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FUNCTIONS OF BOUNDED FRACTIONAL VARIATION AND
FRACTAL CURRENTS

Roger Züst

Abstract. Extending the notion of bounded variation, a function u ∈ L1
c(R

n) is of
bounded fractional variation with respect to some exponent α if there is a finite
constant C ≥ 0 such that the estimate
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∫

u(x) det D(f, g1, . . . , gn−1)x dx

∣
∣
∣
∣
≤ C Lipα(f) Lip(g1) · · · Lip(gn−1)

holds for all Lipschitz functions f, g1, . . . , gn−1 on R
n. Among such functions are

characteristic functions of domains with fractal boundaries and Hölder continuous
functions. We characterize functions of bounded fractional variation as a certain
subspace of Whitney’s flat chains and as multilinear functionals in the setting of
Ambrosio–Kirchheim currents. Consequently we discuss extensions to Hölder differ-
ential forms, higher integrability, an isoperimetric inequality, a Lusin type property
and change of variables. As an application we obtain sharp integrability results for
Brouwer degree functions with respect to Hölder maps defined on domains with
fractal boundaries.
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1 Introduction

1.1 Functions of bounded fractional variation. The main objects we study
here are functions u ∈ L1

c(R
n) for which there is an exponent α ∈ [0, 1] and a finite

constant C ≥ 0 such that
∣
∣
∣
∣

∫

Rn

u(x) det D(f, g1, . . . , gn−1)x dx

∣
∣
∣
∣
≤ C Lipα(f) Lip(g1) · · ·Lip(gn−1)

holds for all f, g1, . . . , gn−1 ∈ Lip(Rn), where

Lipα(g) = sup
x �=y

|g(x) − g(y)|
|x − y|α

is the usual Hölder seminorm with exponent α. The smallest such C is denoted by
Vα(u) and the resulting subspace of L1

c(R
n) is BVα

c (Rn). This extends the classical
notion of bounded variation, where u ∈ L1

c(R
n) is in BVc(Rn) if the total variation

V(u) := sup
{∫

Rn

u(x) div ϕ(x) dx : ϕ ∈ C1(Rn,Rn), ‖ϕ‖∞ ≤ 1
}

is finite. Indeed we will see that V0(u) ≤ V(u) ≤ 2nV0(u). In the language of
currents the integral of interest can be written

∫

Rn

u(x) det D(f, g1, . . . , gn−1)x dx = ∂[[u]](f dg1 ∧ · · · ∧ dgn−1),

where [[u]] is the current induced by integrating differential forms with density func-
tion u. This indicates a connection between the definition of BVα

c (Rn) and its action
on differential forms equipped with the α-Hölder norm. One of the primary moti-
vations of this work is to understand this connection, respectively, to characterize
functions in L1

c(R
n), or more generally currents of some dimension, that act con-

tinuously on differential forms equipped with some Hölder norm. This is achieved
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partially in the following theorem, where the space
⋂

α<β<1 BVβ
c (Rn) is characterized

in three different ways. A more general version is stated in Theorem 4.12.

Theorem 1.1. Assume that u ∈ L1
c(R

n) and d ∈ ]n−1, n[. The following statements
are equivalent:

(1) u ∈ ⋂

d<δ<n BVδ−(n−1)
c (Rn).

(2) There is a sequence (uk)k≥0 in BVc(Rn) such that
∑

k≥0 uk = u in L1,
⋃

k≥0

spt uk is bounded and for all δ ∈ ]d, n[ there exists C ≥ 0 such that

‖uk‖L1 ≤ C2k(δ−n) and V(uk) ≤ C2k(δ−(n−1)) .

(3) The map [[u]] : (f, g1, . . . , gn) �→ ∫

Rn u(x)f(x) det D(g1, . . . , gn)x dx defined on
Lip(Rn)n+1 has a continuous extension to a multilinear functional

Lipα(Rn) × Lipβ1(Rn) × · · · × Lipβn(Rn) → R ,

whenever α + β1 + · · · + βn > n and β1 + · · · + βn > d.

In (3) it makes no difference whether continuous refers to the genuine Hölder
norms or a weaker topology as used for metric currents in the sense of Ambrosio and
Kirchheim (discussed below). This is due to the strict inequalities for the exponents
in the statement of the theorem.

We want to highlight two classes of functions that are of fractional bounded
variation. If U ⊂ R

n is some bounded open set with box counting dimension
of its boundary dimbox(∂U) = d < n, then the characteristic function of u is
in

⋂

d<δ<n BVδ−(n−1)
c (Rn), Corollary 4.13. Formulated in terms of currents, The-

orem 1.1 in particular implies that ∂[[U ]] extends to Hölder differential forms of ex-
ponent α > d − (n − 1). This was already observed by Harrison and Norton [HN92]
and by Olbermann [OLB16].

In analogy to the fact that the classical space BVc(Rn) contains Lipschitz func-
tions with compact support, BVα

c (Rn) contains certain Hölder functions. Indeed, if
u ∈ Lipα

c (Rn) and α + β > 1, then u ∈ BVβ
c (Rn). More precisely, for any x ∈ R

n

and r > 0,

Vβ((u − u(x))χB(x,r)) ≤ C(n, α, β)rα+β+n−1 Lipα(u) ,

see Corollary 4.13. This may not come as a surprise since in the one-dimensional case
this is implied by a result of Young [YOU36] concerning the existence of Riemann-
Stieltjes integrals of Hölder functions: For α, β ∈ ]0, 1] with α + β > 1 there is a
constant C(α, β) ≥ 0 such that if u ∈ Lipα(R), f ∈ Lipβ(R), x ∈ R and r > 0, then

∣
∣
∣
∣

∫ x+r

x−r
(u − u(x)) df

∣
∣
∣
∣
≤ C(α, β)rα+β Lipα(u) Lipβ(f) .

This is sharp and such an estimate does not hold if α + β ≤ 1.
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1.2 Additional properties of these functions. The implication (1) ⇒ (2)
of Theorem 1.1 shows that BVα-functions can be approximated by classical BV-
functions in a controlled way. See Theorem 3.3 for a quantitative version of this
statement. This approximation is actually the reason for the particular definition
of the fractional variation Vα. This approximation property allows to extend some
classical results for BV-functions to BVα-functions:

(1) (Compactness, Proposition 3.4) Assume that α ∈ [0, 1[ and that (uk)k≥0 is a
sequence in BVα

c (Rn) for which supk≥0 ‖uk‖L1 +Vα(uk) < ∞ and
⋃

k≥0 spt(uk)
is bounded. Then there exists a subsequence that converges in L1 to some
u ∈ BVα

c (Rn) with Vα(u) ≤ lim infk→∞ Vα(uk).
(2) (Higher integrability, Proposition 3.5) BVα

c (Rn) ⊂ Lp
c(Rn) for 1 ≤ p < n

n−1+α
and the inclusion {u ∈ BVα

c (Rn) : spt(u) ⊂ K} ↪→ Lp
c(Rn) is compact for all

compact sets K ⊂ R
n.

(3) (Isoperimetric inequality, Corollary 3.6) Assume that B is a bounded Borel set
with χB ∈ BVα

c (Rn) for some α ∈ [0, 1[. Then for all d ∈ ]n − 1 + α, n],

L n(B) ≤ C(n, d, α, diam(B))Vα(χB)
n

d .

(4) (Lusin type property, Corollary 4.13) Let α, β ∈ ]0, 1[. If u ∈ BVβ
c (Rn) and

α + β < 1, then there exists C ≥ 0, an exhaustion by measurable sets D1 ⊂
D2 ⊂ · · · ⊂ R

n such that L n(Rn \ Dk) ≤ Ck−1 and

|u(x) − u(y)| ≤ Ck|x − y|α

for all x, y ∈ Dk.

This Lusin type property can be seen as a partial converse to Lipα
c (Rn) ⊂

BVβ
c (Rn) if α + β > 1 stated earlier.

1.3 Fractal currents. Theorem 1.1 shows that BVα-functions can be approx-
imated in a controlled way by BV-functions. In the language of currents, BV-
functions correspond to normal currents and this approximation statement implies
that BVα-functions induce a particular type of flat chains as defined by Whitney
[WHI57]. Taking this as a starting point one can extract a subclass of flat chains (of
general dimension and codimension) that can be approximated in an analogous way
by normal or integral currents, see Definition 4.1. This approach is not limited to
Euclidean ambient spaces and also works in the setting of currents in metric spaces
as introduced by Ambrosio and Kirchheim [AK00]. Given a metric space X, an in-
teger n ≥ 0 and parameters γ ∈ [n, n + 1[, δ ∈ [n − 1, n[ we define the subclass
Fγ,δ(X) ⊂ Fn(X) of flat chains, respectively, the subclass Fγ,δ(X) ⊂ Fn(X) of
integral flat chains. As flat chains, currents in Fγ,δ(X) may not have finite mass, so
it is natural to work with the theory of currents introduced by Lang [LAN11] that
does not rely on a finite mass axiom. Similar to the observation stated above, namely
that χU ∈ BVα

n(Rn) for domains U with fractal boundaries, the space Fγ,δ(X) con-
tains currents induced by fractal like objects. The guiding principle here should be
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that T ∈ Fγ,δ(X) if γ > dim(spt(T )) and δ > dim(spt(∂T )). As a justification for
this, if U ⊂ R

n is a domain with box counting dimension dimbox(∂U) < n, then
[[U ]] ∈ Fn,δ(Rn) for all δ ∈ ] dimbox(∂U), n[, Lemma 4.4. So for example if K ⊂ R

2 is
the Koch snowflake domain, then [[K]] ∈ F2,δ(R2) for all δ > dim(∂K) = log 4

log 3 . In this
sense the results in this work can be seen as a starting point for studying fractal-like
currents. Among other things it is stated in Proposition 4.2 that the class Fγ,δ(X)
behaves well with respect to push forwards, slicing and restriction operations.

An important part in the theory of metric currents is the equivalence of top
dimensional normal currents Nn(Rn) and functions in BV(Rn). The fact that BV-
functions have a measurable decomposition into Lipschitz functions together with
the slicing theory are key tools for the closure and boundary rectifiability theorems
for integer rectifiable metric currents. The space Fn,d(Rn) corresponds in a similar
way to BVd−(n−1)

c (Rn), Theorem 4.12, and since BVα
c (Rn) has some of the features

of BVc(Rn) it may be possible to further develop a theory of fractal currents using
the structure results for BVα

c (Rn) that we obtain.
The extension result Theorem 4.5 shows that a given T ∈ Fγ,δ(X) can be contin-

uously extended to Hölder test functions if the Hölder exponents are not too small.
This builds on and extends the corresponding result for normal currents [ZUS11b,
Theorem 4.3] by the author. As a special case, Theorem 4.5 applies to Hölder dif-
ferential forms and thus generalizes the extension results [HN92, Theorem A] by
Harrison and Norton and [GUS16, Theorem 2.2] by Guseynov for integrating on
domains U ⊂ R

n with fractal boundaries. As discussed after Lemma 4.4, the condi-
tions of d-summability of ∂U in [HN92, Theorem A] and the slightly more general
condition in [GUS16, Theorem 2.2] imply that the corresponding current [[U ]] is in
Fn,d(Rn) and for this space our extension theorem applies.

