FACTORIZATION BY ELEMENTARY MATRICES, NULL-HOMOTOPY AND PRODUCTS OF EXPONENTIALS FOR INVERTIBLE MATRICES OVER RINGS

EVGUENI DOUBTSOV AND FRANK KUTZSCHEBAUCH

Abstract

Let R be a commutative unital ring. A well-known factorization problem is whether any matrix in $\mathrm{SL}_{n}(R)$ is a product of elementary matrices with entries in R. To solve the problem, we use two approaches based on the notion of the Bass stable rank and on construction of a null-homotopy. Special attention is given to the case, where R is a ring or Banach algebra of holomorphic functions. Also, we consider a related problem on representation of a matrix in $\mathrm{GL}_{n}(R)$ as a product of exponentials.

1. Introduction

Let R be an associative, commutative, unital ring. A well-known factorization problem is whether any matrix in $\mathrm{SL}_{n}(R)$ is a product of elementary (equivalently, unipotent) matrices with entries in R. Here the elementary matrices are those which have units on the diagonal and zeros outside the diagonal, except one nonzero entry. In particular, for $n=3,4, \ldots$, Suslin 20 proved that the problem is solvable for the polynomials rings $\mathbb{C}\left[\mathbb{C}^{m}\right], m \geq 1$. For $n=2$, the required factorization for $R=\mathbb{C}\left[\mathbb{C}^{m}\right]$ does not always exist; the first counterexample was constructed by Cohn (4).

In the present paper, we primarily consider the case, where R is a functional Banach algebra. So, let $\mathcal{O}(\mathbb{D})$ denote the space of holomorphic functions on the unit disk \mathbb{D} of \mathbb{C}. Recall that the disk-algebra $A(\mathbb{D})$ consists of $f \in \mathcal{O}(\mathbb{D})$ extendable up to continuous functions on the closed disk $\overline{\mathbb{D}}$. The disk-algebra $A(\mathbb{D})$ and the space $H^{\infty}(\mathbb{D})$ of bounded holomorphic functions on \mathbb{D} may serve as good working examples for the algebras under consideration.

In fact, we propose two approaches to the factorization problem. The first one is based on construction of a null-homotopy; see Section 2. This method applies to the disk-algebra and similar algebras. The second approach is applicable to rings whose Bass stable rank is equal to one; see Section 3. This methods applies, in particular, to $H^{\infty}(\mathbb{D})$.

Also, the factorization problem is closely related to the following natural question: whether a matrix $F \in \mathrm{GL}_{n}(R)$ is representable as a product of exponentials, that is, $F=\exp G_{1} \ldots \exp G_{k}$ with $G_{j} \in M_{n}(R)$. For $n=2$ and matrices with entries in a Banach algebra, this question was recently considered in [15. In Section 4. we obtain results related to this question with emphasis on the case, where $R=\mathcal{O}(\Omega)$ and Ω is an open Riemann surface.

[^0]
2. FACTORIZATION AND NULL-HOMOTOPY

Given $n \geq 2$ and an associative, commutative, unital ring R, let $E_{n}(R)$ denote the set of those $n \times n$ matrices which are representable as products of elementary matrices with entries in R.

For a unital commutative Banach algebra R, an element $X \in \mathrm{SL}_{n}(R)$ is said to be null-homotopic if X is homotopic to the unity matrix, that is, there exists a homotopy $X_{t}:[0,1] \rightarrow \mathrm{SL}_{n}(R)$ such that $X_{1}=X$ and X_{0} is the unity matrix.

We will use the following theorem:
Theorem 1 ([13, §7]). Let A be a unital commutative Banach algebra and let $X \in \mathrm{SL}_{n}(A)$. The following properties are equivalent:
(i) $X \in E_{n}(A)$;
(ii) X is null-homotopic.

To give an illustration of Theorem 1, consider the disk-algebra $A(\mathbb{D})$.
Corollary 1. For $n=2,3, \ldots, E_{n}(A(\mathbb{D}))=\operatorname{SL}_{n}(A(\mathbb{D}))$.
Proof. We have to show that $E_{n}(A(\mathbb{D})) \supset \operatorname{SL}_{n}(A(\mathbb{D}))$. So, assume that

$$
F=F(z)=\left(\begin{array}{ccc}
f_{11}(z) & & f_{1 n}(z) \\
& \ddots & \\
f_{n 1}(z) & & f_{n n}(z)
\end{array}\right) \in \operatorname{SL}_{n}(A(\mathbb{D}))
$$

Define

$$
\begin{equation*}
F_{t}(z)=F(t z) \in \mathrm{SL}_{n}(A(\mathbb{D})), \quad 0 \leq t \leq 1, z \in \mathbb{D} \tag{2.1}
\end{equation*}
$$

Given an $f \in A(\mathbb{D})$, let $f_{t}(z)=f(t z), 0 \leq t \leq 1, z \in \mathbb{D}$. Observe that $\left\|f_{t}-f\right\|_{A(\mathbb{D})} \rightarrow$ 0 as $t \rightarrow 1-$. Applying this observation to the entries of F_{t}, we conclude that F is homotopic to the constant matrix $F(0)$. Since $\mathrm{SL}_{n}(\mathbb{C})$ is path-connected, the constant matrix $F(0)$ is homotopic to the unity matrix. So, it remains to apply Theorem 1

