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On a Babuška Paradox for Polyharmonic
Operators: Spectral Stability and Boundary
Homogenization for Intermediate Problems

Francesco Ferraresso and Pier Domenico Lamberti

Abstract. We analyse the spectral convergence of high order elliptic dif-
ferential operators subject to singular domain perturbations and homo-
geneous boundary conditions of intermediate type. We identify sharp
assumptions on the domain perturbations improving, in the case of poly-
harmonic operators of higher order, conditions known to be sharp in the
case of fourth order operators. The optimality is proved by analysing
in detail a boundary homogenization problem, which provides a smooth
version of a polyharmonic Babuška paradox.

Keywords. Spectral analysis, Polyharmonic operators, Boundary
homogenization.

1. Introduction

A recurrent topic in the Analysis of Partial Differential Equations, in Spectral
Theory, and their applications is the study of the variation of the solutions
to elliptic boundary value problems on domains subject to boundary pertur-
bation, with contributions rooting back in the works of Courant and Hilbert
[27], and Keldysh [37]. The mathematical interest in this type of problems is
also given by the possible appearance of an unexpected asymptotic behaviour
of the solutions, which can be understood as a spectral instability phenome-
non. Probably the most famous example in elasticity theory is the celebrated
Babuška paradox which concerns the approximation of a thin hinged circular
plate by means of an invading sequence of convex polygons. This problem
was considered by Babuška in [10] and was further discussed by Maz’ya and
Nazarov in [38] where among various results they present a variant of the
Babuška paradox consisting in the approximation a thin hinged circular plate
by means of an invading sequence of non-convex, indented polygons (see [33,
§ 1.4], for a recent discussion on this subject and for more details concerning
the related results of Sapondžhyan [44]). We find convenient to briefly recall
the formulation of the paradox.
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Given a circle Ω in R
2 and a datum f ∈ L2(Ω), consider the following

boundary value problem
⎧
⎪⎨

⎪⎩

Δ2u = f, in Ω,

u = 0, on ∂Ω,
∂2u
∂n2 = 0, on ∂Ω,

(1.1)

in the unknown real-valued function u. Note that here and in the sequel,
boundary value problems will be understood in the weak sense. Thus, problem
(1.1) consists in finding u ∈ W 2,2(Ω) ∩ W 1,2

0 (Ω) such that
∫

Ω

D2u : D2ϕdx =
∫

Ω

fϕ dx, for all ϕ ∈ W 2,2(Ω) ∩ W 1,2
0 (Ω),

where D2u : D2ϕ =
∑N

i,j=1 uxixj
ϕxixj

is the Frobenius product of the two
Hessian matrices of u and ϕ. In the theory of elastic plates, u represents the
deflection of a hinged thin plate with midplane Ω and normal load f .

Define inside Ω an invading sequence of indented polygons Ωn obtained
by modifying an inscribed convex polygon with n vertexes pn

j , j = 1, . . . , n,
and replacing its contour line in a neighbourhood of each pn

j by a V -shaped
line as in Fig. 1. The small curvilinear triangles appearing have height equal
to hn

j and base of length ηn
j , while the length of the nearby chord (the side

of the polygon) is denoted by ζn
j . Consider now the same boundary value

problem in Ωn ⎧
⎪⎨

⎪⎩

Δ2un = f, in Ωn,

un = 0, on ∂Ωn,
∂2un

∂n2 = 0, on ∂Ωn,

(1.2)

in the unknown un ∈ W 2,2(Ωn)∩W 1,2
0 (Ωn). The paradox lies in the fact that

if

max
1≤j≤n

|ζn
j |

|ηn
j | = O(1), max

1≤j≤n

|ηn
j |

|hn
j |2/3

= o(1),

as n → ∞, then the solution un ∈ W 2,2(Ωn) ∩ W 1,2
0 (Ωn) of (1.2) does not

converge to the solution u of (1.1), but to the solution v of the boundary
value problem

⎧
⎪⎨

⎪⎩

Δ2v = f, in Ω,

v = 0, on ∂Ω,
∂v
∂n = 0, on ∂Ω.

(1.3)

Here v represents the deflection of a clamped thin plate. Note that it is
possible to choose |ζn

j | = 0 for all j and n in order to obtain the wild looking
set Ωn in Fig. 2.

In [7,8] the authors considered a smooth version of this paradox. Given
a sufficiently regular bounded domain W in R

N−1, N ≥ 2, they define a
family of domains (Ωε)0<ε<ε0 by setting

Ω = W ×(−1, 0), Ωε = {(x̄, xN ) ∈ R
N : x̄ ∈ W,−1 < xN < εαb(x̄/ε)} (1.4)
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Figure 1. Indented polygon

Figure 2. Degenerate indented polygon

where x̄ = (x1, . . . , xN−1), and b is a non-constant, smooth, positive, periodic
function of period Y = [−1/2, 1/2]N−1. The geometry of this perturbation is
described in Fig. 3 below.

By comparing Figs. 3a and 2, one realizes that the perturbations look
similar locally at the boundary. This analogy goes further if we define hn

j = εα

and ηn
j = ε, with ε = 1/n. Indeed, in [8] it was proved that if

|ηn
j |

|hn
j |2/3

=
ε

ε2/3α
= o(1),

as ε → 0, that is if α < 3/2, then the same Babuška-type paradox appears.
Moreover, it was also proved that if α > 3/2 then no Babuška paradox
appears and there is spectral stability. The threshold α = 3/2 is then critical
and represents a typical case of study for homogenization theory: in fact, it
was proved in [8] that the limiting problem contains a ‘strange term’ which
could be interpreted as a ‘strange curvature’.

It is then natural to wonder whether Babuška-type paradoxes may be
detected in the case of polyharmonic operators (−Δ)m, m > 2 subject to
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(A) (B)

Figure 3. Oscillations of the upper boundary of Ωε as ε →
0, depending on α

intermediate boundary conditions. The answer is not as straightforward as it
may appear, and it is necessary to clarify first what are the possible boundary
conditions for those operators. Indeed, there exists a whole family of bound-
ary value problems depending on a parameter k = 0, 1 . . . ,m, the weak for-
mulation of which reads as follows: given a bounded domain (i.e., a connected
open set) Ω in R

N with sufficiently smooth boundary, m ∈ N, and f ∈ L2(Ω),
find u ∈ Wm,2(Ω) ∩ W k,2

0 (Ω) such that
∫

Ω

Dmu : Dmϕdx+
∫

Ω

uϕdx =
∫

Ω

fϕdx, ∀ϕ ∈ Wm,2(Ω)∩W k,2
0 (Ω). (1.5)

Here we denote by Wm,2(Ω) the standard Sobolev space of functions in L2(Ω)
with weak derivatives up to order m in L2(Ω) and by W k,2

0 (Ω) the closure
in W k,2(Ω) of the C∞-functions with compact support in Ω. Note that for
k = m one obtains the Dirichlet problem

{
(−Δ)mu + u = f, in Ω,
∂lu
∂nl = 0, on ∂Ω, for all 0 ≤ l ≤ m − 1,

(1.6)

while for k = m − 1 one gets the significantly different problem
⎧
⎪⎨

⎪⎩

(−Δ)mu + u = f, in Ω,
∂lu
∂nl = 0, on ∂Ω, for all 0 ≤ l ≤ m − 2.
∂mu
∂nm = 0, on ∂Ω.

(1.7)

Finally, for k = 0 one gets the problem with natural boundary conditions, also
known as Neumann problem, and this explains why problem (1.7) is called
intermediate. Actually, in this paper we refer to problem (1.7) as to the strong
intermediate problem to emphasise the fact that (1.7) is the intermediate
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problem with the largest k and to distinguish it from the other cases where
0 < k < m − 1 which are called here weak intermediate problems. According
to these considerations, one is led to ask the following:

Question. Are there Babuška-type paradoxes for polyharmonic operators
(−Δ)m, m > 2 satisfying intermediate boundary conditions, and which are
the natural assumptions which prevent the appearance of this paradox?

We are able to answer to this question in the geometric setting given
by (1.4). Since when m = 2 problem (1.7) coincides with the hinged plate
(1.1), the Babuška paradox will be discussed for polyharmonic operators with
strong intermediate boundary conditions (in short, (SIBC)), being the nat-
ural higher order version of the intermediate boundary conditions for the
biharmonic operator.

Let us describe one of the two main results of this paper. Let Ωε and
Ω be as in (1.4), V (Ωε) = Wm,2(Ωε) ∩ Wm−1,2

0 (Ωε). For every ε > 0, let
uε ∈ V (Ωε) be the solution of

∫

Ωε

Dmuε : Dmϕ + uεϕdx =
∫

Ωε

fϕ dx, for all ϕ ∈ V (Ωε). (1.8)

Recall that this is the weak formulation of the Poisson problem for (−Δ)m+I

with (SIBC). For u ∈ Wm,2(Ω), define Tεu = u ◦ Φε where Φε is a smooth
diffeomorphism mapping Ωε into Ω that coincides with the identity on a
large part Kε of Ω, with |Ω \ Kε| → 0 as ε → 0, see (3.5). Let u be such that
‖uε − Tεu‖L2(Ωε)

→ 0 as ε → 0.
Theorem 7 states that the limit u solves different differential problems

according to the values of the parameter α. More precisely, we have the
following trichotomy:

(i) (Stability) If α > 3/2, then u solves (1.8) in Ω, that is, u satisfies
(−Δ)mu + u = f in Ω and (SIBC) on ∂Ω;

(ii) (Degeneration) If α < 3/2, then u satisfies (−Δ)mu + u = f in Ω, with
Dirichlet boundary conditions on W × {0}, that is

∂lu

∂nl
= 0, for all 0 ≤ l ≤ m − 1,

and (SIBC) on the rest of the boundary of Ω;
(iii) (Strange term) If α = 3/2, then u satisfies (−Δ)mu + u = f in Ω with

the following boundary conditions on W × {0}
{

Dlu = 0, for all 0 ≤ l ≤ m − 2,
∂mu
∂nm + K ∂m−1u

∂nm−1 = 0,

and (SIBC) on the rest of the boundary of Ω. Here K is a certain
positive constant that can be characterized as the energy of a suitable
m-harmonic function in Y × (−∞, 0).

It follows that if α < 3/2 a polyharmonic Babuška paradox appears.
It is interesting to observe that the critical value 3/2 is the same for all the
polyharmonic operators with (SIBC).
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The techniques used to prove Theorem 7 vary drastically depending on
the case (i)–(iii) considered. Theorem 7(i) is a consequence of Theorem 2,
which is the second main result of the paper and provides a general stability
criterion for self-adjoint elliptic differential operators of order 2m with non-
constant coefficients and compact resolvents (or, more precisely, for their
realization in the space Wm,2(Ω)∩W k,2

0 (Ω), 0 < k < m) on varying domains
featuring a fast oscillating boundary.

Theorem 2 is an improvement of a previous result (see [8, Lemma 6.2])
and can be summarized and simplified in the following way. Let Ω and Ωε be
bounded domains in R

N defined as follows:
Ω = {(x̄, xN ) ∈ W × (a, b) : x̄ ∈ W,a < g(x̄) < b},
Ωε = {(x̄, xN ) ∈ W × (a, b) : x̄ ∈ W,a < gε(x̄) < b},

where W ⊂ R
n−1 is as above, a + ρ < g, gε < b − ρ, a, b ∈ R, and

g, gε ∈ Cm(W ). If ‖g − gε‖∞ converges to zero as ε goes to zero and,
for all |β| = m,

∥
∥Dβ(g − gε)

∥
∥

∞ converges to zero or diverges to infinity
with a suitable rate expressed in terms of a power of ‖g − gε‖∞, then the
spectrum of the realization of a self-adjoint elliptic differential operator in
Wm,2(Ωε) ∩ W k,2

0 (Ωε), 1 ≤ k ≤ m − 1 is stable as ε → 0 . We note that [8,
Lemma 6.2] is sharp in the case m = 2 and k = 1. In Theorem 2 we allow
a rate of convergence or divergence for

∥
∥Dβ(g − gε)

∥
∥

∞ which is much better
when k > 1. For example, going back to Theorem 7(i), we note the following
fact: upon considering profile functions gε of the type gε(x̄) = εαb( x̄

ε ), where
b is a non-constant periodic function, we could apply [8, Lemma 6.2] to the
polyharmonic problem in a straight forward way; however, this would only
guarantee the spectral stability for α > m−1/2. Our improved stability The-
orem 2 guarantees the spectral stability for the better range α > m−k+1/2.

The proof of Theorem 7(ii) is based on a consequence of a degeneration
argument that was introduced in [21], and which was already exploited in [8].

The reader may wonder if it is possible to push the arguments contained
in the proof of Theorem 7 in order to discuss the general case of weak inter-
mediate problems for polyharmonic operators. The main issue is that the
degeneration argument in Theorem 7(ii) is restricted to the case of (SIBC).
Hence, a detailed analysis of the various possible situations seems to us much
more involved and almost prohibitive for arbitrary values of m and k. We
mention that the case m = 3, k = 1 will be the object of a forthcoming paper
and we refer to [30] for a number of results in this direction.

We remark that our main results, in particular Theorem 2 and The-
orem 7, are based on the notion of E-convergence in the sense of Vainikko
[46] which is related to Stummel’s discrete convergence and to Anselone and
Palmer’s collective compactness, see [45] and [2] respectively. For a recent
survey on these topics and further generalisations, we refer to [11].

Finally, we mention that, in the case of second-order operators, coun-
terexamples to the spectral stability with respect to domain perturbation are
well-known, see for example the classical [27, Chp. VI, 2.6]. Related prob-
lems for the Neumann Laplace operator and for the Schrödinger operator
with Neumann boundary conditions have been considered in [6,22] and [3]
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respectively. Regarding higher order elliptic operators on variable domains,
several contributions can be found in [4,12–14,16–18,32]. In particular, for a
possible approach to these topics via asymptotic analysis, we refer to the arti-
cles [19,26,34] and to the monographs [39,40]. We refer also to the monograph
[33] and the articles [31,43] where polyharmonic operators are considered. For
a wider discussion about perturbation theory for linear operators we mention
the monographs [35,36,41].

This paper is organised as follows. Section 2 is devoted to preliminaries
and notation, in particular to the definition of the class of operators and open
sets under consideration. Section 3 contains a general discussion concerning
the spectral stability of elliptic operators, and the proof of Theorem 2 and its
corollaries, see in particular Theorem 4. In Sect. 4 we prove a Polyharmonic
Green Formula which is used in the sequel and has its own interest. Section 5
is devoted to the analysis of strong intermediate boundary conditions and to
the proof of Theorem 7. In “Appendix” we prove a technical lemma used in
the proof of Theorem 7(iii).

2. Preliminaries and Notation

In the sequel, we will use the following basic notation:
• N denotes the set of positive integers. Moreover, N0 := N ∪ {0};
• Given a normed space X, L(X) is the space of bounded linear operators

on X;
• If not otherwise specified, m ∈ N will always be greater or equal to 2;
• Ω, Ωε, ε0 ≥ ε > 0 will always denote bounded domains (i.e., open

connected open sets in R
N );

• The standard Sobolev spaces with summability order 2 and smoothness
order m are denoted by Wm,2

0 (Ω) and Wm,2(Ω).
• The notation V (Ω), V (Ωε) will often be used for subspaces of Wm,2(Ω)

(resp. Wm,2(Ωε)), containing Wm,2
0 (Ω) (resp. Wm,2

0 (Ωε)).

