, the
Hilbert space decomposition of the CFT is not generally
preserved under relevant deformations, and imposing this
decomposition, see for example in [62], seems to be a bold
conjecture in the current state of affairs. From the technical
point of view, it means that the deformed current operator
product expansions (OPEs) have nontrivial structures and
that the usual decomposition between holomorphic and and
antiholomorphic sectors does not exist if the deformation is
not exactly marginal. In Sec. IV we start developing some
methods to study these OPEs, and the algebras generated
by the charges.
In Sec. V we try to see how these ideas may be applied

(in spite of the current limitations) to Yang-Baxter defor-
mations, and in the TT̄ and TJ̄ deformations [63–67]. As
we said before, the ideas concerning Yang-Baxter defor-
mations are one of the reasons behind the present paper, but
the use of this technology in a different context may appear

as a good surprise. First of all, at the leading order, the
operator TT̄ is built from the holomorphic and antiholo-
morphic terms of the stress-energy tensor, while TJ̄ comes
from the holomorphic part of the energy-momentum tensor,
but also needs a Uð1Þ current J̄ðz̄Þ. Consequently, these
deformations are irrelevant from the renormalization group
(RG) viewpoint with conformal dimensions (2,2) and (2,1),
respectively, and many interesting aspects of these trans-
formations have been addressed, for example, [68–77].
Using the AdS/CFT correspondence in our favor, one can

easily notice that given an irrelevant deformation of the
boundary (or holographic) CFT, the string background
should suffer a deformation as well. Evidently, the strings
propagating in this new deformed background are described
by a Worldsheet CFT. Consequently, the counterpart of the
irrelevant deformation of the holographic CFT must be
marginal from the Worldsheet perspective. In this respect,
the authors of [78–83] have shown how we can construct
certain exactly marginal deformations of the Worldsheet
CFT that describe the most important features—rather than
all the features—of the TT̄ and TJ̄ deformations of the
boundary CFT. Unfortunately, the methods we use here do
not seem to be strong enough to be appliedwithin the context
of exactly marginal deformations, but we still can try to
understand some aspects of these deformations.
It is well documented that nonlocality is also associated

to nontrivial braiding relations and disorder operators, and
that it is also important in the study of anyons and
parafermions [60,84–87]. The message we want to leave
is that nonlocal structures are poorly understood even in the
easiest cases where they are present. In this paper we
address some problems, and propose some methods to
study them.

II. NONLOCAL CHARGES FOR WZNW MODELS

As we have just explained, the construction of nonlocal
charges is a difficult problem to handle, and in order to
study them in full generality, it is necessary to develop new
techniques first. Evidently there are well-known results that
can be used as guiding principles. This section intends to be
a review of these well-known results, and I also hope to
bring together some calculations scattered in the literature.

A. Nonlocal charges

We start with the action for a σ-model based on the Lie
algebras g given by

S ¼ S0 þ SWZ; ð2:1aÞ
where we have the respective terms

S0 ¼
k
4π

Z
∂B

d2σTrð∂μg−1∂μgÞ;

SWZ ¼ −
αk
6π

Z
B
d3σ̃ϵαβγTrðg−1∂αgg−1∂βgg−1∂γgÞ; ð2:1bÞ
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with α being the coupling constant and k the level of the
theory. When the running constant reaches the value α ¼ 1
we have the conformal fixed point described by the Wess-
Zumino-Novikov-Witten (WZNW) model. Once we con-
sider the current

jμ ¼ g−1∂μg; ð2:2Þ

and the condition ∂μg−1 ¼ −g−1∂μgg−1, the equations of
motion can be written as

∂μRμ ≡ ∂μjμ þ αϵμν∂μjν ¼ 0; ð2:3Þ

with the conventions ϵ01 ¼ −ϵ10 ¼ 1. Similarly, we could
consider the fields j̃μ ¼ ∂μgg−1 with corresponding cur-
rents Lμ ¼ j̃μ − αϵμνj̃ν.
At the risk of repeating ourselves, the relevant informa-

tion about these models is carried by the conserved currents

Rμðt; xÞ ¼ jμðt; xÞ þ αϵμνjνðt; xÞ;
Lμðt; xÞ ¼ j̃μðt; xÞ − αϵμνj̃νðt; xÞ; ð2:4Þ

where α is a running constant whose value α ¼ 1 gives a
fixed point in the RG flow. It has been known for quite
some time that these are the basic ingredients to construct
the nonlocal currents of the theory [88–93]. Let us write
them as

Kμðt; xÞ ¼ ð1− α2Þϵμνjνðt; xÞ
zfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflffl{≡Kð0Þ

þ 1

2

�
Rμðt; yÞ;

Z
Cx

⋆Rðt0; yÞ
�zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{≡Kð1Þ

μ

ð2:5aÞ

and

Iμðt; xÞ ¼ ð1− α2Þϵμνj̃νðt; xÞ
zfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflffl{≡I ð0Þ

μ

þ 1

2

�
Lμðt; xÞ;

Z
Cx

⋆Lðt0; yÞ
�zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{≡I ð1Þ

μ

;

ð2:5bÞ

where the nonlocality is governed by the line integral along
any curve Cx ∈ R2 connecting the points fðt;−∞Þ; ðt; xÞg,
and it is parametrized by ðt0; yÞ. Observe that in the CFT
limit only the commutators survive.
Although not strictly necessary for our future consid-

erations, let us for completeness verify the conservation of
the nonlocal currents (2.5a) and (2.5b). Using that
⋆R ¼ −ϵμνRμdxν, we have

∂μKμðt; xÞ ¼ ð1 − α2Þϵμν∂μjνðt; xÞ

þ 1

2

�
Rμðt; xÞ;

Z
Cx

∂μ⋆Rðt0; yÞ
�
; ð2:6Þ

where we have used that ∂μRμ ¼ 0. We can now calculate
the two pieces separately. The first term is

∂μKð0Þ
μ ¼ ð1 − α2Þϵμν∂μjν ¼ ð1 − α2Þð∂0j1 − ∂1j0Þ

¼ −ð1 − α2Þ½j0; j1�; ð2:7Þ

where we have used the identity ∂0j1 − ∂1j0 þ ½j0; j1� ¼ 0,
while the second term gives

∂μKð1Þ
μ ¼ 2ð1 − α2Þ½j0; j1�: ð2:8Þ

Putting all these facts together we see that ∂μKμðt; xÞ ¼ 0,
which means that the nonlocal current (2.5a) is conserved.
Evidently one can repeat the analysis for (2.5b) to show that
∂μIμðt; xÞ ¼ 0. The important aspect of this analysis is that
these conservation laws are independent on the value of the
running coupling α; therefore, these objects can be defined
for any nonlinear sigma model, and not only in the fixed
point α ¼ 1.
At the conformal point we can write the currents in a

particularly useful form. Let us start seeing that for α ¼ 1
we have

Rμ ¼ jμ þ ϵμνjν; ð2:9aÞ

which essentially means that

R≡R0 ¼ −R1 where
�
R0 ¼ j0 − j1
R1 ¼ −j0 þ j1

: ð2:9bÞ

Using the light-cone coordinates z ¼ tþ x and z̄ ¼ t − x,
one can show that the above current satisfies

∂R̄ ¼ 0; where R̄ ¼ g−1∂̄g: ð2:10Þ

This equation clearly implies the antiholomorphicity
R̄ ¼ R̄ðz̄Þ. Moreover, one can easily show that

∂̄R ¼ −½R̄;R�; ð2:11Þ

and it readily implies the flatness condition

∂̄R − ∂R̄þ ½R̄;R� ¼ 0: ð2:12Þ

On similar grounds we have L ¼ ∂gg−1, and that implies
the relation ∂̄L ¼ 0 and the holomorphicity L ¼ LðzÞ. As
it is well known, these currents define the Kac-Moody
algebras which emerge from the OPEs
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LaðzÞLbðwÞ ∼ kδab

ðz − wÞ2 þ
ifabc
z − w

LcðwÞ; ð2:13aÞ

R̄aðz̄ÞR̄bðw̄Þ ∼ kδab

ðz̄ − w̄Þ2 þ
ifabc
z̄ − w̄

R̄cðw̄Þ: ð2:13bÞ

Oncewe define the nonlocal charges (2.5a) and (2.5b), we
need to find a good prescription to describe their quantum
counterparts. Using the results of [61,89,90,94], a useful
prescription is given by the point-splitting regularization

½jμðxþ δÞ; jνðxÞ� ¼ Cρ
μνðδÞjρðxÞ þDρλ

μνðδÞ∂ρjλðxÞ;
½j̃μðxþ δÞ; j̃νðxÞ� ¼ C̃ρ

μνðδÞj̃ρðxÞ þ D̃ρλ
μνðδÞ∂ρj̃λðxÞ; ð2:14Þ

where the OPE coefficients C and D can be obtained from
the conservation laws and additional physical constraints,
such as the CPT theorem and locality [61,89,90,94].
Roughly speaking, in the next section we see that in order
to define nonlocal conserved currents for the deformed
models, we need to solve a system of nonlinear coupled
differential equations, which is difficult to solve. On the
other hand, we can obtain some intuition on the algebra
defined by these currents using an expansion inspired by
(2.14) and imposing the conservation law and appropriate
physical conditions.
At any rate, it is well known that the quantized currents

are defined as

Kμðt; xÞ ¼ lim
δ→0þ

�
ð1 − α2ÞZðδÞϵμνjνðt; xÞ

þ 1

2

�
Rμðt; xÞ;

Z
Cx

⋆Rðt0; yjδÞ
��

Iμðt; xÞ ¼ lim
δ→0þ

�
ð1 − α2ÞϵμνZ̃ðδÞj̃νðt; xÞ

þ 1

2

�
Lμðt; xÞ;

Z
Cx

⋆Lðt0; yjδÞ
��

; ð2:15Þ

where Rðt0; yjδÞ and Lðt0; yjδÞ are written in terms of the
point-splitting regularization (2.14). Additionally, the coef-
ficients ZðδÞ and Z̃ðδÞ are multiplicative counterterms.
In conclusion, we have the following situations:
(i) In a principal chiral model point, α ¼ 0, we can

easily build our nonlocal charges and therefore, our
Yangian symmetry when the Wess-Zumino term
goes to 0 [60].

(ii) It is known that there are no anomalies in the
renormalized currents [89,90], and that the corre-
sponding quantum nonlocal charges are preserved in
a very straightforward manner. These objects gen-
erate the Yangian symmetry YLðGÞ × YRðGÞ.

(iii) The perturbed theory is evidently harder to be
analyzed, but there is at least one situation where
the analysis is straightforward, namely, when the

deformed theory is described by a sigma model. In
other words, if the deformed theory is another sigma
model based on the Lie algebra h ⊆ g and α ≠ 1, the
analysis we performed above is easily applied. This
situation is, as one may imagine, very unique and
demands a combination of factors.

In the case where we do not know if the deformed theory
is described by a sigma model, the method above is useless
and we need to develop other techniques to build our
nonlocal charges.