3. Factorization and Bass stable Rank

3.1. Definitions. Let R be a commutative unital ring. An element $\left(x_{1}, \ldots, x_{k}\right) \in$ R^{k} is called unimodular if

$$
\sum_{j=1}^{k} x_{j} R=R
$$

Let $U_{k}(R)$ the set of all unimodular elements in R^{k}.
An element $x=\left(x_{1}, \ldots, x_{k+1}\right) \in U_{k+1}(R)$ is called reducible if there exists $\left(y_{1}, \ldots, y_{k}\right) \in R^{k}$ such that

$$
\left(x_{1}+y_{1} x_{k+1}, \ldots, x_{k}+y_{k} x_{k+1}\right) \in U_{k}(R)
$$

The Bass stable rank of R, denoted by $\operatorname{bsr}(R)$ and introduced in 1], is the least $k \in \mathbb{N}$ such that every $x \in U_{k+1}(R)$ is reducible. If there is no such $k \in \mathbb{N}$, then we set $\operatorname{bsr}(R)=\infty$.

Remark 1. The identity $\operatorname{bsr}(R)=1$ is equivalent to the following property: For any $x_{1}, x_{2} \in R$ such that $x_{1} R+x_{2} R=R$, there exists $y \in R$ such that $x_{1}+y x_{2} \in R^{*}$.

3.2. A sufficient condition for factorization.

Theorem 2. Let R be a unital commutative ring and $n \geq 2$. If $\operatorname{bsr}(R)=1$, then $E_{n}(R)=\operatorname{SL}_{n}(R)$.

Proof. First, assume that $n=2$. Let

$$
X=\left(\begin{array}{ll}
x_{11} & x_{12} \\
x_{21} & x_{22}
\end{array}\right) \in \mathrm{SL}_{2}(R)
$$

Since $\operatorname{det} X=1$, we have

$$
x_{21} R+x_{11} R=R .
$$

Hence, using the assumption $\operatorname{bsr}(X)=1$ and Remark [1 we conclude that there exists $y \in R$ such that

$$
\begin{equation*}
\alpha=x_{21}+y x_{11} \in R^{*} \tag{3.1}
\end{equation*}
$$

Now, we have

$$
\left(\begin{array}{ll}
1 & 0 \\
y & 1
\end{array}\right) X=\left(\begin{array}{cc}
x_{11} & x_{12} \\
\alpha & *
\end{array}\right)
$$

Next, using (3.1) we obtain

$$
\left(\begin{array}{cc}
1 & \left(1-x_{11}\right) \alpha^{-1} \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
x_{11} & x_{12} \\
\alpha & *
\end{array}\right)=\left(\begin{array}{cc}
1 & * \\
\alpha & *
\end{array}\right)
$$

Finally, we have

$$
\left(\begin{array}{cc}
1 & 0 \\
-\alpha & 1
\end{array}\right)\left(\begin{array}{cc}
1 & * \\
\alpha & *
\end{array}\right)=\left(\begin{array}{cc}
1 & * \\
0 & x_{0}
\end{array}\right)
$$

Since the determinant of the last matrix is equal to one, we conclude that $x_{0}=1$. Therefore, the X is representable as a product of four multipliers.

For $n \geq 3$, let

$$
X=\left(\begin{array}{cc}
x_{11} & \\
\vdots & * \\
x_{n 1} &
\end{array}\right) \in \mathrm{SL}_{n}(R)
$$

Since $\operatorname{det} X=1$, there exist $\alpha_{1}, \ldots, \alpha_{n} \in R$ such that $\alpha_{1} x_{11}+\cdots+\alpha_{n-1} x_{n-11}+$ $\alpha_{n} x_{n 1}=1$. Therefore,

$$
x_{n 1} R+\left(\sum_{i=1}^{n-1} \alpha_{i} x_{i 1}\right) R=R
$$

Applying the property $\operatorname{bsr} R=1$, we obtain $y \in R$ such that

$$
x_{n 1}+y\left(\sum_{i=1}^{n-1} \alpha_{i} x_{i 1}\right):=\alpha \in R^{*}
$$

Put

$$
L=\left(\begin{array}{cccc}
1 & & & \\
& 1 & \mathbf{0} & \\
& \mathbf{0} & \ddots & \\
\alpha_{1} y & \ldots & \alpha_{n-1} y & 1
\end{array}\right)
$$

Then

$$
L X=\left(\begin{array}{cc}
x_{11} & \\
\vdots & * \\
x_{n-11} & \\
\alpha &
\end{array}\right)
$$

Multiplying by the upper triangular matrix

$$
U_{1}=\left(\begin{array}{ccccc}
1 & & & & \left(1-x_{11}\right) \alpha^{-1} \\
& 1 & & \mathbf{0} & -x_{21} \alpha^{-1} \\
& \mathbf{0} & \ddots & & \ldots \\
& & & 1 & -x_{n-11} \alpha^{-1} \\
& & & & 1
\end{array}\right)
$$

we obtain

$$
U_{1} L X=\left(\begin{array}{cc}
1 & \\
0 & \\
\vdots & * \\
0 & \\
\alpha &
\end{array}\right)
$$

Now, put

$$
\widetilde{L}=\left(\begin{array}{cccc}
1 & & & \\
& 1 & \mathbf{0} & \\
0 & \mathbf{0} & \ddots & \\
-\alpha & 0 & & 1
\end{array}\right)
$$

We have

$$
\widetilde{L} U_{1} L X=\left(\begin{array}{cccc}
1 & * & * & * \\
0 & & & \\
\vdots & & Y_{1} & \\
0 & & &
\end{array}\right)
$$

Observe that $Y_{1} \in \mathrm{SL}_{n-1}(R)$. So, arguing by induction, we obtain

$$
\left(\prod_{i=1}^{n-1} \widetilde{L}_{i} U_{i} L_{i}\right) X=\left(\begin{array}{lll}
1 & & * \\
& \ddots & \\
\mathbf{0} & & 1
\end{array}\right):=U
$$

or, equivalently,

$$
\left(\prod_{i=1}^{n-1} \mathcal{L}_{i} U_{i}\right) L_{n-1} X=U
$$

where \mathcal{L}_{i} are lower triangular matrices. So, we conclude that every $X \in \mathrm{SL}_{n}(R)$ is a product of $2 n$ unipotent upper and lower triangular matrices.