2.1. Classes of Operators

Let M be the number of multiindices α = (α1, . . . , αN ) ∈ N
N
0 with length

|α| = α1 + · · · + αN = m. For all α, β ∈ N
N
0 such that |α| = |β| = m, let

Aαβ be bounded measurable real-valued functions defined on R
N satisfying

Aαβ = Aβα and the condition
∑

|α|=|β|=m

Aαβ(x)ξαξβ ≥ 0, (2.1)

for all x ∈ R
N , (ξα)|α|=m ∈ R

M . For all open subsets Ω of R
N we define

QΩ(u, v) =
∑

|α|=|β|=m

∫

Ω

AαβDαuDβv dx +
∫

Ω

uv dx, (2.2)

for all u, v ∈ Wm,2(Ω) and we set QΩ(u) = QΩ(u, u). Note that by (2.1)
QΩ is a positive quadratic form, densely defined in the Hilbert space L2(Ω).
Hence, QΩ(·, ·) defines a scalar product in Wm,2(Ω).
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Let V (Ω) be a linear subspace of Wm,2(Ω) containing Wm,2
0 (Ω). By

standard Spectral Theory, if V (Ω) is complete with respect to the norm Q
1/2
Ω ,

then there exists a uniquely determined non-negative self-adjoint operator
HV (Ω) such that D(H1/2

V (Ω)) = V (Ω) and

QΩ(u, v) =
(
H

1/2
V (Ω)u, H

1/2
V (Ω)v

)

L2(Ω)
, for all u, v ∈ V (Ω). (2.3)

By [29, Lemma 4.4.1] it follows that the domain D(HV (Ω)) of HV (Ω) is the
subset of Wm,2(Ω) containing all the functions u ∈ V (Ω) for which there
exists f ∈ L2(Ω) such that

QΩ(u, v) = (f, v)L2(Ω), for all v ∈ V (Ω), (2.4)

in which case HV (Ω)u = f . If u is a smooth function satisfying identity (2.4)
and the coefficients Aαβ are smooth, by integration by parts it is immediate
to verify that (2.4) is the weak formulation of problem Lu = f in Ω, where
L is the operator defined by

Lu = (−1)m
∑

|α|=|β|=m

Dα(AαβDβu) + u,

and the unknown u is subject to suitable boundary conditions depending on
the choice of V (Ω).

If the embedding V (Ω) ⊂ L2(Ω) is compact, then the operator HV (Ω)

has compact resolvent. Consequently, its spectrum is discrete, and it consists
of a sequence of isolated eigenvalues λn[V (Ω)] of finite multiplicity diverging
to +∞. By [29, Theorem 4.5.3] the eigenvalues λn[V (Ω)] are determined by
the following Min-Max principle:

λn[V (Ω)] = min
E ⊂ V (Ω)
dimE = n

max
u ∈ E
u = 0

QΩ(u)
‖u‖2

L2(Ω)

,

for all n ≥ 1. Furthermore, there exists an orthonormal basis in L2(Ω) of
eigenfunctions ϕn[V (Ω)] associated with the eigenvalues λn[V (Ω)].

We remark that in our assumptions there exist two positive constants
c, C ∈ R independent of u such that

c ‖u‖W m,2(Ω) ≤ Q
1/2
Ω (u) ≤ C ‖u‖W m,2(Ω) ,

which means that the two norms Q
1/2
Ω and ‖·‖W m,2(Ω) are equivalent on

V (Ω). Note that in general the constant c may depend on Ω. However, if the
coefficients Aαβ satisfy the uniform ellipticity condition

∑

|α|=|β|=m

Aαβ(x)ξαξβ ≥ θ
∑

|α|=m

|ξα|2, (2.5)

for all x ∈ R
N , (ξα)|α|=m ∈ R

M and for some θ > 0, then c can be chosen
independent of Ω.
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2.2. Classes of Open Sets

We recall the following definition from [16, Definition 2.4] where for any given
set V ∈ R

N and δ > 0, Vδ is the set {x ∈ R
N : d(x, ∂Ω) > δ}, and by a

cuboid we mean any rotation of a rectangular parallelepiped in R
N .

Definition 1. Let ρ > 0, s, s′ ∈ N with s′ < s. Let also {Vj}s
j=1 be a family

of bounded open cuboids and {rj}s
j=1 be a family of rotations in R

N . We
say that A = (ρ, s, s′, {Vj}s

j=1, {rj}s
j=1) is an atlas in R

N with parameters
ρ, s, s′, {Vj}s

j=1, {rj}s
j=1, briefly an atlas in R

N . Moreover, we consider the
family of all open sets Ω ⊂ R

N satisfying the following:
(i) Ω ⊂ ∪s

j=1(Vj)ρ and (Vj)ρ ∩ Ω = ∅
(ii) Vj ∩ ∂Ω = ∅ for j = 1, . . . , s′ and Vj ∩ ∂Ω = ∅ for s′ < j ≤ s
(iii) for j = 1, . . . , s we have

rj(Vj) = {x ∈ R
N : aij < xi < bij , i = 1, . . . , N}, j = 1, . . . , s

rj(Vj ∩ Ω) = {x ∈ R
N : aNj < xN < gj(x̄)}, j = 1, . . . , s′

where x̄ = (x1, . . . , xN−1), Wj = {x ∈ R
N−1 : aij < xi < bij , i =

1, . . . , N − 1} and gj ∈ Ck,γ(Wj) for j = 1, . . . , s′, with k ∈ N0 and
0 ≤ γ ≤ 1. Moreover, for j = 1, . . . , s′ we have aNj+ρ ≤ gj(x̄) ≤ bNj−ρ,
for all x̄ ∈ Wj .

We say that an open set Ω is of class Ck,γ
M (A) if all the functions gj ,

j = 1, . . . , s′ defined above are of class Ck,γ(Wj) and ‖gj‖Ck,γ(Wj) ≤ M . We
say that an open set Ω is of class Ck,γ(A) if it is of class Ck,γ

M (A) for some
M > 0. Also, we say that an open set Ω is of class Ck,γ if it is of class Ck,γ

M (A)
for some atlas A and some M > 0. Finally, we denote by Ck the class Ck,0

for k ∈ N ∪ {0}.

It is important to note that if Ω is a C0 bounded open set then the
Sobolev space Wm,2(Ω) (and consequently all the spaces Wm,2(Ω)∩W k,2

0 (Ω),
1 ≤ k ≤ m) is compactly embedded in L2(Ω), see e.g., Burenkov [15]. More-
over, by using a common atlas as in Definition 1, it is possible to define a
distance.

Definition 2. (Atlas distance) Let A = (ρ, s, s′, {Vj}s
j=1, {rj}s

j=1) be an atlas
in R

N . For all Ω1,Ω2 ∈ Cm(A) and for all h = 0, . . . , m we set

d
(h)
A (Ω1,Ω2) = max

j=1,...,s′
sup

0≤|β|≤h

sup
(x̄,xN )∈rj(Vj)

∣
∣Dβg1j(x̄) − Dβg2j(x̄)

∣
∣ ,

where g1j , g2j respectively, are the functions describing the boundaries of
Ω1,Ω2 respectively, as in Definition 1. Moreover, we set dA = d

(0)
A and we

call dA ‘atlas distance’.

2.3. Formulae for Higher Order Derivatives of Composite Functions

We recall here few well-known multidimensional formulae for the derivatives
of composite functions. We will use the following notation: by P(A) we denote
the set of all subsets of a given finite non-empty set A and by Part(A) we
denote the set of all possible partitions of A. Namely, π ∈ Part(A) is a set the
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elements of which are pairwise disjoint subsets of A whose union is A. Given
n ∈ N, we often write Part(n) in place of Part({1, . . . ,n}) and P(n) in place
of P({1, . . . , n}). Moreover we use the symbol |A| to denote the cardinality
of A; hence, for example |π| with π ∈ Part(A) is the number of subsets of A
in the partition π. Let Ω be an open set in R

N . If I is an open set in R and
f is a Cn-function from I to R and Φ is a Cn function from Ω to I, then the
Faà di Bruno formula reads

∂nf(Φ(x))
∂xi1 · · · ∂xin

=
∑

π∈Part(n)

f (|π|)(Φ(x))
∏

S∈π

∂|S|Φ(x)
∏

j∈S ∂xij

. (2.6)

Moreover, the Leibnitz formula for the derivatives of the product of two
functions u, v of class Cn(Ω) can can be written as follows

∂n(uv)
∂xi1 · · · ∂xin

=
∑

S∈P(n)

∂|S|u
∏

j∈S ∂xij

∂(n−|S|)v
∏

j /∈S ∂xij

, (2.7)

where j /∈ S means that j lies in the complement of S in {1, . . . , n}. We recall
that in general, if Φ is a Cn function from an open subset U of R

N to an
open subset V of R

r, and f is a function in Wn,1
loc (V ) then the Faà di Bruno

formula reads

∂nf(Φ(x))
∂xi1 · · · ∂xin

=
∑

π∈Part(n)

∑

j1,...,j|π|∈{1,...,r}

∂|π|f
∏|π|

k=1 ∂xjk

(Φ(x))
|π|∏

k=1

∂|Sk|Φ(jk)

∏
l∈Sk

∂xil

(2.8)

3. Higher Order Operators on Domains with Perturbed
Boundaries

Let m ∈ N, m ≥ 2 and let ε > 0. Let V (Ω), V (Ωε) be subspaces of Wm,2(Ω),
Wm,2(Ωε) respectively, containing Wm,2

0 (Ω), Wm,2
0 (Ωε) respectively. More-

over, let HV (Ω), HV (Ωε), QΩ, QΩε
be as in (2.3). A fundamental part of our

analysis will be based on the following:

Definition 3. [8, Definition 3.1] Given open sets Ωε, ε > 0 and Ω ∈ R
N with

corresponding elliptic operators HV (Ωε), HV (Ω) defined on Ωε, Ω respectively,
we say that condition (C) is satisfied if there exists open sets Kε ⊂ Ω ∩ Ωε

such that
lim
ε→0

|Ω \ Kε| = 0, (3.1)

and the following conditions are satisfied:
(C1) If vε ∈ V (Ωε) and supε>0 QΩε

(vε) < ∞ then limε→0 ‖vε‖L2(Ωε\Kε)
= 0.

(C2) For each ε > 0 there exists an operator Tε from V (Ω) to V (Ωε) such
that for all fixed ϕ ∈ V (Ω)
(i) limε→0 QKε

(Tεϕ − ϕ) = 0;
(ii) limε→0 QΩε\Kε

(Tεϕ) = 0;
(iii) limε→0 ‖Tεϕ‖L2(Ωε)

< ∞.
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(C3) For each ε > 0 there exists an operator Eε from V (Ωε) to Wm,2(Ω)
such that the set Eε(V (Ωε)) is compactly embedded in L2(Ω) and such
that
(i) If vε ∈ V (Ωε) is a sequence such that supε>0 QV (Ωε)(vε) < ∞, then

limε→0 QKε
(Eεvε − vε) = 0;

(ii)

sup
ε>0

sup
v∈V (Ωε)\{0}

‖Eεv‖W m,2(Ω)

Q
1/2
Ωε

(v)
< ∞;

(iii) If vε ∈ V (Ωε) for all ε > 0, supε>0 QΩε
(vε) < ∞ and there

exists v ∈ L2(Ω) such that, up to a subsequence, we have
‖Eεvε − v‖L2(Ω) → 0, then v ∈ V (Ω).

It is proved in [8, Theorem 3.5] that Condition (C) guarantees the spec-
tral convergence of the operators HV (Ωε) to the operator HV (Ω) as ε → 0.

The convergence of the operators is understood in the sense of the com-
pact convergence, as defined in [46]. Let us briefly recall the setting. Let E
be the extension-by-zero operator, mapping any given real-valued function u
defined on some subset A of R

N , to the function Eu such that Eu = u a.e.
in A and Eu = 0 a.e. in R

N \ A. By using E we can map functions in L2(Ω)
to the space L2(Ωε), for every ε > 0, so that E defines a “connecting system”
between L2(Ω) and the family of spaces (L2(Ωε))ε>0. We then say that:

• vε ∈ L2(Ωε) E-converges to v ∈ L2(Ω) if ‖vε − Ev‖L2(Ωε) → 0 as ε → 0;
• a family of bounded linear operators Bε ∈ L(L2(Ωε)) EE-converges to

B ∈ L(L2(Ω)) if Bεvε E-converges to Bv whenever vε E-converges to v;
• a family of bounded, compact linear operators Bε ∈ L(L2(Ωε)) is said

to E-compact converges to B ∈ L(L2(Ω)) if Bε EE-converges to B and
for any family of functions vε ∈ L2(Ωε) with ‖vε‖L2(Ωε) ≤ 1 there exists
a subsequence, denoted by vε again, and a function w ∈ L2(Ω) such that
Bεvε E-converges to w.

We refer to [8, Section 2.2], for further information on this type of conver-
gence. Importantly, in our assumptions on the operators HV (Ωε), HV (Ω), the
compact convergence of the resolvent operators is a sufficient condition for
the spectral convergence. In particular, we have the following

Theorem 1. Let Ωε, ε > 0 and Ω be open sets in R
N . Let HV (Ωε), HV (Ω) be

operators with compact resolvents, associated with V (Ωε), V (Ω), respectively,
as in (2.3), such that condition (C) is satisfied. Let λk, λε

k be the k-th eigen-
value of HV (Ω), HV (Ωε), respectively. Then H−1

V (Ωε)
E-compact converges to

H−1
V (Ω) as ε → 0. Moreover,

(i) λε
n → λn as ε → 0, for all n ∈ N.

(ii) If λn = λn+1 = · · · = λn+h−1 is an eigenvalue of multiplicity h and ϕε
n,

ϕε
n+1, . . . , ϕ

ε
n+h−1 is an orthonormal set in L2(Ωε) of eigenfunctions

associated with the corresponding eigenvalues λε
n, λε

n+1, . . . , λε
n+h−1,

then there exists an orthonormal set ϕn, ϕn+1, . . . , ϕn+h−1 in L2(Ω)
of eigenfunctions associated with the eigenvalues (λn+t−1)h

t=1 such that,
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possibly passing to a suitable subsequence, ϕε
n+i−1 E-converges to ϕn+i−1

as ε → 0 for all i = 1, . . . , h.
(iii) If λn = λn+1 = · · · = λn+h−1 is an eigenvalue of multiplicity h and ϕn,

ϕn+1, . . . , ϕn+h−1 is an orthonormal set L2(Ω) of eigenfunctions associ-
ated with (λn+t−1)h

t=1 then for every ε > 0 there exists an orthonormal
set in L2(Ωε) of eigenfunctions ϕε

n, ϕε
n+1, . . . , ϕ

ε
n+h−1 associated with

the corresponding eigenvalues λε
n, λε

n+1, . . . , λε
n+h−1 such that ϕε

n+i−1

E-converges to ϕn+i−1 as ε → 0 for all i = 1, . . . , h.