B. Marginally relevant deformations

We want to consider perturbations of conformal field
theory of the form

S ¼ SCFT þ η

Z
d2xOðΔ;Δ̄ÞðxÞ; ð2:16Þ

where OðΔ;Δ̄ÞðxÞ is an operator of conformal dimension
ðΔ; Δ̄Þ. When our CFT is defined in the IR region, one may
consider that the perturbation operator above is relevant,
(Δ < 1, Δ̄ < 1), which essentially means that it is a small
perturbation in the UV limit, but becomes large in the
infrared region. For spinless fields we have Δ ¼ Δ̄, and it
naturally implies that the coupling η has conformal dimen-
sions (1 − Δ, 1 − Δ).
Remember that we are in a quantum theory; therefore the

expressions below are defined inside correlation functions,
and it ultimately means that everything is properly renor-
malized [95]. It is important to keep this point in mind since
we consider perturbations which are classically marginal
but that can have anomalous dimensions. These are the
marginally relevant deformations that play a fundamental
role in the present work. In summary, our perturbations are
of the form

δS ¼ η

Z
d2xOð1;1ÞðxÞ; ð2:17aÞ

or more specifically, we consider deformations generated
by a current-current operator

δS ¼ η

Z
d2xðjð1;0Þj̄ð0;1ÞÞðxÞ: ð2:17bÞ

In the case of marginally relevant deformations, the
coupling η receives quantum corrections and has dimen-
sions

½η� ≃ ðδðη0Þ; δðη0ÞÞ; ð2:18Þ

where η0 is the bare coupling. This deformation ismarginally
relevant provided 0 < δ < 1, and in that particular case we
can try to understand the perturbed theory using the well-
established techniques of Zamolodchikov et al. [61,62].
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The hallmark of two-dimensional conformal field theo-
ries is the existence of a traceless and conserved stress-
energy tensor,

Tzz̄ ¼ 0; ∂̄TðzÞ ¼ 0; ∂T̄ðz̄Þ ¼ 0: ð2:19Þ

Moreover, factorization of (unitary) CFTs implies that any
field TðkÞ of conformal weight ðh; 0Þ, where k just enu-
merates these fields, satisfies the holomorphicity condition

∂̄TðkÞ ¼ 0: ð2:20Þ
Once we perturb the theory, we should not expect these two
distinctive properties unless the perturbation is given by an
exactly (or truly) marginal operator. Quite generally, we
have a relation of the form

∂̄TðkÞðz; z̄Þ ¼ ∂ΘðkÞðz; z̄Þ≡ λRðkÞ; ð2:21Þ
where the stress-energy tensor occurs for, say, k ¼ 1, and
the nondiagonal element of the symmetric stress-energy
tensor is Θð1Þðz; z̄Þ. Moreover, we have assumed that only
terms of order OðλÞ contribute to this equation. For further
details, including the notation, we refer to the original
paper [62].
Zamolodchikov has also shown that given perturbations

of the form (2.17a), the corrections for relevant deforma-
tions are given by the equations

∂̄TðkÞ
sþ1ðz; z̄Þ ¼

η

2πi

I
dwOðw; z̄ÞTðkÞ

sþ1ðzÞ;

∂T̄ðkÞ
sþ1ðz; z̄Þ ¼

η

2πi

I
dw̄Oðz; w̄ÞT̄ðkÞ

sþ1ðz̄Þ; ð2:22Þ

whereO≡Oð1;1Þ and s is an additional index that labels the
spin; therefore, the stress-energy tensor would correspond
to ðk; sÞ ¼ ð1; 1Þ. We refer to these formulas as the
Zamolodchikov’s equations, and they play a fundamental
role in our discussion.

C. Sine-Gordon and SU(2) WZNW at level k= 1

The construction of nonlocal charges from marginal
deformations of WZNW models has been partly addressed
in [61] from a very different point of view. Consider the
sine-Gordon model

S ¼ 1

4π

Z
d2zð∂Φ∂̄Φþ 4λ∶ cosðβ̂ΦÞ∶Þ; ð2:23Þ

where the interaction term 4λ∶ cosðβ̂ΦÞ is treated as a
perturbation of the free-field theory. When the parameter
assumes the value β̂ ¼ ffiffiffi

2
p

, the perturbation is marginal and
it can be described as a current-current deformation of the
SUð2Þ1 WZNW model. Therefore, the sine-Gordon model
can be described as

S¼Sk¼1
SUð2Þ þ

λ

2π

Z
d2zðLþR̄−þL−R̄þþgL0R̄0Þ; ð2:24Þ

where g breaks the SUð2Þ1 symmetry defined by the OPEs

L0ðzÞL0ðwÞ ∼ 1

2ðz − wÞ2 ;

L0ðzÞL�ðwÞ ∼� L�ðwÞ
ðz − wÞ ;

LþðzÞL−ðwÞ ∼� 1

ðz − wÞ2 þ
2L0ðwÞ
ðz − wÞ ; ð2:25Þ

and similarly for the right-moving currents R̄.
For the free boson theory, it is well known that we can

write the field Φðz; z̄Þ as

Φðz; z̄Þ ¼ ϕðzÞ þ ϕ̄ðz̄Þ; hϕðzÞϕðwÞi ¼ − lnðz − wÞ;
ð2:26Þ

with primary fields VαðzÞ ¼ ∶eiαϕðzÞ∶ of weight Δ ¼ α2=2.
Evidently, it is easy to see that V� ffiffi

2
p ðzÞ≡ L�ðzÞ have

conformal weight 1. Moreover, the vertex operators VαðzÞ
satisfy nontrivial braiding relations, and using this fact
Bernard and LeClair studied the quantum group structure
of the perturbed theory [61]. In the free boson representa-
tion we have

L0ðzÞ ¼ iffiffiffi
2

p ∂ϕðzÞ; L�ðzÞ ¼ ∶e�i
ffiffi
2

p
ϕðzÞ∶: ð2:27Þ

The field ϕðt; xÞ is no longer holomorphic once we
perturb the theory, but in the special case where the
decomposition of Φðx; tÞ is preserved, we can write

ϕðt; xÞ ¼ 1

2

�
Φðx; tÞ þ

Z
x

−∞
dy∂tΦðy; tÞ

�

ϕ̄ðt; xÞ ¼ 1

2

�
Φðx; tÞ −

Z
x

−∞
dy∂tΦðy; tÞ

�
; ð2:28Þ

where these formulas can be verified from the conditions
∂̄ϕðzÞ ¼ ∂ϕ̄ðz̄Þ ¼ 0 that are satisfied at the conformal fixed
point. Nonlocality is a consequence of the integral in
ð−∞; xÞ above. The most immediate consequence of this
condition is the existence of equal-time braiding relations

Jaμðt; xÞJbνðt; yÞ ¼ Rab
cdJ

c
νðt; xÞJdμðt; yÞ y < x: ð2:29Þ

Moreover, one can easily verify that the matrix R satisfies
the quantum Yang-Baxter equation. One can think of these
braidings as topological obstructions when we move a
disorder operator as in Fig. 1. As a matter of fact, the
terminology disorder operator is much more appropriate for
the objects we are considering, and it would avoid possible
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confusions that the term nonlocal could bring, especially
when we are in fact studying a local quantum field theory.
In any case, we continue using the standard terminology.
Nonlocal currents in the sine-Gordon theory, the

deformed SUð2Þ1 model, are ðL�ðzÞ;H�ðzÞÞ, where L�
are now defined in terms of the fields (2.28). The explicit
expressions for H� have been written in [61], and it is

immediate to verify thatH�ðzÞ ¼λ→0
0. These currents satisfy

∂̄L� ¼ ∂H� and there are, evidently, the corresponding
expressions for the antiholomorphic sector, namely
∂R̄� ¼ ∂̄H̄�. The nonlocal charges are

Q� ¼ 1

2πi

�Z
dzL� þ

Z
dz̄H�

�

Q̄� ¼ 1

2πi

�Z
dz̄R̄� þ

Z
dzH̄�

�
: ð2:30Þ

Putting all these facts together, Bernard and LeClair have
shown that the deformed algebra of nonlocal charges is

given by dslð2Þq, where the deformation parameter is simply

q ¼ expð− ffiffiffi
2

p
πiÞ. One should also observe that the defor-

mation parameter of the q-deformed algebra dslð2Þq does
not depend on the deformation parameter η.

III. NONLOCAL OPERATORS FROM
VERTEX OPERATORS

How could we generalize the methods that were useful in
the SUð2Þ1 WZNW? Evidently the answer to this problem
is not straightforward; otherwise it would already have
been answered. We address it in the present section, and, in
particular, we discuss some ideas about a complete deve-
lopment of new techniques to build and unveil the algebra
of nonlocal charges in more general WZNWmodels. In the
absence of a definite answer, now we discuss two different
directions.

A. Nonlocal charges from free-field representations

Our initial proposal is to use the free-field representation
for WZNWmodels as a starting point of nonlocality. This is
a very direct generalization of what has been discussed by
Bernard and Le Clair, and consequently the applicability is
extremely limited [61], as we show now. Given a simply
laced Lie algebra g, the free-field representation says that for
all simple roots we have a corresponding free boson ϕi with

hϕiðzÞϕjðwÞi ∼ −δij lnðz − wÞ; ð3:1Þ

and with currents

HjðzÞ ¼ i∂ϕjðzÞ; ẼαðzÞ ¼ eiα·ϕðzÞ; ð3:2Þ

where α · ϕðzÞ ¼ P
j α

jϕjðzÞ. For further details see our
favorite CFT books [96,97].
From these equations and from the expressions (2.28),

we can immediately generalize what Bernard and LeClair
have done for the suð2Þ1 model in [61]. In other words, we
have a simple collection of expressions of the form

ϕiðt; xÞ ¼ 1

2

�
Φiðx; tÞ þ

Z
x

−∞
dy∂tΦiðy; tÞ

�

ϕ̄iðt; xÞ ¼ 1

2

�
Φiðx; tÞ −

Z
x

−∞
dy∂tΦiðy; tÞ

�
; ð3:3Þ

one for each simple root. Consequently, we also need to
write down a list of OPEs for the currents and for the vertex
operators of conformal weight Δ ¼ 1. Furthermore, the
explicit expressions for the deformed currents are strongly
dependent on the specific perturbation we are interested in,
but there is no challenge in writing down the explicit
formulas once we fix the operator which defines the
perturbation. It would also be a straightforward, but
laborious, exercise to determine the deformation that gives

the quantum group dslðnÞq as residual symmetries.
For nonsimply laced Lie algebras, the presence of short

roots makes the situation a bit harder, but it may be possible
to apply similar ideas. For instance, operators of the form
expð�iα · ϕÞ have conformal dimension 1=2, and in order
to transform them into currents, we need to multiply them
by free fermions. As an example, the WZNWassociated to
the algebra Bn demands n bosons and one additional
fermion. In the deformed theory, if the nonlocality is
defined just in terms of the bosonic field ϕ as before,
leaving the free fermionic field local, the previous analysis
is very trivial to be performed. On the other hand, we expect
that in a more general situation, both the bosonic and
fermionic fields define some sort of nonlocality, and it
demands new mathematical tools.
Observe that what we have said up to now can be also

extended to Lie algebras at any level k > 1. Remember that
in those cases, it is also possible to use free-field represen-
tations, and we simply need to define the Cartan generators

FIG. 1. Topological obstruction.
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as Hj ¼ i
ffiffiffi
k

p ∂ϕj. The vertex operators expð�iα · ϕ=
ffiffiffi
k

p Þ
have conformal dimensions Δ ¼ jαj2=ð2kÞ, and as in the
nonsimply laced case, in order to obtain our currents we
simply multiply the vertex operators by new fields of
appropriate conformal dimensions. Remarkably, these
new operators have interesting nonlocal properties and
are called parafermions [84,96,98].
Finally, for general Lie algebras ĝk wewould need to use a

stronger approach, for example, the Wakimoto free-field
representation, but the drawbacks of these free-field inspired
approaches are much more evident. For example, once we
assume a very generic deformation in this particular repre-
sentation, the ðβ; γÞ-system is also modified and the explicit
expressions for the nonlocal charges would be much more
involved. On the other hand, we see in Sec. V that there are
situations where some progress can be made, and that this
representation may be useful to determine the nonlocal
charges for deformations of the AdS3 × S3 ×M4 strings.
Some of these issues are addressed in Sec. V, but we

hope to fill computational details of this section in a future
publication. For now, we recognize that there are severe
limitations in the free-field representation and we try to find
a better and stronger approach. We unfortunately do not
provide a final answer to this point, but the next section is a
sort of brute-force calculation, and although it may seem a
contrived construction at first, it might be possible to learn
more about the algebra of nonlocal charges.