1.4 Change of variables. In Section 5 we study the change of variables formula
in the context of BVα-functions and with respect to maps that may only be Hölder
regular. The classical change of variables formula can be stated as follows: Given
u ∈ L1

c(R
n), ϕ ∈ C∞(Rn,Rn) and a differential n-form ω ∈ Ωn(Rn), then

∫

Rn

u(x)
(

ϕ#ω
)

(x) dx =
∫

Rn

v(y) ω(y) dy ,

where
v(y) =

∑

x∈ϕ−1(y)

u(x) sign(det Dϕx) (1.1)

holds almost everywhere. In the language of currents this translates to ϕ#[[u]] = [[v]].
In a more general setting we obtain sharp conditions under which ϕ#T is well defined
for T ∈ Nn(X), or for ∂T if T ∈ Fγ,δ(X), and ϕ : X → �∞(N) has coordinate
functions of possibly different Hölder regularity, see Propositions 5.2 and 5.3.

In the specific situation of BVα-functions the following change of variables for-
mula holds. It also includes sharp bounds on Lp-norms of the push forward.



1240 R. ZÜST GAFA

Theorem 1.2. Let n ≥ 1, d ∈ [n − 1, n[, u ∈ BVd−(n−1)
c (Rn) and ϕ : Rn → R

n.
Assume that r > 0, αi ∈ ]0, 1] for i = 1, . . . , n are such that:

(1) spt(u) ⊂ [−r, r]n.
(2) maxi=1,...,n Lipαi(ϕi) < ∞.
(3) τn := α1 + · · · + αn > d.

Then ϕ#[[u]] = [[vu,ϕ]] is defined for some vu,ϕ ∈ L1
c(R

n) with

‖vu,ϕ‖Lp ≤ C(n, τn, d, p, r)Vd−(n−1)(u) Lipα1(ϕ1)
1
p · · ·Lipαn(ϕn)

1
p

for all 1 ≤ p < τn

d (or 1 ≤ p < ∞ if d = n − 1 = 0). Further, if (ϕk)k∈N is a
sequence of maps that converges uniformly to ϕ such that supi,k Lipαi(ϕi

k) < ∞,
then vu,ϕk

converges in Lp to vu,ϕ for any p in the same range. Moreover, vu,ϕ ∈
⋂

d′<δ<n BVδ−(n−1)
c (Rn) for d′ := n + d−τn

maxi αi
.

In case all the exponents are equal α = α1 = · · · = αn, then d′ = d
α . The theorem

above is a special case of Theorem 5.8 where also an estimate on Vδ−(n−1)(vu,ϕ)
is given. Note that ϕ#[[u]] = [[vu,ϕ]] cannot be understood as in (1.1) for smooth
functions because Hölder maps may not be differentiable anywhere. But ϕ#[[u]] =
[[vu,ϕ]] is well defined by approximation.

Higher integrability properties of the Brouwer degree function y �→ deg (ϕ, U, y),
where U is a domain with fractal boundary and ϕ is a Hölder map, has already been
studied by Olbermann in [OLB16] and by De Lellis and Inauen in [LI17]. In [ZUS16]
domains with finite perimeter are treated but the coordinates of ϕ are allowed to have
different regularity. In the the smooth setting it holds that ϕ#[[χU ]] = [[deg (ϕ, U, ·)]].
We prove that this identity is also true for Hölder maps ϕ if U has fractal boundary,
Lemma 5.6. So these degree functions fit into the scope of Theorem 1.2, and we
obtain:

Theorem 1.3. Let U ⊂ R
n be an bounded open set such that ∂U has box counting

dimension d ∈ [n−1, n[. Assume ϕ : Rn → R
n satisfies maxi Lipαi(ϕi) < ∞ for some

α1, . . . , αn ∈ ]0, 1] with τn := α1 + · · · + αn > d. Then

‖ deg (ϕ, U, ·) ‖Lp ≤ C(U, n, τn, p) Lipα1(ϕ1)
1
p · · ·Lipαn(ϕn)

1
p

for all 1 ≤ p < τn

d (or 1 ≤ p < ∞ if d = n − 1 = 0). Further, if (ϕk)k∈N is a
sequence of maps that converges uniformly to ϕ such that supi,k Lipαi(ϕi

k) < ∞,
then deg (ϕk, U, ·) converges in Lp to deg (ϕ, U, ·) for p in the same range.

Moreover, deg (ϕ, U, ·) ∈ ⋂

d′<δ<n BVδ−(n−1)
c (Rn) for d′ := n + d−τn

maxi αi
. If F ∈

Lip(Rn)n and β1, . . . , βn ∈ ]0, 1] satisfy β := β1 + · · · + βn > d′, then
∣
∣
∣
∣

∫

Rn

deg (ϕ, U, y) det DFy dy

∣
∣
∣
∣
≤ C ′(U, n, τn, τn−1, β)h(ϕ)β+1−nHn−1(ϕ)Hn(F ) ,

where h(ϕ) := mini Lipαi(ϕi), Hn−1(ϕ) := maxj
∏

i�=j Lipαi(ϕi), and Hn(F ) :=
∏n

i=1 Lipβi(F i).
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Also here it holds that d′ = d
α in case α = α1 = · · · = αn. The theorem above

generalizes [ZUS16, Proposition 2.4], [OLB16, Theorems 1.1, 1.2(i)] and [LI17, Theo-
rem 2.1]. It also proves a conjecture stated in [LI17] about the higher integrability of
the Brouwer degree function for a map with coordinate functions of variable Hölder
regularity.

1.5 Structure of the paper. In Section 2 we introduce the notation that is
used throughout the paper and review results about metric currents. We do not
follow strictly the theory by Ambrosio and Kirchheim [AK00] or the modification
by Lang [LAN11]. Mostly for simplicity of presentation we work in a setting where
all currents are assumed to have compact support. With this definition, if a current
is restricted to a compact set that contains its support, then the theory of Lang
applies. This is justified in Section 2.2. The benefit of this approach is also that we
do not have to assume that our ambient space is locally compact and we can talk for
example about push forwards into infinite dimensional Banach spaces as in Section 5
without technical difficulties.

In Section 3 we start by introducing functions of fractional bounded variation and
state some direct consequences of the definition. This section can be read without
any prior knowledge about currents. The main result it contains is Theorem 3.3 that
allows to approximate functions of fractional bounded variation by classical functions
of bounded variation in a controlled way. Building on this approximation result
and the structure of BV-functions we obtain compactness and higher integrability
properties for BVα-functions in Section 3.3.

In Section 4, motivated by Theorem 3.3, we introduce fractal currents and show
that they contain a large class of currents induced by fractal sets in Lemma 4.4. In
this general setting we prove the main extension result Theorem 4.5. This allows to
show that fractal currents of codimension zero in an Euclidean space are induced by
functions of fractional bounded variation. This is done in Section 4.3. With this at
hand we obtain different characterizations of this type of functions in Theorem 4.12
and additional properties in Corollary 4.13. Section 4.5 about smoothings of currents
is used to give one such characterization purely in terms of multiliear functionals
on Hölder test functions without assuming that this functional is represented by
integration (has finite mass).

In Section 5 we first study mass bounds of push forwards of currents into the
Banach space �∞(N). This allows to study the general situation of push forwards
of fractal currents with respect to Hölder regular maps. In Section 5.3 this is then
further specialized to finite dimensional Euclidean targets but arbitrary domains and
even further in Section 5.5 where also the domain is assumed to be Euclidean of the
same finite dimension. In this last subsection we also discuss higher integrability of
such push forwards. This specializes to Brouwer degree functions on fractal domains.
In order to do that these Brouwer degree functions are related to the push forward
of currents with respect to Hölder maps in Lemma 5.6.
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2 Preliminaries and Notation

Given a metric space (X, d) we denote by B(x, r) the closed and by U(x, r) the open
ball of radius r > 0 around x ∈ X. Similarly, for any nonempty subset A ⊂ X the
closed neighborhood of radius r is B(A, r) := {y ∈ X : dist(A, y) ≤ r} and the open
neighborhood of radius r is U(A, r) := {y ∈ X : dist(A, y) < r}. For R

n we use
the notation idRn = (π1, . . . , πn), where πi(x1, . . . , xn) := xi is the ith coordinate
projection. A similar notation is used for �∞ := {f : N → R : supi∈N |f(i)| < ∞},
where we define πi(f) := fi := f(i) to be the evaluation of f at i ∈ N. With ωn we
denote the volume of the unit ball in R

n.

2.1 Hölder maps. Let α ∈ [0, 1]. Given a map ϕ : (X, dX) → (Y, dY ) we define

Lipα(ϕ) := sup
x �=x′

dY (ϕ(x), ϕ(x′))
dX(x, x′)α

.

The set of all such maps where this is finite is denoted by Lipα(X, Y ). For real valued
functions we abbreviate Lipα(X) := Lipα(X,R). In case α = 1 the usual notation
Lip(X, Y ) and Lip(X) are used. If α = 0, then Lip0(X,Rn) is just the space of
bounded functions. Indeed, given ϕ : X → R

n and some fixed x0 ∈ X, a simple
consequence of the triangle inequality is that

‖ϕ − ϕ(x0)‖∞ ≤ Lip0(ϕ) ≤ 2‖ϕ‖∞. (2.1)

Assume that X is a bounded metric space and 0 ≤ α ≤ β ≤ 1. If ϕ ∈ Lipβ(X, Y ),
then for x, x′ ∈ X

dY (ϕ(x), ϕ(x′)) ≤ Lipβ(ϕ)dX(x, x′)β ≤ Lipβ(ϕ) diam(X)β−αdX(x, x′)α .

Hence
Lipα(ϕ) ≤ Lipβ(ϕ) diam(X)β−α (2.2)

and, in particular Lipβ(X, Y ) ⊂ Lipα(X, Y ).
Assume that X is a bounded metric space, 0 ≤ α < β ≤ 1 and (fk)k∈N is a

sequence in Lipβ(X) with supk Lipβ(fk) < ∞ and such that fk converges uniformly
to f . Then

lim
k→∞

Lipα(fk − f) = 0 . (2.3)

This is well known but for the sake of convenience we give a proof here.