When the claims (i)–(ii)–(iii) of the previous theorem are verified, we
say that HV (Ωε) spectrally converges to HV (Ω) as ε → 0.

3.1. An Explicit Condition for the Spectral Stability

We consider now the following geometric setting:
(G1) There exists a cuboid V of the form W × (a, b), where W ⊂ R

N−1 is an
open, connected and bounded set of class Cm, and g, gε ∈ Cm(W ) such that

Ω ∩ V = {(x̄, xN ) ∈ W × (a, b) : a < xN < g(x̄)}, (3.2)
Ωε ∩ V = {(x̄, xN ) ∈ W × (a, b) : a < xN < gε(x̄)}. (3.3)

Assume that Ω \ V = Ωε \ V for all ε > 0.
It is convenient to set Ω0 = Ω. According to Definition 1, if Ωε ∈

Cm(A) for all ε ≥ 0, then we can assume (G1) without loss of generality.
For all ε ≥ 0, let us consider the quadratic forms QΩε

on Ωε defined as in
(2.2), where the coefficients Aαβ are independent of ε ≥ 0 and satisfy the
uniform ellipticity condition (2.5). Then we consider the non-negative self-
adjoint operators HV (Ωε) defined by (2.3) with V (Ω) replaced by V (Ωε) =
Wm,2(Ωε) ∩ W k,2

0 (Ωε) for some 1 ≤ k < m. Since Ωε is of class Cm, V (Ωε) is
compactly embedded in L2(Ωε) hence HV (Ωε) has compact resolvent.

We now state our first result, concerning an explicit condition sufficient
to guarantee the spectral convergence of the operators HV (Ωε). This theorem
is a generalisation of [8, Lemma 6.2].

Theorem 2. Let Ωε, ε ≥ 0 satisfy assumption (G1). Suppose that for some
k ∈ N, with 1 ≤ k < m, V (Ωε) = Wm,2(Ωε) ∩ W k,2

0 (Ωε) for all ε ≥ 0. If for
all ε > 0 there exists κε > 0 such that
(i) κε > ‖gε − g‖∞, ∀ε > 0, limε→0 κε = 0,

(ii) limε→0
‖Dβ(gε−g)‖∞
κ

m−|β|−k+1/2
ε

= 0, ∀β ∈ N
N
0 with |β| ≤ m,

then H−1
V (Ωε)

E-compact converges to H−1
V (Ω) as ε → 0. In particular, HV (Ωε)

spectrally converges to HV (Ω) as ε → 0

Proof. We first observe that the last statement is a direct consequence of
Theorem 1. The case k = 1 is proved in [8, Lemma 6.2]. Thus, we suppose
k > 1. It is possible to assume directly that Ω = Ω ∩ V and Ωε = Ωε ∩ V
as in (3.2) and (3.3) respectively. Define kε = Mκε for a suitable constant
M > 2m. Let g̃ε = gε − kε and

Kε = {(x̄, xN ) ∈ W×]a, b[: a < xN < g̃ε(x̄)}.
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Note that with this definition of Kε (3.1) is satisfied. By the standard one
dimensional estimate

‖f‖L∞(a,b) ≤ C ‖f‖W 1,2(a,b) , (3.4)

and Tonelli Theorem it follows that condition (C1) is satisfied.
We now define a suitable family of diffeomorphisms Φε : Ωε → Ω by

setting

Φε(x̄, xN ) = (x̄, xN − hε(x̄, xN )),

for all (x̄, xN ) ∈ Ωε, where

hε(x̄, xN ) =

⎧
⎪⎨

⎪⎩

0, if a ≤ xN ≤ g̃ε(x̄),

(gε(x̄) − g(x̄))
(

xN −g̃ε(x̄)
gε(x̄)−g̃ε(x̄)

)m+1

if g̃ε(x̄) < xN ≤ gε(x̄).

Then consider the map Tε from V (Ω) to V (Ωε) defined by

Tεϕ = ϕ ◦ Φε, (3.5)

for all ϕ ∈ V (Ω). One can check that Tε is well-defined and that condition
(C2)(i) is satisfied. We now want to prove that conditions (C2)(ii), (iii) are
satisfied. We need to estimate the derivatives of ϕ ◦ Φε. Here we can improve
the estimate given in [8, Lemma 6.2] by taking advantage of the decay of
Dγϕ in a neighbourhood of ∂Ω, for |γ| ≤ k − 1. We divide the proof in two
steps.

Step 1 We aim at proving a decay estimate for the L2-norms of the
derivatives of ϕ near the boundary, namely estimate (3.12). First, note that

Φε(Ωε \ Kε) = Ω \ Kε = {(x̄, xN ) ∈ Ω : x̄ ∈ W, gε(x̄) − kε ≤ xN ≤ g(x̄)},

for any ε > 0. Fix x ∈ Φε(Ωε \ Kε) and β ∈ N
N
0 , |β| ≤ k − 1. Suppose for

the moment ϕ ∈ Cm(Ω). By the Taylor’s formula with remainder in integral
form, we get that

Dβϕ(x) =
k−1−|β|∑

l=0

1
l!

∂l(Dβϕ(x̄, g(x̄)))
∂xl

N

(xN − g(x̄))l + R(β, x),

where

R(β, x) :=
(xN − g(x̄))k−|β|

(k − |β| − 1)!
×

∫ 1

0

(1−t)k−1−|β| ∂k−|β|

∂x
k−|β|
N

Dβϕ(x̄, g(x̄)+t(xN−g(x̄)) dt .

Note that −2kε ≤ gε(x̄)−g(x̄)−kε ≤ xN −g(x̄) ≤ 0. By Jensen’s inequality,

|R(β, x)|2 ≤ (2kε)2(k−|β|)
∫ 1

0

∣
∣
∣
∣
∣

∂k−|β|

∂x
k−|β|
N

Dβϕ(x̄, g(x̄) + t(xN − g(x̄))

∣
∣
∣
∣
∣

2

dt.

(3.6)
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An integration in the variable xN in (3.6) and inequality (3.4) applied to the
interval (a, g(x̄)) yield

∫ g(x̄)

gε(x̄)−kε

|R(β, x)|2 dxN ≤ Ck2(k−|β|)+1
ε

∥
∥
∥
∥
∥

∂k−|β|+1

∂x
k−|β|+1
N

Dβϕ(x̄, ·)
∥
∥
∥
∥
∥

2

W 2,2(a,g(x̄))

(3.7)
By integrating both sides of (3.7) with respect to x̄ ∈ W , we finally get

∫

Φε(Ωε\Kε)

|R(β, x)|2 dx ≤ Ck2(k−|β|)+1
ε ‖ϕ‖2

W m,2(Ω) , (3.8)

for sufficiently small ε, for all |β| ≤ k − 1. Thus, by (3.1) we get
∫

Φε(Ωε\Kε)
|Dβϕ(x)|2 dx ≤ Ck

2(k−|β|)+1
ε ||ϕ| |2W m,2(Ω)

+C
∫

W

∫ g(x̄)

gε(x̄)−kε

∣
∣
∣
∣
∣

∑k−1−|β|
l=0

∂l(Dβϕ(x̄,g(x̄))

∂xl
N

∣
∣
∣
∣
∣

2

|xN − g(x̄)|2ldx̄dxN ,

(3.9)

for all sufficiently small ε, and |β| ≤ k − 1. We now estimate the last integral
in the right-hand side of (3.9) in the following way

k−1−|β|∑

l=0

∫

W

∫ g(x̄)

gε(x̄)−kε

∣
∣
∣
∣
∣

∂l(Dβϕ(x̄, g(x̄))
∂xl

N

∣
∣
∣
∣
∣

2

|xN − g(x̄)|2ldx̄dxN

≤
k−1−|β|∑

l=0

k2l+1
ε

∫

W

∣
∣
∣
∣
∣

∂l(Dβϕ(x̄, g(x̄))
∂xl

N

∣
∣
∣
∣
∣

2

dx̄

=
k−1−|β|∑

l=0

Ck2l+1
ε

∥
∥
∥
∥
∥

∂l(Dβϕ)
∂xl

N

∥
∥
∥
∥
∥

2

L2(Γ)

, (3.10)

where Γ := {(x̄, g(x̄)) : x̄ ∈ W}. Thus, by (3.9), (3.10) we obtain
∫

Φε(Ωε\Kε)

|Dβϕ(x)|2 dx

≤
k−1−|β|∑

l=0

Ck2l+1
ε

∥
∥
∥
∥
∥

∂l(Dβϕ)
∂xl

N

∥
∥
∥
∥
∥

2

L2(Γ)

+ Ck2(k−|β|)+1
ε ‖ϕ‖2

W m,2(Ω) .

(3.11)

Inequality (3.11) holds for smooth functions. If ϕ ∈ Wm,2(Ω)∩W k,2
0 (Ω), then

we can choose a sequence (ψn)n≥1 ⊂ C∞(Ω) such that ψn → ϕ in Wm,2(Ω)
(this is possible because ∂Ω is Lipschitz continuous). We then use (3.11) for
ψn, and we pass to the limit as n → ∞ by using the continuity of the trace
operator and standard estimates on the intermediate derivatives of Sobolev
functions (see e.g., [15, §4.4]). We deduce that

∫

Φε(Ωε\Kε)

|Dβϕ(x)|2 dx ≤ Ck2(k−|β|)+1
ε ‖ϕ‖2

W m,2(Ω), (3.12)
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for all sufficiently small ε. Actually, inequality (3.12) holds also for |β| = k
(possibly modifying the constant in the right hand side). Indeed, Dβϕ ∈
W 2,2(Ω), for any |β| = k, hence by standard boundedness of Sobolev func-
tions on almost all vertical lines [see (3.4)] we find that
∫

W

∫ g(x̄)

gε−kε

|Dβϕ(x)|2 dxN dx̄ ≤ 2kε

∫

W

∥
∥Dβϕ(x̄, ·)∥∥2

∞ dx̄ ≤ 2Ckε ‖ϕ‖2
W m,2(Ω).

This concludes Step 1.
Step 2 We claim that Condition (C2)(ii) holds. Let ϕ ∈ V (Ω) and let α

be a fixed multiindex such that |α| = m. We write

Dαϕ(Φε(x)) =
∑

1≤|β|≤m

Dβϕ(Φε(x))pα
m,β(Φε)(x), (3.13)

where pα
m,β(Φε) is a homogeneous polynomial of degree |β| in derivatives of

Φε of order not exceeding m − |β| + 1. Note that the polynomial pα
m,β(Φε)

appearing in (3.13) is the sum of several terms Θ in the following form

Θ = Dk1

(

δj1,N − ∂hε

∂xj1

)

· · · Dkn

(

δjn,N − ∂hε

∂xjn

)
∂Φ(in+1)

∂xin+1

· · · ∂Φ(i|β|)

∂xi|β|
,

where1 1 ≤ n ≤ |β|, 1 ≤ ji ≤ N for all i = 1, . . . , n, in+1, . . . , i|β| are in
{1, . . . , N − 1}, and k1, . . . , kn are multiindexes satisfying |k1| + · · · + |kn| =
m − |β|. Moreover, Θ is a sum of terms of the type DL1hε · · · DLlhε, for all
1 ≤ l ≤ n, for suitable multiindexes L1, ..., Ll satisfying

|L1| + · · · + |Ll| = m − |β| + l. (3.14)

Now by [8, Inequality (6.7)] and hypothesis (iii) we have
∥
∥DL1hε · · · DLlhε

∥
∥

∞

≤ C

(
∑

|γ1|≤|L1|

‖Dγ1(gε − g)‖∞
κ

|L1|−|γ1|
ε

)

· · ·
(

∑

|γl|≤|Ll|

‖Dγl(gε − g)‖∞
κ

|Ll|−|γl|
ε

)

≤ o(1)

(
∑

|γ1|≤|L1|

κ
m−|γ1|−k+1/2
ε

κ
|L1|−|γ1|
ε

)

· · ·
(

∑

|γl|≤|Ll|

κ
m−|γl|−k+1/2
ε

κ
|Ll|−|γl|
ε

)

≤ o(1)κl(m−k+1/2)−∑
i|Li|

ε = o(1)κl(m−k+1/2)−∑
i|Li|−|β|+k+1/2

ε · κ|β|−k−1/2
ε

≤ o(1)κ|β|−k−1/2
ε

where the last inequality holds provided that

l(m − k + 1/2) −
∑

i

|Li| − |β| + k + 1/2 ≥ 0.

By (3.14), we have to check that l(m−k+1/2)−(m−|β|+l)−|β|+k+1/2 ≥ 0,
which is verified if and only if l(m − k − 1/2) ≥ m − k − 1/2, and this holds

1Here it is understood that for |β| = 1 the terms ∂Φ
(jn+1)

∂xin+1
· · · ∂Φ

(j|β|)
∂xi|β|

are not present;

recall that m ≥ 2.
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true because m − k − 1/2 > 0 and l ≥ 1. Hence we have proved that
∥
∥pα

m,β(Φε)
∥
∥

∞ ≤ o(1)κ|β|−k−1/2
ε . (3.15)

By inequalities (3.12) and (3.15), we deduce that

QΩε\Kε
(Tεϕ) ≤

∫

Ωε\Kε

|ϕ(Φε)|2 dx + C
∑

|α|=m

∫

Ωε\Kε

|Dαϕ(Φε)|2 dx

≤ C

∫

Φε(Ωε\Kε)

|ϕ|2 dx+C
∑

|α|=m
1≤|β|≤k

∥
∥pα

m,β(Φε)
∥
∥2

∞

∫

Ωε\Kε

∣
∣Dβϕ(Φε(x))

∣
∣2 dx

+C
∑

|α|=m
k<|β|≤m

∥
∥pα

m,β(Φε)
∥
∥2

∞

∫

Ωε\Kε

∣
∣Dβϕ(Φε(x))

∣
∣2 dx

≤ C ‖ϕ‖2
L2(Ω\Kε)

+ o(1)κ2(|β|−k−1/2)
ε κ2(k−|β|)+1

ε + o(1) ‖ϕ‖2
W m,2(Ω\Kε)

,

(3.16)

for all ε > 0 sufficiently small. Since the right-hand side of (3.16) vanishes as
ε → 0 we conclude that condition (C2)(ii) is satisfied.

It remains to prove condition (C3). To prove that conditions (C3)(i),
(C3)(ii) are satisfied it is sufficient to set Eεu = (ExtΩε

u)|Ω for all u ∈ V (Ωε),
where ExtΩε

is the standard Sobolev extension operator mapping Wm,2(Ωε)
to Wm,2(RN ). Finally, in order to prove condition (C3)(iii) it is sufficient to
prove that the weak limit v of the uniformly bounded sequence vε (appearing
in the statement of condition (C3)(iii)) lies in W k,2

0 (Ω). This is easily achieved
by considering the extension-by-zero of the functions vε outside Ωε, passing
to the limit and recalling that the limit set Ω has Lipschitz boundary. �

Theorem 2 can be actually applied to open sets Ω in the atlas class
Cm(A) by requiring that the assumptions of Lemma 2 are satisfied by all
the profile functions gj describing their boundaries. Then we can prove the
following

Theorem 3. Let A be an atlas in R
N , M > 0, m ∈ N, m ≥ 2. For all ε ≥ 0,

let Ωε ∈ Cm
M (A). Let k ∈ N with 1 ≤ k < m and define, for all ε ≥ 0,

V (Ωε) = Wm,2(Ωε) ∩ W k,2
0 (Ωε). If

lim
ε→0

d
(m−k)
A (Ωε,Ω) = 0,

then condition (C) is satisfied, hence H−1
V (Ωε)

E-compact converges to H−1
V (Ω)

as ε → 0.