B. Nonlocal charges from deformed
WZNW-model currents

The authors of [53,99,100] have shown that in the
context of integrable deformations, the deformed currents
can be written as nonlocal gauge transformations. More
specifically, they have shown that given an integrable field
theory with currents J� ¼ g−1∂�g, where g is the Lie group
element, the Yang-Baxter deformed theory has resulting
currents given by J̃� ¼ g̃−1∂�g̃, where g̃ ¼ F−1g are
nonlocal fields defined through a twist element F whose
explicit form is in the original papers. Therefore, the
nonlocal currents are finally written as

J̃� ¼ GJ�G−1 − ∂�GG−1; ð3:4aÞ

where J� are the original undeformed currents and
G ¼ g−1Fg. This relation is one of the reasons behind the
study of symmetries of the Yang-Baxter deformed theories,
and it suggests that the symmetries are obtained through a
Drinfel’d twist of the original ones. These ideas have been
explored in many texts, including [10,19,31,32,53–55].
The form (3.4a) is the finite form of a Yang-Baxter

deformation. For an infinitesimal expansion of the field
G ≃ 1þ ηðnonlocalÞ, where η is a perturbative para-
meter, one could suppose that the infinitesimal version
of (3.4a) has the following structure

J̃� ¼ J� � ηðnonlocal termÞ: ð3:4bÞ

For the marginal deformations of our interest, we look for
nonlocal currents with this structure.
More specifically, the marginally relevant current-

current deformation (2.17b) is written as

S ¼ Scft þ
η

2π

X
a;b

cab

Z
d2zLaðzÞR̄bðz̄Þ; ð3:5Þ

where η is an infinitesimal parameter and cab is the matrix
that defines the specific deformation we are interested in.
Furthermore, it is known under which conditions these
deformations are exactly marginal [43–45]. We should also
observe that the deformations above are not, in general,
g invariant. Consequently we cannot apply the usual set of
ideas [94,101–103], and, in particular, the massive theories
do not define (local) massive current algebras as defined by
Bernard in [101].
In what follows, we use different symbols for the fields at

the fixed point theory, namely La� and R̄a� , and we keep the
notation La and R̄a for the perturbed theory. In order to
construct an object of the form (3.4b), let us now define the
g-valued function

A�ðz; z̄Þ ¼ L�ðzÞ þ R̄�ðz̄Þ; ð3:6aÞ

in the infrared conformal field theory. This object is very
trivial in the CFT point, and it obviously satisfies the free
boson equation of motion

∂∂̄A�ðz; z̄Þ ¼ 0: ð3:6bÞ

Once we move along the RG flow, one may assume the
structure (3.6a) is preserved, that is,

Aðt; xÞ ¼ Lðt; xÞ þ R̄ðt; xÞ; ð3:6cÞ

and in this sense, one can try to use the same methods
of [61]. Moreover, using that ∂ ¼ ð∂0 þ ∂1Þ=2 and ∂̄ ¼
ð∂0 − ∂1Þ=2 we find

∂R̄� ¼ 0 ⇔ ∂0R̄� ¼ −∂1R̄�
and ∂̄L� ¼ 0 ⇔ ∂0L� ¼ ∂1L�: ð3:7Þ

Therefore, we can write the following objects,

L ¼ 1

2

�
Aþ

Z
x

−∞
dy∂0Aðt; yÞ

�

R̄ ¼ 1

2

�
A −

Z
x

−∞
dy∂0Aðt; yÞ

�
; ð3:8Þ

which are analogous to the expressions (2.28). Once again,
in the fixed point these two equations are identities, but as
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we move along the RG flow one may consider (3.8) as
nonlocal definitions of the conserved currents L and R̄.
One should observe that these currents are not neces-

sarily associated to any hidden Yangian. In other words, the
deformations above are not necessarily integrable; there-
fore, these nonlocal currents should not be considered as
objects (necessarily) built from the monodromy matrix. In
fact, the presence of these fields is not in general clear, but it
may be a generalization (in the sense that we do not require
integrability of the system) of an exotic symmetry as those
studied in [99,100,104–107].
The field Aðz; z̄Þ does not give any additional informa-

tion in the CFT limit since it is just a sum of the chiral and
antichiral components of the currents, but in the massive
theory, this field has its own dynamical equation that is a
modification of (3.6b). Using the Zamolodchikov’s equa-
tions (2.22) we have

∂̄ð∂AÞðz; z̄Þ ¼ η

2πi

I
dwOðw; z̄Þ∂L�ðzÞ;

∂ð∂̄AÞðz; z̄Þ ¼ η

2πi

I
dw̄Oðz; w̄Þ∂̄R̄�ðz̄Þ: ð3:9Þ

These two conditions should obviously be the same, and
this equality enters as an additional constraint. On the other
hand, we want to find an expression for the field A. Using
the explicit form of the marginal operator, we see that the
first condition gives

∂̄ð∂Aaðz; z̄ÞÞ ¼ η

2πi
ca0b0

I
dwLa0� ðwÞ∂La�ðzÞR̄b0� ðz̄Þ

¼ ica0b0ηfa
0a
c∂Lc�ðzÞR̄b0� ðz̄Þ

¼ ica0b0ηfa
0a
c∂Ac�ðz; z̄ÞR̄b0� ðz̄Þ: ð3:10aÞ

In the last equality we have used the condition ∂Lc�ðzÞ ¼∂Ac�ðz; z̄Þ that obviously holds in the IR fixed point theory.
Finally, one may consider the ∂̄-derivative

∂̄2ð∂Aaðz; z̄ÞÞ ¼ ica0b0ηfa
0a
cð∂∂̄Ac�ðz; z̄ÞR̄b0� ðz̄Þ

þ ∂Ac�ðz; z̄Þ∂̄Ab0� ðz; z̄ÞÞ: ð3:10bÞ

Moreover, we can repeat the same idea for the second
expression in (3.9),

∂ð∂̄Aaðz; z̄ÞÞ ¼ η

2πi
ca0b0

I
dw̄La0� ðzÞR̄b0� ðw̄Þ∂̄R̄a�ðz̄Þ

¼ ica0b0ηfb
0a
cLa0� ðzÞ∂̄R̄c�ðz̄Þ

¼ ica0b0ηfb
0a
cLa0� ðzÞ∂̄Ac�ðz; z̄Þ: ð3:11aÞ

Taking the ∂-derivative
∂2ð∂̄Aaðz; z̄ÞÞ ¼ ica0b0ηfb

0a
cðLa0� ðzÞ∂∂̄Ac�ðz; z̄Þ

þ ∂Aa0� ðz; z̄Þ∂̄Ac�ðz; z̄ÞÞ: ð3:11bÞ

Therefore if we impose the equation ∂∂̄Aa� ¼ 0 on the
rhs of (3.10b) and (3.11b), their sum and difference yield
respectively

∂∂̄ð∂̄Aaðz;z̄Þþ∂Aaðz;z̄ÞÞ¼! ica0b0ηðfa0ac∂Acðz;z̄Þ∂̄Ab0 ðz;z̄Þ
þfb

0a
c∂Aa0 ðz;z̄Þ∂̄Acðz;z̄ÞÞ;

∂∂̄ð∂̄Aaðz;z̄Þ−∂Aaðz;z̄ÞÞ¼! ica0b0ηðfa0ac∂Acðz;z̄Þ∂̄Ab0 ðz;z̄Þ
−fb0ac∂Aa0 ðz;z̄Þ∂̄Acðz;z̄ÞÞ;

ð3:12aÞ

where we considered that A ≃A� þOðηÞ to make the
replacementA� ↦ A. These equations are rather involved,
but we may notice that we could initially try to find a
solution for Xa ¼ ∂Aa and Ya ¼ ∂̄Aa, so that the equa-
tions above become

∂∂̄ðXaðz; z̄Þ þ Yaðz; z̄ÞÞ ¼ ica0b0ηðfa0acXcðz; z̄ÞYb0 ðz; z̄Þ þ fb
0a
cXa0 ðz; z̄ÞYcðz; z̄ÞÞ

∂∂̄ðXaðz; z̄Þ − Yaðz; z̄ÞÞ ¼ −ica0b0ηðfa0acXcðz; z̄ÞYb0 ðz; z̄Þ − fb
0a
cXa0 ðz; z̄ÞYcðz; z̄ÞÞ; ð3:12bÞ

and now we have a system of 2 dimðgÞ second order
differential equations with unknowns Xa and Ya, a ¼ 1;…;
dimðgÞ. In other words, this system of nonlinear differential
equations defines the field A, which is the necessary object
to define the nonlocal charges of the deformed WZNW
model.

1. Currents conservation

In the deformed theory, we also need to verify if the
nonlocal currents are associated to a new form of symmetry
in the system, possibly similar to those exotic symmetries
as in [99,100,104–107]. Our first test is to certify that the

nonlocal currents define conservation laws. Using
Zamolodchikov’s equations (2.22) we find

∂̄Laðz; z̄Þ ¼ η

2πi
ca0b0

I
z
dwðLa0� ðwÞLa�ðzÞÞR̄b0� ðz̄Þ

¼ ηca0b0 ðkδa0a∂R̄b0� ðz̄Þ þ fa
0a
cLc�ðzÞR̄b0� ðz̄ÞÞ

∂R̄aðz; z̄Þ ¼ η

2πi
ca0b0

I
z̄
dw̄La0� ðzÞðR̄b0� ðw̄ÞR̄a�ðz̄ÞÞ

¼ ηca0b0 ðkδb0a∂̄La0� ðzÞ þ fb
0a
cLa0� ðzÞR̄c�ðz̄ÞÞ;

ð3:13Þ
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where we have used the OPEs (2.13a) and (2.13b). Using
that in the fixed point theory we have ∂R̄� ¼ 0 and
∂̄L� ¼ 0, we can write the conditions above as conserva-
tion laws

∂0Laðt; xÞ ¼ ∂1Haðt; xÞ; ∂0R̄aðt; xÞ ¼ ∂1Kaðt; xÞ;
ð3:14aÞ

where we have defined the following components,

Haðt; xÞ ¼ Laðt; xÞ þ ηca0b0fa
0a
c

Z
x

−∞
dyLc�ðt; yÞR̄b0� ðt; yÞ;

Kaðt; xÞ ¼ −R̄aðt; xÞ þ ηca0b0fb
0a
c

Z
x

−∞
dyLa0� ðt; yÞR̄c�ðt; yÞ:

ð3:14bÞ

Together, these conditions show that the nonlocal currents
are, indeed, conserved.1 One may also define the following
g-valued 1-forms

Jðt; xÞ ¼ ðJa0ðt; xÞdtþ Ja1ðt; xÞdxÞTa

≡ ðLaðt; xÞdtþHaðt; xÞdxÞTa; ð3:15aÞ

and

J̃ðt; xÞ ¼ ðJ̃a0ðt; xÞdtþ J̃a1ðt; xÞdxÞTa

≡ ðR̄aðt; xÞdtþKaðt; xÞdxÞTa: ð3:15bÞ

Finally, one can conveniently recast the conservation laws
(3.14a) as

∂μJμðt; xÞ ¼ 0 ∂μJ̃μðt; xÞ ¼ 0: ð3:16Þ

Moreover, we assume that Jμðt; xÞ, J̃μðt; xÞ, andAðt; xÞ are
the only g-valued fields in the massive theory. This
condition means that these objects and the equation of
motion forAðz; z̄Þ carry all necessary information to define
the deformed currents.
It is convenient to write the conservation laws (3.14a) as

∂̄Laðz; z̄Þ ¼ ∂ðηca0b̄0fa0achcðzÞR̄b0� ðz̄ÞÞ≡ ∂Ha; ð3:17aÞ

∂R̄āðz; z̄Þ ¼ ∂̄ðηca0b̄0fb̄0āc̄La0� ðzÞh̄c̄ðz̄ÞÞ≡ ∂̄Kā; ð3:17bÞ

where we have used the notation a; ā ¼ 1; 2;…; dimðgÞ,
which denotes the left- and right-moving symmetries.
Hence, from the conserved currents

Ja ≡ ðJaz ; Jaz̄ Þ ¼ ðLa;HaÞ J̃ā ≡ ðJ̃āz ; J̃āz̄Þ ¼ ðKā; R̄āÞ;
ð3:18aÞ

we can finally define the charges

Q1a ¼ 1

2πi

�Z
dzLaðz; z̄Þ þ

Z
dz̄Haðz; z̄Þ

�
;

Q2ā ¼ 1

2πi

�Z
dzKāðz; z̄Þ þ

Z
dz̄R̄āðz; z̄Þ

�
: ð3:18bÞ

Since the mathematical formalism behind nonlocal
(or disorder as it may be much more appropriate) operators
in a local quantum field theory is not completely unveiled,
we assume, as a general hypothesis, that the symmetry
corresponding to these fields mimics the main features of
ordinary symmetries associated to local operators. Observe
that it is not an ad doc construction, but it has been verified
in a number of examples related to Yangians and more
exotic symmetries, but the vagueness of this hypothesis
does not lead us too far. More specifically, we modify some
early ideas of [94,101–103], and we assume a broader set of
hypotheses.