Proof. We may assume that f = 0 and set H := supk Lipβ(fk). Fix ε > 0 and assume
that k ∈ N is large enough such that ‖fk‖∞ ≤ εβ . If dX(x, x′) ≤ ε, then

|fk(x) − fk(x′)| ≤ HdX(x, x′)β ≤ HdX(x, x′)β−αdX(x, x′)α

≤ Hεβ−αdX(x, x′)α .

If dX(x, x′) ≥ ε, then

|fk(x) − fk(x′)| ≤ 2εβ ≤ 2εβ−αdX(x, x′)α .

Thus limk→∞ Lipα(fk) = 0. This proves (2.3). �
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We avoid this trick for the most part but we will use it in the proof of Theorem 5.8.
This is also the reason for the comment after Theorem 1.1 in the introduction. So
whenever there are open boundary conditions on Hölder exponents in a statement
it is often not really relevant what topology on Hölder functions we choose. Because
of this, we try to check the sharpness of the boundary case for Hölder exponents
whenever there is an open boundary condition in a statement.

The following construction to approximate Hölder functions by Lipschitz func-
tions is described for example in the appendix of [GRO99] written by Semmes. For
a proof see [GRO99, Theorem B.6.16] or [ZUS11b, Lemma 2.2]. This construction
is very similar to the one used in order to prove the McShane–Whitney extension
theorem for Lipschitz functions.

Lemma 2.1. Let f ∈ Lipα(X) for some α ∈ ]0, 1] and H ≥ 0 such that Lipα(f) ≤ H.
For ε ∈ ]0, 1] define fε : X → R by

fε(x) := inf
y∈X

f(y) + Hεα−1d(x, y) . (2.4)

Then

(1) ‖fε − f‖∞ ≤ Hεα,
(2) Lip(fε) ≤ Hεα−1,
(3) Lipα(fε) ≤ 3H,
(4) fε(x) = infy∈B(x,ε) f(y) + Hεα−1d(x, y),
(5) spt(fε) ⊂ B(spt(f), ε),
(6) if g ∈ Lipα(X) with Lipα(g) ≤ H, then ‖fε − gε‖∞ ≤ ‖f − g‖∞.

In case f is bounded, then

f̄ε := min{max{fε, −‖f‖∞}, ‖f‖∞}
satisfies all the properties of Lemma 2.1 except (4) but additionally ‖f̄ε‖∞ ≤ ‖f‖∞.

2.2 Metric currents. The space of currents of dimension n in R
m is the dual

space of compactly supported differential n-forms equipped with an appropriate
topology. The resulting theory is described in great detail in the book about this topic
by Federer [FED69]. The theory of metric currents was introduced by Ambrosio and
Kirchheim in [AK00]. Lang gives a definition of metric currents in locally compact
metric spaces that does not rely on a finite mass assumption [LAN11]. Mostly for
simplicity’s sake we restrict the discussion in this work to currents in metric spaces
that have compact support.

Definition 2.2 (Metric currents with compact support). Let X be a metric space
and n ≥ 0 be an integer. A multilinear map T : Lip(X)n+1 → R is an n-dimensional
metric current if it satisfies:

(1) T (f, g1, . . . , gn) = 0 whenever some gi is constant in a neighbourhood of spt(f).
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(2) There is a compact set K ⊂ X such that T (f, g1, . . . , gn) = 0 whenever spt(f)∩
K = ∅.

(3) limk→∞ T (fk, g
1
k, . . . , g

n
k ) = T (f, g1, . . . , gn) whenever limk→∞ ‖fk − f‖∞ =

limk→∞ ‖gi
k − gi‖∞ = 0 for all i and supi,k{Lip(gi

k), Lip(fk)} < ∞.

The vector space of such T is denoted by Dn(X).

We often abbreviate T (f, g) for T (f, g1, . . . , gn) or T (f) for T (f1, . . . , fn+1). Here
are some definitions that we will use: The boundary of a current T ∈ Dn(X) for
n ≥ 1 is defined by

∂T (f, g1, . . . , gn−1) := T (1, f, g1, . . . , gn−1) .

It can be shown that ∂T ∈ Dn−1(X) and spt(∂T ) ⊂ spt(T ). In case ϕ : X → Y is
Lipschitz, then the push forward ϕ# : Dn(X) → Dn(Y ) is defined by

(ϕ#T )(f, g1, . . . , gn−1) := T (f ◦ ϕ, g1 ◦ ϕ, . . . , gn−1 ◦ ϕ) .

The support of T, denoted by spt(T ), is the set of points x ∈ X with the
property that for any ε > 0 there are f, g1, . . . , gn ∈ Lip(X) with spt(f) ⊂ B(x, ε)
and T (f, g) �= 0. Compare with Section 3 of [LAN11] for the definitions above. A
sequence (Tk)k≥0 in Dn(X) converges weakly to T ∈ Dn(X) if there exists a
compact set K ⊂ X such that

⋃

k spt(Tk) ⊂ K and limk→∞ Tk(f, g) = T (f, g) for
all (f, g) ∈ Lip(X)n+1.

Since we use a slightly different definition of current than Lang we want to make
sure that the support of a current as we defined it is actually compact and does
what it is supposed to do. On a temporary basis we define KT to be the collection
of all closed sets A ⊂ X for which T (f, g1, . . . , gn) = 0 whenever spt(f) ∩ A = ∅.
The lemma below is in a slightly different setting contained in [LAN11, Lemma 3.2].
For the sake of convenience we include a proof here.

Lemma 2.3. For T ∈ Dn(X), the following statements hold:

(1) spt(T ) =
⋂

KT . In particular spt(T ) is compact.
(2) T (f, g) = 0 whenever f = 0 on spt(T ).
(3) T (f, g1, . . . , gn) = 0 whenever some gi is constant on spt(f).

Proof. (1): If x ∈ X \ spt(T ) there is an ε > 0 such that X \ U(x, ε) ∈ KT . Hence
x ∈ X \⋂

KT and therefore
⋂

KT ⊂ spt(T ). On the other hand, if x ∈ spt(T ), then
any ball B(x, ε) intersects any set in KT . Thus x is in the closure of any set in KT

and because these sets are closed, x ∈ ⋂
KT . This shows that spt(T ) =

⋂
KT and

spt(T ) is compact because KT contains a compact set by definition.
(2): Let K be a compact set as guaranteed by axiom (2). We know that spt(T ) ⊂ K
by (1). Consider f, g1, . . . , gn ∈ Lip(X) and assume that f = 0 on spt(T ). Without
loss of generality we can assume that f ≥ 0. Otherwise we decompose f into Lipschitz
functions f = f+ − f− where f+ := max{0, f} and f− := max{0, −f}. Define
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fk(x) := max{0, f(x) − Lk−1} for k ∈ N, where L = Lip(f). If fk(x) > 0, then for
any y ∈ spt(T ) it holds

Lk−1 < f(x) ≤ f(y) + Ld(x, y) = Ld(x, y) .

Hence x /∈ U(spt(T ), k−1). The compact set K \ U(spt(T ), k−1) can be covered
by finitely many open balls U(x1, ε1), . . . ,U(xm, εm) such that B(xi, εi) ∩ spt(T ) =
∅ for all i and T (h, g) = 0 whenever spt(h) ⊂ B(xi, εi) for some i. Consider a
Lipschitz partition of unity (ϕi)m

i=1 with spt(ϕi) ⊂ B(xi, εi) and
∑

i ϕi = 1 in an
open neighbourhood UK of K\U(spt(T ), k−1). The Lipschitz function ϕ := 1−∑

i ϕi

satisfies fk(x)ϕ(x) = 0 for x ∈ UK ∪ U(spt(T ), k−1) because if fk(x) �= 0, then
x ∈ UK but this implies ϕ(x) = 1 − ∑

i ϕi(x) = 0. Thus spt(fkϕ) ∩ K = ∅ and
spt(fkϕi) ⊂ B(xi, εi) for all i and therefore

T (fk, g) = T (fkϕ, g) +
∑

1≤i≤m

T (fkϕi, g) = 0.

This holds for all k. By taking the limit, it follows from the continuity axiom that
0 = T (f, g1, . . . , gn).
(3): This can be proved as in [LAN11]. For k ∈ N let βk : R → R be given by
−βk(−s) = βk(s) = max{0, s−k−1} for s ≥ 0. If gi is equal to c ∈ R on spt(f), then
βk ◦ (gi − c) + c converges to gi and is constant in a neighborhood of spt(f). Thus
the statement follows as above by taking the limit.

The lemma above shows that any T ∈ Dn(X) can be recovered from its re-
striction TK ∈ Dn(K) to any compact set K ⊂ X that contains spt(T ). Here,
TK : Lip(K)n+1 → R is defined by TK(f̃ , g̃) := T (f, g), where f̃ and g̃ are arbi-
trary Lipschitz extensions of f and g respectively. It can be shown that TK actually
defines a metric current, see [LAN11, Proposition 3.3] for the related result about
the restriction of local currents. On the other hand, T can be recovered from TK

by restricting the test functions defined on X to K. Because K is compact (and
hence locally compact), the axioms for Dn(K) described here are identical to the
axioms for local currents in [LAN11] and all the results for currents obtained in this
reference hold for Dn(K). We will thus apply the results of [LAN11] to currents in
our setting without mentioning the restriction to some compact set K. Below are
some more basic definitions and properties that use the concept of mass.

As in [LAN11, Definition 4.1], for any open set V ⊂ X, the mass in V of a
current T ∈ Dn(X) is defined by

MV (T ) := sup
∑

λ∈Λ

T (fλ, g1
λ, . . . , gn

λ) < ∞,

where the supremum ranges over all finite collections {(fλ, g1
λ, . . . , gn

λ)}λ∈Λ of Lip-
schitz maps in Lip(X)n+1 that satisfy

⋃

λ∈Λ spt(fλ) ⊂ V ,
∑

λ∈Λ |fλ| ≤ 1 and



1246 R. ZÜST GAFA

supi,λ Lip(gi
λ) ≤ 1. With Mn(X) we denote the currents T ∈ Dn(X) of finite mass,

i.e. M(T ) := MX(T ) < ∞. The set function ‖T‖ : 2X → [0, ∞] is defined by

‖T‖(A) := inf{MV (T ) : V ⊂ X open, A ⊂ V }.