Proof. By using a standard partition of unity argument, it suffices to prove
that the assumptions of Theorem 2 are satisfied by all the profile functions
gj,ε, gj describing the boundaries of Ωε,Ω, respectively, and this follows by
choosing κε = (d(m−k)

A (Ωε,Ω))
1
m . �

In order to prove that the assumptions of Lemma 2 are sharp, we now
consider a the following geometric setting:
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(G2) Let α ∈ R, α > 0. Let b ∈ C∞(W ) a positive, non-constant periodic
function, with periodicity cell given by Y =] − 1/2, 1/2[N−1. Let us set

gε(x̄) = εαb

(
x̄

ε

)

, g(x̄) = 0,

for all x̄ ∈ W . For simplicity, we set g0 = g and for all ε ≥ 0 we consider the
open sets

Ωε = {(x̄, xN ) ∈ R
N : x̄ ∈ W, −1 < xN < gε(x̄)}

Then we have the following

Theorem 4. Let Ωε, ε ≥ 0 be as in (G2) and let k ∈ N satisfy 1 ≤ k ≤ m−1.
Let V (Ωε) = Wm,2(Ωε) ∩ W k,2

0 (Ωε) for all ε ≥ 0. If α > m − k + 1
2 , then

H−1
V (Ωε)

E-compact converges to H−1
V (Ω) as ε → 0.

Proof. We aim at applying Theorem 2 with κε = εαθ ‖b‖∞, for some θ ∈ (0, 1)
to be specified. By the classical Gagliardo-Nirenberg interpolation inequality
∥
∥Dβf

∥
∥

∞ ≤ C(
∑

|α|=m ‖Dαf‖∞)|β|/m ‖f‖1−|β|/m
∞ , for all f ∈ Wm,∞(Ω) (see

e.g., [42, p.125]), in order to verify condition (iii) in Theorem 2 it is sufficient
to verify it for |β| = 0 and |β| = m (see also [8, Proposition 6.17]). When
|β| = 0 we have

lim
ε→0

‖gε − g‖∞
κ

m−k+1/2
ε

= c lim
ε→0

εα

εαθ(m−k+1/2)
= c lim

ε→0
εα(1−θ(m−k−1/2)),

where c is a constant depending only on ‖b‖∞. The right-hand side clearly
tends to 0 as soon as θ < 1

m−k+1/2 .

When |β| = m, we must check that limε→0
Dβgε

κ
−k+1/2
ε

= 0. Note that

∥
∥
∥
∥

Dβgε

κ
−k+1/2
ε

∥
∥
∥
∥

∞
= c

εα−m

εαθ(−k+1/2)
= εα(1−θ(−k+1/2))−m,

and the right hand side tends to zero if and only if

α
(
1 + θ

(
k − 1

2

))
− m > 0. (3.17)

By letting θ → 1
m−k+1/2 in (3.17) we obtain that inequality (3.17) is satisfied

when α > m − k + 1/2, true by assumption. By Lemma 2 we deduce the
validity of Theorem 4. �

Remark 1. When k = m−1, Theorem 4 states that if α > 3
2 , H−1

V (Ωε)

C→ H−1
V (Ω)

as ε → 0, independently on m ≥ 2. Actually, it is possible to prove that
α = 3/2 in this case is the critical exponent, in the sense that when α ≤ 3/2
the operator H−1

V (Ωε)
does not converge to H−1

V (Ω). We refer to Theorem 7 for
a complete discussion about the spectral convergence of HV (Ωε) depending
on α.
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4. A Polyharmonic Green Formula

In this section we provide a formula which turns out to be useful in recognising
the possible natural boundary conditions for polyharmonic operators of any
order. Let us begin by stating an easy integration-by-parts formula.

Proposition 1. Let Ω be a bounded domain of class C0,1 in R
N . Let m ∈ N

and let f ∈ Cm+1(Ω), ϕ ∈ Cm(Ω). Then
∫

Ω

Dmf : Dmϕ dx = −
∫

Ω

Dm−1(Δf) : Dm−1ϕ dx

+
∫

∂Ω

Dmf : (n ⊗ Dm−1ϕ) dS, (4.1)

where the symbol : stands for the Frobenius product, n is the unit outer normal
to ∂Ω, and ⊗ is the tensor product, defined by (n ⊗ Dm−1ϕ)i,j1,··· ,jm−1 =
ni

∂m−1ϕ
∂xj1 ···∂xjm−1

for all i, j1, · · · , jm−1 ∈ {1, · · · , N}.

Proof. The proof is a simple integration by parts. Indeed, dropping the sum-
mation symbols we get
∫

Ω
Dmf : Dmϕ dx =

∫

Ω

∂mf

∂xj1 · · · ∂xjm

∂mϕ

∂xj1 · · · ∂xjm

dx

= −
∫

Ω

∂m+1f

∂x2
j1

· · · ∂xjm

∂m−1ϕ

∂xj2 · · · ∂xjm

dx +

∫

∂Ω

∂mf

∂xj1 · · · ∂xjm

∂m−1ϕ

∂xj2 · · · ∂xjm

nj1 dS

= −
∫

Ω
Dm−1(Δf) : Dm−1ϕ dx +

∫

∂Ω
(Dmf) : (n ⊗ Dm−1ϕ) dS. �

By applying m times the integration by parts argument used in the
proof of formula (4.1), we deduce the validity of the following

Corollary 1. Let m ∈ N. Let f ∈ C2m(Ω), ϕ ∈ Cm(Ω). Then
∫

Ω

Dmf : Dmϕ dx = (−1)m

∫

Ω

Δmfϕdx

+
m−1∑

k=0

(−1)k

∫

∂Ω

(Dm−k(Δkf)) : (n ⊗ Dm−k−1ϕ) dS.

(4.2)

Theorem 5. (Polyharmonic Green Formula - Flat case). Let H be the half-
space H = {(x̄, xN ) ∈ R

N : xN < 0}. Let m ∈ N. Let f ∈ C2m(H), ϕ ∈
Cm(H) with compact support in H. Then,
∫

H

Dmf : Dmϕ dx = (−1)m

∫

H

Δmfϕdx +
m−1∑

t=0

∫

RN−1
Bt(f)

∂tϕ

∂xt
N

dx̄, (4.3)

where Bt : C2m(∂H) → Ct+1(∂H) is defined by

Bt(f) =
m−1∑

l=t

(−1)m−t−1

(
l

t

)

Δl−t
N−1

(
∂t+1

∂xt+1
N

(Δm−l−1f)

)

, (4.4)

and ΔN−1 is the Laplace operator in the first N − 1 variables.
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Proof. Let r = m − k − 1. First note that we can write
∫

RN−1

(

Dr

(

Δk

(
∂f

∂xN

)))

: Drϕ dx̄

=
r∑

t=0

(
r

t

)∫

RN−1

(

Dr−t
x̄

(

Δk

(
∂t+1f

∂xt+1
N

)))

:
(

Dr−t
x̄

(
∂tϕ

∂xt
N

))

dx̄.

(4.5)

Then, by using (4.5) in the last integral in the right-hand side of (4.2) we get
the following as boundary term

m−1∑

k=0

(−1)k
r∑

t=0

(
r

t

)∫

RN−1
Dr−t

x̄

(
∂t+1(Δkf)

∂xt+1
N

)

: Dr−t
x̄

(
∂tϕ

∂xt
N

)

dx̄. (4.6)

By dropping the summation symbols, the integrand in (4.6) becomes
∫

RN−1

∂r−t

∂xi1 · · · ∂xir−t

(
∂t+1(Δkf)

∂xt+1
N

)
∂r−t

∂xi1 · · · ∂xir−t

(
∂tϕ

∂xt
N

)

dx̄, (4.7)

where the indexes ij run on the first N − 1 coordinates. By integrating by
parts r − t times in i1, . . . , ir−t in (4.7) we deduce that (4.6) equals

m−1∑

k=0

(−1)m−t−1
r∑

t=0

(
r

t

)∫

RN−1

∂2(r−t)

∂2xi1 · · · ∂2xir−t

(
∂t+1(Δkf)

∂xt+1
N

)
∂tϕ

∂xt
N

dx̄,

where we have no other boundary terms because ϕ has compact support. We
rewrite the last expression as

m−1∑

k=0

(−1)m−t−1
r∑

t=0

(
r

t

)∫

RN−1
Δr−t

N−1

(
∂t+1(Δkf)

∂xt+1
N

)
∂tϕ

∂xt
N

dx̄. (4.8)

We now apply the change of summation index r = m− k − 1 in the first sum
of (4.8). We deduce that (4.8) equals

m−1∑

r=0

(−1)m−t−1
r∑

t=0

(
r

t

)∫

RN−1
Δr−t

N−1

(
∂t+1(Δm−r−1f)

∂xt+1
N

)
∂tϕ

∂xt
N

dx̄. (4.9)

By exchanging the two sums in (4.9) we get (4.3). �

Remark 2. If m = 2, then (4.3) reads
∫

H

D2f : D2ϕ dx =
∫

H

Δ2fϕdx +
∫

RN−1

∂2f

∂x2
N

∂ϕ

∂xN
dx̄

−
∫

RN−1

(

ΔN−1

(
∂f

∂xN

)

+ Δ

(
∂f

∂xN

))

ϕ dx̄,

which is consistent with the formula provided in [8, Lemma 8.56]. Indeed,
if the domain is a hyperplane, the boundary integral

∫

∂H
(div∂H(D2f ·

n)∂Ω)ϕ dS appearing in [8, Lemma 8.56] coincides with
∫

RN−1 ΔN−1( ∂f
∂xN

)ϕ dx̄.
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Theorem 6. Let Ω be a bounded domain of R
N of class C0,1, m ∈ N, m ≥ 2.

Let f ∈ W 2m,2(Ω) ∩ Wm−1,2
0 (Ω) and ϕ ∈ Wm,2(Ω) ∩ Wm−1,2

0 (Ω). Then
∫

Ω

Dmf : Dmϕdx = (−1)m

∫

Ω

Δmfϕdx +
∫

∂Ω

∂mf

∂nm

∂m−1ϕ

∂nm−1
dS. (4.10)

Proof. By (4.2) it is easy to see that
∫

Ω

Dmf : Dmϕdx = (−1)m

∫

Ω

Δmfϕ dx +
∫

∂Ω

Dmf : (n ⊗ Dm−1ϕ) dS,

(4.11)
for all ϕ ∈ Wm,2(Ω)∩Wm−1,2

0 (Ω), since Dlϕ = 0 on ∂Ω for all l ≤ m−2. We
note that Dmf : (n⊗Dm−1ϕ) = (nT Dmf) : Dm−1ϕ. Moreover we claim that
Dm−1ϕ = ∂m−1ϕ

∂nm−1

⊗m−1
i=1 n on ∂Ω and we prove it by induction. If m = 2 the

claim is a direct consequence of the gradient decomposition ∇|∂Ω = ∇∂Ω +
∂

∂nn. Now we assume that m > 2 and that the claim holds for m − 1. Then,
by using the fact that Dm−2ϕ|∂Ω = 0, for all ϕ ∈ Wm,2(Ω) ∩ Wm−1,2

0 (Ω), we
get

Dm−1ϕ|∂Ω = D(Dm−2ϕ)|∂Ω =
(

D

(
∂m−2ϕ

∂nm−2

m−2⊗

i=1

n

)

n

)

⊗ n =
∂m−1ϕ

∂nm−1

m−1⊗

i=1

n,

for all ϕ ∈ Wm,2(Ω)∩Wm−1,2
0 (Ω). This proves the claim. Then we can rewrite

(4.11) as
∫

Ω

Dmf : Dmϕdx = (−1)m

∫

Ω

Δmfϕ dx

+
∫

∂Ω

∂m−1ϕ

∂nm−1
(nT Dmf) :

(m−1⊗

i=1

n

)

dS, (4.12)

and since (nT Dmf) :
(⊗m−1

i=1 n
)

= Dmf :
(⊗m

i=1 n
)

= ∂mf
∂nm we deduce

(4.10). �

5. Polyharmonic Operators with Strong Intermediate
Boundary Conditions

Let Ωε, ε ≥ 0 be as in (G2). Consider the polyharmonic operators (−Δ)m + I

subject to strong intermediate boundary conditions, corresponding to the
energy space V (Ωε) := Wm,2(Ωε) ∩ Wm−1,2

0 (Ωε). More precisely, let HΩε,S

be the non-negative self-adjoint operator such that

(HΩε,Su, v)L2(Ωε) = (H1/2
Ωε,Su, H

1/2
Ωε,Sv)L2(Ωε) = QΩε

(u, v), (5.1)

for all functions u, v ∈ Wm,2(Ωε)∩Wm−1,2
0 (Ωε), where QΩε

(u, v) :=
∫

Ωε
Dmu :

Dmv + uv dx, is the quadratic form canonically associated with HΩε,S . As it
is explained in Sect. 2 the equation HΩε,Su = f with datum f ∈ L2(Ωε),
corresponds exactly to the weak Poisson problem (1.8).
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Let HΩ,D be the polyharmonic operator satisfying strong intermediate
boundary conditions on ∂Ω \ W and Dirichlet boundary conditions on W ,
whose associated boundary value problem reads

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(−Δ)mu + u = f, in Ωε,
∂lu
∂nl = 0, on W, for all 0 ≤ l ≤ m − 1,
∂lu
∂nl = 0, on ∂Ωε \ W, for all 0 ≤ l ≤ m − 2,
∂mu
∂nm = 0, on ∂Ωε \ W.

(5.2)

Note that we are identifying W with W × {0}. Then the following theorem
holds.

Theorem 7. Let m ∈ N, m ≥ 2, Ωε as in (G2), HΩε
as in (5.1), for all

ε > 0. Then the following statements hold true.

(i) [Spectral stability] If α > 3/2, then H−1
Ωε,S

C→ H−1
Ω,S as ε → 0.

(ii) [Instability] If α < 3/2, then H−1
Ωε,S

C→ H−1
Ω,D as ε → 0, where HΩ,D is

defined in (5.2).
(iii) [Strange term] If α = 3/2, then H−1

Ωε,I
C→ Ĥ−1

Ω as ε → 0, where ĤΩ is
the operator (−Δ)m + I with strong intermediate boundary conditions
on ∂Ω \ W and the following boundary conditions on W : Dlu = 0, for
all l ≤ m − 2, ∂m

xN
u + K∂m−1

xN
u = 0, where the factor K is given by

K =
∫

Y ×(−∞,0)

|DmV |2 dy

= −
∫

Y

(
∂m−1(ΔV )

∂xm−1
N

+ (m − 1)ΔN−1

(
∂m−1V

∂xm−1
N

))

b(ȳ)dȳ,

and the function V is Y -periodic in the variable ȳ and satisfies the
following microscopic problem

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(−Δ)mV = 0, in Y × (−∞, 0),
∂lV
∂nl (ȳ, 0) = 0, on Y, for all 0 ≤ l ≤ m − 3,
∂m−2V
∂ym−2

N

(ȳ, 0) = b(ȳ), on Y,

∂mV
∂ym

N
(ȳ, 0) = 0, on Y.