2. Hypotheses

We assume that the perturbed theory has a nonlocal
symmetry with associated 1-form currents JðxÞ ¼
JaμðxÞTadxμ and J̃ðxÞ ¼ J̃aμðxÞTadxμ as given by (3.15a)
and (3.15b), and these satisfy the following conditions:

(i) The nonlocal currents are conserved in the perturbed
theory, that is,

∂μJaμ ¼ 0:

(ii) The nonlocal currents Laðz; z̄Þ and R̄aðz; z̄Þ
become local for the undeformed theory, and they
generate the Kac-Moody algebra of the WZNW
theory. Equivalently, in the asymptotic limit η → 0

the currents La�ðzÞ and R̄a�ðz̄Þ satisfy the OPEs
(2.13a) and (2.13b).

(iii) The components Laðτ; σÞ, Haðτ; σÞ, R̄aðτ; σÞ and
Kaðτ; σÞ do not generally give the massive current
algebra as defined in [101].

Before continuing, we need to justify these hypotheses.
Conditions (i) and (ii) are obvious. We are just saying that
we have a conservation law associated to the nonlocal
currents J and J̃ and that in the undeformed limit we
recover the WZNW model with Kac-Moody symmetry

1Bernard and LeClair have shown in [61] that when the algebra
is compact, semisimple, and is at the level 1, we have

∂̄La þ ∂R̄a ¼ 0:

In this case, we also have

∂̄La − ∂R̄a þ 2ηfabcLbR̄c ¼ 0

and if we define the new structure constants as f̃abcη ≡ ηfabc we
have the flatness condition.
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ĝ × ĝ. In fact, when we considered the conditionA ≃A� þ
OðηÞ before, we secretly used the hypothesis (ii). Condition
(ii) also implies that in the conformal theory limit, the
components L and R̄ become local. Equivalently, we have
assumed that once we deform the theory, one introduces
these disorder operators, which in essence means that the
currents become nonlocal. In the examples of Yang-Baxter
deformations [99,100,104–107] and in the cases studied by
Bernard and LeClair [61], we can find specific cases of
nonlocality generated by deformations (although in differ-
ent contexts) which justify this second hypothesis.
Finally, condition (iii) is subtler. We relax the conditions

imposed by Bernard in [101], and that particularly says that
we do not assume that the OPEs close solely in left- or
right-moving modules of g × ḡ. In other words, we assume
that any product involving the components Laðt; xÞ,
Haðt; xÞ, R̄aðt; xÞ and Kaðt; xÞ needs to be expanded in
terms of these currents and their descendants. Evidently, the
conditions considered in [94,101–103],

LR̄∼0; LK∼0; HR̄∼0; HK∼0; ð3:19Þ

are extremely useful, but it seems artificial in a very generic
situation such as those we try to address. It is reasonable to
assume that once the theory is deformed, the chiral and
antichiral structure of the theory is spoiled, and it is this that
condition (iii) denotes. Additionally, Zamolodchikov [62]
imposes that the Hilbert space decomposition is preserved
once we deform the theory, but it is not obviously generic
enough, so we explore other possibilities.
One can now try to use these general hypotheses to study

the algebra generated by nonlocal symmetries. It is evi-
dently a highly nontrivial task, but we can start with a
babe problem, finding some algebraic constraints imposed
by physical arguments. That is exactly what we start
doing now.

IV. ALGEBRA OF NONLOCAL CHARGES

As we have just seen, the chiral decomposition of the
theory is broken in the deformed theory; therefore we do
not want to preserve the notation associated to structure as
an artifact. In order to study the algebra generated by the
nonlocal charges Q1a and Q2ā, it is much more convenient
to define the column vector

½Jα� ≔
�
Ja

J̃ā

�
¼

0
BBB@

Jaþ
Ja−
J̃āþ
J̃ā−

1
CCCA≡

0
BBB@

La

Ha

Kā

R̄ā

1
CCCA; ð4:1Þ

with J1 ¼ Ja and J2 ¼ J̃ā. Moreover, we already know
that nonlocality is equivalently written as the equal-time
braiding relations

½Jαðt;x1Þ� · ½Jβðt;x2Þ�¼ ½Rαβðx12Þ�γδ½Jγðt;x2Þ� · ½Jδðt;x1Þ�;
ð4:2aÞ

where

½Rαβ�≡
� ½Rαβ�cd ½Rαβ�cd̄
½Rαβ�c̄d ½Rαβ�c̄ d̄

�
⇒ ½R�≡

� ½Rab� ½Rab̄�
½Rāb� ½Rā b̄�

�
:

ð4:2bÞ

Using the vertex operator representation, the braiding
relations (4.2a) are closely related to anyonic statistics,
which has been analyzed in many different contexts,
including in the search for quantum group structures in
two-dimensional conformal field theories. The relation
between these ideas, if any, is not clear and deserves
further investigation.

A. R-commutators

Now we can start some full-fledged calculations.
Remember that one of our main hypotheses is that these
nonlocal objects mimic some features of the local currents.
Associativity of their product imposes that the following
expressions are equal,

ðJαðx1ÞJβðx2ÞÞJγðx3Þ
¼ Rαβ

δϵ ðx12ÞRϵγ
ζκðx13ÞRδζ

ηι ðx23ÞJηðx3ÞJιðx2ÞJκðx1Þ;
ð4:3aÞ

Jαðx1ÞðJβðx2ÞJγðx3ÞÞ
¼ Rβγ

δϵðx23ÞRαδ
ηζðx13ÞRζϵ

ικ ðσ12ÞJηðx3ÞJιðx2ÞJκðx1Þ;
ð4:3bÞ

and it immediately implies that the matrices Rab
cd are, as

expected, solutions of the quantum Yang-Baxter equation

R12ðx12ÞR13ðx13ÞR23ðx23Þ ¼ R23ðx23ÞR13ðx13ÞR12ðx12Þ:
ð4:4Þ

One may use the direct calculation—that is, we take the
explicit product of currents in the quantized theory—to fix
the matrix R, but currently it is obviously impossible to
complete this program, and for now this matrix is an input
of our construction. It might be possible to solve this
conundrum by deepening our understanding of the con-
sistency conditions, something along the lines of a boot-
strap program. Fortunately, when we have an integrable
Yang-Baxter deformation, the situation is slightly better,
and it seems possible to use the Yang-Baxter solution
which defines the deformation as a seed for the braiding
matrix. We discuss more of this possibility in the specific
example of Sec. VA.
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The important aspect is that with the column currents
Jα, one can define the charges (3.18b) as

Qα ≔
1

2πi

�Z
dzJα

z þ
Z

dz̄Jα
z̄

�
; ð4:5aÞ

and now we can invoke the results of Bernard and LeClair
[61] to compute what we call R-commutators,

½Qα;Qβ�R ≡QαQβ − Rαβ
γδQ

γQδ ¼ Q̂αðQβÞ; ð4:5bÞ

where the rhs of this equation is given by

Q̂αðQβÞ ¼ 1

ð2πiÞ2
�Z

dzdwJα
z ðz; z̄ÞJβ

wðw; w̄Þ

þ
Z

dzdw̄Jα
z ðz; z̄ÞJβ

w̄ðw; w̄Þ

þ
Z

dz̄dwJα
z̄ ðz; z̄ÞJβ

wðw; w̄Þ

þ
Z

dz̄dw̄Jα
z̄ ðz; z̄ÞJβ

w̄ðw; w̄ÞÞ: ð4:5cÞ

In summary, the problem is then reduced to the calculation
of four terms,

Q̂aðQb̄Þ; Q̂āðQbÞ; Q̂aðQbÞ; Q̂āðQb̄Þ: ð4:5dÞ

Using the first element to understand the structure of these
objects, we have

Q̂aðQb̄Þ ¼ 1

2πi

�Z
dzRes

w→z
ðLa�ðzÞKb̄ðw; w̄ÞÞ

þ
Z

dz̄Res
w̄→z̄

ðHaðz; z̄ÞR̄b̄�ðw̄ÞÞ

þ 1

2πi

Z
dzdw̄Laðz; z̄ÞR̄b̄ðw; w̄Þ

þ 1

2πi

Z
dz̄dwHaðz; z̄ÞKb̄ðw; w̄Þ

�
; ð4:6Þ

where we have considered the perturbative expansion

Lðz; z̄Þ ≃ L�ðzÞ þ ηL1ðz; z̄Þ;
R̄ðz; z̄Þ ≃ R̄�ðz̄Þ þ ηR̄1ðz; z̄Þ: ð4:7Þ

The first constraint we need to impose is related to the
obvious fact that in the undeformed limit η → 0 we must
have Ha → 0 and Kā → 0. Consequently, one should
suppose that these fields are of order OðηÞ, which can
be easily verified in (3.17a) and (3.17b). Additionally, we
can rewrite the charges in terms of the coordinates ðx; tÞ
instead of ðz; z̄Þ; therefore

Q̂aðQb̄Þ¼
Z

dxdyðLaðx;tÞKb̄ðy;tÞþHaðx;tÞR̄b̄ðy;tÞ

þLaðx;tÞR̄b̄ðy;tÞþHaðx;tÞKb̄ðy;tÞÞ; ð4:8aÞ

and we see that in order to finish this calculation we
simply need to integrate the perturbed operators OPEs.
Additionally, we also have

Q̂aðQbÞ¼
Z

dxdyðLaðx;tÞLbðy;tÞþLaðx;tÞHbðy;tÞ

þHaðx;tÞLbðy;tÞþHaðx;tÞHbðy;tÞÞ; ð4:8bÞ

Q̂āðQbÞ¼
Z

dxdyðLāðx;tÞKbðy;tÞþHāðx;tÞR̄bðy;tÞ

þLāðx;tÞR̄bðy;tÞþHāðx;tÞKbðy;tÞÞ; ð4:8cÞ

and evidently

Q̂āðQb̄Þ¼
Z

dxdyðKāðx;tÞR̄b̄ðy;tÞþR̄āðx;tÞKb̄ðy;tÞ

þR̄āðx;tÞR̄b̄ðy;tÞþKāðx;tÞKb̄ðy;tÞÞ: ð4:8dÞ

We have just seen that the algebra of nonlocal charges
can be completely determined from the analysis of operator
product expansions of the corresponding conserved cur-
rents. In other words, we need to find the coefficients of the
matrix

½JαJβ� ¼ ½Jα� ⊗ ½Jβ�

¼

0
BBB@

LaLb LaHb LaKb̄ LaR̄b̄

HaLb HaHb HaKb̄ HaR̄b̄

KāLb KāHb KāKb̄ KaR̄b̄

R̄āLb R̄āHb R̄āKb̄ R̄āR̄b̄

1
CCCA; ð4:9Þ

where consistency imposes that the lowest orders in η are

LL; R̄ R̄∼Oðη0Þ
LH;HL;LK;KL;LR̄; R̄L;HR̄; R̄H;KR̄; R̄K ∼OðηÞ
HH;HK̄;KH̄;KK̄ ∼Oðη2Þ: ð4:10Þ

Observe that there is another subtlety at this point. The
matrix above cannot be reduced to an upper (or lower)
triangular matrix since we do not have the usual bosonic or
fermionic statistics at our disposal anymore; therefore we
need to compute all OPEs. In [61] the authors considered
that the OPE closes independently in the left of right
modules so that terms of the form LR̄ are regular. As we
said before, that simplification is very unnatural, and we
consider the most general case. The next section is an
attempt to unveil properties of these products.
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B. (Nonlocal) operator product expansion