Similar to [LAN11, Theorem 4.3] we obtain:

Lemma 2.4. ‖T‖(X \ spt(T )) = 0, and if M(T ) < ∞, then ‖T‖ is a finite Radon
measure that satisfies

∣
∣T (f, g1, . . . , gn)

∣
∣ ≤

∫

X
|f(x)| d‖T‖(x) ·

n∏

i=1

Lip(gi|spt(f))

≤ M(T )‖f‖∞
n∏

i=1

Lip(gi|spt(f))

for all (f, g1, . . . , gn) ∈ Lip(X)n+1.

Proof. ‖T‖(X \ spt(T )) = MX\spt(T )(T ) = 0 follows directly from Lemma 2.3 and
the rest is as in the proof of [LAN11, Theorem 4.3]. �

If T ∈ Mn(X), then T extends to a functional on B∞(X)×Lip(X)n by [LAN11,
Theorem 4.4], where B∞(X) is the space of bounded Borel functions on X. This in
particular allows to define the restriction T�u in case u ∈ B∞(X) by (T�u)(f, g) =
T (fu, g), [LAN11, Definition 4.5].

A current T ∈ Dn(X) with bounded normal mass N(T ) := M(T )+M(∂T ) < ∞
is a normal current. The vector space of all normal currents is Nn(X). Note also
here that because we assume currents to have compact support, a normal current
T ∈ Nn(X) can be seen as a current in Nn(K) for any compact set K ⊃ spt(T ). All
the results about normal currents in [LAN11] apply to this restriction in Nn(K).
Similarly we will rely on the results in [LAN11] about currents with finite mass. If
X = U for some open subset U ⊂ R

n, our notion of metric normal current agrees
with the classical definition in [FED69, Section 4.1.7] and the normal masses are
comparable, [FED69, Theorem 5.5]. Note that normal currents as defined in [LAN11,
Section 4.1.7] are also assumed to have compact support. Standard examples of
currents are given by functions u ∈ L1

c(U) where U ⊂ R
n is open. It is shown in

[LAN11, Proposition 2.6, Equation (4.5)] that

[[u]](f, g1, . . . , gn) :=
∫

U
u(x)f(x) det D(g1, . . . , gn)x dx

defines a current in Mn(U) with M([[u]]) = ‖u‖L1 =
∫

U |u(x)| dx. We will also
abbreviate [[B]] for [[χB]] in case B ⊂ U is some Borel set with compact closure in U .

Given an open subset U ⊂ R
n, a function u ∈ L1(U) is of bounded variation, i.e.

in BV(U), if

V(u) := sup
{∫

U
u(x) div ϕ(x) dx : ϕ ∈ C1

c (U,Rn), ‖ϕ‖∞ ≤ 1
}

< ∞.
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Because our currents are assumed to have compact support we mostly consider the
space BVc(U) := L1

c(U) ∩ BV(U). It is easy to see that for u ∈ BVc(U) we can
replace C1

c (U,Rn) by C1(U,Rn) in the definition of V(u) above. Because we will use
the relationship between normal currents and functions of bounded variation several
times, we formulate it as a lemma. It follows directly from [LAN11, Theorem 7.2],
see also [AK00, Theorem 3.7].

Lemma 2.5. Assume that U ⊂ R
n is an open set. If u ∈ BV(U), then

∣
∣
∣
∣

∫

u(x) det D(f, g1, . . . , gn−1)x dx

∣
∣
∣
∣
≤ V(u)‖f‖∞ Lip(g1) · · ·Lip(gn−1),

for all (f, g1, . . . , gn−1) ∈ Lipc(U)×Lip(U)n−1. The identification Nn(U) = BVc(U)
holds in the sense that any T ∈ Nn(U) is equal to [[u]] for some u ∈ BVc(U) and
for any u ∈ BVc(U), the current [[u]] is in Nn(U). Moreover, u ∈ BVc(U) has mass
M([[u]]) = ‖u‖L1 and boundary mass M(∂[[u]]) = ‖Du‖(U) = V(u), where ‖Du‖ is
the Borel measure associated with the variation of u.

If K ⊂ X is a compact subset, then the flat norm of T ∈ Dn(X) is defined by

FK(T ) := inf
{

M(T − ∂S) + M(S) : S ∈ Nn+1(X), spt(S) ⊂ K
}

. (2.5)

This defines a norm on Nn,K(X) := {T ∈ Nn(X) : spt(T ) ⊂ K}. The closure of
Nn,K(X) with respect to FK is Fn,K(X). The space of flat chains in X, denoted
by Fn(X), is the union of Fn,K(X) ranging over all compact subsets K ⊂ X. Note
that in case U ⊂ R

m is some open set, then this definition agrees with the classical
definition of Fn(U) in [FED69, Section 4.1.12] due to [LAN11, Theorem 5.5]. It
follows from [FED69, Theorem 4.1.23] that any T ∈ Fn(U) can be approximated
with respect to the flat norm by real polyhedral chains. Moreover if m = n, the
space Fn(U) can be identified with L1

c(U), see [FED69, Section 4.1.18].
The space of n-dimensional integral currents in X is In(X), see [FED69, Sec-

tion 4.1.24] for the classical definition and [AK00, Definition 4.2] or [LAN11, Defi-
nition 8.6] for the definition in the setting of metric currents (again we additionally
assume integral currents to have compact support). Similarly to flat chains we can
define

FK(T ) := inf
{

M(T − ∂S) + M(S) : S ∈ In+1(X), spt(S) ⊂ K
}

, (2.6)

for T ∈ In,K(X) := {T ∈ In(X) : spt(T ) ⊂ K}. The resulting space Fn(X) of
integral flat chains in X is obtained analogously to Fn(X) above. In the classical
setting, where U ⊂ R

m is some open set, it holds

Fn(U) =
{

R + ∂S : R ∈ Rn(U), S ∈ Rn+1(U)
}

,

where Rn(U) is the space of n-dimensional integer rectifiable currents in U , see
[FED69, Section 4.1.24]. If m = n, then Fn(U) = Rn(U) can be identified with
L1

c(U,Z).
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2.3 Hölder currents. Let (X, d) be a metric space, n ≥ 0 be an integer and
α1, . . . , αn+1 ∈ ]0, 1]. A multilinear map

T̄ : Lipα1(X) × · · · × Lipαn+1(X) → R (2.7)

is a Hölder current if it satisfies the same axioms as a current in Definition 2.2
with the occurrences of Lip for the ith coordinate replaced by Lipαi . Note that in
case α = α1 = · · · = αn+1 > 0, then T̄ is a Hölder current as in (2.7) if and only
if T̄ ∈ Dn(X, dα). On compact subsets K ⊂ X the inclusion Lip(K) ⊂ Lipα(K) is
continuous by (2.2) and dense by Lemma 2.1. Therefore any Hölder current as in
(2.7) is the unique continuous extension of a current T ∈ Dn(X). Note that even
if X is not compact, the support of our functionals are, and it is therefore always
possible to restrict to a compact metric space due to Lemma 2.3. It is stated in
[ZUS11b, Theorem 4.7] that a nonzero Hölder current as in (2.7) can only exist if
α1 + · · · + αn+1 > n. This is sharp due to [ZUS11b, Theorem 4.3]: Any T ∈ Nn(X)
has a unique continuous extension to a current in Dn(X, dα) if α > n

n+1 , or more
generally, to a unique Hölder current T̄ as in (2.7) if α1 + · · · + αn+1 > n. We will
use the following bounds on this extension provided by [ZUS11b, Equation (4.7)].
Let T ∈ Nn(X), ε ∈ ]0, 1], β := α2 + · · · + αn+1, γ := α1 + β, f = (f1, . . . , fn+1) ∈
Lipα1(X) × · · · × Lipαn+1(X) and fε = (f1

ε , . . . , fn+1
ε ) ∈ Lip(X)n+1. Assume that

γ > n and for all i = 1, . . . , n + 1,

(1) Lip(f i
ε) ≤ Hiε

αi−1,
(2) ‖f i − f i

ε‖∞ ≤ Hiε
αi ,

(3) ‖f1
ε ‖∞ ≤ H ′

i,

where Hi ≥ Lipαi(f i) and H ′
1 ≥ ‖f1‖∞. These assumptions are justified by

Lemma 2.1. Then

∣
∣T̄ (f) − T (fε)

∣
∣ ≤ C

[

M(T )H1ε
γ−n + M(∂T )H ′

1ε
β−(n−1)

]
n+1∏

i=2

Hi , (2.8)

for some C = C(n, γ) ≥ 0. Note that β − (n − 1) ≥ γ − n > 0 by assumption.

3 Functions of Bounded Fractional Variation

In this section we define functions of bounded fractional variation and prove some
properties. This section can be read without any knowledge about currents.

3.1 Simple consequences. For an open set U ⊂ R
n, a function u ∈ L1(U)

and an exponent α ∈ [0, 1] we define

Vα(u) := sup
∣
∣
∣
∣

∫

U
u(x) det D(f, g1, . . . , gn−1)x dx

∣
∣
∣
∣

, (3.1)

where the supremum is taken over all (f, g1, . . . , gn−1) ∈ Lipc(U) × Lip(U)n−1 with
Lipα(f) ≤ 1 and Lip(gi) ≤ 1 for i = 1, . . . , n − 1. The class of functions u ∈ L1(U)
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with Vα(u) < ∞ is denoted by BVα(U) and BVα
c (U) := BVα(U) ∩ L1

c(U) are those
with (essentially) compact support. The next lemma links this definition with the
classical definition of functions of bounded variation.

Lemma 3.1. BV(U) = BV0(U). Indeed, if u ∈ L1(U), then

V0(u) ≤ V(u) ≤ 2nV0(u) .

Proof. Let u ∈ BV(U) and fix some x0 ∈ U . It follows from Lemma 2.5 that for all
(f, g1, . . . , gn−1) ∈ Lipc(U) × Lip(U)n−1 it holds

∣
∣
∣
∣

∫

U
u(x) det D

(

f, g1, . . . , gn−1
)

x
dx

∣
∣
∣
∣

=
∣
∣
∣
∣

∫

U
u(x) det D

(

f − f(x0), g1, . . . , gn−1
)

x
dx

∣
∣
∣
∣

≤ V(u)‖f − f(x0)‖∞ Lip(g1) · · ·Lip(gn−1) . (3.2)

From (2.1) it follows that ‖f − f(x0)‖∞ ≤ Lip0(f) and thus V0(u) ≤ V(u) and
u ∈ BV0(U). For the other inclusion, let u ∈ BV0(U). If ϕ ∈ C1

c (U,Rn) with
‖ϕ‖∞ ≤ 1, then Lip0(ϕi) ≤ 2‖ϕi‖∞ ≤ 2 for all i = 1, . . . , n and from (2.1) if follows

∣
∣
∣
∣

∫

U
u(x) div ϕ(x) dx

∣
∣
∣
∣
≤

n∑

i=1

∣
∣
∣
∣

∫

U
u(x) det D

(

ϕi, π1, . . . , πi−1, πi+1, . . . , πn
)

x
dx

∣
∣
∣
∣

≤ 2nV0(u) .