Corollary 2. Let A be a unital commutative Banach algebra such that $\operatorname{bsr}(A)=1$. If $X \in \mathrm{SL}_{n}(A)$, then X is null-homotopic.
Proof. It suffices to combine Theorems 1 and 2,
3.3. Examples of algebras A with $\operatorname{bsr}(A)=1$.
3.3.1. Disk-algebra $A(\mathbb{D})$. By Corollary $1 E_{n}(A(\mathbb{D}))=\operatorname{SL}_{n}(A(\mathbb{D}))$. Theorem 2 provides a different proof of this property. Indeed, Jones, Marshall and Wolff 12 and Corach and Suárez [5] proved that $\operatorname{bsr}(A(\mathbb{D}))=1$, so Theorem 2 applies.
3.3.2. Algebra $H^{\infty}(\mathbb{D})$. Let $f \in H^{\infty}(\mathbb{D})$. If $\left\|f_{r}-f\right\|_{\infty} \rightarrow 0$ as $r \rightarrow 1-$, then clearly $f \in A(\mathbb{D})$. So the homotopy argument used for $A(\mathbb{D})$ is not applicable to $H^{\infty}(\mathbb{D})$. However, Treil 22] proved that $\operatorname{bsr}\left(H^{\infty}(\mathbb{D})\right)=1$, hence, Theorem 2 holds for $R=H^{\infty}(\mathbb{D})$. Also, Corollary 2 guarantees that any $F \in \operatorname{SL}_{n}\left(H^{\infty}(\mathbb{D})\right)$ is null-homotopic.
3.3.3. Generalizations of $H^{\infty}(\mathbb{D})$. Tolokonnikov 21] proved that $\operatorname{bsr}\left(H^{\infty}(G)\right)=1$ for any finitely connected open Riemann surface G and for certain infinitely connected planar domains G (Behrens domains). In particular, any $F \in \mathrm{SL}_{n}\left(H^{\infty}(G)\right)$ is null-homotopic. However, even in the case $G=\mathbb{D}$ the homotopy in question is not explicit. So, probably it would be interesting to give a more explicit construction of the required homotopy.

Let $\mathbb{T}=\partial \mathbb{D}$ denote the unit circle. Given a function $f \in H^{\infty}(\mathbb{D})$, it is wellknown that the radial $\operatorname{limit} \lim _{r \rightarrow 1-} f(r \zeta)$ exists for almost all $\zeta \in \mathbb{T}$ with respect to Lebesgue measure on \mathbb{T}. So, let $H^{\infty}(\mathbb{T})$ denote the space of the corresponding radial values. It is known that $H^{\infty}(\mathbb{T})+C(\mathbb{T})$ is an algebra, moreover, $\operatorname{bsr}\left(H^{\infty}(\mathbb{T})+\right.$ $C(\mathbb{T}))=1$; see 18 .

Now, let B denote a Blaschke product in \mathbb{D}. Then $\mathbb{C}+B H^{\infty}(\mathbb{D})$ is an algebra. It is proved in [16] that $\operatorname{bsr}\left(\mathbb{C}+B H^{\infty}(\mathbb{D})\right)=1$.

3.4. Examples of algebras A with $\operatorname{bsr}(A)>1$.

3.4.1. Algebra $A_{\mathbb{R}}(\mathbb{D})$. Each element f of the disk-algebra $A(\mathbb{D})$ has a unique representation

$$
\begin{equation*}
f(z)=\sum_{j=0}^{\infty} a_{j} z^{j}, \quad z \in \mathbb{D} \tag{3.2}
\end{equation*}
$$

The space $A_{\mathbb{R}}(\mathbb{D})$ consists of those $f \in A(\mathbb{D})$ for which $a_{j} \in \mathbb{R}$ for all $j=0,1 \ldots$ in (3.2). As shown in [17], $\operatorname{bsr}\left(A_{\mathbb{R}}(\mathbb{D})\right)=2$. Nevertheless, the following result holds.