Proof. Statement (i) is a straightforward application of Theorem 4 with k =
m − 1. To prove (ii) we check that Condition (C) in Definition 3 is satisfied
with V (Ω) = Wm,2

0,W (Ω)∩Wm−1,2
0 (Ω), and V (Ωε) = Wm,2(Ωε)∩Wm−1,2

0 (Ωε).
Here Wm,2

0,W (Ω) is the closure in Wm,2(Ω) of the space of functions vanishing
in a neighborhood of W . Let Kε = Ω for all ε > 0. Then we see immediately
that condition (3.1) and condition (C1) are satisfied. We define now Tε as
the extension by zero operator from Wm,2

0,W (Ω) to Wm,2(W × (−1,+∞)) and
Eε as the restriction operator to Ω. With these definitions it is not difficult
to prove that conditions (C2) and (C3)(i),(ii) are satisfied. It remains to
prove that condition (C3)(iii) holds. Let vε ∈ Wm,2(Ωε) ∩ Wm−1,2

0 (Ωε) be
such that ‖vε‖W m,2(Ωε)

≤ C for all ε > 0. Possibly passing to a subsequence
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there exists a function v ∈ Wm−1,2(Ω) such that vε|Ω ⇀ v in Wm,2(Ω) and
vε|Ω → v in Wm−1,2(Ω). By considering the sequence of functions Tε(vε|Ω)
it is not difficult to prove that v ∈ Wm−1,2

0 (Ω). It remains to check that
∂m−1v
∂xm−1

N

= 0 on W × {0}. This is proven exactly as in [8, Theorem 7.3] by

applying Lemma 4.3 from [20] to the vector field V i
ε defined by

V i
ε =

(

0, · · · , 0,−∂m−1vε

∂xm−1
N

, 0, · · · , 0,
∂m−1vε

∂xm−2
N ∂xi

)

,

for all i = 1, . . . , N−1, where the only non-zero entries are the i-th and the N -
th ones. We remark that it is possible to apply Lemma 4.3 from [20] because
by Theorem 4 the critical threshold for all the polyharmonics operator with
strong intermediate boundary conditions is α = 3/2, which coincides with the
critical value in [20]. We then deduce that ∂m−1v(x̄,0)

∂xm−1
N

∂b(ȳ)
∂yi

= 0, a.e. W × Y .

Since b is a non-constant smooth function we must have ∂m−1v(x̄,0)

∂xm−1
N

= 0 a.e.

on W . This concludes the proof of condition (C3)(iii).
We provide a proof of (iii) in Sections 5.1 and 5.2. �

Remark 3. We take the chance to point out a misprint in [5, Theorem 1, (ii)]
where the condition ∂m

xN
u+K∂m−1

xN
u = 0 in our Theorem 7(iii) above, appears

for m = 3 with −K instead of +K as it should be.

5.1. Critical Case: Macroscopic Problem

In this section we prove Theore 7(iii). Let us define a diffeomorphism Φε from
Ωε to Ω by

Φε(x̄, xN ) = (x̄, xN − hε(x̄, xN )), for all x = (x̄, xN ) ∈ Ωε,

where hε is defined by

hε(x̄, xN ) =

⎧
⎨

⎩

0, if − 1 ≤ xN ≤ −ε,

gε(x̄)
(

xN+ε
gε(x̄)+ε

)m+1

, if − ε ≤ xN ≤ gε(x̄).

By standard calculus one can prove the following

Lemma 1. The map Φε is a diffeomorphism of class Cm and there exists a
constant c > 0 independent of ε such that |hε| ≤ cεα and

∣
∣Dlhε

∣
∣ ≤ cεα−l, for

all l = 1, . . . ,m, ε > 0 sufficiently small.

As in [8, Section 8.1], we introduce the pullback operator Tε from L2(Ω)
to L2(Ωε) given by Tεu = u ◦ Φε for all u ∈ L2(Ω).

In order to proceed we find convenient to recall some notation and
results in homogenization theory regarding the unfolding operator. We refer
to [1,23,24,28] for the proof of the main properties of the operator, and we
mention that recent developments can be found in the article [9].
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For any k ∈ Z
N−1 and ε > 0 we define
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Ck
ε = εk + εY,

IW,ε = {k ∈ Z
N−1 : Ck

ε ⊂ W},

Ŵε =
⋃

k∈IW,ε

Ck
ε .

(5.3)

Then we give the following

Definition 4. Let u be a real-valued function defined in Ω. For any ε > 0
sufficiently small the unfolding û of u is the real-valued function defined on
Ŵε × Y × (−1/ε, 0) by

û(x̄, ȳ, yN ) = u
(
ε
[ x̄

ε

]
+ εȳ, εyN

)
,

for almost all (x̄, ȳ, yN )) ∈ Ŵε ×Y × (−1/ε, 0), where
[

x̄
ε

]
denotes the integer

part of the vector x̄ε−1 with respect to Y , i.e., [x̄ε−1] = k if and only if
x̄ ∈ Ck

ε .

The following lemma will be often used in the sequel. For a proof we
refer to [25, Proposition 2.5(i)].

Lemma 2. Let a ∈ [−1, 0[ be fixed. Then
∫

Ŵε×(a,0)

u(x)dx = ε

∫

Ŵε×Y ×(a/ε,0)

û(x̄, y)dx̄dy (5.4)

for all u ∈ L1(Ω) and ε > 0 sufficiently small. Moreover
∫

Ŵε×(a,0)

∣
∣
∣
∣

∂lu(x)
∂xi1 · · · ∂xil

∣
∣
∣
∣

2

dx = ε1−2l

∫

Ŵε×Y ×(a/ε,0)

∣
∣
∣
∣

∂lû

∂yi1 · · · ∂yil

(x̄, y)dx̄

∣
∣
∣
∣

2

dy,

for all l ≤ m, u ∈ Wm,2(Ω) and ε > 0 sufficiently small.

Let Wm,2
PerY ,loc(Y × (−∞, 0)) be the subspace of Wm,2

loc (RN−1 × (−∞, 0))
containing Y -periodic functions in the first (N−1) variables ȳ. We then define
Wm,2

loc (Y × (−∞, 0)) to be the space of functions in Wm,2
PerY ,loc(Y × (−∞, 0))

restricted to Y × (−∞, 0). Finally we set

wm,2
PerY

(Y × (−∞, 0)) :=
{
u ∈ Wm,2

PerY ,loc(Y × (−∞, 0))

: ‖Dγu‖L2(Y ×(−∞,0)) < ∞,∀|γ| = m
}
.

(5.5)

For any d < 0, let P l
hom,y(Y × (d, 0)) be the space of homogeneous polyno-

mials of degree at most l restricted to the domain (Y × (d, 0)). Let ε > 0
be fixed. We define the projectors Pi from L2(Ŵε,W

m,2(Y × (−1/ε, 0))) to
L2(Ŵε,Pi

hom,y(−1/ε, 0)) by setting

Pi(ψ) =
∑

|η|=i

∫

Y

Dηψ(x̄, ζ̄, 0)dζ̄
yη

η!
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for all i = 0, . . . ,m−1. We now set Qm−1 = Pm−1, Qm−2 = Pm−2(I−Qm−1),
etc., up to Q0 = P0

(
I − ∑m−1

j=1 Qj

)
. Note that Qm−j , j = 1, . . . ,m is a

projection on the space of homogeneous polynomials of degree m − j, with
the property that Qm−k(p) = 0 for all polynomials p of degree m − k with
k = j. We finally set

P = Q0 + Q1 + · · · + Qm−1, (5.6)

which is a projector on the space of polynomials in y of degree at most m−1.
Note that Dβ

y P(ψ)(x̄, ȳ, 0) =
∫

Y
Dβ

y ψ(x̄, ȳ, 0)dȳ for all |β| = 0, . . . , m − 1.
In particular, it follows that

∫

Y
(Dβ

y ψ(x̄, ȳ, 0) − Dβ
y P(ψ)(x̄, ȳ, 0))dȳ = 0 for

almost all x̄ in Ŵε, for all |β| = 0, . . . , m − 1.

Lemma 3. Let m ∈ N, m ≥ 2 be fixed. The following statements hold:
(i) Let vε ∈ Wm,2(Ω) with ‖v̂ε‖W m,2(Ω) ≤ M , for all ε > 0. Let Vε be defined

by

Vε(x̄, y) = v̂ε(x̄, y) − P(vε)(x̄, y),

for (x̄, y) ∈ Ŵε × Y × (−1/ε, 0), where P is defined by (5.6).
Then, possibly passing to a subsequence, there exists a function v̂ ∈
L2(W,wm,2

PerY
(Y × (−∞, 0))) such that for every d < 0

(a) Dγ
y Vε

εm−1/2 ⇀ Dγ
y v̂ in L2(W × Y × (d, 0)) as ε → 0, for any γ ∈ N

N
0 ,

|γ| ≤ m − 1.
(b) Dγ

y Vε

εm−1/2 ⇀ Dγ
y v̂ in L2(W ×Y × (−∞, 0)) as ε → 0, for any γ ∈ N

N
0 ,

|γ| = m,
where it is understood that the functions Vε,D

γ
yVε are extended by zero to

the whole of W ×Y ×(−∞, 0) outside their natural domain of definition
Ŵε × Y × (−1/ε, 0).

(ii) If ψ ∈ W 1,2(Ω), then limε→0
̂(Tεψ)|Ω = ψ(x̄, 0) in L2(W ×Y × (−1, 0)).

Proof. The proof follows as in the proof [8, Lemma 8.9] by noting that P is
a projector on the space of polynomials of degree at most m − 1, so that a
Poincaré-Wirtinger-type inequality still holds. �

Let fε ∈ L2(Ωε) and f ∈ L2(Ω) be such that fε ⇀ f in L2(RN ) as ε → 0,
with the understanding that the functions are extended by zero outside their
natural domains. Let vε ∈ V (Ωε) = Wm,2(Ωε)∩Wm−1,2

0 (Ωε) be such that for
all ε > 0 small enough

HΩε,Svε = fε. (5.7)

Then ‖vε‖W m,2(Ωε)
≤ M for all ε > 0 sufficiently small, hence, possibly

passing to a subsequence there exists v ∈ Wm,2(Ω) ∩ Wm−1,2
0 (Ω) such that

vε ⇀ v in Wm,2(Ω) and vε → v in L2(RN ).
Let ϕ ∈ V (Ω) = Wm,2(Ω) ∩ Wm−1,2

0 (Ω) be fixed. Since Tεϕ ∈ V (Ωε),
by (5.7) we have

∫

Ωε

Dmvε : DmTεϕ dx +
∫

Ωε

vεTεϕ dx =
∫

Ωε

fεTεϕ dx, (5.8)
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and passing to the limit as ε → 0 we get
∫

Ωε
vεTεϕ dx → ∫

Ω
vϕdx and

∫

Ωε
fεTεϕ dx → ∫

Ω
fϕdx.

Now consider the first integral in the right hand-side of (5.8). Set Kε =
W ×(−1,−ε). By splitting the integral in three terms corresponding to Ωε\Ω,
Ω \ Kε and Kε and by arguing as in [8, Section 8.3] one can show that∫

Kε
Dmvε : Dmϕ dx → ∫

Ω
Dmv : Dmϕ dx and

∫

Ωε\Ω
Dmvε : DmTεϕ dx → 0,

as ε → 0. Let us define Qε by

Qε = Ŵε × (−ε, 0).

We split again the remaining integral in two summands as follows:
∫

Ωε\Kε

Dmvε : DmTεϕ dx

=
∫

Ωε\(Kε∪Qε)

Dmvε : DmTεϕ dx +
∫

Qε

Dmvε : DmTεϕ dx. (5.9)

As in [8, Section 8.3],
∫

Ωε\(Kε∪Qε)
Dmvε : DmTεϕ dx → 0, as ε → 0. It remains

to analyse the limit as ε → 0 of the last summand in the right-hand side of
(5.9). To do so, we also need the following lemma in the proof of which we
use notation and rules of calculus recalled in Sect. 2.

Lemma 4. Let l ∈ N, l ≤ m, and let i1, . . . , il ∈ {1, . . . , N}. The functions

ĥε(x̄, y), ∂̂lhε

∂xi1 ···∂xil
(x̄, y) defined for y ∈ Y × (−1, 0), are independent of x̄.

Moreover,
∥
∥
∥ĥε

∥
∥
∥

L∞
= O(ε3/2),

∥
∥
∥
∥

∂̂lhε

∂xi1 ···∂xil
(x̄, y)

∥
∥
∥
∥

L∞
= O(ε3/2−l) as ε → 0,

and if l ≥ 2 we have εl−3/2 ∂̂lhε

∂xi1 ···∂xil
(x̄, y) → ∂l(b(ȳ)(yN+1)m+1)

∂yi1 ···∂yil
as ε → 0,

uniformly in y ∈ Y × (−1, 0).

Proof. First, note that the part of the statement involving the asymptotic
behaviour of ĥε as ε → 0 follows directly from Lemma 1 and Definition 4.
Assume now that l ≥ 2. By applying formula (2.7) we have that

∂̂lhε

∂xi1 · · · ∂xil

(x̄, y) =
∑

S∈P(l)

εα

ε|S|
∂|S|b(ȳ)
∏

j∈S ∂yij

̂∂l−|S|
∏

j /∈S ∂xij

(
xN + ε

gε(x̄) + ε

)m+1

(5.10)
Standard Calculus computations based on Formulas (2.6) and (2.7) give

̂∂l−|S|
∏

j /∈S ∂xij

(
xN + ε

gε(x̄) + ε

)m+1

= C
(|S|) ε−l+|S| (yN + 1)m+1−l+|S|

(εα−1b(ȳ) + 1)m+1

∏

j /∈S

δijN

+
∑

Λ ∈ P(SC)
Λ = ∅

∑

π∈Part(Λ)

εα|π|−|π|−l+|S|(−1)|π| (m + |π|)!
m!

(m+1)!
(m+1−l+|S|+|Λ|)!

· (yN + 1)m+1−l+|S|+|Λ|

(εα−1b(ȳ) + 1)m+1+|π|
∏

k∈(SC\Λ)

δikN

∏

B∈π

∂|B|b(ȳ)
∏

l∈B ∂yil

, (5.11)
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where C
(|S|) = (m+1)!

(m+1−l+|S|)! . By (5.10) and (5.11) we deduce that

εl−α ∂̂lhε

∂xi1 · · · ∂xil

(x̄, y)

= εl−α
∑

S∈P(l)

εα−|S| ∂|S|b(ȳ)
∏

j∈S ∂yij

C
(|S|)ε−l+|S| (yN + 1)m+1−l+|S|

(εα−1b(ȳ) + 1)m+1

∏

j /∈S

δijN

+ εl−α
∑

S∈P(l)

εα−|S| ∂|S|b(ȳ)
∏

j∈S ∂yij

∑

Λ∈P(SC)
Λ �=∅

∑

π∈Part(Λ)

ε|Λ|−|π|−l+|S|(−1)|π| (m+|π|)!
m!