Hence V(u) ≤ 2nV0(u). This shows that BV(U) = BV0(U) with the estimates on
the variations as stated. �

The following lower semicontinuity result is immediate.

Lemma 3.2. Let U ⊂ R
n be an open subset and α ∈ [0, 1]. If (uk)k∈N is a sequence

in BVα(U) that converges to u ∈ L1(U) weakly (in L1) on compact subsets of U ,
then ‖u‖L1 ≤ lim infk→∞ ‖uk‖L1 and Vα(u) ≤ lim infk→∞ Vα(uk).

Proof. Note that ‖u‖L1 = sup{| ∫U uv| : v ∈ L∞
c (U), ‖v‖∞ ≤ 1} and that x �→

det Dϕx is in L∞
c (U) if ϕ ∈ Lipc(U) × Lip(U)n−1. So both ‖u‖L1 and Vα(u) are

defined as the supremum over some set of test functions. The lower semicontinuity
is therefore immediate.

Note that in case u ∈ BVα
c (Rn) we can drop the compactness assumption on f in

the definition of Vα(u). This can be seen by modifying f ∈ Lipα(f)∩Lip(f) outside
the support of u. Actually, if u ∈ L1

c(R
n), then

Vα(u) = sup
∣
∣
∣
∣

∫

U
u(x) det D(f, g1, . . . , gn−1)x dx

∣
∣
∣
∣

,
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where the supremum is taken over all functions (f, g1, . . . , gn−1) ∈ Lip(Rn)n with
Lipα(f |spt(u)) ≤ 1 and Lip(gi|spt(u)) ≤ 1 for i = 1, . . . , n − 1. It is noted in (2.2) that
Lipα(f) ≤ Lipβ(f) diam(spt(u))β−α for 0 ≤ α ≤ β ≤ 1. This implies continuous
inclusions

BVc(Rn) = BV0
c(R

n) ⊂ BVα
c (Rn) ⊂ BVβ

c (Rn) for 0 ≤ α ≤ β ≤ 1 , (3.3)

with bounds on the variations depending on diam(spt(u)) and the corresponding
exponents. This dependence on diam(spt(u)) and the restriction to compactly sup-
ported functions in the inclusions above can be avoided by choosing a different
definition of Vα. We could replace the seminorm Lipα(f) in the definition of Vα

(3.1) by the genuine norm

|f |α := max
{‖f‖∞, 2α−1 Lipα(f)

}

.

Then 0 ≤ α ≤ β ≤ 1 implies Vα(u) ≥ Vβ(u) for all u ∈ L1(U) and the inclusions in
(3.3) hold without assuming that u has compact support. Qualitatively all the results
we mention below hold true if we make this change, particularly the main result
Theorem 4.12, but for the applications in the last section we get better quantitative
bounds, respectively, we obtain them more directly with the definition we have
chosen in (3.1). Our definition seems also natural because of the observation that
if f is constant equal to c �= 0, then

∫

Rn u(x) det D(f, g1, . . . , gn−1)x dx = 0 and
Lipα(f |spt(u)) = 0 but |f |α is nonzero.

A simple application of the change of variables formula shows that if ηr : Rn →
R

n is the rescaling ηr(x) := rx by r > 0 and u ∈ BVα
c (Rn), then Vα(u ◦ ηr) ≤

r−(n−1)−αVα(u). Scaling back with ηr−1 implies equality

Vα(u ◦ ηr) = r−(n−1)−αVα(u) . (3.4)

Here is a proof of Vα(u◦ηr) ≤ r−(n−1)−αVα(u): Let F ∈ Lip(Rn,Rn) with Lipα(F 1)
≤ 1 and Lip(F i) ≤ 1 for i = 2, . . . , n. Due to the change of variables formula

∣
∣
∣
∣

∫

Rn

(u ◦ ηr)(x) det DFx dx

∣
∣
∣
∣

=
∣
∣
∣
∣

∫

Rn

(u ◦ ηr)(x) det D(F ◦ η−1
r )ηr(x) det D(ηr)x dx

∣
∣
∣
∣

=
∣
∣
∣
∣

∫

Rn

u(y) det D(F ◦ η−1
r )y dy

∣
∣
∣
∣

≤ Vα(u) Lipα(F 1 ◦ ηr−1) Lip(F 2 ◦ ηr−1) · · ·Lip(Fn ◦ ηr−1)

= r−α−(n−1)Vα(u) .

In the last line we used that Lipα(f ◦ ηs) = Lipα(f)sα for s > 0, 0 ≤ α ≤ 1 and
f : Rn → R.
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3.2 Approximation theorem. Below we prove an approximation result for
functions in BVα

c (Rn) by functions in BVc(Rn). These approximations are obtained
by averaging on dyadic cubes. In order to obtain the bounds on the total variation
of these approximations the construction of [RR96, Lemma 1] is used. In [RR96]
Riviére and Ye used this is as the elementary starting point to solve the prescribed
Jacobian problem for densities of different regularity. The theorem below can be
seen as the main technical result of this work and it is also the reason why Vα(u)
for u ∈ L1(U) is defined as it is and not as

sup
{∫

U
u(x) div ϕ(x) dx : ϕ ∈ C1

c (U,Rn), Lipα(ϕ) ≤ 1
}

,

which may seem more appropriate in analogy with the classical definition. It is
actually not clear to the author to what extent these definitions are equivalent. The
specific use of our definition of Vα(u) in the proof below is in estimate (3.8).

Theorem 3.3 (Approximation Theorem). For all n ∈ N there exists a constant
C = C(n) ≥ 0 with the following property: For any α ∈ [0, 1[ and u ∈ BVα

c (Rn)
with spt(u) ⊂ [−r, r]n for some r > 0 there is a sequence (uk)k≥0 in BVc(Rn) such
that:

(1) The partial sums of
∑

uk converge to u in L1.
(2) spt(uk) ⊂ [−r, r]n for all k ≥ 0.
(3) For k ≥ 0,

‖uk‖L1 ≤ Cr1−αVα(u)2k(α−1) and V(uk) ≤ Cr−αVα(u)2kα .

(4) uk =
∑

R∈Pk
aRχR, where aR ∈ R, P0 = {[−r, r]n} and Pk = {r21−k(p +

[0, 1]n) : p ∈ Z
n} for k ≥ 1.

Proof. We first prove the theorem in case that spt(u) ⊂ Q := [−1, 1]n. By definition
∣
∣
∣
∣

∫

u(x) det D(f, g1, . . . , gn−1)x dx

∣
∣
∣
∣
≤ Vα(u) Lipα(f) Lip(g1) · · ·Lip(gn−1) (3.5)

for all (f, g1, . . . , gn−1) ∈ Lip(Rn)n.
For k ≥ 0 let Pk be as in the statement and define vk ∈ L1

c(R
n) by

vk :=
∑

R∈Pk

χR
1

L n(R)

∫

R
u(x) dx .

The sequence vk converges in L1 to u. This follows from the facts that if u is con-
tinuous, then vk converges uniformly to u, the construction of vk is linear in u and
the L1-norm decreases when passing from u to vk. Set η := 2n − 1

2 ∈ ]1, 2n[. It
follows from [RR96, Lemma 1] and the discussion thereafter that for any given cube
R ⊂ Q in P1 there is a bi-Lipschitz map ϕR : Q → Q with ϕR(x) = x for x ∈ ∂Q,
det DϕR = η almost everywhere on R and detDϕR = η′ := 2n−η

2n−1 almost everywhere
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on Q \ R. Note that η + (2n − 1)η′ = 2n and hence
∫

Q det DϕR = 2n = L n(Q).

Given R ∈ Pk for k ≥ 1 let R̂ ∈ Pk−1 be the unique cube that contains R. Ap-
plying a similarity transformation, there is a bi-Lipschitz map ϕR : R̂ → R̂ as on Q
above. It is crucial to note that all these maps have a common Lipschitz constant
L = L(n) ≥ 1.

For R ∈ Pk let R1, . . . , R2n ∈ Pk+1 be an enumeration of the subcubes of R
and choose some R′ ∈ {R1, . . . , R2n} with

∫

R′
vk+1(x) − vk(x) dx = sup

1≤i≤2n

∫

Ri

vk+1(x) − vk(x) dx .

It holds that

2n+1

∫

R′
vk+1(x) − vk(x) dx ≥

∫

R
|vk+1(x) − vk(x)| dx . (3.6)

To see this note first that
∫

R vk+1−vk = 0 and let J ⊂ {1, . . . , 2n} be the (nonempty)
subset with

∫

Rj
vk+1(x) − vk(x) ≥ 0 for j ∈ J . Then

1
2

∫

R
|vk+1 − vk| =

∑

j∈J

∫

Rj

vk+1 − vk ≤ (#J)
∫

R′
vk+1 − vk ,

and this implies (3.6).
For k ≥ 0 define ϕk : Q → Q to be equal ϕR′ on any R ∈ Pk. This makes sense

because ϕR′ is the identity on ∂R. For any k ≥ 0 the following properties hold:

(a)
∫

vk det Dϕk =
∫

vk.
(b)

∫

vk+1 det Dϕk =
∫

u det Dϕk.
(c)

∫

(vk+1 − vk) det Dϕk ≥ 2−n−1(η − η′)
∫ |vk+1 − vk|.

Statement (a) follows from the observation that for any R ∈ Pk it holds that
∫

R det Dϕk = L n(R) and that vk is constant on R. (b) is a consequence of the
fact that detDϕk is essentially constant on any R ∈ Pk+1 and

∫

R u =
∫

R vk+1 by
construction. Because of (3.6) and

∫

R vk+1 − vk = 0 for R ∈ Pk we get
∫

Q
(vk+1 − vk) det Dϕk =

∑

R∈Pk

∫

R
(vk+1 − vk) det Dϕk

=
∑

R∈Pk

η

∫

R′
(vk+1 − vk) + η′

∫

R\R′
(vk+1 − vk)

=
∑

R∈Pk

(η − η′)
∫

R′
(vk+1 − vk)

≥ 2−n−1(η − η′)
∑

R∈Pk

∫

R
|vk+1 − vk|

= 2−n−1(η − η′)
∫

Q
|vk+1 − vk| .
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This shows (c). Together with (a) and (b) we obtain the following crucial integral
estimate

∫

Q
u(det Dϕk − det DidQ) =

∫

Q
u(det Dϕk − 1) =

∫

Q
(u det Dϕk − vk)

=
∫

Q
(vk+1 − vk) det Dϕk

≥ 2−n−1(η − η′)
∫

Q
|vk+1 − vk| . (3.7)

Since ϕk(R) = R for R ∈ Pk, it follows that

‖ϕk − idQ‖∞ ≤ diam(R) = 2
√

n2−k .