Proposition 1. For $n=2,3, \ldots, E_{n}\left(A_{\mathbb{R}}(\mathbb{D})\right)=\operatorname{SL}_{n}\left(A_{\mathbb{R}}(\mathbb{D})\right)$.
Proof. For a function $f \in A_{\mathbb{R}}(\mathbb{D})$, we have $f_{t} \in A_{\mathbb{R}}(\mathbb{D})$ or all $0 \leq t<1$. Hence, given a matrix $F \in \mathrm{SL}_{n}\left(A_{\mathbb{R}}(\mathbb{D})\right)$, we have $F_{t} \in \mathrm{SL}_{n}\left(A_{\mathbb{R}}(\mathbb{D})\right)$, where F_{t} is defined by (2.1). Since $\left\|f_{t}-f\right\|_{A_{\mathbb{R}}(\mathbb{D})} \rightarrow 0$ as $t \rightarrow 1-, F$ is homotopic to the constant matrix $F_{0} \in \mathrm{SL}_{n}(\mathbb{C})$. Hence, F is homotopic to the unity matrix. Therefore, $F \in E_{n}\left(A_{\mathbb{R}}(\mathbb{D})\right)$ by Theorem 1
3.4.2. Ball algebra $A\left(B^{m}\right)$, polydisk algebra $A\left(\mathbb{D}^{m}\right)$, $m \geq 2$, and infinite polydisk algebra $A\left(\mathbb{D}^{\infty}\right)$. Let B^{m} denote the unit ball of $\mathbb{C}^{m}, m \geq 2$. The ball algebra $A\left(B^{m}\right)$ and the polydisk algebra $A\left(\mathbb{D}^{m}\right)$ are defined analogously to the disk-algebra $A(\mathbb{D})$. By [6, Corollary 3.13],

$$
\operatorname{bsr}\left(A\left(B^{m}\right)\right)=\operatorname{bsr}\left(A\left(\mathbb{D}^{m}\right)\right)=\left[\frac{m}{2}\right]+1, \quad m \geq 2
$$

The infinite polydisk algebra $A\left(\mathbb{D}^{\infty}\right)$ is the uniform closure of the algebra generated by the coordinate functions z_{1}, z_{2}, \ldots on the countably infinite closed polydisk
$\overline{\mathbb{D}}^{\infty}=\overline{\mathbb{D}} \times \overline{\mathbb{D}} \ldots$ Proposition 1 from [14] guarantees that $\operatorname{bsr}\left(A\left(\mathbb{D}^{\infty}\right)\right)=\infty$. Large or infinite Bass stable rank of the algebras under consideration is compatible with the following result.
Proposition 2. Let $n=2,3, \ldots$ Then

$$
\begin{array}{ll}
E_{n}\left(A\left(B^{m}\right)\right)=\operatorname{SL}_{n}\left(A\left(B^{m}\right)\right), & m=2,3, \ldots, \infty \\
E_{n}\left(A\left(\mathbb{D}^{m}\right)\right)=\operatorname{SL}_{n}\left(A\left(\mathbb{D}^{m}\right)\right), & m=2,3, \ldots, \infty
\end{array}
$$

Proof. It suffices to repeat the argument used in the proof of Corollary 1 or Proposition 1
3.4.3. Algebra $H_{\mathbb{R}}^{\infty}(\mathbb{D})$. It is proved in 17 that $\operatorname{bsr}\left(H_{\mathbb{R}}^{\infty}(\mathbb{D})\right)=2$. We have not been able to determine the connected component of the identity in $\mathrm{SL}_{n}\left(H_{\mathbb{R}}^{\infty}(\mathbb{D})\right)$.
Problem 1. Is any element in $\mathrm{SL}_{n}\left(H_{\mathbb{R}}^{\infty}(\mathbb{D})\right)$ null-homotopic?

4. Invertible matrices as products of exponentials

Let R be a commutative unital ring. In the present section, we address the following problem: whether a matrix $F \in \mathrm{GL}_{n}(R)$ is representable as a product of exponentials, that is, $F=\exp G_{1} \ldots \exp G_{k}$ with $G_{j} \in M_{n}(R)$. For $n=2$ and matrices with entries in a Banach algebra, this problem was recently studied in [15].
4.1. Basic results. There is a direct relation between the problem under consideration and factorization of matrices in $\mathrm{GL}_{n}(R)$.

Lemma 1. Let $X \in \operatorname{SL}_{n}(R)$ be a unipotent upper or lower triangular matrix. Then X is an exponential.

Proof. For $n=2$, we have

$$
\exp \left(\begin{array}{ll}
0 & a \\
0 & 0
\end{array}\right)=\left(\begin{array}{ll}
1 & a \\
0 & 1
\end{array}\right)
$$

Let $n \geq 3$. Given $\alpha_{1}, \alpha_{2}, \ldots ; \beta_{1}, \beta_{2}, \ldots ; \gamma_{1}, \gamma_{2}, \ldots$, we will find a_{1}, a_{2}, \ldots; $b_{1}, b_{2}, \ldots ; c_{1}, c_{2}, \ldots$ such that

$$
\left(\begin{array}{ccccc}
1 & \alpha_{1} & \alpha_{2} & \alpha_{3} & \cdots \\
& 1 & \beta_{1} & \beta_{2} & \ddots \\
& & 1 & \gamma_{1} & \ddots \\
& \mathbf{0} & & 1 & \ddots \\
& & & & \ddots
\end{array}\right)=\exp \left(\begin{array}{ccccc}
0 & a_{1} & a_{2} & a_{3} & \cdots \\
& 0 & b_{1} & b_{2} & \ddots \\
& & 0 & c_{1} & \ddots \\
& \mathbf{0} & & 0 & \ddots \\
& & & & \ddots
\end{array}\right) .
$$