· C(|S ∪ Λ|) (yN + 1)m+1−l+|S|+|Λ|

(εα−1 + 1)m+1+|π|
∏

k∈(SC\Λ)

δikN

∏

B∈π

εα−|B| ∂|B|b(ȳ)
∏

l∈B ∂yil

.

(5.12)

It is possible to prove by direct computation that all the summands appearing
in the second line in the right-hand side of (5.12) are vanishing as ε → 0. By
letting ε → 0 in (5.12) we see that

lim
ε→0

εl−α ∂̂lhε

∂xi1 · · · ∂xil

(x̄, y) =
∑

S∈P(l)

∂|S|b(ȳ)
∏

j∈S ∂yij

C(|S|) (yN + 1)m+1−l+|S| ∏

j /∈S

δijN

=
∂l

∂yi1 · · · ∂yil

(
b(ȳ)(yN + 1)m+1),

concluding the proof. �

Finally, we are ready to prove the following

Proposition 2. Let vε ∈ V (Ωε) be such that ‖vε‖W m,2(Ωε)
≤ M for all ε > 0.

Let Ỹ = Y × (−1, 0) and g(y) = b(ȳ)(1 + yN )m+1 for all y ∈ Ỹ . Moreover,
let v̂ ∈ L2(W,wm,2

PerY
(Y × (−∞, 0))) be as in Lemma 3. Then

∫

Qε

Dmvε : Dm(Tεϕ) dx →

−
m−1∑

l=1

(
m

l + 1

)∫

W

∫

Ỹ

yl−1
N

(l − 1)!
Dl+1

y

(
∂m−l−1v̂(x̄, y)

∂ym−l−1
N

)

:Dl+1
y g(y) dy

∂m−1ϕ

∂xm−1
N

(x̄, 0)dx̄,

for all ϕ ∈ Wm,2(Ω) ∩ Wm−1,2
0 (Ω), as ε → 0.

Proof. We set

P1(t) = {π = (S1, . . . , St) ∈ Part({1, . . . , m}) : ∃! Sk with |Sk| > 1},

P2(t) = {π ∈ Part({1, . . . , m}) : |π| = t, π /∈ P1(t)}.

We note that in the definition of P1(t) we may assume without loss of gener-
ality that the only element Sk with cardinality strictly bigger than 1 is S1. In
the sequel, we always assume that a given partition π of cardinality t is rep-
resented by π = {S1, . . . , St}. In the following calculations, we use the index
notation and we drop the summation symbols

∑N
j1,...,j|π|=1 and

∑N
i1,··· ,im=1.

With the help of (2.8) we compute
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∫

Qε

Dmvε : Dm(Tεϕ) dx =
∫

Qε

∂mvε

∂xi1 · · · ∂xim

∂m(ϕ ◦ Φε)
∂xi1 · · · ∂xim

dx

=
∑

π ∈ Part({1, . . . , m})
π = {S1, . . . , S|π|}

∫

Qε

∂mvε

∂xi1 · · · ∂xim

∂|π|ϕ
∏|π|

k=1 ∂xjk

(Φε(x))
|π|∏

k=1

∂|Sk|Φ(jk)
ε

∏
l∈Sk

∂xil

dx

=
∫

Qε

∂mvε

∂xi1 · · · ∂xim

∂mϕ

∂xj1 · · · ∂xjm

(Φε(x))
∂Φ(j1)

ε

∂xi1

· · · ∂Φ(jm)
ε

∂xim

dx

+
m−1∑

t=1

∑

π∈P1(t)

∫

Qε

∂mvε

∂xi1 · · · ∂xim

∂tϕ
∏t

k=1 ∂xjk

(Φε(x))
t∏

k=1

∂|Sk|Φ(jk)
ε

∏
l∈Sk

∂xil

dx

+
m−2∑

t=2

Ft(vε, ϕ,Φε), (5.13)

where Ft(vε, ϕ,Φε) is defined by

Ft(vε, ϕ,Φε) =
∑

π∈P2(t)

∫

Qε

∂mvε

∂xi1 · · · ∂xim

∂tϕ
∏t

k=1 ∂xjk

t∏

k=1

∂|Sk|Φ(jk)
ε

∏
l∈Sk

∂xil

dx.

We consider separately the three summands in the right hand side of (5.13).
Let us remark for future use that

∂Φ(k)
ε

∂xi
=

{
δki, if k = N,

δNi − ∂hε

∂xi
, if k = N,

∂lΦ(k)
ε

∂xi1 · · · ∂xil

=

{
0, if k = N,

− ∂lhε

∂xi1 ···∂xil
, if k = N.

for all 2 ≤ l ≤ m. Consider now the first term in the right hand side of (5.13).
We unfold it by taking into account (5.4) in order to obtain

∣
∣
∣
∣
∣
ε

∫

Ŵε

∫

Ỹ

∂̂mvε

∂xi1 · · · ∂xim

∂mϕ

∂xj1 · · · ∂xjm

(Φ̂ε(y))
̂
∂Φ(j1)

ε

∂xi1

· · ·
̂
∂Φ(jm)

ε

∂xim

dydx̄

∣
∣
∣
∣
∣

= ε−2m+1

∣
∣
∣
∣
∣

∫

Ŵε

∫

Ỹ

∂mv̂ε

∂yi1 · · ·∂yim

∂mϕ

∂xj1 · · ·∂xjm

(Φ̂ε(y))
∂Φ̂(j1)

ε

∂yi1

· · ·∂Φ̂(jm)
ε

∂yim

dydx̄

∣
∣
∣
∣
∣

≤ Cε−m+1εm−1/2

∫

Ŵε

∫

Ỹ

∣
∣
∣
∣
∣
ε−m+1/2 ∂mv̂ε

∂yi1 · · · ∂yim

∂mϕ

∂xj1 · · · ∂xjm

(Φ̂ε(y))

∣
∣
∣
∣
∣
dydx̄

≤ Cε1/2

∥
∥
∥
∥ε

−m+1/2 ∂mv̂ε

∂yi1 · · · ∂yim

∥
∥
∥
∥

L2(Ŵε×Ỹ )

∥
∥
∥
∥

∂mϕ

∂xj1 · · · ∂xjm

(Φ̂ε(y))
∥
∥
∥
∥

L2(Ŵε×Ỹ )

≤ Cε1/2

∥
∥
∥
∥

∂mϕ

∂xj1 · · · ∂xjm

(Φ̂ε(y))
∥
∥
∥
∥

L2(Ŵε×Ỹ )

≤ C

∥
∥
∥
∥

∂mϕ

∂xj1 · · · ∂xjm

∥
∥
∥
∥

L2(Φε(Qε))

,

which vanishes as ε → 0. In the first inequality we have used the fact that
∣
∣∂Φ̂(k)

ε

∂yi

∣
∣ ≤ Cε, for sufficiently small ε > 0. Let now 1 ≤ t ≤ m− 1 be fixed and

consider
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∑

π∈P1(t)

∫

Qε

∂mvε

∂xi1 · · · ∂xim

∂tϕ
∏t

k=1 ∂xjk

(Φε(x))
t∏

k=1

∂|Sk|Φ(jk)
ε

∏
l∈Sk

∂xil

dx

=
∑

π∈P1(t)

∫

Qε

∂mvε

∂xi1 · · · ∂xim

∂tϕ
∏t

k=1 ∂xjk

(Φε(x))
∂m−t+1Φ

(j1)
ε

∏
l∈S1

∂xil

∂Φ
(j2)
ε

∂xiS2

· · · ∂Φ
(jt)
ε

∂xiSt

dx,

(5.14)

where to shorten the notation we have identified S2, . . . , St with the only
element they contain. Note that if j1 = N then the integral in (5.14) is
zero. Thus, without loss of generality we set j1 = N . Note that we have
∂Φ(N)

ε

∂xit
= δNit

+ ∂hε

∂xit
and | ∂hε

∂xit
|≤ Cε1/2 as ε → 0. In order to simplify the

expressions we will not write down the higher order terms in ε. Hence, by
setting j1 = N in (5.14) we deduce that the lower order terms in (5.14) are
given by

∑

π∈P1(t)

∫

Qε

∂mvε

∂xi1 · · · ∂xim

∂tϕ

∂xN∂xjS2
· · · ∂xjSt

(Φε)
∂m−t+1Φ

(N)
ε

∏
l∈S1

∂xil

δiS2 j2 · · · δiSt
jN dx

=
∑

π∈P1(t)

∫

Qε

∂tϕ

∂xN∂xiS2
· · · ∂xiSt

(Φε)
∂mvε

∏
l∈S1

∂xil∂xiS2
· · · ∂xiSt

∂m−t+1Φ
(N)
ε

∏
l∈S1

∂xil

dx

=

(
m

t − 1

)∫

Qε

∂tϕ

∂xN∂xiS2
· · · ∂xiSt

(Φε)
∂mvε

∏
l∈S1

∂xil∂xiS2
· · · ∂xiSt

∂m−t+1Φ
(N)
ε

∏
l∈S1

∂xil

dx,

(5.15)

where in the last equality in (5.15) we have used the fact that each of the
summands

∫

Qε

∂tϕ

∂xN∂xiS2
· · · ∂xiSt

(Φε)
∂mvε

∏
l∈S1

∂xil
∂xiS2

· · · ∂xiSt

∂m−t+1Φ(N)
ε

∏
l∈S1

∂xil

dx

equals

∫

Qε

∂tϕ

∂xN∂xiS2
· · · ∂xiSt

(Φε)Dm−t+1

(
∂t−1vε

∂xiS2
· · · ∂xiSt

)

: Dm−t+1Φ(N)
ε dx.

and in particular they do not depend on the choice of π (note that the cardi-
nality of P1(t) equals

(
m

t−1

)
). By unfolding the right-hand side of (5.15) and

using the fact that m − t + 1 ≥ 2 we have that

( m

t − 1

)
ε

∫

Ŵε

∫

Ỹ

∂tϕ

∂xN∂xiS2
· · · ∂xiSt

(Φ̂ε(y))
∂̂mvε

∏
l∈S1

∂xil
∂xiS2

· · · ∂xiSt

̂
∂m−t+1Φ

(N)
ε

∏
l∈S1

∂xil

dydx̄

= −
( m

t + 1

) ε

εm

∫

Ŵε

∫

Ỹ

∂mv̂ε
∏

l∈S1
∂yil

∂yiS2
· · · ∂yiSt

· ∂tϕ

∂xN∂xiS2
· · · ∂xiSt

(Φ̂ε(y))
̂∂m−t+1hε

∏
l∈S1

∂xil

dydx̄. (5.16)

It is easy to see that the final expression appearing in the right-hand side of
(5.16) can be written as
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−
(

m

t + 1

)∫

Ŵε

∫

Ỹ

[

ε−m+1/2 ∂mv̂ε
∏

l∈S1
∂yil∂yiS2

· · · ∂yiSt

]

·
[

1

εm−t−1

∂tϕ

∂xN∂yiS2
· · · ∂yiSt

(Φ̂ε(y))

][

εm−t+1−3/2
̂∂m−t+1hε

∏
l∈S1

∂xil

]

dydx̄.

(5.17)

Now

ε−m+1/2 ∂mv̂ε
∏

l∈S1
∂yil

∂yiS2
· · · ∂yiSt

→ ∂mv̂
∏

l∈S1
∂yil

∂yiS2
· · · ∂yiSt

,

weakly in L2(Ŵε × Y × (−1, 0)) as ε → 0, by Lemma 3, and

εm−t+1−3/2
̂∂m−t+1hε

∏
l∈S1

∂xil

→ ∂m−t+1(b(ȳ)(1 + yN )m+1)
∏

l∈S1
∂yil

,

in L∞(Ŵε × Y × (−1, 0)) as ε → 0, by Lemma 4. Moreover, by Lemma 6 in
“Appendix” it follows that

1
εm−t−1

∂tϕ

∂xt
N

(Φ̂ε(y)) → ym−t−1
N

(m − t − 1)!
∂m−1ϕ

∂xm−1
N

(x̄, 0),

and
1

εm−t−1

∂tϕ

∂xN∂xiS2
· · · ∂xiSt

(Φ̂ε(y)) → 0,

strongly in L2(W × Y × (−1, 0)) as ε → 0, if at least one of the indexes
iS2 , . . . , iSN

is not equal to N . Hence (5.17) tends to

−
(

m

t + 1

)∫

W

∫

Y ×(−1,0)

ym−t−1
N

(m − t − 1)!
Dm−t+1

y

(
∂t−1v̂

∂yt−1
N

)

:

Dm−t+1
y

(
b(ȳ)(1 + yN )m+1

)
dy

∂m−1ϕ

∂xm−1
N

(x̄, 0)dx̄.

By setting m − t = l we recover the limiting expression in the statement.
Then, in order to conclude the proof it is sufficient to prove that the integrals
in Ft(vε, ϕ,Φε) vanish as ε → 0. We will show this by comparing each integral
appearing in the definition of Ft(vε, ϕ,Φε) with the corresponding integral of
the form (5.14), which is convergent as ε → 0, hence it is uniformly bounded
in ε. Note that by Lemma 4

∂m−t+1Φ̂(j1)
ε

∏
l∈S1

∂yil

∂Φ̂(j2)
ε

∂yiS2

· · · ∂Φ̂(jt)
ε

∂yiSt

= O(ε3/2+t−1) = O(ε1/2+t),

for all π ∈ P1(t), whereas if we consider π′ = (S′
1, . . . , S

′
t) ∈ P2(t) with

|S′
1| = m − t < m − t + 1 there must exists S′

k, k > 1 with |S′
k| = 2. Let us

assume that k = 2. Then we have

∂m−tΦ̂(j1)
ε

∏
l∈S′

1
∂yil

∂2Φ̂(j2)
ε

∏
l∈S′

2
∂yil

∂Φ̂(j3)
ε

∂yiS′
3

· · · ∂Φ̂(jt)
ε

∂yiS′
t

= O(ε3/2+tε3/2−2) = O(ε1+t),
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and since ε1+t = o
(
ε1/2+t

)
as ε → 0 and the integral (5.14) is bounded, we

deduce that the integral in Ft(vε, ϕ,Φε) involving

∂mvε

∂xi1 · · · ∂xim

∂tϕ
∏t

k=1 ∂xjk

∂m−tΦ̂(j1)
ε

∏
l∈S′

1
∂yil

∂2Φ̂(j2)
ε

∏
l∈S′

2
∂yil

∂Φ̂(j3)
ε

∂yiS′
3

· · · ∂Φ̂(jt)
ε

∂yiS′
t

,

for all π′ ∈ P2(t) defined above, vanishes as ε → 0. By arguing in a similar
way for all the terms in Ft(vε, ϕ,Φε) we deduce the validity of the statement.