Assume first that two points x, y ∈ Q satisfy |x − y| > 2−k. Then

|ϕk(x) + x − ϕk(y) − y| ≤ |ϕk(x) − x| + |ϕk(y) − y|
≤ 4

√
n2−k = 4

√
n2−k(1−α)2−kα

≤ 4
√

n2−k(1−α)|x − y|α .

If 0 < |x − y| ≤ 2−k, then due to supk Lip(ϕk) ≤ L,

|ϕk(x) + x − ϕk(y) − y| ≤ (L + 1)|x − y| = (L + 1)|x − y|1−α|x − y|α
≤ (L + 1)2−k(1−α)|x − y|α .

Hence Lipα(ϕk − idQ) ≤ C12−k(1−α) for some constant C1 = C1(n) ≥ 0. Together
with (3.5) and (3.7) this Hölder seminorm estimate implies that

2−n−1(η − η′)
∫

Q
|vk+1 − vk|

≤
∣
∣
∣
∣

∫

Q
u(det Dϕk − det D idQ)

∣
∣
∣
∣

=
∣
∣
∣
∣

n∑

i=1

∫

Q
u det D(ϕ1

k, . . . , ϕ
i−1
k , ϕi

k − πi, πi+1, . . . , πn)
∣
∣
∣
∣

≤
n∑

i=1

∣
∣
∣
∣

∫

Q
u det D(ϕi

k − πi, ϕ1
k, . . . , ϕ

i−1
k , πi+1, . . . , πn)

∣
∣
∣
∣

≤ nVα(u)C12−k(1−α)Ln−1 . (3.8)

Therefore ‖vk+1 − vk‖L1 ≤ C2Vα(u)2−k(1−α) for some constant C2 = C2(n) ≥ 0.
The total variation V(vk+1 − vk) is now straight forward to estimate. Given k ≥ 0,
the function vk+1 − vk is constant, say equal to aR, on any R ∈ Pk+1. Because
‖χR‖L1 = 2−kn and V(χR) = 2n2−k(n−1), we get

V(aRχR) = |aR|2n2−k(n−1) = 2n2k‖aRχR‖L1 .
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Hence

V(vk+1 − vk) ≤
∑

R∈Pk+1

V(aRχR) =
∑

R∈Pk+1

2n2k‖aRχR‖L1

= 2n2k‖vk+1 − vk‖L1

≤ 2nC2Vα(u)2kα .

Set u0 := v0 and uk := vk − vk−1 for k ≥ 1. If spt(u) ⊂ Q, then

‖u0‖L1 =
∣
∣
∣
∣

∫

Q
u

∣
∣
∣
∣
≤ Vα(u) Lipα(π1|Q) ≤ 2Vα(u) .

Similarly, V(u0) = n| ∫Q u| ≤ 2nVα(u). This establishes the result in case the sup-
port of u is contained in [−1, 1]n.

Given u with spt(u) ⊂ [−r, r]n, the rescaled function u◦ηr, where ηr(x) = rx, has
support in [−1, 1]n with Vα(u◦ηr) = r1−n−αVα(u) by (3.4). Using the decomposition
uk for u ◦ ηr as above, and scaling back we get

‖uk ◦ ηr−1‖L1 ≤ rn‖uk‖L1 ≤ rnCVα(u ◦ ηr)2k(α−1) = Cr1−αVα(u)2k(α−1) .

Similarly,

V(uk ◦ ηr−1) ≤ rn−1V(uk) ≤ rn−1CVα(u ◦ ηr)2kα = Cr−αVα(u)2kα .

This concludes the proof. �
In Proposition 4.6 we state a partial converse to this theorem. This means that

given a sequence (uk)k≥0 in BVc(Rn) that satisfy (1), (2) and (3) of the theorem
above (with V(u) replaced by some constant V ≥ 0), then the sum u =

∑
uk is in

BVβ
c (Rn) for all β > α. But u may not be in BVα

c (Rn) as we will see in Example 4.7.

3.3 Compactness and higher integrability. As a consequence of Theorem 3.3
we can generalize the L1-compactness theorem of BV-functions to BVα-functions.

Proposition 3.4 (Compactness in BVα
c (Rn)). Let α ∈ [0, 1[ and (uk)k∈N be a se-

quence in BVα
c (Rn) with supk∈N ‖uk‖L1 + Vα(uk) < ∞ and

⋃

k∈N
spt(uk) ⊂ K for

some compact K ⊂ R
n. Then there exists a subsequence of (uk)k∈N that converges

in L1 to some u ∈ BVα
c (Rn) with Vα(u) ≤ lim infk→∞ Vα(uk).

Proof. Up to taking a subsequence we may assume that limk→∞ Vα(uk) exists. Let
r > 0 be such that K ⊂ [−r, r]n and set V := supk≥0 V

α(uk) < ∞. From The-
orem 3.3 we obtain functions uk,l ∈ BV(Rn) for k ∈ N and integers l ≥ 0 with
spt(uk,l) ⊂ [−r, r]n,

∑

l≥0 uk,l = uk in L1,

‖uk,l‖L1 ≤ CV 2l(α−1) and V(uk,l) ≤ CV 2lα , (3.9)

for some constant C = C(n, α, r) ≥ 0. Using L1-compactness of BV(Rn), see e.g.
[AFP00, Theorem 3.23], and a diagonal argument we obtain a subsequence (k(i))i∈N
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such that (uk(i),l)i∈N converges in L1 to some vl ∈ L1(Rn) for each l ≥ 0. Due to the
bound (3.9) and lower semicontinuity in BV(Rn), this limit satisfies

‖vl‖L1 ≤ CV 2l(α−1) and V(vl) ≤ CV 2lα , (3.10)

for all l ≥ 0. From the first bound it is clear that
∑

l vl converges in L1 to some
u ∈ L1(Rn) with spt(u) ⊂ [−r, r]n. Fix l0 ≥ 0. It follows from (3.9) and (3.10) that

lim sup
i→∞

‖uk(i) − u‖L1 ≤ lim sup
i→∞

∑

l≥0

‖uk(i),l − vl‖L1

≤ lim sup
i→∞

∑

l>l0

(‖uk(i),l‖L1 + ‖vl‖L1

)

+
∑

0≤l≤l0

‖uk(i),l − vl‖L1

≤
∑

l>l0

2CV 2l(α−1) +
∑

0≤l≤l0

lim sup
i→∞

‖uk(i),l − vl‖L1

=
2CV

1 − 2α−1
2(l0+1)(α−1) .

Because this is true for all l0 ≥ 0 we see that limi→∞ uk(i) = u in L1. With the
lower semicontinuity property, Lemma 3.2, we conclude that u ∈ BVα

c (Rn) with the
bound on the variation as stated. �

The classical embedding result BV(Rn) ↪→ L
n

n−1 (Rn) together with the approxi-
mation theorem for BVα

c (Rn) implies higher integrability also for this space.

Proposition 3.5 (Higher integrability). Assume that (uk)k≥0 is a sequence in
BV(Rn) that satisfies

‖uk‖L1 ≤ V σk(α−1) , V(uk) ≤ V σkα ,

for some α ∈ ]0, 1[, σ > 1 and V ≥ 0. Then u =
∑

k≥0 uk is in Lp(Rn) if 1 ≤ p <
n

n−1+α . Indeed, ‖u‖Lp ≤ C(n, σ, p)V if p < n
n−1+θ . In particular, BVα

c (Rn) ⊂ Lp
c(Rn)

for 1 ≤ p < n
n−1+α and the inclusion is compact if restricted to functions with

support in some fixed compact set.

Proof. There is a constant Cn > 0 such that for each k ≥ 0 the estimate ‖uk‖Lq ≤
CnV(uk) holds for q = n

n−1 if n > 1 and q = ∞ if n = 1, see e.g. [AFP00, The-
orem 3.47]. For any θ ∈ ]α, 1] let pθ ≥ 1 be such that the equation 1

pθ
= θ

1 + 1−θ
q

holds. By Hölder interpolation,

‖uk‖Lpθ ≤ ‖uk‖θ
L1‖uk‖1−θ

Lq ≤ V C1−θ
n σθk(α−1)σ(1−θ)kα

= V C1−θ
n σk(α−θ) .

Hence
∑

k≥0 ‖uk‖Lpθ is finite. In case n > 1 we obtain the boundary value pα =
n

n−1+α and similarly pα = 1
α in case n = 1.

The last statement of the proposition follows directly from Theorem 3.3 and
Proposition 3.4. Indeed assume that u ∈ BVα

c (Rn) with spt(u) ⊂ [−r, r]n for some
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r > 0. Fix some p ∈ [1, n
n−1+θ [. Pick some q ∈ ]p, n

n−1+α [ and a corresponding
θ ∈ ]0, 1[ such that 1

p = θ
1 + 1−θ

q . With the decomposition as in Theorem 3.3 it
follows as above that

‖u‖Lp ≤ ‖u‖θ
L1‖u‖1−θ

Lq ≤ C ′‖u‖θ
L1Vα(u)1−θ ,

for some constant C ′ = C ′(n, α, p, q, r) ≥ 0. Hence Proposition 3.4 implies compact-
ness in Lp. �

With this proposition we obtain an isoperimetric type inequality for bounded
Borel sets B ⊂ R

n with χB ∈ BVα
c (Rn). This statement may not be optimal since

it does not reproduce the isoperimetric inequality for sets of bounded perimeter.

Corollary 3.6 (Isoperimetric inequality). Assume that B ⊂ [−r, r]n is a Borel set
with χB ∈ BVα

c (Rn) for some α ∈ [0, 1[. Then for all d ∈ ]n − 1 + α, n],

L n(B) ≤ C(n, d, α, r)Vα(χB)
n

d .

Proof. Theorem 3.3 guarantees a decomposition χB =
∑

k≥0 uk in L1 with

‖uk‖L1 ≤ C ′Vα(χB)2k(α−1) and V(uk)L1 ≤ C ′Vα(χB)2kα ,

for some C ′ = C ′(n, α, r) ≥ 0. Proposition 3.5 implies that for d ∈ ]n − 1 + α, n] it
holds that

L n(B)
1
p = ‖χB‖Lp ≤ C(n, d, α, r)Vα(χB) ,

where p := n
d . This implies the statement. �

This does not recover the classical isoperimetric inequality for α = 0, in which
case the inequality also holds for d = n−1. But this is not surprising since we already
remarked after Theorem 3.3 that some information about the critical exponent is
lost in the approximation theorem. It thus may be possible that Corollary 3.6 and
also part of Proposition 3.5 are also valid for the exponent d = n − 1 + α. The
compactness of the inclusion in Proposition 3.5 is sharp though, at least in the
classical case α = 0.