Put $a_{1}=\alpha_{1}, b_{1}=\beta_{1}, \ldots$ Next, we have $a_{2}=\alpha_{2}-f\left(a_{1}, b_{1}\right)=\alpha_{2}-f\left(\alpha_{1}, \beta_{1}\right)$. Analogously, we find b_{2}, c_{2}, \ldots To find a_{3}, observe that $a_{3}=\alpha_{3}-f\left(a_{1}, a_{2}, b_{1}, c_{2}\right)$. Since f depends on a_{i}, b_{i}, c_{i} with $i<3$, we obtain $a_{3}=\alpha_{3}-\widetilde{f}\left(\alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2}, \gamma_{1}, \gamma_{2}\right)$, and the procedure continues. So, the equation under consideration is solvable for any $\alpha_{1}, \alpha_{2}, \ldots ; \beta_{1}, \beta_{2}, \ldots$

Corollary 3. Assume that $\mathrm{SL}_{n}(R)=E_{n}(R)$ and every element in $E_{n}(R)$ is a product of $N(R)$ unipotent upper or lower triangular matrices. Then every element in $\mathrm{SL}_{n}(R)$ is a product of $N(R)$ exponentials.

Corollary 4. Let the assumptions of Corollary 3 hold. Suppose in addition that every invertible element in R admits a logarithm. Then every $X \in \operatorname{GL}_{n}(R)$ is a product of $N(R)$ exponentials.

Proof. Let $X \in \mathrm{GL}_{n}(R)$. So, $\operatorname{det} X \in R^{*}$ and $\ln \operatorname{det} X$ is defined. Therefore, $\operatorname{det} X=f^{n}$ for appropriate $f \in R^{*}$ and

$$
\left(\begin{array}{ccc}
f^{-1} & & \mathbf{0} \\
& \ddots & \\
\mathbf{0} & & f^{-1}
\end{array}\right) X \in \mathrm{SL}_{n}(R)
$$

Applying Corollary 3, we obtain

$$
\begin{aligned}
X & =\left(\begin{array}{lll}
f & & \mathbf{0} \\
& \ddots & \\
\mathbf{0} & & f
\end{array}\right) \exp Y_{1} \ldots \exp Y_{N} \\
& =\exp \left[\left(\begin{array}{ccc}
\ln f & & \mathbf{0} \\
& \ddots & \\
\mathbf{0} & & \ln f
\end{array}\right)+Y_{1}\right] \exp Y_{2} \ldots \exp Y_{N}
\end{aligned}
$$

as required.

4.2. Rings of holomorphic functions on Stein spaces.

Corollary 5. Let Ω be a Stein space of dimension k and let $X \in \operatorname{GL}_{n}(\mathcal{O}(\Omega))$. Then there exists a number $E(k, n)$ such that the following properties are equivalent:
(i) X is null-homotopic;
(ii) X is a product of $E(k, n)$ exponentials.

Proof. By [10, Theorem 2.3], any null-homotopic $F \in \mathrm{SL}_{n}(\mathcal{O}(\Omega))$ is a product of $N(k, n)$ unipotent upper or lower triangular matrices. So, arguing as in the proof of Corollary 4, we conclude that (i) implies (ii) with $E(k, n) \leq N(k, n)$ The reverse implication is straightforward.

The numbers $N(k, n)$ are not known in general. If the dimension k of the Stein space is fixed, then the dependence of $N(k, n)$ on the size n of the matrix is easier to handle. Certain K-theory arguments guarantee that the number of unipotent matrices needed for factorizing an element in $\operatorname{SL}_{n}(\mathcal{O}(\Omega))$ is a non-increasing function of n (see [7]). So, as done in [3], combining the above property and results from [11], we obtain the following estimates:

$$
\begin{aligned}
& E(1, n) \leq N(1, n)=4 \text { for all } n, \\
& E(2, n) \leq N(2, n) \leq 5 \text { for all } n, \text { and }
\end{aligned}
$$

for each k, there exists $n(k)$ such that $E(k, n) \leq N(k, n) \leq 6$ for all $n \geq n(k)$.
In Section 4.4 we in fact improve on that: we show $E(1,2) \leq 3$. In general, it seems that the number of exponentials $E(k, n)$ to factorize an element in $\mathrm{GL}_{n}(\mathcal{O}(\Omega))$ is less than the number $N(k, n)$ needed to write an element in $\operatorname{SL}_{n}(\mathcal{O}(\Omega))$ as a product of unipotent upper or lower triangular matrices.

Also, remark that (ii) implies (i) in Corollary 5 for any algebra R in the place of the ring of holomorphic functions. Assume that the algebra R has a topology. Then a topology on $\mathrm{GL}_{n}(R)$ is naturally induced and the implication (i) \Rightarrow (ii) means that
any product of exponentials is contained in the connected component of the identity (also known as the principal component) of $\mathrm{GL}_{n}(R)$. The reverse implication is a difficult question, even without a uniform bound on the number of exponentials.
4.3. Rings R with $\operatorname{bsr}(R)=1$. Combining Theorem 2 and Corollary 4 , we recover a more general version of Theorem 7.1(3) from [15], where R is assumed to be a Banach algebra. Moreover, we obtain similar results for larger size matrices.

Corollary 6. Let R be a commutative unital ring, $\operatorname{bsr} R=1$, and let every $x \in R^{*}$ admit a logarithm. Then every element in $\mathrm{GL}_{2}(R)$ is a product of 4 exponentials.