Before starting our calculations, we need to remark—
maybe redundantly—that the present construction is
intrinsically quantum; and in this sense, all these expres-
sions are inside correlation functions. Therefore, it
should be clear that once we deform the theory, a new
prescription for the calculations of vacuum expectation
values (VEVs) must be imposed, and it is well known that
the perturbed VEVs are related to those of the original
theory by

hΦðz1;…; znÞi ¼ hΦðz1;…; znÞe−η
R

Operti0; ð4:11Þ

where Φðz1;…; znÞ is an arbitrary product of fields and
h� � �i0 is the undeformed VEV. In this sense, we simply
want to develop methods to calculate the correlators when
they have insertions of nonlocal operators.
We have seen that once we deform the theory, nonlocal

conserved charges and consequently their corresponding
currents can be defined. For integrable theories, the
existence of classical nonlocal charges is often associated
to the underlying Yangian symmetry. Much more impor-
tant, there exist prescriptions to build an infinite tower of
nonlocal charges QðnÞ, n ≥ 1, starting from a local charge
Qð0Þ; see [60,108,109]. The algebra of these charges can be
calculated using the Poisson bracket (which can be later
quantized) and it has been shown that the computation of
the brackets of Qð0Þ and Qð1Þ (together with the so-called
Serre relations) are enough to determine the algebraic
structure of this symmetry.
What we meant is that local and nonlocal currents often

come together, but in the present work we study a more
exotic situation where we do not specifically consider any
(obvious) local charge to be paired with the nonlocal ones,
in such a way that the more familiar Yangian symmetries
are generated. So, we need to learn how to live with these
nonlocal charges, and in particular we need to describe their
algebra directly from the OPEs, perhaps following ideas
similar to those used in the vertex operator algebras
construction. But how can we do that? The most direct
approach is to find the classical counterpart of the nonlocal
charges defined in the previous section, take the Poisson
bracket, and finally use the standard canonical quantization.
This direct program is not only difficult, it is unpractical
and unrealistic. Alternatively, given that the construction
so far has been intrinsically quantum (we considered

marginally relevant operators, OPEs and so on), we need
to take it as an advantage to make Ansätze for the OPEs,
and try to see what the physical constraints have to say
about the coefficients.
As we said many times before, nonlocality is comprised

in the existence of an R-matrix, which imposes that for each
pair of operators O1ðxÞ and O2ð0Þ, one says that they are
mutually nonlocal if under permutation their product
O1ðx1ÞO2ð0Þ transforms as expð2πiαÞO2ð0ÞO1ðx1Þ where
the phase expð2πiαÞ is an unspecified component of the
R-matrix. Observe that this situation is similar to what
happens with anyons or parafermions [84,98] statistics,
where the anyonic or parafermionic pair of operators would
be α-nonlocal if under an analytic continuation of x, their
product O1ðx1ÞO2ð0Þ gets a phase expð2πiαÞ. Even more
importantly, if we embrace this analogy for the case of ZN
invariant lattice models, we have the order σk and disorder
μk operators, with k ¼ 1;…; N − 1 which are mutually
nonlocal. For the definition of the OPEs one needs to
introduce the parafermionic operators themselves, and
consequently we do not have any ambiguity to express
the operator product expansions.
The nonlocal nature of these operators makes it hard to

give an interpretation in terms of operator product expan-
sion, but we assume that when the space is simply
connected, two nonlocal operators which are close to each
other can be replaced by a sum of nonlocal operators.
Observe that in a complete general situation where we
know the deformed local and nonlocal operators, we could
impose that the OPEs would close using both types of
operators, there is no contradiction to assume that. The fact
is that we have just nonlocal operators to care about, so let
us assume that these operators are enough to make a closed
algebra.
Moreover, we have also assumed that the space is simply

connected. That is very important because we need to
assume that the integration curves are all homotopic; see
Fig. 2. In fact, for homotopic curves we can use the
expansion of Fig. 2, but it is not exactly clear how we can
define the OPEs for two operators defined via homotopi-
cally inequivalent curves; see Fig. 3. We do not address this
type of subtlety in this paper, so let us assume that we have
a simply connected space where the first construction is
appropriate.
All in all, the OPEs are defined in the usual way, except

we drop the consistency conditions implied by locality
[102,103]. They have the following structure,

FIG. 2. Nonlocal OPEs in a simply connected space.
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Jαðz; z̄ÞJβðw; w̄Þ ∼
X
γk

Cαβ
kγ ðjz − wjÞOγ

kðw; w̄Þ; ð4:12aÞ

where k is an enumeration index. Given that we have
assumed that the only Lie algebra-valued operators avail-
able are the nonlocal currents, we have that Oγ

k are the
currents themselves Jγ and derivatives thereof. Hence, the
relevant terms are

Jαðz; z̄ÞJβðw;w̄Þ∼Cαβγ ðjz−wjÞJγðw;w̄Þ
þDαβ

γ ðjz−wjÞð∂JÞγðw;w̄Þ: ð4:12bÞ

Moreover, it is convenient to use the coordinates ðt; xÞ; then

Jα
mðxÞJβ

nð0Þ ∼ ðCpmnÞαβγ ðxÞJγ
pð0Þ þ ðDpq

mnÞαβγ ðxÞ∂pJ
γ
qð0Þ:
ð4:12cÞ

As before, the index α ¼ ða; āÞ denotes the left- and right-
moving Lie algebras and now we make a small change of
notation in the indices ðm; nÞ, namely

Ja ≡ ðJaþ; Ja−Þ ¼ ðLa;HaÞ J̃ā ≡ ðJ̃āþ; J̃ā−Þ ¼ ðKā; R̄āÞ;
ð4:12dÞ

and J remains the same Jα ≡ ðJa; J̃āÞ. As we see, this
small modification enhances the readability of the results.
Additionally, we further assume the expansion

Jα
mðxÞJβ

nð0Þ ∼Fαβ
γ ðCpmnðxÞJγ

pð0Þ þDpq
mnðxÞ∂pJ

γ
qð0ÞÞ:
ð4:12eÞ

Initially one can impose some obvious constraints
related to the engineering dimensions, perturbative expan-
sion in η and associativity of the product. More specifically,
we have the following:
Engineering dimensions: The easiest constraint comes

from dimensional analysis. As in [103], we have

CpmnðxÞ ≃Oðjxj−1−0Þ; Dpq
mnðxÞ ≃Oðjxj−0Þ; ð4:13Þ

where jxj−0 denotes possible logarithmic divergences.
The structure constants: The first interesting con-

straints are related to the structure constants F αβ
γ , Cpmn

and Dpq
mn. The OPEsJaJb andJāJb̄ give the Kac-Moody

algebra for η ¼ 0; therefore we consider expansions of the
form

Fab
c ≃ fabc þ ηf̃abc Fā b̄

c̄ ≃ fā b̄c̄ þ ηf̃ā b̄c̄

Fab
c̄ ≃ ηf̃abc̄ Fā b̄

c ≃ ηf̃ā b̄c

Fāb
γ ≃ ηf̃ābγ Fab̄

γ ≃ ηf̃ab̄γ γ ¼ c; c̄: ð4:14Þ

Using the OPEs structure (4.10) we have that the following
coefficients

Cþþ−; Cþ−þ; C−−−; Cþ−þ; C−−þ; Cþþ−; C−þ−; C−−þ
D−þ

þ−; Dþþ
þ− ; D−þ

−þ; Dþþ
−þ ; D−−

−−; Dþ−
−− ; D−−

−þ;

D−þ
−þ; Dþ−

−þ; Dþþ
−þ ;

D−−þþ; Dþ−
þþ; D−−þ−; Dþ−

þ−; D−−
−þ; Dþ−

−þ ð4:15aÞ

are of order OðηÞ. Additionally, the coefficients

Cþ−−; C−þþ
D−þ

−− ; Dþþ
−− ; Dþ−

þþ; D−−þþ ð4:15bÞ

are of order Oðη2Þ and they can be neglected in the current
perturbative analysis. All other coefficients are the leading
order Oðη0Þ terms.
Moreover, let us denote the inverse of ðFγÞαβ by ðFγÞαβ,

that is,

ðFγÞαβðFγÞα0β ¼ δαα0 ; ð4:16Þ

and using the inverse structure constants, and the expres-
sion (4.12e) we obtain

Fγ
αβJ

α
mðxÞJβ

nð0Þ ∼ CpmnðxÞJγ
pð0Þ þDpq

mnðxÞ∂pJ
γ
qð0Þ :

ð4:17Þ

Associativity: Associativity imposes that the braiding
matrix satisfies the Yang-Baxter equation, but if we use this
condition in the OPEs, we find an additional important
constraint. Specifically we need to study the two sides of
the equality

ðJα
mðxÞJβ

nðyÞÞJλ
rðzÞ ¼ Jα

mðxÞðJβ
nðyÞJλ

rðzÞÞ; ð4:18Þ

where we (unwisely) use z as a real parameter, and it must
not be confused with the complex coordinate we used
previously. The left-hand side of this equation gives

FIG. 3. Nonlocal OPEs in a nonsimply connected space.
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ðJα
mðxÞJβ

nðyÞÞJλ
rðzÞ ¼ Fαβ

γ Fγλ
σ f½Cpmnðx − yÞCsprðy − zÞ þDpq

mnðx − yÞ∂y
pCsqrðy − zÞ�Jσ

sðzÞ
þ ½Cpmnðx − yÞDst

prðy − zÞ þDpq
mnðx − yÞ∂y

pDst
qrðy − zÞ�∂sJσ

t ðzÞg; ð4:19aÞ

and the right-hand side gives

Jα
mðxÞðJβ

nðyÞJλ
rðzÞÞ ¼ Fβλ

γ Fαγ
σ f½Cpnrðy − zÞCsmpðx − zÞ þDpq

nr ðy − zÞ∂y
pCsmqðx − zÞ�Jσ

sðzÞ
þ ½Cpnrðy − zÞDst

mpðx − zÞ þDsq
nrðy − zÞCtmqðx − zÞ þDpq

nr ðy − zÞ∂y
pDst

mqðx − zÞ�∂sJσ
t ðzÞ

þDpq
nr ðy − zÞDst

mqðx − zÞ∂z
p∂z

sJσ
t ðzÞg: ð4:19bÞ

Comparing both sides we have that the term with two derivatives ∂2J must be paired with regular terms in the expansion.
Additionally we have

Cpmnðx − yÞCsprðy − zÞ þDpq
mnðx − yÞ∂y

pCsqrðy − zÞ
¼ Cpnrðy − zÞCsmpðx − zÞ þDpq

nr ðy − zÞ∂z
pCsmqðx − zÞ ð4:20aÞ

and

Cpnrðy − zÞDst
mpðx − zÞ þDsq

nrðy − zÞCtmqðx − zÞ þDpq
nr ðy − zÞ∂y

pDst
mqðx − zÞ

¼ Cpnrðy − zÞDst
mpðx − zÞ þDsq

nrðy − zÞCtmqðx − zÞ þDpq
nr ðy − zÞ∂y

pDst
mqðx − zÞ: ð4:20bÞ

Crossing symmetry: Finally, we should also impose
crossing symmetry. We do not open the calculations in full
details, but we impose the following conditions,

ð4:21Þ

where the symbols ∼ denote the fact we need to take into
account the braiding relations.
These two previous conditions, namely the associativity

and crossing symmetries, are extremely important but
difficult to be properly analyzed.

C. Discrete symmetries

As in [103], we could try to consider the constraints
imposed by discrete symmetries, but, as we said before, the
nonlocality of these currents is closely related to the
anyonic statistics which has as one of its essential features
the violation of parity and time reversal transformations.
Given that the current understanding of these objects is not
complete, it is not clear to the author if we should impose
these constraints, although CPT and C symmetries are
unlikely to be violated.
In this respect, we see that the introduction of propor-

tionality constants under these transformations is the safest
route for us in the present paper. Moreover, a possible CPT

violation of the currents should not be confused with
inconsistencies of the theory. These nonlocal operators
are not related to any observables in the final theory, and we
should think of them as computational devices. We may
remember that ghost fields are also nonphysical, since they
violate the spin statistics, but they are also useful computa-
tional devices. Modulo this subtlety, these constraints mean
the following relations
§1. Parity P is defined by

PJα
mðt; xÞP−1 ¼? ð−ÞmPn

mJα
nðt;−xÞ ð4:22aÞ

P∂mJα
nðt; xÞP−1 ¼? ð−ÞmþnPrs

mn∂rJα
s ðt;−xÞ ð4:22bÞ

for m; n; r; s ¼ 0; 1. Observe that in the usual case we
have Pn

m ¼ δnm and Prs
mn ¼ δrmδ

s
n, but we have allowed

nontrivial terms to denote our ignorance on the non-
local terms.