�

We summarise the previous discussion in the following

Theorem 8. Let fε ∈ L2(Ωε), f ∈ L2(Ω) be such that fε ⇀ f in L2(Ω). Let
g(y) = b(ȳ)(1 + yN )m+1 for all y ∈ Y × (−1, 0). Moreover, let us assume
that vε ∈ Wm,2(Ωε) ∩ Wm−1,2

0 (Ωε) is the solution to HΩε,Svε = fε for all
ε > 0. Then there exist v ∈ Wm,2(Ω) ∩ Wm−1,2

0 (Ω) and a function v̂ in the
space L2(W,wm,2

PerY
(Y ×(−∞, 0))) such that, possibly passing to a subsequence,

vε ⇀ v in Wm,2(Ω), vε → v in L2(RN ), and statements (a) and (b) in
Lemma 3 hold. Moreover, the following integral equality holds

−
m−1∑

l=1

(
m

l + 1

)∫

W

∫

Y ×(−1,0)

[
yl−1

N

(l − 1)!
Dl+1

y

(
∂m−l−1v̂(x̄, y)

∂ym−l−1
N

)

: Dl+1
y g(y)

]

dy
∂m−1ϕ

∂xm−1
N

(x̄, 0)dx̄ +

∫

Ω

Dmv : Dmϕ + uϕ dx =

∫

Ω

fϕ dx.

(5.18)

for all ϕ ∈ Wm,2(Ω) ∩ Wm−1,2
0 (Ω).

Notation. We will use the following notation:

qY (f, g) :=

m−1∑

l=1

(
m

l + 1

)∫

Y ×(−1,0)

[
yl−1

N

(l − 1)!
Dl+1

y

(
∂m−l−1f(x̄, y)

∂ym−l−1
N

)

: Dl+1
y g(y)

]

dy

for all f ∈ L2(W,wm,2
PerY

(Y × (−∞, 0))), g ∈ Cm
PerY

(Y × (−1, 0)). We refer to

−
∫

W

qY (v̂, g)
∂m−1ϕ

∂xm−1
N

(x̄, 0)dx̄ (5.19)

as the strange term appearing in the homogenization.

5.2. Critical Case: Microscopic Problem

The aim of this section is to characterize the strange term (5.19) as the
energy of a suitable polyharmonic function and in particular to conclude
that it is different from zero. We will use periodically oscillating test functions
matching the intrinsic ε-scaling of the problem.

Let then ψ ∈ C∞(W ×Y ×]−∞, 0]) be such that suppψ ⊂ C×Y × [d, 0]
for some compact set C ⊂ W and for some d ∈ (−∞, 0). Moreover, assume
that ψ(x̄, ȳ, 0) = Dlψ(x̄, ȳ, 0) = 0 for all (x̄, ȳ) ∈ W ×Y , for all 1 ≤ l ≤ m−2
. Let also ψ be Y -periodic in the variable ȳ. We set

ψε(x) = εm− 1
2 ψ

(
x̄,

x̄

ε
,
xN

ε

)
,
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for all ε > 0, x ∈ W×]−∞, 0]. Then Tεψε ∈ V (Ωε) for all sufficiently small ε,
hence we can use it as a test function in the weak formulation of the problem
in Ωε, getting

∫

Ωε

Dmvε : DmTεψε dx +
∫

Ωε

vεTεψε dx =
∫

Ωε

fεTεψε dx.

It is not difficult to prove that
∫

Ωε

vεTεψε dx → 0,

∫

Ωε

fεTεψε dx → 0 (5.20)

as ε → 0. By arguing as in [8, §8.4], it is also possible to prove that
∫

Ωε\Ω

Dmvε : DmTεψε dx → 0, (5.21)

as ε → 0. Moreover, a suitable modification of [8, Lemma 8.47] yields
∫

Ω

Dmvε : DmTεψε dx →
∫

W×Y ×(−∞,0)

Dm
y v̂(x̄, y) : Dm

y ψ(x̄, y) dx̄dy.

(5.22)

Theorem 9. Let v̂ ∈ L2(W,wm,2
PerY

(Y × (∞, 0))) be the function from Theo-
rem 8. Then

∫

W×Y ×(−∞,0)

Dm
y v̂(x̄, y) : Dm

y ψ(x̄, y) dx̄dy = 0, (5.23)

for all ψ ∈ L2(W,wm,2
PerY

(Y × (∞, 0))) such that ψ(x̄, ȳ, 0) = Dl
yψ(x̄, ȳ, 0) = 0

for all (x̄, ȳ) ∈ W × Y , for all 1 ≤ l ≤ m − 2. Moreover, for any j =
1, . . . , N − 1, we have

∂m−1v̂

∂yj∂ym−2
N

(x̄, ȳ, 0) = − ∂b

∂yj
(ȳ)

∂m−1v

∂xm−1
N

(x̄, 0), on W × Y, (5.24)

and
∂m−1v̂

∂yi1 · · · ∂yim−1

(x̄, ȳ, 0) = 0, on W × Y, (5.25)

for all i1, . . . , im−1 = 1, . . . , N − 1.

Proof. The first part of the statement follows from (5.20), (5.21) and (5.22) by
arguing as in [8, Theorem 8.53]. In order to prove formulas (5.24) and (5.25)
we note that, since Dm−2vε(x̄, gε(x̄)) = 0 for all x̄ ∈ W , we have

∂m−2vε

∂xi1 · · · ∂xim−2

(x̄, gε(x̄)) = 0, for all i1, . . . , im−2 = 1, . . . , N, x̄ ∈ W.

Differentiating with respect to xj , j ∈ {1, . . . , N − 1} yields

∂m−1vε

∂xi1 · · · ∂xim−2∂xj
(x̄, gε(x̄)) +

∂m−1vε

∂xi1 · · · ∂xim−2∂xN
(x̄, gε(x̄))

∂gε(x̄)
∂xj

= 0,

for all x̄ ∈ W . Hence, by setting

V j
ε =

(
0, . . . , 0,− ∂m−1vε

∂xN∂xi1 · · · ∂xim−2

, 0, . . . , 0,
∂m−1vε

∂xj∂xi1 · · · ∂xim−2

)
,
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for all i1, . . . , im−2 = 1, . . . , N , j = 1, . . . , N − 1, where the only non-zero
entries are the j-th and the N -th, we obtain that V j

ε · nε = 0, on Γε, where
nε is the outer normal to Γε ≡ {(x̄, gε(x̄)) : x̄ ∈ W}. By using Lemma 3

̂∂m−1vε

∂xi1 ···∂xim−2∂xj
− ∫

Y

̂∂m−1vε

∂xi1 ···∂xim−2∂xj
(x̄, ȳ, 0)dȳ

√
ε

ε→0
⇀

∂m−1v̂

∂yi1 · · · ∂yim−2∂yj
,

in L2(W ×Y ×]d, 0[) for any d < 0. This combined with [20, Lemma 4.3] (see
also [8, Lemma 8.56]) yields

∂m−1v̂

∂yi1 · · · ∂yim−2∂yj
(x̄, ȳ, 0) = − ∂b

∂yj
(ȳ)

∂m−1v

∂xN∂xi1 · · · ∂xim−2

(x̄, 0),

for all (x̄, ȳ) ∈ W × Y , i1, . . . , im−2 = 1, . . . , N , j = 1, . . . , N − 1. Since
v ∈ Wm,2(Ω) ∩ Wm−1,2

0 (Ω), Dm−2v(x̄, 0) = 0 for all x ∈ W . This implies
that all the derivatives ∂m−1v

∂xN ∂xi1 ···∂xim−2
(x̄, 0), where one of the indexes ik is

different from N are zero. This concludes the proof. �

Now we have the following

Lemma 5. There exists V ∈ wm,2
PerY

(Y × (−∞, 0)) satisfying the equation
∫

Y ×(−∞,0)

DmV : Dmψ dy = 0, (5.26)

for all ψ ∈ wm,2
PerY

(Y × (−∞, 0)) such that Dlψ(ȳ, 0) = 0 on Y , for all
0 ≤ l ≤ m − 2, and the boundary conditions

⎧
⎨

⎩

∂lV
∂yl

N
(ȳ, 0) = 0, for all l = 0, . . . ,m − 3, on Y,

∂m−2V
∂ym−2

N

(ȳ, 0) = b(ȳ), on Y.

The function V is unique up to the sum of a monomial in yN of degree m−1
of the type aym−1

N with a ∈ R. Moreover V ∈ W 2m,2
PerY

(Y ×(d, 0)) for any d < 0
and it satisfies the equation

(−Δ)mV = 0, in Y × (d, 0),

subject to the boundary conditions
⎧
⎪⎪⎨

⎪⎪⎩

∂lV
∂nl (ȳ, 0) = 0, on Y, for all 0 ≤ l ≤ m − 3,
∂m−2V
∂ym−2

N

(ȳ, 0) = b(ȳ), on Y,

∂mV
∂ym

N
(ȳ, 0) = 0, on Y.

Proof. Similar to the proof of [8, Lemma 8.60]. We just note that in order to
deduce the classical formulation of problem (5.26) it is sufficient to choose test
functions ψ as in the statement with bounded support in the yN direction.
By using the Polyharmonic Green Formula (4.3) we then deduce that
∫

Y ×(−∞,0)

DmV : Dmψ dy = (−1)m

∫

Y ×(−∞,0)

ΔmV ψ dy +

∫

Y

∂mV

∂ym
N

∂m−1ψ

∂ym−1
N

dȳ.

By the arbitrariness of ψ it is then easy to conclude the proof. �
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Theorem 10. Let V be as in Lemma 5 and g(y) = b(ȳ)(1 + yN )m+1, for all
y ∈ Y × (−1, 0). Then

qY (V, g) =
∫

Y ×(−∞,0)

|DmV |2 dy. (5.27)

Furthermore
∫

Y ×(−∞,0)

|DmV |2 dy

= −
∫

Y

(
∂m−1(ΔV )

∂xm−1
N

+ (m − 1)ΔN−1

(
∂m−1V

∂xm−1
N

))

b(ȳ) dȳ. (5.28)

Proof. Let φ be the real-valued function defined on Y ×] − ∞, 0] by φ(y) =
ym−2

N

(m−2)!g(y) if −1 ≤ yN ≤ 0 and φ(y) = 0 if yN < −1. Then φ ∈ Wm,2(Y ×
(−∞, 0)), ∂lφ

∂yl
N

(ȳ, 0) = 0 for all 0 ≤ l ≤ m − 3, and

∂m−2φ

∂ym−2
N

(ȳ, 0) = b(ȳ), for all y ∈ Y. (5.29)

Now note that the function ψ = V − φ is a suitable test-function in equa-
tion (5.26); by plugging it in (5.26) we deduce that

∫

Y ×(−∞,0)
|DmV |2 dy =

∫

Y ×(−1,0)
DmV : Dmφ dy. By the Leibnitz rule we have that

∫

Y ×(−1,0)

DmV : Dmφ dy

=
∫

Y ×(−1,0)

∂mV

∂xj1 · · · ∂xjm

∑

S∈P(m)

1
(m − 2)!

∂|S|ym−2
N∏

j∈S ∂xij

∂(n−|S|)g
∏

j /∈S ∂xij

dy.

(5.30)

Using the obvious fact that

∂m−kym−2
N

∂xi1 · · · ∂xim−k

=

{
0, if k = 0, 1;
yk−2

N δi1N · · · δim−kN , for k ≥ 2.

we can rewrite the right-hand side of (5.30) as follows
m∑

k=2

(
m

k

)∫

Y ×(−1,0)

Dk

(
∂m−kV (y)

∂ym−k
N

)

:
(

yk−2
N

(k − 2)!
Dkg(y)

)

dy

=
m∑

k=2

(
m

k

)∫

Y ×(−1,0)

yk−2
N

(k − 2)!
Dk

(
∂m−kV (y)

∂ym−k
N

)

: Dkg(y) dy,

which coincides with the left-hand side of (5.27) up to the change of sum-
mation index defined by k = l + 1. Finally, (5.28) follows by applying the
polyharmonic Green formula (4.3) on

∫

Y ×(−1,0)
DmV : Dmφ dy. Indeed, we

note that the boundary integrals on ∂Y × (−1, 0) are zero, due to the period-
icity of V and b. Moreover the boundary integral on ∂Y × {−1} is zero since
φ vanishes there together with all its derivatives. Then, the only non-trivial
boundary integral is supported on Y × {0}. More precisely, we have
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∫

Y ×(−1,0)

DmV : Dmφ dy

= (−1)m

∫

Y ×(−1,0)

ΔmV φ dy +
m−1∑

t=0

∫

Y

Bt(V )(ȳ, 0)
∂tφ(ȳ, 0)

∂yt
N

dȳ,

(5.31)

and by recalling that ΔmV = 0 in Y × (−1, 0), ∂mV
∂ym

N
= 0 on Y × {0},

∂lφ
∂yl

N
= 0 on Y × {0}, for all 0 ≤ l ≤ m − 3 and by (5.29), we deduce that

∫

Y ×(−1,0)
DmV : Dmφ dy =

∫

Y
Bm−2(V )(ȳ, 0)b(ȳ) dȳ and by formula (4.3)

Bm−2(V )(ȳ, 0) = −∑m−1
l=m−2

(
l

m−2

)
Δl−m+2

N−1 ( ∂m−1

∂ym−1
N

(Δm−l−1V )), from which

we deduce (5.28). �

Theorem 11. Let m ∈ N, m ≥ 2. Let V be as in Lemma 5. Let v, v̂ be the
functions defined in Theorem 8. Let also g(y) = b(ȳ)(1 + yN )m+1 for all
y ∈ Y × (−1, 0). Then

v̂(x̄, y) = −V (y)
∂m−1v

∂xm−1
N

(x̄, 0) + a(x)ym−1,

for some a(x̄) ∈ L2(W ). Moreover, the strange term (5.19) is given by

−
∫

W

qY (v̂, g)
∂m−1ϕ

∂xm−1
N

(x̄, 0)dx̄

=

∫

Y ×(−∞,0)

|DmV |2dy

∫

W

∂m−1v

∂xm−1
N

(x̄, 0)
∂m−1ϕ

∂xm−1
N

(x̄, 0)dx̄

= −
∫

Y

(
∂m−1(ΔV )

∂xm−1
N

+ (m − 1)ΔN−1

(
∂m−1V

∂xm−1
N

))

b(ȳ)dȳ

·
∫

W

∂m−1v

∂xm−1
N

(x̄, 0)
∂m−1ϕ

∂xm−1
N

(x̄, 0)dx̄.

Proof. The proof follows by Lemma 5 and Theorems 9, 10 and by observing
that −V (y) ∂m−1v

∂xm−1
N

(x̄, 0) satisfies problem (5.23) with the boundary conditions

(5.24). �

We are now ready to conclude the proof of (iii) of Theorem 7.

Proof of Theorem 7(iii). Define g(y) = b(ȳ)(1 + yN )m+1 for all y = (ȳ, yN )
in Y × (−1, 0). The function v in Theorem 8 satisfies

∫

W
qY (V, g)

∂m−1v

∂xm−1
N

(x̄, 0)
∂m−1ϕ

∂xm−1
N

(x̄, 0)dx̄ +

∫

Ω
Dmv : Dmϕ + uϕ dx =

∫

Ω
fϕ dx.