Corollary 7. Let R be a commutative unital ring, $\operatorname{bsr} R=1$, and let every $x \in R^{*}$ admit a logarithm. Then every element in $\mathrm{GL}_{n}(R), n \geq 3$, is a product of 6 exponentials.
Proof. For $n=3$, it suffices to combine Theorem 2 and Corollary 4 ,
Now, assume that $n \geq 4$. Let ut_{m} denote the number of unipotent matrices needed to factorize any element in $\mathrm{SL}_{m}(R)$ starting with an upper triangular matrix. Theorem 20(b) in [7] says that any element in $\mathrm{SL}_{n}(R)$ is a product of 6 exponentials for

$$
n \geq \min \left(m\left[\frac{\operatorname{ut}_{m}(R)+1}{2}\right]\right)
$$

where the minimum is taken over all $m \geq \operatorname{bsr} R+1$. In our case the minimum is taken over $m \geq 2$ and the number $\mathrm{ut}_{2}(R)=4$ by the proof of Theorem 2. Since $n \geq 4$, the proof is finished.

Corollary 6 applies to the disk algebra and also to the rings $\mathcal{O}(\mathbb{C})$ and $\mathcal{O}(\mathbb{D})$ of holomorphic functions. Indeed, the identity $\operatorname{bsr}(\mathcal{O}(\Omega))=1$ for an open Riemann surface follows from the strengthening of the classical Wedderburn lemma (see [19, Chapter 6, Section 3]; see also [10] or [2]). However, for $R=\mathcal{O}(\mathbb{C})$ and $R=\mathcal{O}(\mathbb{D})$, the number 4 is not optimal; see Section 4.4 below. Also, it is known that the optimal number is at least 2 (see [15]). So, we arrive at the following natural question:

Problem 2. Is any element of $\mathrm{GL}_{2}(\mathcal{O}(\mathbb{D}))$ or $\mathrm{GL}_{2}(\mathcal{O}(\mathbb{C}))$ a product of two exponentials?
4.4. Products of 3 exponentials. In this section, we prove the following result.

Proposition 3. Let Ω be an open Riemann surface. Then every element in $\mathrm{SL}_{2}(\mathcal{O}(\Omega))$ is a product of 3 exponentials.

We will need several auxiliary results. The first theorem is a classical one 8 .
Theorem 3 (Mittag-Leffler Interpolation Theorem). Let Ω be an open Riemann surface and let $\left\{z_{i}\right\}_{i=1}^{\infty}$ be a discrete closed subset of Ω. Assume that a finite jet

$$
\begin{equation*}
J_{i}(z)=\sum_{j=1}^{N_{i}} b_{j}^{(i)}\left(z-z_{i}\right)^{j} \tag{4.1}
\end{equation*}
$$

is defined in some local coordinates for every point z_{i}. Then there exists $f \in \mathcal{O}(\Omega)$ such that

$$
\begin{equation*}
f(z)-J_{i}(z)=o\left(\left|z-z_{i}\right|^{N_{i}}\right) \quad \text { as } z \rightarrow z_{i}, i=1,2 \ldots \tag{4.2}
\end{equation*}
$$

Corollary 8. Under assumptions of Theorem (3, suppose that $b_{0}^{(i)} \neq 0$ in (4.1) for $i=1,2, \ldots$. Then there exist $f, g \in \mathcal{O}(\Omega)$ such that (4.2) holds and $f=e^{g}$.

Proof. Let $b_{0}=b_{0}^{(i)}$ for some i. Since $b_{0} \neq 0$, there exists a logarithm \ln in a neighborhood of b_{0}. So, \ln is a local biholomorphism which induces a bijection between jets of f and $g:=\ln f$.

In "modern" language, the proof of Corollary 8 uses the fact that \mathbb{C}^{*} is an Oka manifold (we refer the interested reader to 9). Thus for any Stein manifold X and an analytic subset $Y \subset X$, a (jet of) holomorphic map $f: Y \rightarrow \mathbb{C}^{*}$ (along Y) extends to a holomorphic map $f: X \rightarrow \mathbb{C}^{*}$ if and only if it extends continuously. The obstruction for a continuous extension is an element of the relative homology group $H_{2}(X, Y, \mathbb{Z})$. Observe that, for any discrete subset Y of a 1-dimensional Stein manifold X, we have $H_{2}(X, Y, \mathbb{Z})=0$ because $H_{2}(X, \mathbb{Z})=H_{1}(Y, \mathbb{Z})=0$. This is the point where the proof of Proposition 3 below breaks down when we replace the Riemann surface Ω by a Stein manifold of higher dimension. Even a nowhere vanishing continuous function α, as in the proof, does not exist in general.
Lemma 2. Let Ω be an open Riemann surface and $X \in \mathrm{GL}_{2}(\mathcal{O}(\Omega))$. Assume that $\lambda \in \mathcal{O}^{*}(\Omega)$ is the double eigenvalue of X and $\operatorname{det} X$ has a logarithm in $\mathcal{O}(\Omega)$. Then X is an exponential.