§2. Similarly, the CPT symmetry gives

ΘJα
mðt; xÞΘ−1 ¼? − θnmJα

nð−t;−xÞ; ð4:23aÞ

Θ∂mJα
nðt; xÞΘ−1 ¼? θrsmn∂rJα

s ð−t;−xÞ; ð4:23bÞ
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where θnm ¼ δnm and θrsmn ¼ δrmδ
s
n in the case of local charges. These relations imply

θvpC
p
mnðxÞ ¼ −θrmθsnC

p
rsð−xÞ θuvpqD

pq
mnðxÞ ¼ θrmθ

s
nD

pq
rs ð−xÞ : ð4:24Þ

§3. The charge conjugation C seems to be an unquestionable constraint, and it goes as follows:

CJα
mðt; xÞC−1 ¼ Bα

βJ
β
mðt; xÞ; ð4:25Þ

where one should also impose

C2Jα
mðC−1Þ2 ¼ Jα

m ⇒ Bα
βBβ

γ ¼ δαγ ð4:26aÞ

and

Fγ
αβCJ

α
mJ

β
nC−1

¼ CðCpmnðxÞJγ
pð0Þ þDpq

mnðxÞ∂pJ
γ
qð0ÞÞC−1 ⇒ Fγ

αβB
α
λBβ

η ¼ Fζ
ληB

γ
ζ : ð4:26bÞ

In order to be clear, we may think of this situation where
we have several operators associated to discontinuities,
such as a bunch of Dirac strings, and that these operators
are conserved and satisfy an algebra. When inserted into
correlation functions these operators impose conditions on
the observables, but are not by themselves observables of
the theory. We may see that depending on the properties P
and θ many interesting situations may happen. For exam-
ple, triviality conditions appear when there is an odd
number of currents inside a correlation function, and the
matricesP and θ are different from the identity. In any case,
if these ideas are physically possible or if they are wild
speculation will be the theme of a future publication, for
now we want to see other possible constraints.

D. Braiding relations

Finally, we now turn our attention to constraints imposed
by nonlocality itself. As we said many times before, the
braiding matrix R comprises the nonlocality of the currents,
and consequently the constraints on the algebra of charges.
Then

Jα
mðxÞJβ

nð0Þ ¼ Rαβ
γδ ðxÞJγ

nð0ÞJδ
mðxÞ; ð4:27Þ

and one can easily show that

CpmnðxÞ ¼ ð−F λ
αβR

αβ
γδF

γδ
λ ÞCpnmðxÞ: ð4:28aÞ

Observe that this condition imposes that the diagonal
terms vanish unless

F λ
αβR

αβ
γδF

γδ
λ ¼ −1; ð4:28bÞ

and we can justify this choice by imposing that in the CFT
limit the Kac-Moody algebra is recovered. The same
condition also imposes that

Dpq
mnðxÞ ¼ xpCqnmðxÞ −Dpq

nmðxÞ: ð4:28cÞ

Let us now define the tensor

T pq
mnðxÞ ≔ Dpq

mnðxÞ − 1

2
xpCqmnðxÞ; ð4:29Þ

and from it we can readily show that (4.28c) can be
equivalently written as

T pq
mnðxÞ ¼ −T pq

nmðxÞ ; ð4:30Þ

where we evidently used the symmetry of CqmnðxÞ. We have
just settled the antisymmetry of the indices ðm; nÞ. Now, we
can be utterly pragmatical and write T pq

mnðxÞ in terms of its
symmetric, skew symmetric and diagonal in the indices
ðp; qÞ, that is,

T pq
mnðxÞ ¼ T ðpqÞ

mn ðxÞ þ T ½pq�
mn ðxÞ þ ηpqT mnðxÞ: ð4:31Þ

The first and obvious observation is that current conserva-
tion imposes that the diagonal terms in ðp; qÞ are identi-
cally 0, that is, T mn ¼ 0. All in all, we have the expansion
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Fγ
αβJ

α
mðxÞJβ

nð0Þ
∼ CpmnðxÞJγ

pð0Þ

þ
�
T ðpqÞ

mn ðxÞ þ T ½pq�
mn ðxÞ þ 1

2
xpCqmnðxÞ

�
∂pJ

γ
qð0Þ:

ð4:32Þ

Quite remarkably, similar conditions can be found using
the currents locality [61,94,102]. As a direct consequence
of these calculations, we can import the early results of
[61,94,102] to determine the OPE coefficients of the
nonlocal OPEs. Therefore, these terms can be written as

CpmnðxÞ ¼ C1ηmnx2xp þ C2ðxmδpn þ xnδ
p
mÞ þ C3xmxnxp

ð4:33aÞ

TðpqÞ
mn ¼ tsðxpðxmδqn−xnδ

q
mÞþxqðxmδpn −xnδ

p
mÞÞ ð4:33bÞ

T ½pq�
mn ¼ taðδpmδqn − δqmδ

p
nÞx2; ð4:33cÞ

where one can use the current conservation

∂mCpmn ¼ 0 ∂mDpq
mn ¼ 0 : ð4:34Þ

to determine a series of algebraic equation for the coef-
ficients Ci, ts and ta. We refer to [103] for the explicit
expression of those functions.

E. Algebra of charges

In an ideal situation where all the constraints above are
completely solved, we would have all necessary ingredients
to finish our calculations for the algebra of charges we
started in Sec. IVA. For example, we know that

QaQb̄ − Rab̄
c̄dQ

c̄Qd ¼ Q̂aðQb̄Þ; ð4:35Þ
where we need to calculate the terms

Q̂aðQb̄Þ ¼
X
m;n;p;q
¼þ;−

ηf̃ab̄c

Z
dxdyðCpmnðjx − yjÞJc

pðyÞ þDpq
mnðjx − yjÞ∂qJc

qðyÞÞ

þ
X
m;n;p;q
¼þ;−

ηf̃ab̄c̄

Z
dxdyðCpmnðjx − yjÞJc̄

pðyÞ þDpq
mnðjx − yjÞ∂qJc̄

qðyÞÞ: ð4:36aÞ

Moreover, Q̂āðQbÞ is obtained from a simple transformation a → ā and b̄ → b in the equation above. Additionally

Q̂aðQbÞ ¼
X
m;n;p;q
¼þ;−

ðfabc þ ηf̃abcÞ
Z

dxdyðCpmnðjx − yjÞJc
pðyÞ þDpq

mnðjx − yjÞ∂qJc
qðyÞÞ

þ
X
m;n;p;q
¼þ;−

ηf̃abc̄

Z
dxdyðCpmnðjx − yjÞJc̄

pðyÞ þDpq
mnðjx − yjÞ∂qJc̄

qðyÞÞ; ð4:36bÞ

and finally

Q̂āðQb̄Þ ¼
X
m;n;p;q
¼þ;−

ηf̃ā b̄c

Z
dxdyðCpmnðjx − yjÞJc

pðyÞ þDpq
mnðjx − yjÞ∂qJc

qðyÞÞ

þ
X
m;n;p;q
¼þ;−

ðfā b̄c̄ þ ηf̃ā b̄c̄Þ
Z

dxdyðCpmnðjx − yjÞJc̄
pðyÞ þDpq

mnðjx − yjÞ∂qJc̄
qðyÞÞ: ð4:36cÞ

The final R-commutators are

QαQβ − Rαβ
γδQ

γQδ ¼ Fαβ
λ T λ; ð4:37Þ

where

T λ ¼
Z

dxdyðCpmnðjx − yjÞJλ
pðyÞ þDpq

mnðjx − yjÞ∂qJλ
qðyÞÞ: ð4:38Þ
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Unfortunately we do not have any means to finish this
calculation, but the problem has been posed. In summary, if
we want to calculate the algebra of charges for a given
theory with nonlocal operators, we just need to understand
two specific problems. The first problem is to elucidate the
behavior of the braiding R-matrix jiggling around all these
calculations. At this point it is just an input and, as we see in
the next section, there is a good candidate for these objects
in the case of Yang-Baxter deformations.
The second problem is to determine the behavior of

objects T λ. One immediate question to be answered is to
explain when and if T λ can be written in terms of the
chargesQα. Additionally, one may also try to see if there is
any other interesting possibility. For example, remember
that in a quantum theory it is known that if an operator Q
satisfies the following relation

½T λ;Qβ� ¼ T λ½Q�Qα; ð4:39Þ

we say that T λ½Q� is the topological charge of the operator
Q. Therefore, it would be most interesting to verify if and
when these objects are topological-like charges.

V. APPLICATIONS: FROM YANG-BAXTER
TO TT̄ & TJ̄ DEFORMATIONS

We finish our paper with a rather incomplete analysis of
how the central objects of the current work can be applied
when we have deformations of the Worldsheet and boun-
dary CFTs. It is evidently an unfortunate situation that we
cannot describe the whole mechanism in full generality, but
we can try to see some features of this construction.
Although the topic of the present paper is not necessarily
confined in the string theory context, these two examples
are inside this research program.
Before starting our analysis, let us quote an important

result that classifies the types of deformations we are
interested in. Chaudhuri and Schwartz [43] and recently
Borsato and Wulff [44] have considered marginal defor-
mations of the form

Oðz; z̄Þ ¼ cab̄L
aðzÞR̄b̄ðz̄Þ; ð5:1Þ

where cab̄ are constant coefficients. They have shown that
in exactly marginal deformations the constants cab̄ identify
two maximally solvable subalgebras. See also [45] for a
systematic collection of results and examples. Knowing
this result we try to see what it can do for us.

A. Yang-Baxter deformations

Consider integrable deformations of AdS3 × S3. The
first thing one may observe is that being an exactly
marginal deformation is generally not enough to guarantee
that the deformed background is a string solution. Quite
generally, there are several other conditions, amongst them
the existence of a nilpotent Bechi-Rouet-Stora-Tyutin

operator in the deformed theory, which may be used to
define physical states of the quantized strings.
Observe that when we say string solution we strictly mean

that the theory has asmassless excitations only those fields of
the usual ten-dimensional supergravities. In this sense,
marginal deformations that give string backgrounds must
be built from physical vertex operators of the original theory.
Considering the Yang-Baxter deformations [8,9,20,21], con-
sistency of the vertex operator is translated into a condition on
the classical r-matrix called unimodularity [22], and this same
condition has also been discussed in the pure spinor formal-
ism in [110,111].
Therefore, given a Yang-Baxter deformation one has the

following possibilities:
(1) Unimodular deformations: As we have just said,

these deformations give consistent string theory
solutions; therefore, they are obtained from exactly
marginal operators and on top of that, the unim-
odularity condition is satisfied. That also means that
such deformations satisfy the so-called (weak)
Chaudhuri-Schwartz (CS) conditions defined in
[43]; see also [44,45,112].

(2) Nonunimodular deformations: In this case we do not
find consistent string theory solutions, but two
interesting things may happen.
(a) These deformations may be generated bymargin-

ally relevant operators. In this case, the current-
current deformation does not satisfy the CS
condition. This condition is equivalent to defor-
mations generated by classical r-matrices that do
not satisfy the unimodularity conditions, and the
symmetry generators do not belong to the maxi-
mal soluble Lie algebra [44]. The nonunimodu-
larity is realized in terms of a new vector field K
in the massless spectrum of the theory, and this
term adds to the beta functions a K2 contribution.