4 Fractal Currents

To see the connection between functions of fractional bounded variation with metric
currents, note that the integral in (3.1), the definition of Vα(u), can be expressed
as

∫

U
u(x) det D(f, g1, . . . , gn−1)x dx = ∂[[u]](f, g1, . . . , gn−1)

= [[u]](1, f, g1, . . . , gn−1) .
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Due to the correspondence between BV-functions and normal currents, Lemma 2.5,
the approximation result for BVα- functions, Theorem 3.3, can be formulated as
follows: If u ∈ BVα

c (Rn) for α ∈ [0, 1[, there is a sequence (Rk)k≥0 of normal currents
in Nn(Rn) such that [[u]] =

∑

k≥0 Rk as a weak limit (in mass actually) with mass
bounds

M(Rk) ≤ V ρk(α−1) and M(∂Rk) ≤ V ρkα (4.1)

for constants V ≥ 0 and ρ > 1. These mass bounds indicate that [[u]] has a partic-
ular controlled type of flat approximation by normal currents, compare with (2.5).
The existence of such a decomposition into normal currents for a particular current
T ∈ Dn(Rn) does not need any properties of the ambient space and thus can be
formulated in more generality. This is the basic idea behind the definition of fractal
currents below.

4.1 Fractals as fractal currents. Our definition of a fractal current in an
arbitrary metric space X is the following:

Definition 4.1 (Fractal currents). Let n ≥ 0 be an integer, γ ∈ [n, n + 1[ and
δ ∈ [n − 1, n[. A current T ∈ Dn(X) is a fractal current in Fγ,δ(X) if there exists
a compact set K ⊂ X, sequences (Rk)k≥0 in Nn(X), (Sk)k≥0 in Nn+1(X), and
parameters σ, ρ > 1 such that:

(1)
⋃

k≥0 spt(Rk) ∪ spt(Sk) ⊂ K.
(2) The partial sums of

∑

k≥0 Rk + ∂Sk converge weakly to T .
(3)

∑

k≥0

M(Sk)σk((n+1)−γ) < ∞ ,
∑

k≥0

M(∂Sk)σk(n−γ) < ∞ ,

∑

k≥0

M(Rk)ρk(n−δ) < ∞ ,
∑

k≥0

M(∂Rk)ρk((n−1)−δ) < ∞ .

The guiding principle here is that T ∈ Fγ,δ(X) for γ > dim(spt(T )) and δ >
dim(spt(∂T )) which we will justify in Lemma 4.4. It is straightforward to adapt
this definition to chains with coefficients in a normed Abelian group G as defined in
[PH12]. In this context the approximating sequences of normal currents Rk and Sk

are replaced by rectifiable G-chain in Rn(X; G) and Rn+1(X; G) respectively. The
resulting collection of fractal G-chains Fγ,δ(X; G) (or just Fγ,δ(X) if G = Z) is then
a subclass of flat G-chains. It is immediate from the Definitions (2.5) and (2.6) and
the discussion there that Fγ,δ(U) and Fγ,δ(U) are classical flat chains and integral
flat chains respectively in case U ⊂ R

m is open.
Note if u ∈ BVα

c (Rn) for α ∈ [0, 1[ has a decomposition [[u]] =
∑

k≥0 Rk as in
(4.1), and if β ∈ ]α, 1[, then

∑

k≥0

M(Rk)ρk(1−β) ≤ V
∑

k≥0

ρk(α−β) ≤ C(n, α, β, ρ)V < ∞ ,
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and similarly
∑

k≥0 M(∂Rk)ρ−kβ ≤ C(n, δ, α, ρ)V . Hence

BVα
c (Rn) ⊂ Fn,n−1+β(Rn) . (4.2)

One may ask why we adopt a summability condition in the definition of a frac-
tal current instead of bounds similar to (4.1) that result from the decomposition in
Theorem 3.3. As we will see in Example 4.7 there is some information lost in Theo-
rem 3.3 and more importantly Theorem 4.5 on extensions to Hölder test functions
is most general with the summability condition used. A drawback of Definition 4.1
is that Fγ,δ(X) may not be a vector space unless the parameters ρ and σ are fixed.

It is quite clear that Fn,n−1(X) = Nn(X) and Fγ,δ(X) ⊂ Fγ′,δ′(X) if γ ≤ γ′ and
δ ≤ δ′. Further, if T ∈ Fγ,δ(X) is n-dimensional for n ≥ 1, then ∂T ∈ Fδ,n−2(X).
We use the convention that ∂T = 0 if T ∈ D0(X) is zero dimensional. Whenever
T is a zero-dimensional fractal current we assume that R0 ∈ M0(X) = N0(X) and
Rk = 0 for k ≥ 1 and thus T ∈ Fγ,−1(X) for some γ ∈ [0, 1[. With the remark
above we see that the boundary operator behaves well in the context of fractal
currents. This is also true for other operations on metric currents such as restriction
[LAN11, Definition 2.3], push forward [LAN11, Definition 3.6] and slicing [LAN11,
Definition 6.3].

Slicing is a priori only defined for normal currents. Assume 0 ≤ m ≤ n are
integers, T ∈ Fγ,δ(X) and g ∈ Lip(X)m. In case (Rk) and (Sk) are sequences of
normal currents for T as in the Definition 4.1 we define 〈T, g, y〉 = limk→∞〈Rk +
∂Sk, g, y〉 for y ∈ R

m in case this makes sense as a weak limit. The restriction to a
Borel set T�B is in general only defined if T has finite mass [LAN11, Theorem 4.4].
As for slices above we can define for x ∈ X and r > 0 the restricting T�B(x, r) =
limk→∞(Rk + ∂Sk)�B(x, r) in case this is well defined as a weak limit. We will
not show that the two definitions above are almost everywhere independent on the
approximating sequences (Rk) and (Sk). With these definitions we have the following
proposition.

Proposition 4.2. Let 0 ≤ m ≤ n be integers, γ ∈ [n, n + 1[, δ ∈ [n − 1, n[,
T ∈ Fγ,δ(X). Then:

(1) If ϕ ∈ Lip(X, Y ), then ϕ#T ∈ Fγ,δ(Y ).
(2) If (f, g) ∈ Lip(X)m+1, then T�(f, g) ∈ Fγ−m,δ−m(X).
(3) If g ∈ Lip(X)m, then 〈T, g, y〉 ∈ Fγ−m,δ−m(X) for almost all y ∈ R

m and

∫

Rm

〈T, g, y〉(f) dy = (T�(1, g))(f) (4.3)

for all f ∈ Lip(X)n+1−m.
(4) If x ∈ X, then T�B(x, r) ∈ Fγ,δ(X) for almost all r > 0.

Proof. Assume that (Rk)k≥0, (Sk)k≥0, K, σ, ρ are as in the definition of a fractal cur-
rent such that T =

∑

k≥0 Rk + ∂Sk. Statement (1) is clear by simple mass estimates
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for the push forward. (2) is a consequence of Equations (4.10) and (5.1) in [LAN11].
So for all k ≥ 0 it holds

M(Rk�(f, g)) ≤ ‖f |K‖∞ Lip(g)mM(Rk) ,

and

M(∂(Rk�(f, g))) ≤ Lip(g)m
(

Lip(f)M(Rk) + ‖f |K‖∞M(∂Rk)
)

,

with similar estimates for M(Sk�(1, f, g)) and M(∂(Sk�(1, f, g))). It follows from
[LAN11, Theorem 6.4] that for almost all y ∈ R

m the slice 〈Rk, g, y〉 is an element
of Nn−m(X) for all k ≥ 0. Moreover,

∑

k≥0

∫

Rm

M(〈Rk, g, y〉)ρk(n−δ) dy ≤
∑

k≥0

Lip(g)mM(Rk)ρk(n−δ) < ∞ .

With the monotone convergence theorem this implies
∫

Rm

∑

k≥0

M(〈Rk, g, y〉)ρk(n−δ) dy =
∑

k≥0

∫

Rm

M(〈Rk, g, y〉)ρk(n−δ) < ∞ .

Since y �→ ∑

k≥0 M(〈Rk, g, y〉)ρk(n−δ) has a finite integral, the function itself hast to
be finite almost everywhere, i.e.

∑

k≥0

M(〈Rk, g, y〉)ρk(n−m−(δ−m)) < ∞

for almost all y. Because 〈∂Rk, g, y〉 = (−1)m∂〈Rk, g, y〉 by [LAN11, Equation (6,9)],
we similarly conclude that

∑

k≥0

M(∂〈Rk, g, y〉)ρk(n−1−m−(δ−m)) < ∞

for almost all y ∈ R
m. The same reasoning applies to the sequence (Sk). This shows

that for almost all y ∈ R
m,

〈T, g, y〉 =
∑

k≥0

〈Rk, g, y〉 + (−1)m∂〈Sk, g, y〉 ∈ Fγ−m,δ−m(X) .

The additional integral identity (4.3) follows from Lebesgues dominated convergence
theorem and the corresponding identities for Rk and Sk, [LAN11, Theorem 6.4(2)].
(4): For any normal current W it holds that ∂(W�B(x, r)) = (∂W )�B(x, r) +
〈W, dx, r〉 for almost all r > 0 by Definition 6.1 and Theorem 6.2 of [LAN11]. So, for
almost all r > 0,
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∑

k≥0

M(Rk�B(x, r))ρk(n−δ) ≤
∑

k≥0

M(Rk)ρk(n−δ) < ∞ ,

∑

k≥0

M(∂(Rk�B(x, r)))ρk(n−1−δ) ≤
∑

k≥0

(

M(∂Rk) + M(〈Rk, dx, r〉))ρk(n−1−δ)

< ∞ .

Similar estimates hold for Sk�B(x, r) too, and this shows (4). �
Push forwards of certain fractal currents with respect to Hölder maps are treated

in Section 5.
Before proving a more general statement, it is shown that the Koch snowflake

domain induces a fractal current. Similar fractals can be treated alike.