Proof. We consider two cases.
Case 1: $X(z)$ is a diagonal matrix for all $z \in \Omega$.
We have

$$
X(z)=\left(\begin{array}{cc}
\lambda(z) & 0 \\
0 & \lambda(z)
\end{array}\right)=\exp \left(\begin{array}{cc}
\alpha(z) & 0 \\
0 & \alpha(z)
\end{array}\right)
$$

Case 2: $X(z)$ is not identically diagonal.
Either the first or the second line in $X(z)-\lambda(z) I$, say $(h(z), g(z))$, is not identical zero. So,

$$
v_{1}(z)=\binom{-g(z)}{h(z)}
$$

is a holomorphic eigenvector for $X(z)$ except those points $z \in \Omega$ for which $v_{1}(z)=$ 0. Construct a function $f(z) \in \mathcal{O}(\Omega)$ such that its vanishing divisor is exactly $\min ($ ord g, ord $h)$. Then

$$
v(z)=\frac{1}{f(z)} v_{1}(z)
$$

is a holomorphic eigenvector for $X(z), z \in \Omega$.
Now, choose a matrix $P(z) \in \mathrm{GL}_{2}(\mathcal{O}(\Omega))$ with first column $v(z)$. Then the matrix $P^{-1}(z) X(z) P(z)$ has the following form:

$$
\left(\begin{array}{cc}
\lambda(z) & \beta(z) \\
0 & \lambda(z)
\end{array}\right)=\exp \left(\begin{array}{cc}
\frac{1}{2} \gamma(z) & \frac{\beta(z)}{\lambda(z)} \\
0 & \frac{1}{2} \gamma(z)
\end{array}\right)
$$

Thus,

$$
X(z)=\exp P(z)\left(\begin{array}{cc}
\frac{1}{2} \gamma(z) & \frac{\beta(z)}{\lambda(z)} \\
0 & \frac{1}{2} \gamma(z)
\end{array}\right) P^{-1}(z)
$$

as required.

Proof of Proposition 3. Let

$$
X=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{SL}_{2}(R)
$$

that is, $a d-b c=1$. We are looking for $\alpha \in R^{*}$ and $\beta \in R$ such that the matrix

$$
X\left(\begin{array}{cc}
\alpha^{2} & \beta \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
\alpha^{2} a & \beta a+b \\
\alpha^{2} c & \beta c+d
\end{array}\right):=Y
$$

has a double eigenvalue.
Case 1: $c=0$. We have

$$
X=\left(\begin{array}{cc}
a & b \\
0 & a^{-1}
\end{array}\right) .
$$

It suffice to observe that

$$
\left(\begin{array}{cc}
a & b \\
0 & a^{-1}
\end{array}\right)\left(\begin{array}{cc}
a^{-2} & 0 \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
a^{-1} & b \\
0 & a^{-1}
\end{array}\right)
$$

has the double eigenvalue a^{-1}.
Case 2: $c \neq 0$. The matrix Y has a double eigenvalue if $4 \operatorname{det} Y=(\operatorname{tr} Y)^{2}$, that is,

$$
\begin{equation*}
\left(\alpha^{2} a+\beta c+d\right)^{2}=4 \alpha^{2} \tag{4.3}
\end{equation*}
$$

Put

$$
\beta=\frac{2 \alpha-a \alpha^{2}-d}{c} .
$$

Clearly, β is a formal solution of (4.3). Below we show how to construct $\alpha(z)=$ $\exp (\widetilde{\alpha}(z)) \in \mathcal{O}^{*}(\Omega)$ such that β is holomorphic.

Let $\left\{z_{i}\right\} \subset \Omega$ be the zero set of $c(z)$. Fix i and $z_{i} \in \Omega$. Let $c\left(z_{i}\right)=\cdots=$ $c^{(k)}\left(z_{i}\right)=0$, and $c^{(k+1)}\left(z_{i}\right) \neq 0$. Observe that $a\left(z_{i}\right) \neq 0$. So, define $\alpha(z)$, in a neighborhood of z_{i}, as $1 / a(z)$ up to a sufficiently high order, namely,

$$
\begin{equation*}
a(z) \alpha(z)=1+\left(z-z_{i}\right)^{k} h(z) \tag{4.4}
\end{equation*}
$$

where $h(z)$ is holomorphic in a neighborhood of z_{i}. Since $a d-b c=1$, we have $1-a d=\left(z-z_{i}\right)^{k} g(z)$. Therefore,

$$
\begin{aligned}
2 a \alpha-a^{2} \alpha^{2}-a d & =-\left(1-a \alpha^{2}\right)^{2}+1-a d \\
& =-\left(z-z_{0}\right)^{2 k} h^{2}(z)+\left(z-z_{0}\right)^{k} g(z)
\end{aligned}
$$

vanishes of order k at z_{i}. Hence, $2 \alpha-a \alpha^{2}-d$ also vanishes of order k at z_{i}.
So, we have constructed $\alpha(z)$ locally as finite jets $J_{i}(z)$ defined by (4.1) with $b_{0}^{(i)} \neq 0$ in some local coordinates for every point $z_{i}, i=1,2, \ldots$ Now, Corollary 8 provides $\widetilde{\alpha} \in \mathcal{O}(\Omega)$ such that $\alpha(z)=\exp (\widetilde{\alpha}(z)) \in \mathcal{O}^{*}(\Omega)$ and (4.4) holds. Hence, β is holomorphic.

So, the matrix

$$
X\left(\begin{array}{cc}
\alpha^{2} & \beta \\
0 & 1
\end{array}\right):=Y
$$

has a double eigenvalue and $\operatorname{det} Y$ admits a logarithm. Thus, applying Lemma 2 we conclude that Y is an exponential. To finish the proof of the proposition, it remains observe that

$$
\left(\begin{array}{cc}
\alpha^{2} & \beta \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
\alpha & 0 \\
0 & \alpha^{-1}
\end{array}\right)\left(\begin{array}{cc}
\alpha & \beta \alpha^{-1} \\
0 & \alpha
\end{array}\right)
$$

where both multipliers on the right hand side are exponentials.