(b) But it may also happen that deformations
are exactly marginal (the CS condition is sat-
isfied, which means that the deformed CFT has
vanishing beta functions) but that there is a
massless nonphysical field in the string spectra
[33,110,111] which manifests itself again as the
Killing vector field K at the supergravity level.
That essentially means that the unimodularity
condition is not satisfied, despite the fact the
deformation is exactly marginal. Observe that
this case is precisely what happens in [113],
where the solutions have null Killing vector
fields, i.e., K with KμKμ ¼ 0. Given that the
modifications of the beta functions are realized
as a term of the form K2, the beta functions are
still vanishing, and consequently the resulting
theory is still a CFT, but with a nonphysical field
K that spoils their string theory interpretation.
That essentially means that other stringy require-
ments are not satisfied.
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These are the types of deformations we study now.

1. Marginally relevant deformations of the AdS3 strings

Among the extensive collection of advantages of this
particular deformation, one of them is extremely compel-
ling to our proposal; namely, there is a very natural
candidate for the braiding matrix R. In other words,
suppose we have Yang-Baxter deformations of nonlinear
sigma models based on the R-matrix R ≃ 1þ ηrþ Oðη2Þ,
where r satisfies the classical Yang-Baxter equation.
Therefore, one can use this same R-matrix as a seed for
our braiding R-matrix. More specifically, for a deformation
of the form

δS ∝
Z

rab̄L
aðzÞR̄b̄ðz̄Þ; ð5:2Þ

with rab̄ ¼ −rb̄a, one can impose that Rαβ ≃ ð1þ ηrÞαβ.
Observe that in the infinitesimal limit we consider now, the
diagonal components (in the left- and right-moving sectors
Rab and Rā b̄) do not play any role in the deformation itself,
but are important in the algebra of nonlocal charges.
One may try to study these nonlocal objects for defor-

mations of string theory in the background AdS3 × S3 × T4

supported with a B-field. In order to make the text self-
contained, we review some of its features in Appendix. It is
well known that this theory is equivalent to an
SLð2;RÞ × SUð2Þ-WZNW model, and this particular
model has two maximally solvable subalgebras generated
by fV3; V−; K3g and fV̄3; V̄−; K̄3g. Therefore, any pertur-
bation defined by these generators is exactly marginal.
We have a list of possible marginally relevant deforma-

tions of the SLð2;RÞ WZNW model

δ−þS ¼ η

2π

Z
d2zL−ðzÞR̄þðz̄Þ;

δþ−S ¼ η

2π

Z
d2zLþðzÞR̄−ðz̄Þ

δ3þS ¼ η

2π

Z
d2zL3ðzÞR̄þðz̄Þ;

δþ3S ¼ η

2π

Z
d2zLþðzÞR̄3ðz̄Þ

δþþS ¼ η

2π

Z
d2σLþðzÞR̄þðz̄Þ; ð5:3Þ

where the currents are

L3¼kð∂uþcosh2ρ∂vÞ; L�¼kð∂ρ� isinh2ρ∂vÞe∓i2u;

R3¼kð∂̄vþcosh2ρ∂̄uÞ; R�¼kð∂̄ρ� isinh2ρ∂uÞe∓i2v;

ð5:4Þ

and the familiar OPEs are given by

L3ðzÞL�ðwÞ ∼�L�ðwÞ
z − w

R3ðz̄ÞR�ðw̄Þ ∼�R�ðw̄Þ
z̄ − w̄

L3ðzÞL3ðwÞ ∼ −
k

2ðz − wÞ2

R3ðz̄ÞR3ðw̄Þ ∼ −
k

2ðz̄ − w̄Þ2

LþðzÞL−ðwÞ ∼ k
ðz − wÞ2 þ

2L3ðwÞ
z − w

Rþðz̄ÞR−ðw̄Þ ∼ k
ðz̄ − w̄Þ2 þ

2R3ðw̄Þ
z̄ − w̄

: ð5:5Þ

It has been argued in [44] that the coefficients cab may be
interpreted as the nondiagonal elements of an r-matrix one
can engineer as a solution of the classical Yang-Baxter
equation. In particular, the example 4.3.4 of [38] corre-
sponds to the r-matrix

r ¼ −
1ffiffiffi
2

p Vþ ∧ ðV3 þ V̄3Þ ⇔

δþ3S ¼ η

2π

Z
d2zLþðzÞR̄3ðz̄Þ; ð5:6Þ

and we notice that the perturbation by the operator
Oðz; z̄Þ ¼ ηLþðzÞR̄3ðz̄Þ is not only marginally relevant,
but also (classically) integrable by the arguments of [44].
With this deformation we can now (try to) apply the
techniques we developed in previous sections regarding
the existence and algebraic relations of the nonlocal
charges.
As we said before, the deformed nonlocal fields are

defined in terms of a new gauge-valued field A obtained
from its dynamical equations (3.12a) or, equivalently, from
(3.12b). For example, if we assume the marginally relevant
operator Oðz; z̄Þ ¼ ηLþðzÞR̄3ðz̄Þ, it is straightforward to
show that Eqs. (3.12b) are

∂∂̄Xþ ¼ ηXþYþ; ∂∂̄X− ¼ −ηXþY−; ∂∂̄X3 ¼ 0

ð5:7aÞ

and

∂∂̄Yþ ¼ 0; ∂∂̄Y− ¼ 2ηX3Y3; ∂∂̄Y3 ¼ −ηXþY3;

ð5:7bÞ

where Xa ≡ ∂Aa and Ya ≡ ∂̄Aa for a ¼ �; 3. With the
solution for these equations for the components Aa we can
directly characterize the nonlocal currents La and R̄a and
their algebraic properties.
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B. Comments on holographic TT̄ and TJ̄

Certain irrelevant and integrability preserving deforma-
tions, called TT̄ and TJ̄ deformations, have been studied
initially in [63–67]. As we know, the subject of the present
work is essentially marginal deformations of field theories;
consequently, the perturbations defined by Zamolodchikov
et al. may seem absolutely unrelated to the current
discussion. Here the magic of AdS/CFT comes into play.
It has been suggested that certain marginal deformations of
the string Worldsheet theory, which is defined by the
gravity dual to the undeformed holographic CFT, encom-
pass all essential features of these TT̄ and TJ̄ deformations
[78–83].
More specifically, given a 2D QFT, not necessarily

conformal, we can define the following irrelevant operator
of weight (2,2),

TT̄ðxÞ ¼ lim
y→x

ðTðyÞT̄ðxÞ − ΘðyÞΘ̄ðxÞÞ; ð5:8Þ

where T, T̄, Θ and Θ̄ are the components of the stress-
energy tensor, which must satisfy the conservation law

∂ x̄T ¼ ∂xΘ̄; ∂xT̄ ¼ ∂ x̄Θ: ð5:9Þ

Observe that this irrelevant operator is universal in the
sense it can always be defined, since this object only
depends on the stress-energy tensor.
When we have a theory with (at least) a SLð2;RÞ ×Uð1Þ

symmetry, one can define the following (2,1)-irrelevant
operator

JT̄ðxÞ ¼ lim
y→x

ðJðyÞT̄ðxÞ − J̄ðyÞΘðxÞÞ; ð5:10Þ

where the conservation law for the current must also be
satisfied,

∂J̄ þ ∂̄J ¼ 0: ð5:11Þ

From the holographic viewpoint, we may also study
this deformation from a stringy perspective. As usual,
when the two-dimensional CFT is holographic dual to a
string background of the form AdS3 ×N , where N is
a compact space, its TT̄ and TJ̄ deformations above
should correspond to a double trace perturbation.
Consequently, these deformations change the boundary
conditions of the theory [114,115]. Quite remarkably, the
authors of [78–81], see also [83], argue that there are single
trace deformations of the AdS3 strings which reproduce the
essential (or all) features of the TT̄ and TJ̄ deformations.
These single trace operators are exactly what we need to
implement our ideas on the existence and algebra of the
nonlocal charges.
Let us concentrate on the TT̄ deformations since the TJ̄

follows similar reasoning. It has been shown that the TT̄

perturbation in the boundary CFT is equivalent, from the
Worldsheet perspective, to

δLws ¼ −ηL−ðzÞR̄−ðz̄Þ: ð5:12Þ

One should notice that this transformation is, indeed,
exactly marginal since it does not belong to the maximally
soluble subalgebra specified in the previous section.
Evidently, in this particular case, the limitation of our
analysis is much more noticeable.
In the Wakimoto representation of the AdS3 strings, we

have the Lagrangian

Lws ¼ β∂̄γ þ β̄∂ γ̄ þ ∂ϕ∂̄ϕ −
ffiffiffi
2

k

r
R̂ϕ − e−

ffiffi
2
k

p
ϕββ̄; ð5:13Þ

where we have written explicitly the βγ-system which may
be appropriately bosonized as

γ ¼ iϕ− β ¼ i∂ϕþ
γ̄ ¼ iϕ̄− β̄ ¼ i∂̄ϕ̄þ where ϕþðzÞϕ−ðwÞ ≃ lnðz − wÞ;

ð5:14aÞ

and now we can use the Coulomb gas formulation
machinery. One can think of the bosonized fields in terms
of the scalar field ΦðzÞ ¼ ϕþðzÞ þ ϕ−ðzÞ.
The boundary TT̄ deformed theory is equivalent to the

Worldsheet theory,

Lws ¼ β∂̄γ þ β̄∂ γ̄ þ ∂ϕ∂̄ϕ −
2

αþ
R̂ϕ − ðηþ e−

2
αþϕÞββ̄;

ð5:15Þ

in such away that this new theory is notSLð2;RÞ × SLð2;RÞ
invariant anymore; therefore one could expect that the non-
locality of the deformed theory should be summarized in
terms of the new scalar field Φ̃ ¼ Φþ λðnonlocalÞ.
Unfortunately, we have not been able to define the expres-
sions for the nonlocal terms for exactly marginal deforma-
tions. The recent discussions of these issues (at the classical
level) in terms ofOðd; dÞ transformations may be the correct
direction to address this problem, and it is an interesting
direction to explore [42,112].
At any rate, one needs to ensure that the net effect of the

nonlocality is summarized in the algebraic discussion of
Sec. IV. The fact that the resulting theory is still a CFT
imposes several constraints to the braiding matrix and, in
particular, we have the following OPE product matrix

½JαJβ�¼ ½Jα�⊗ ½Jβ�¼

0
BBB@
LaLb 0 0 0

0 0 0 0

0 0 0 0

0 0 0 R̄āR̄b̄

1
CCCA; ð5:16Þ
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since Ha ¼ Kā ¼ 0, and evidently we have the usual
decomposition between holomorphic and antiholomorphic
sectors in the Hilbert space. As a direct consequence we
have the regularity of the following OPEs LaR̄b̄ ¼ 0 and
R̄āLb ¼ 0. These constraints greatly simplify the compu-
tation of the R-commutators (4.5b)

½Qa;Qb�R ¼ Q̂aðQbÞ
½Qa;Qb̄�R ¼ ½Qā;Qb�R ¼ 0

½Qā;Qb̄�R ¼ Q̂āðQb̄Þ: ð5:17Þ

As we said before, the methods we tried to define in this
paper do not seem to be strong enough to address exactly
marginal deformations. As a sad consequence, we are
unable to compute, or at least to give a way to calculate,
the nonlocal charges above. Incurring the risk of repeating
ourselves, the JJ̄ deformations are better described by
Oðd; dÞ transformations, and recently the deformed theory
nonlocality has been addressed in [42]; we see that
integrability also plays an important role there. We can
certainly explore those directions to understand the quan-
tum algebra of these deformations, and we hope to study
these points in a future work.

VI. CONCLUSIONS

In spite of their ubiquitousness in field theories, nonlocal
charges are still difficult to explore, especially due to the
absence of general methods to define them. In integrable
theories, these are usually related to the Yangian symmetry
which is believed to be an alternative to the inverse scattering
method in the study of integrability. The role played by
nonlocal charges, and the circumstances underwhichwe can
define them are not clear for generic quantum theories. In
this paper we tried to address these problems using very
unsophisticated and primitive methods, such as OPEs and
brute force constraints imposed by physical arguments.
Perhaps with future development of string theory and
nonperturbative methods in field theories, one may use its
methods to address these questions properly.
After a brief review in Sec. II, we started our analysis of

nonlocal charges in Sec. III with the definition of currents
directly from the deformations of free scalar representations
of conformal theories. This method is a simple generali-
zation of what has been done by LeClair and Bernard [61].
On the other hand, the applicability of this approach is very
limited and it represents an evident drawback of this
technique.
In the same section we dared to apply the idea to the

currents themselves, and not in the fields defining them.
These objects are written in terms of a new algebra valued
field A, and from it we addressed the algebraic properties
of the deformed charges in Sec. IV. We tried to find a
handful of constraints imposed by physical conditions.

