Khovanov width and dealternation number of positive braid links

Baader, Sebastian; Feller, Peter; Lewark, Lukas; Zentner, Raphael (2019). Khovanov width and dealternation number of positive braid links. Mathematical research letters, 26(3), pp. 627-641. International Press 10.4310/MRL.2019.v26.n3.a1

[img] Text
MRL-2019-0026-0003-a001.pdf - Published Version
Restricted to registered users only
Available under License Publisher holds Copyright.

Download (337kB) | Request a copy
[img]
Preview
Text
1600-4534.pdf - Accepted Version
Available under License Publisher holds Copyright.

Download (289kB) | Preview

We give asymptotically sharp upper bounds for the Khovanov width and the dealternation number of positive braid links, in terms of their crossing number. The same braid-theoretic technique, combined with Ozsváth, Stipsicz, and Szabó’s Upsilon invariant, allows us to determine the exact cobordism distance between torus knots with braid index two and six.

Item Type:

Journal Article (Original Article)

Division/Institute:

08 Faculty of Science > Department of Mathematics and Statistics > Institute of Mathematics

UniBE Contributor:

Baader, Sebastian; Feller, Peter and Lewark, Lukas Pascal

Subjects:

500 Science > 510 Mathematics

ISSN:

1073-2780

Publisher:

International Press

Language:

English

Submitter:

Michel Arthur Bik

Date Deposited:

19 Feb 2020 08:00

Last Modified:

19 Feb 2020 08:00

Publisher DOI:

10.4310/MRL.2019.v26.n3.a1

ArXiv ID:

1610.04534

BORIS DOI:

10.7892/boris.139929

URI:

https://boris.unibe.ch/id/eprint/139929

Actions (login required)

Edit item Edit item
Provide Feedback