Corollary 9. Let $X \in \mathrm{GL}_{2}(\mathcal{O}(\Omega))$. The following properties are equivalent:
(i) X is a product of 3 exponentials;
(ii) $\operatorname{det} X$ is an exponential;
(iii) X is null-homotopic.

Proof. Clearly, (i) \Rightarrow (iii). Now, assume that X is null-homotopic. Then $\operatorname{det} X$ is homotopic to the function $f \equiv 1$. Since $\exp : \mathbb{C} \rightarrow \mathbb{C}^{*}$ is a covering, we conclude that $\operatorname{det} X(z)=\exp (h(z))$ with $h \in \mathcal{O}(\Omega)$. So, (iii) implies (ii). The implication $($ ii $) \Rightarrow(\mathrm{i})$ is standard; see, for example, the proof of Corollary 4 .

References

[1] H. Bass, K-theory and stable algebra, Inst. Hautes Études Sci. Publ. Math. (1964), no. 22, 5-60.
[2] A. Brudnyi, On the factorization of matrices over commutative Banach algebras, Integral Equations Operator Theory 90 (2018), no. 1, Art. 6, 8.
[3] A. Brudnyi, On the Bass Stable Rank of Stein Algebras, Publ. Res. Inst. Math. Sci. 55 (2019), no. 1, 109-121.
[4] P. M. Cohn, On the structure of the GL_{2} of a ring, Inst. Hautes Études Sci. Publ. Math. (1966), no. 30, 5-53.
[5] G. Corach and F. D. Suárez, Stable rank in holomorphic function algebras, Illinois J. Math. 29 (1985), no. 4, 627-639.
[6] G. Corach and F. D. Suárez, Dense morphisms in commutative Banach algebras, Trans. Amer. Math. Soc. 304 (1987), no. 2, 537-547.
[7] R. K. Dennis and L. N. Vaserstein, On a question of M. Newman on the number of commutators, J. Algebra 118 (1988), no. 1, 150-161.
[8] H. Florack, Reguläre und meromorphe Funktionen auf nicht geschlossenen Riemannschen Flächen, Schr. Math. Inst. Univ. Münster, 1948 (1948), no. 1, 34.
[9] F. Forstnerič, Stein manifolds and holomorphic mappings, second ed., Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 56, Springer, 2017.
[10] B. Ivarsson and F. Kutzschebauch, Holomorphic factorization of mappings into $\mathrm{SL}_{n}(\mathbb{C})$, Ann. of Math. (2) 175 (2012), no. 1, 45-69.
[11] B. Ivarsson and F. Kutzschebauch, On the number of factors in the unipotent factorization of holomorphic mappings into $\mathrm{SL}_{2}(\mathbb{C})$, Proc. Amer. Math. Soc. 140 (2012), no. 3, 823-838.
[12] P. W. Jones, D. Marshall, and T. Wolff, Stable rank of the disc algebra, Proc. Amer. Math. Soc. 96 (1986), no. 4, 603-604.
[13] J. Milnor, Introduction to algebraic K-theory, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1971, Annals of Mathematics Studies, No. 72.
[14] R. Mortini, An example of a subalgebra of H^{∞} on the unit disk whose stable rank is not finite, Studia Math. 103 (1992), no. 3, 275-281.
[15] R. Mortini and R. Rupp, Logarithms and exponentials in the matrix algebra $\mathcal{M}_{2}(A)$, Comput. Methods Funct. Theory 18 (2018), no. 1, 53-87.
[16] R. Mortini, A. Sasane, and B. D. Wick, The corona theorem and stable rank for the algebra $\mathbb{C}+B H^{\infty}$, Houston J. Math. 36 (2010), no. 1, 289-302.
[17] R. Mortini and B. D. Wick, The Bass and topological stable ranks of $H_{\mathbb{R}}^{\infty}(\mathbb{D})$ and $A_{\mathbb{R}}(\mathbb{D})$, J. Reine Angew. Math. 636 (2009), 175-191.
[18] R. Mortini and B. D. Wick, Spectral characteristics and stable ranks for the Sarason algebra $H^{\infty}+C$, Michigan Math. J. 59 (2010), no. 2, 395-409.
[19] R. Remmert, Funktionentheorie. II, Grundwissen Mathematik [Basic Knowledge in Mathematics], vol. 6, Springer-Verlag, Berlin, 1991.
[20] A. A. Suslin, The structure of the special linear group over rings of polynomials, Izv. Akad. Nauk SSSR Ser. Mat. 41 (1977), no. 2, 235-252, 477; English transl.: Math. USSR Izv. 11 (1977), 221-238.
[21] V. Tolokonnikov, Stable rank of H^{∞} in multiply connected domains, Proc. Amer. Math. Soc. 123 (1995), no. 10, 3151-3156.
[22] S. Treil, The stable rank of the algebra H^{∞} equals 1, J. Funct. Anal. 109 (1992), no. 1, 130-154.

St. Petersburg Department of V.A. Steklov Mathematical Institute, Fontanka 27, St. Petersburg 191023, Russia

E-mail address: dubtsov@pdmi.ras.ru
Institute of Mathematics, University of Bern, Sidlerstrasse 5, CH-3012 Bern, SwitZERLAND

E-mail address: frank.kutzschebauch@math.unibe.ch

[^0]: 2010 Mathematics Subject Classification. Primary 15A54; Secondary 15A16, 30H50, 32A38, 32E10, 46E25.

 Frank Kutzschebauch was supported by Schweizerische Nationalfonds Grant 200021-178730.