Most of the analysis we performed in this work is extremely
incipient, and should be obviously extended or modified to
be useful in the precise definition of the algebra of nonlocal
charges.
The case of marginally relevant operators is easier to

study, in particular, because we were able to use some
known methods developed by Zamolodchikov in the
80s [62], but even in this simplified context the calculations
become involved very fast. In Sec. V we tried to show how
the nonlocal charges may appear in the calculation of pure
NS-NS AdS3 integrable deformations in type-IIB string
theory. In order to complete the calculations we need to
solve a system of PDE for the coefficients Aa, a ¼ �; 3,
which are important in the definition of the deformed
currents. It is just a technical problem that may eventually
be solved.
When the deformation is exactly marginal the situation is

even harder. In this particular scenario, the deformed
objects L and R̄ become nonlocal under deformation as
expected, but they preserve their chirality, and it necessarily
implies that Haðt; xÞ ¼ 0 and Kāðt; xÞ ¼ 0 despite the fact
that η ≠ 0.
Another important point we did not discuss in the current

paper is the role of these charges, their physical meaning
and how they act on the theory itself. As a matter of fact,
these problems are poorly defined, but one may use as a
guide the recent ideas on the role of Yangians in the action
and correlation functions of the N ¼ 4 super Yang-Mills
[54,116,117]. At any rate, it is not obvious to what extent
those methods can be generalized to other theories.
There are many doable and immediate problems to be

addressed in a finite time. Most of the calculations of
Sec. III should be properly done, in particular for the cases
of nonsimply laced Lie algebras. This is, evidently, a rather
mechanical work but in the process of opening the
calculations one may have interesting insights. Much more
important is to look for a stronger prescription for the
definition of the R-matrix. In the present work we con-
sidered it as an input, but it is evidently a very unsatisfac-
tory situation, since it should be a consequence of the
deformation itself, as in our example of Yang-Baxter
deformations. Another interesting aspect is to understand
if we can consider the right-hand side of Eq. (4.37) as
topological charges, if we can write it in terms of the
original nonlocal charges, or even a more exotic situation.
For integrable deformation, there are better tools to

handle the existence and properties of the nonlocal charges
[42], but for generic deformations one may try to use (and
extend) some of the ideas we explored in this paper.
New ideas are certainly needed, and we hope to report
new results in future publications.
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APPENDIX: AdS3 STRINGS

In order to make the paper self-contained, we review the
main features of strings propagating in the AdS3 × S3

background supported by a B-field. We start with the
sigma-model description of this geometry,2

ds2 ¼ 1

z2
ðdz2 − dudvÞ þ 1

4
½dϕ2

3 þ cos2ϕ3dϕ2
1

þ ðdϕ2 þ sinϕ3dϕ1Þ2� ðA1aÞ

B ¼ du ∧ dv
z2

−
1

2
sinϕ3dϕ1 ∧ dϕ2: ðA1bÞ

Isometries of the AdS3 metric are defined by the
following Killing vectors,

k0 ¼ u∂u þ
z
2
∂z; kþ1 ¼ ∂u;

k−1 ¼ −u2∂u − z2∂v − uz∂z;

k̃0 ¼ −v∂v −
z
2
∂z; k̃−1 ¼ ∂v;

k̃þ1 ¼ −v2∂v − z2∂u − vz∂z; ðA2aÞ

which satisfy the following commutation relations,

½ka; kb� ¼ −fabckc; ½k̃a; k̃b� ¼ −fabck̃c; ðA2bÞ

where fabc are the structure constants of two copies of the
algebra slð2;RÞ,

½s0; s�1� ¼ �s�1; ½sþ1; s−1� ¼ 2s0;

½s̃0; s̃�1� ¼ �s̃�1; ½s̃þ1; s̃−1� ¼ 2s̃0: ðA3Þ

For each Killing vector field above, we have the trans-
formation (no sum in the index a)

δaXm¼ ϵakaðXmÞ
δaG¼ ϵaLkaðGÞ¼0

δaB¼ ϵaLkaB

¼ ϵa
1

2
ðkpa∂pBmnþ∂mk

p
aBpnþ∂nk

p
aBmpÞdXm∧dXn

≡−ϵadJa; ðA4aÞ

and

δ̃aXm¼ ϵ̃ak̃aðXmÞ
δ̃aG¼ ϵ̃aLk̃a

ðGÞ¼0

δ̃aB¼ ϵ̃aLk̃a
B

¼ ϵ̃a
1

2
ðk̃pa∂pBmnþ∂mk̃

p
aBpnþ∂nk̃

p
aBmpÞdXm∧dXn

≡−ϵ̃adJ̃a; ðA4bÞ

where Lv is the Lie derivative along the vector v.
The Worldsheet action

S ¼ T
2

Z
d2σ∂XmðGmn þ BmnÞ∂̄Xn ðA5aÞ

explicitly gives

S ¼ k
2π

Z
d2σ

�
1

z2
ð∂z∂̄z − ∂v∂̄uÞ þ 1

4
∂ϕi∂̄ϕi

þ 1

2
∂ϕ2∂ϕ1 sinϕ3

�
; ðA5bÞ

where we have used the following definitions for the
Worldsheet coordinates:

σ ¼ σ0 þ σ1; σ̄ ¼ σ0 − σ1; ∂ ¼ ∂σ; ∂̄ ¼ ∂ σ̄

ησσ̄ ¼ ησ̄σ ¼ −2; ϵσσ̄ ¼ −ϵσ̄σ ¼ −2; dσ ¼ 1

2
dσdσ̄:

ðA5cÞ

The Noether currents are obtained from the variation

δaS ¼ T
2

Z
d2σ½ð∂ϵaÞkma ðGmn þ BmnÞ∂̄Xn

þ ∂XmðGmn þ BmnÞknað∂̄ϵaÞ þ ∂XmδaBmn∂̄Xn�:
ðA6Þ

We can simplify the notation of this expression with the
following currents:

Ja ≡ Ja;þ ¼ kma ðGmn − BmnÞ∂Xn

J̄a ≡ Ja;− ¼ kma ðGmn þ BmnÞ∂̄Xn: ðA7Þ
2Comparing with the notation of [44], we have u≡ xþ and

v≡ x−.
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We also need to calculate the last term in (A6). Given that
LaB ¼ −dJa,

δaB ¼ 1

2
δaBmndXm ∧ dXn

¼ −ϵadðJa;ndXnÞ
¼ −ϵadðJadσ þ J̄adσ̄Þ

¼ −
1

2
ϵað∂mJa;n − ∂nJa;mÞdXm ∧ dXn: ðA8aÞ

Moreover, we notice that

δaB ¼ 2δaBmn∂Xm∂̄Xn

�
1

2
dσ ∧ dσ̄

�
¼ 2∂XmδaBmn∂̄Xnd2σ ≡ 2δaBσσ̄d2σ: ðA8bÞ

Integrating this expression we haveZ
d2σ∂XmδaBmn∂̄Xn ¼ 1

2

Z
δaB ¼ 1

2

Z
dϵa ∧ Ja

¼
Z

d2σð∂ϵaj̄a − ∂̄ϵajaÞ; ðA9aÞ

where Ja ¼ jadσ þ j̄adσ̄ with

ja ¼ Ja;m∂Xm; j̄a ¼ Ja;m∂̄Xm: ðA9bÞ

Putting all these facts together, we have

δaS ¼ T
2

Z
d2σ½ð∂ϵaÞðJ̄a þ j̄aÞ þ ð∂̄ϵaÞðJa − jaÞ�: ðA10Þ

Therefore, the Noether’s currents can be written as

J a;� ¼ Ja;� � ja;�: ðA11Þ

Similarly, we have

J̃ a;� ¼ J̃a;� � j̃a;�: ðA12Þ

Strings propagating in the AdS3 background can also be
described as an SLð2;RÞ WZNW model. We show now
that the sigma model currents we obtain in both descrip-
tions are equal, and it settles the equivalence of these
descriptions. We start with the calculation of ja;�.
§1 Let us first calculate the current associated to δ0S ¼ 0.

In this case, we have

δ0B ¼ 0; ðA13Þ

then

J 0;� ¼ J0;� ¼ km0 ðGmn ∓ BmnÞ∂�Xn: ðA14Þ

Therefore

J 0;þ ≡ J 0 ¼ −
u∂v
z2

þ ∂z
2z

¼ −u∂vþ z∂z
z2

−
1

2
∂ ln z

J 0;− ≡ J̄ 0 ¼
1

2
∂̄ ln z: ðA15Þ

The important point is that these currents do not agree
with the chiral currents we obtain in the WZNW
model. But one can gauge the field B so that one of
these currents agrees with the chiral current that one
obtains from the WZNW model,

J0 ¼
1

z2
ðz∂z − u∂vÞ: ðA16Þ

In other words, we suppose B → Bþ dΛ, so that
LaΛ ¼ −Ja. We find

J 0
0;� ¼ J 0;� � jΛ0;�; ðA17Þ

and we conclude that

jΛ0;þ ¼ 1

2
∂ ln z;

jΛ0;− ¼ 1

2
∂̄ ln z ⇒ JΛ0 ¼ −Lk0Λ ¼ 1

2
d ln z; ðA18Þ

and from this expression, we notice that

J 0;þ ≡ J 0;

J 0;− ≡ 0; ðA19Þ

where we drop the prime.
§2 Next, we want δþ1S ¼ 0, where

δþ1B ¼ 0; ðA20Þ

then

J þ1;� ¼ Jþ1;� ¼ kmþ1ðGmn ∓ BmnÞ∂�Xn: ðA21Þ

Therefore

J þ1;þ ≡ J þ1 ¼ −
∂v
z2

J þ1;− ≡ J̄ þ1 ¼ 0; ðA22Þ

and this time, these objects are equal to the currents
coming from the WZNW model. In this case we have

jΛþ1;þ ¼ 0; jΛþ1;− ¼ 0 ⇒ Jþ1 ¼ −Lkþ1
Λ ¼ 0:

ðA23Þ

§3 Finally, we can repeat the calculations for δ−1S ¼ 0.
Therefore
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δ−1B ¼ ϵ−1
z

dz ∧ du

¼ ϵ−1ð∂ ln z∂̄u − ∂̄ ln z∂uÞdσ ∧ dσ̄

¼ ½−ð∂̄ϵ−1Þu∂ ln zþ ∂̄ðϵ−1u∂ ln zÞ
þ ð∂ϵ−1Þu∂̄ ln z − ∂ðϵ−1u∂̄ ln zÞ�dσ ∧ dσ̄:

ðA24Þ

The boundary term can be neglected and we conclude
that

j−1;þ ¼ u∂ ln z; j−1;− ¼ u∂̄ ln z: ðA25Þ

Given that δB ≠ 0, the currents

J −1;� ¼ km−1ðGmn ∓ BmnÞ∂�Xn � j−1;� ðA26Þ

give

J −1;þ ¼ u2∂v
z2

−
u∂z
z

þ u∂ ln z;

J −1;− ¼ ∂̄u −
u∂̄z
z

− u∂̄ ln z: ðA27Þ

Evidently we need to consider the gauge trans-
formation B → Bþ dΛ to obtain the chiral current

J−1 ¼
u2∂v
z2

−
2u∂z
z

þ ∂u: ðA28Þ

Given that L−1Λ ¼ −J−1,

J 0
−1;� ¼ J 0;� � jΛ0;�; ðA29Þ

and from this expression we have

jΛ−1;þ ¼ −2
u∂z
z

þ ∂u; jΛ−1;− ¼ −2
u∂̄z
z

þ ∂̄u:
ðA30Þ

Using these expressions, we can find the gauge Λ and
consequently the new B-field. Once we obtain the explicit
expression for the B-field, the equivalence of the sigma
model description of the AdS3 strings and the SLð2;RÞ is
completely settled.
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