(5.32)

for all ϕ ∈ Wm,2(Ω) ∩ Wm−1,2
0 (Ω). By Theorem 11 we can rewrite the first

integral on the left-hand side of (5.32) as
∫

Y ×(−∞,0)

|DmV |2dy

∫

W

∂m−1v

∂xm−1
N

(x̄, 0)
∂m−1ϕ

∂xm−1
N

(x̄, 0) dx̄
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and by the Green Formula (4.10) for all ϕ ∈ Wm,2(Ω) ∩ Wm−1,2
0 (Ω)

∫

Ω

Dmv : Dmϕdx = (−1)m

∫

Ω

Δmvϕ +
∫

∂Ω

∂mv

∂nm

∂m−1ϕ

∂nm−1
dS. (5.33)

Hence, in the weak formulation of the limiting problem we find the following
boundary integral
∫

W

(
∂mv

∂xm
N

(x̄, 0) +

(∫

Y ×(−∞,0)

|DmV |2 dy

)
∂m−1v

∂xm−1
N

(x̄, 0)

)
∂m−1ϕ

∂xm−1
N

(x̄, 0) dx̄,

(5.34)
for all ϕ ∈ Wm,2(Ω)∩Wm−1,2

0 (Ω). By (5.32), (5.33), (5.34) and the arbitrari-
ness of ϕ we deduce the statement of Theorem 7, part (iii). �
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6. Appendix

In this section we prove the following technical result used in the proof of
Proposition 2.

Lemma 6. Let l,m ∈ N, m ≥ 2, 1 ≤ l ≤ m − 1, i1, . . . , im−l−1 ∈ {1, . . . , N}.
Then for all ϕ ∈ Wm,2(Ω) ∩ Wm−1,2

0 (Ω) we have

1
εl−1

∂m−lϕ

∂xm−l
N

(Φ̂ε(y)) → yl−1
N

(l − 1)!
∂m−1ϕ

∂xm−1
N

(x̄, 0),

in L2(W×Y ×(−1, 0) as ε → 0 and if at least one of the indexes i1, . . . , im−l−1

does not coincide with N we also have

1
εl−1

∂m−lϕ

∂xN∂xi1 · · · ∂xim−l−1

(Φ̂ε(y)) → 0

in L2(W × Y × (−1, 0) as ε → 0.
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Proof. Note that for l = 1 the claim follows by Lemma 3. Then assume l > 1.
Fix ϕ ∈ Wm,2(Ω) ∩ Wm−1,2

0 (Ω) ∩ C∞(Ω). Then

∫

Ŵε×Y ×(−1,0)

∣
∣
∣
∣
∣

1

εl−1

∂m−lϕ

∂xm−l
N

(Φ̂ε(y)) − yl−1
N

(l − 1)!

∂m−1ϕ

∂xm−1
N

(x̄, 0)

∣
∣
∣
∣
∣

2

dx̄dy

=

∫ 0

−1

∑

k∈IW,ε

∫

Ck
ε

∫

Y

∣
∣
∣
∣
∣

1

εl−1

∂m−lϕ

∂xm−l
N

(
ε
[ x̄

ε

]
+ εȳ, εyN − hε

(
ε
[ x̄

ε

]
+ εȳ, εyN

))

− yl−1
N

(l − 1)!

∂m−1ϕ

∂xm−1
N

(x̄, 0)

∣
∣
∣
∣
∣

2

dȳdx̄dyN

=

∫ 0

−1

∑

k∈IW,ε

∫

Ck
ε

∫

Ck
ε

∣
∣
∣
∣
∣

1

εl−1

∂m−lϕ

∂xm−l
N

(
z̄, εyN − hε

(
z̄, εyN

))

− yl−1
N

(l − 1)!

∂m−1ϕ

∂xm−1
N

(x̄, 0)

∣
∣
∣
∣
∣

2

dx̄
dz̄

εN−1
dyN . (6.1)

Now, let z̄ ∈ Ck
ε be fixed. By expanding ϕ in Taylor’s series with remainder

in Lagrange form we deduce that

∂m−lϕ

∂xm−l
N

(
z̄, εyN − hε(z̄, εyN )

)
=

∂m−1ϕ

∂xm−1
N

(z̄, ξ)
(εyN − hε(z̄, εyN ))l−1

(l − 1)!
,

for some ξ ∈ (0, εyN − hε(z̄, εyN )). We then deduce that the term appearing
in the right-hand side of (6.1) can be rewritten as

∫ 0

−1

∑

k∈IW,ε

∫

Ck
ε

∫

Ck
ε

∣
∣
∣
∣
∣

1

εl−1

∂m−1ϕ

∂xm−1
N

(z̄, ξ)
(εyN − hε(z̄, εyN ))l−1

(l − 1)!

yl−1
N

(l − 1)!

∂m−1ϕ

∂xm−1
N

(x̄, 0)

∣
∣
∣
∣
∣

2

dx̄
dz̄

εN−1
dyN . (6.2)

We then estimate (6.2) from above. Note that

∫ 0

−1

∑

k∈IW,ε

∫

Ck
ε

∫

Ck
ε

∣
∣
∣
∣
∣

1

εl−1

∂m−1ϕ

∂xm−1
N

(z̄, ξ)
(εyN − hε(z̄, εyN ))l−1

(l − 1)!

yl−1
N

(l − 1)!

∂m−1ϕ

∂xm−1
N

(x̄, 0)

∣
∣
∣
∣
∣

2

dx̄
dz̄

εN−1
dyN

≤
∫ 0

−1

∑

k∈IW,ε

∫

Ck
ε

∫

Ck
ε

∣
∣
∣
∣
∣

(
∂m−1ϕ

∂xm−1
N

(z̄, ξ) − ∂m−1ϕ

∂xm−1
N

(x̄, 0)

)
yl−1

N

(l − 1)!

+

l−1∑

s=1

(
l − 1

s

)
1

εl−1

∂m−1ϕ

∂xm−1
N

(z̄, ξ)(εyN )l−1−s(−hε(z̄, εyN ))s

∣
∣
∣
∣
∣

2

dx̄
dz̄

εN−1
dyN

(6.3)

and the right-hand side of (6.3) is estimated from above by
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C

∫ 0

−1

∑

k∈IW,ε

∫

Ck
ε

∫

Ck
ε

∣
∣
∣
∣
∣

∂m−1ϕ

∂xm−1
N

(z̄, ξ) − ∂m−1ϕ

∂xm−1
N

(z̄, 0)

∣
∣
∣
∣
∣

2

dx̄
dz̄

εN−1
dyN

+ C

∫ 0

−1

∑

k∈IW,ε

∫

Ck
ε

∫

Ck
ε

∣
∣
∣
∣
∣

∂m−1ϕ

∂xm−1
N

(z̄, 0) − ∂m−1ϕ

∂xm−1
N

(x̄, 0)

∣
∣
∣
∣
∣

2

dx̄
dz̄

εN−1
dyN

+ C

l−1∑

s=1

∫ 0

−1

∑

k∈IW,ε

∫

Ck
ε

∫

Ck
ε

∣
∣
∣
∣
∣

∂m−1ϕ

∂xm−1
N

(z̄, ξ)

∣
∣
∣
∣
∣

2

·
∣
∣
∣
∣
∣

1

εl−1
(εyN )l−1−s|hε(z̄, εyN )|s

∣
∣
∣
∣
∣

2

dx̄
dz̄

εN−1
dyN . (6.4)

Now we consider separately the three integrals on the right-hand side of
(6.4). The first integral can be estimated in the following way

∫ 0

−1

∑

k∈IW,ε

∫

Ck
ε

∫

Ck
ε

∣
∣
∣
∣
∣

∂m−1ϕ

∂xm−1
N

(z̄, ξ) − ∂m−1ϕ

∂xm−1
N

(z̄, 0)

∣
∣
∣
∣
∣

2

dx̄
dz̄

εN−1
dyN

=
∫ 0

−1

∑

k∈IW,ε

∫

Ck
ε

∫

Ck
ε

∣
∣
∣
∣
∣

∫ ξ

0

∂mϕ

∂xm
N

(z̄, t)dt

∣
∣
∣
∣
∣

2

dx̄
dz̄

εN−1
dyN

≤ Cε

∥
∥
∥
∥

∂mϕ

∂xm
N

∥
∥
∥
∥

2

L2(W×(−cε,0))

, (6.5)

Now consider the second integral in (6.4). We have the following estimate

∫ 0

−1

∑

k∈IW,ε

∫

Ck
ε

∫

Ck
ε

∣
∣
∣
∣
∣

∂m−1ϕ

∂xm−1
N

(z̄, 0) − ∂m−1ϕ

∂xm−1
N

(x̄, 0)

∣
∣
∣
∣
∣

2

dx̄
dz̄

εN−1
dyN

=
∑

k∈IW,ε

∫

Ck
ε

∫

Ck
ε

∣
∣
∣
∣
∣

∂m−1ϕ

∂xm−1
N

(z̄, 0) − ∂m−1ϕ

∂xm−1
N

(x̄, 0)

∣
∣
∣
∣
∣

2 |z̄ − x̄|N
|z̄ − x̄|N dx̄

dz̄

εN−1

≤ C
∑

k∈IW,ε

∫

Ck
ε

∫

Ck
ε

∣
∣
∣
∣
∣

∂m−1ϕ

∂xm−1
N

(z̄, 0) − ∂m−1ϕ

∂xm−1
N

(x̄, 0)

|z̄ − x̄|N/2

∣
∣
∣
∣
∣

2

εNdx̄
dz̄

εN−1

≤ Cε

∥
∥
∥
∥

∂m−1ϕ

∂xm−1
N

(x̄, 0)
∥
∥
∥
∥

2

B
1/2
2 (W )

≤ Cε

∥
∥
∥
∥

∂m−1ϕ

∂xm−1
N

(x̄, 0)
∥
∥
∥
∥

2

W 2,2(Ω)

, (6.6)

where we have used the classical Trace Theorem and the standard Besov
space B

1/2
2 (W ) of exponents 2, 1/2. Finally we consider the third integral in

(6.4), which is easily estimated by using Lemma 1 as follows:
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l−1∑

s=1

∫ 0

−1

∑

k∈IW,ε

∫

Ck
ε

∫

Ck
ε

∣
∣
∣
∣
∣

∂m−1ϕ

∂xm−1
N

(z̄, ξ)

∣
∣
∣
∣
∣

2∣∣
∣
∣
∣

1

εl−1
(εyN )l−1−s|hε(z̄, εyN )|s

∣
∣
∣
∣
∣

2

dx̄
dz̄

εN−1
dyN

≤ CεN−1
l−1∑

s=1

∫ 0

−1

∑

k∈IW,ε

∫

Ck
ε

∣
∣
∣
∣
∣

∂m−1ϕ

∂xm−1
N

(z̄, ξ)

∣
∣
∣
∣
∣

2(
1

εl−1
(ε)l−1−s|Cε3/2|s

)2
dz̄

εN−1
dyN

≤ C

l−1∑

s=1

∫ 0

−1

∑

k∈IW,ε

∫

Ck
ε

∣
∣
∣
∣
∣

∂m−1ϕ

∂xm−1
N

(z̄, ξ)

∣
∣
∣
∣
∣

2

εsdz̄dyN ≤ Cε

∥
∥
∥
∥
∥

∂m−1ϕ

∂xm−1
N

∥
∥
∥
∥
∥

2

W1,2(Ω)

. (6.7)

By using (6.5), (6.6), (6.7) in (6.2) we deduce that

∫ 0

−1

∑

k∈IW,ε

∫

Ck
ε

∫

Ck
ε

∣
∣
∣
∣
∣

1

εl−1

∂m−1ϕ

∂xm−1
N

(z̄, ξ)
(εyN − hε(z̄, εyN ))l−1

(l − 1)!

− yl−1
N

(l − 1)!

∂m−1ϕ

∂xm−1
N

(x̄, 0)

∣
∣
∣
∣
∣

2

dx̄
dz̄

εN−1
dyN ≤ Cε ‖ϕ‖W m,2(Ω) → 0, (6.8)

as ε → 0. This concludes the proof in the case of smooth functions.
Now, if ϕ ∈ Wm,2(Ω)∩Wm−1,2

0 (Ω), by [15, Theorem 9, p.77] there exists
a sequence (ϕn)n∈N ⊂ Wm,2(Ω) ∩ Wm−1,2

0 (Ω) ∩ C∞(Ω) such that

ϕn → ϕ, in Wm,2(Ωε),

as n → ∞ hence Tr∂ΩDηϕn = Tr∂ΩDηϕ for all |η| ≤ m − 1. Then
∥
∥
∥
∥
∥

1
εl−1

∂m−lϕ

∂xm−l
N

(Φ̂ε(y)) − yl−1
N

(l − 1)!
∂m−1ϕ

∂xm−1
N

(x̄, 0)

∥
∥
∥
∥
∥

L2(Ŵε×Y ×(−1,0))

≤
∥
∥
∥
∥
∥

1
εl−1

∂m−lϕ

∂xm−l
N

(Φ̂ε(y)) − 1
εl−1

∂m−lϕn

∂xm−l
N

(Φ̂ε(y))

∥
∥
∥
∥
∥

L2(Ŵε×Y ×(−1,0))

+

∥
∥
∥
∥
∥

1
εl−1

∂m−lϕn

∂xm−l
N

(Φ̂ε(y)) − yl−1
N

(l − 1)!
∂m−1ϕn

∂xm−1
N

(x̄, 0)

∥
∥
∥
∥
∥

L2(Ŵε×Y ×(−1,0))

+

∥
∥
∥
∥
∥

yl−1
N

(l − 1)!
∂m−1ϕn

∂xm−1
N

(x̄, 0) − yl−1
N

(l − 1)!
∂m−1ϕ

∂xm−1
N

(x̄, 0)

∥
∥
∥
∥
∥

L2(Ŵε×Y ×(−1,0))

.

(6.9)

By using Lemma 2, a Trace Theorem, Poincaré inequality and a typical diag-
onal argument, it is not difficult to see that right hand-side of (6.9) tends to
zero as ε → 0, concluding the proof of the first part of the statement.

The second part of the second statement can be proved as follows. By
assumption, at least one of the indexes ij it is different from N . This implies
that the function ∂m−lϕ

∂xN ∂xi1 ···∂xim−l−1
is not only in W l,2(Ω) ∩ W l−1,2

0 (Ω) but

also in W l,2
0,W (Ω). Thus, formula (5.4) and an iterated application of the

Poincaré inequality in the xN direction, l − 1 times, yield
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∥
∥
∥
∥
∥

1
εl−1

∂m−lϕ

∂xN∂xi1 · · · ∂xim−l−1

(Φ̂ε(y))

∥
∥
∥
∥
∥

L2(W×Y ×(−1,0)

≤ C

∥
∥
∥
∥
∥

∂m−1ϕ

∂xl
N∂xi1 · · · ∂xim−l−1

(Φ̂ε(y))

∥
∥
∥
∥
∥

L2(W×Y ×(−1,0)

which allows to conclude since the right-hand side of the previous inequality
tends to zero as ε → 0 in virtue of Lemma 3(ii) and of the vanishing of the
trace of ∂m−1ϕ

∂xl
N ∂xi1 ···∂xim−l−1

on W . �
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