Example 4.3. The Koch snowflake domain is a compact subset K ⊂ R
2 with

boundary ∂K of Hausdorff dimension d := log(4)
log(3) . K can be written as the clo-

sure of the union
⋃

k≥0 Kk where K0 is an equilateral triangle of area a0 and Kk

consists of 3 · 4k−1 disjoint equilateral triangles with area a03−2k for k ≥ 1. Thus for
k ≥ 1

L 2(Kk) = 3 · 4k−1a03−2k =
3a0

4

(
4
32

)k

=
3a0

4
3k(d−2) ,

and similarly, if v0 is the perimeter of K0, then the perimeter of Kk is

V(χKk
) = 3 · 4k−1v03−k =

v0

4

(
4
3

)k

=
v0

4
3k(d−1) .

If δ > d, then for some C > 0,
∑

k≥0

‖χKk
‖L13k(2−δ) ≤ C

∑

k≥0

3k(d−δ) < ∞ ,

and
∑

k≥0

V(χKk
)3k(1−δ) ≤ C

∑

k≥0

3k(d−δ) < ∞ .

Hence [[K]] ∈ F2,δ(R2) and ∂[[K]] ∈ Fδ,0(R2) for any δ ∈ ]d, 2[.

This example generalizes to domains with boundaries of a given box counting
dimension. If A ⊂ R

n is a bounded set and ε > 0, let NA(ε) be the minimal number
of balls of radius ε needed to cover A. The box counting dimension of A is defined
by

dimbox(A) := lim
ε↓0

log(NA(ε))
log(1/ε)

,
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in case this limit exists. Assume that U ⊂ R
n is bounded and open with a Whitney

decomposition W, see e.g. [STE70, Chapter VI, Theorem 1] for its definition and
existence. For any integer k let Wk be the cubes in W of side length 2−k. Decom-
posing each cube in Wk for k < 0, we may assume that W =

⋃

k≥0 Wk. It is noted
for example in the proof of [HN92, Lemma 2] that #Wk ≤ C(n)N∂U (2−k) for k ≥ 1.
If δ > dimbox(∂U), then log2(N∂U (2−k)) ≤ δ log2(2k) = δk for all k big enough. It
follows that there is a constant C ′(n, δ, U) ≥ 0 such that

#Wk ≤ C ′(n, δ, U)2kδ (4.4)

for all k ≥ 0.

Lemma 4.4. Assume that U ⊂ R
n is bounded and open with dimbox(∂U) < n. For

all δ ∈ ] dimbox(∂U), n[ there is a constant C(n, δ, U) ≥ 0 and compact sets Rk ⊂ U
with

(1) χU =
∑

k≥0 χRk
almost everywhere and in L1,

(2) L n(Rk) ≤ C(n, δ, U)2k(δ−n) and V(χRk
) ≤ C(n, δ, U)2k(δ−(n−1)).

In particular, [[U ]] ∈ Fn,δ(Rn) and ∂[[U ]] ∈ Fδ,n−2(Rn) for all δ ∈ ] dimbox(∂U), n[.

Proof. Set Rk :=
⋃Wk. (1) is clear since W is composed of countably many es-

sentially disjoint closed cubes with
⋃W = U . Since L n(Rk) = (#Wk)2−kn and

V(χRk
) ≤ 2n(#Wk)2−k(n−1) we obtain with (4.4) that L n(Rk) ≤ C ′2kδ2−kn and

also V(χRk
) ≤ 2nC ′2kδ2−k(n−1) for all k ≥ 0. �

More generally we obtain that [[U ]] ∈ Fn,d(Rn) in case ∂U is d-summable as
defined in [HN92]. This is contained in the proof of [HN92, Lemma 2], where it is ob-
served that ∂U is d-summable if and only if

∑

k≥0 N∂U (2−k)2−kd < ∞. With #Wk ≤
C(n)N∂U (2−k) for k ≥ 1, M(Rk) = (#Wk)2−kn and M(∂Rk) ≤ 2n(#Wk)2−k(n−1)

the statement follows. Similar conclusions can be drawn using the generalization of
d-summability introduced in [GUS16, Theorem 2.2]. Indeed, the condition on U in
[GUS16, Theorem 2.2] immediately implies that [[U ]] ∈ Fn,d(Rn). Therefore Theo-
rem 4.5 below generalizes the extension results for Hölder differential forms [HN92,
Theorem A] and [GUS16, Theorem 2.2].

4.2 Extension theorem. First we state an extension result for fractal currents.
It builds on [ZUS11b, Theorem 4.3] and on the bound (2.8) obtained in the proof
thereof.

Theorem 4.5 (Extension theorem). Let (X, d) be a metric space and n ≥ 0 be an
integer. If T ∈ Fγ,δ(X) for some γ ∈ ]n, n+1[ and δ ∈ ]n−1, n[, then T has a unique
continuous extension to a Hölder current

T̄ : Lipα1(X) × · · · × Lipαn+1(X) → R
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whenever α1 + · · · + αn+1 ≥ γ and α2 + · · · + αn+1 ≥ δ (in case n ≥ 1). Moreover, if
(Rk) and (Sk) are approximating sequences for T as in Definition 4.1 with parameters
ρ and σ, then for all f = (f1, . . . , fn+1) ∈ Lipα1(X) × · · · × Lipαn+1(X),

∣
∣
∣
∣

∑

k≥0

Rk(f)
∣
∣
∣
∣
≤ C‖f1‖α1Hn

∑

k≥0

M(Rk)ρk(n−δ) + M(∂Rk)ρk((n−1)−δ) ,

∣
∣
∣
∣

∑

k≥0

∂Sk(f)
∣
∣
∣
∣
≤ CHn+1

∑

k≥0

M(Sk)σk((n+1)−γ) + M(∂Sk)σk(n−γ) ,

where C = C(n, γ, δ) ≥ 0, Hn :=
∏n+1

i=2 Lipαi(f i) (Hn = 1 in case n = 0), Hn+1 :=
Hn Lipα1(f1) and ‖f1‖α1 := ‖f1‖∞ + Lipα1(f1).

Proof. Without loss of generality we assume that γ := α1 + · · · + αn+1 and δ :=
α2 + · · · + αn+1 due to the fact that Fγ,δ(X) ⊂ Fγ′,δ′(X) in case γ ≤ γ′ and δ ≤ δ′.
Note that we use the convention that Rk = 0 for k ≥ 1, δ = −1 and T ∈ Fγ,−1(X)
in case n = 0. From Lemma 2.1 and the remark thereafter it follows that for any
ε ∈ ]0, 1] and i ∈ {1, . . . , n + 1} there are approximations f i

ε ∈ Lip(X) such that
Lip(f i

ε) ≤ Lipαi(f i)εαi−1, ‖f i
ε − f i‖∞ ≤ Lipαi(f i)εαi and ‖f i

ε‖∞ ≤ ‖f i‖∞. With
Lemma 2.4,

|Sk(1, fε)| ≤ M(Sk)Hn+1ε
γ−(n+1) .

Hence,
∑

k≥0

|Sk(1, fσ−k)| ≤ Hn+1

∑

k≥0

M(Sk)σk((n+1)−γ) < ∞ .

Similarly,

∑

k≥0

|Rk(fρ−k)| ≤
∑

k≥0

M(Rk)‖f1
ρ−k‖∞

n+1∏

i=2

Lip(f i
ρ−k)

≤ ‖f1‖∞Hn

∑

k≥0

M(Rk)ρk(n−δ) < ∞ .

As recalled in (2.8), for any k ≥ 0 it holds that

|Rk(f) − Rk(fρ−k)|
≤ C(n, γ)Hn

[

M(Rk) Lipα1(f1)ρk(n−γ) + M(∂Rk)‖f1‖∞ρk((n−1)−δ)
]

,

and similarly

|∂Sk(f) − ∂Sk(fσ−k)| ≤ C(n, γ)M(∂Sk)Hn+1σ
k(n−γ) .

These two differences are summable in k and hence with the estimates above we
see that T has an extension with bounds as in the statement. As in the proof of
[ZUS11b, Theorem 4.3] it can be shown that this extension satisfies all the axioms of
a Hölder current as defined above. This uses the additional Lipschitz approximation
properties of Lemma 2.1. �
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4.3 Fractal currents have bounded fractional variation. As stated at the
end of Section 3.2 there is a partial converse to Theorem 3.3. This builds directly on
the extension theorem for fractal currents above in the special case where X = R

n.

Proposition 4.6. Let β ∈ ]0, 1[ and assume that (uk)k≥0 is a sequence in BVc(Rn)
such that

⋃

k≥0 spt(uk) is bounded and there are constants V ≥ 0 and ρ > 1 such
that for all k ≥ 0,

∑

k≥0

‖uk‖L1ρk(1−β) ≤ V and
∑

k≥0

V(uk)ρ−kβ ≤ V .

Then u :=
∑

k≥0 uk is in BVβ
c (Rn) and satisfies Vβ(u) ≤ C(n, β, ρ)V . In particular,

Fn,n−1+β(Rn) ⊂ BVβ
c (Rn).

Proof. Set Rk := [[uk]] which is in Nn(Rn) by Lemma 2.5 with M(Rk) = ‖uk‖L1 and
M(∂Rk) = V(uk). Since u =

∑

k≥0 uk in L1 it holds that [[u]] =
∑

k≥0[[uk]] in mass.
If F ∈ Lip(Rn)n with Lipβ(F 1) ≤ 1 and Lip(F i) ≤ 1 for i = 2, . . . , n, it follows from
Theorem 4.5 (where α2 = β, αi = 1 for i �= 2, δ = n − 1 + β and γ = δ + 1 = n + β)
that

|∂[[u]](F )| ≤
∣
∣
∣
∣

∑

k≥0

∂Rk(F )
∣
∣
∣
∣
=

∣
∣
∣
∣

∑

k≥0

Rk(1, F )
∣
∣
∣
∣

≤ C ′(n, β)
∑

k≥0

M(Rk)ρk(n−δ) + M(∂Rk)ρk((n−1)−δ)

≤ C ′(n, β)
∑

k≥0

M(Rk)ρk(1−β) + M(∂Rk)ρ−kβ

≤ 2C ′(n, β)V .

With the definition of Vβ(u) the first part of the proposition follows immediately.
For the second part let T ∈ Fn,n−1+β(Rn). As in Definition 4.1 there is a sequence

(Rk)k≥0 in Nk(Rn) such that T =
∑

k≥0 Rk. Note that there is no sequence (Sk)k≥0

because Dn+1(Rn) = 0. By Lemma 2.5 we can write Rk = [[uk]] for uk ∈ Nn(Rn).
Because

∑
Rk converges in mass to T , the sum

∑
uk converges in L1 to some

u ∈ L1
c(R

n). Thus T = [[u]] and the statement follows from the first part. �
Together with (4.2) we immediately obtain that

BVα
c (Rn) ⊂ Fn,n−1+β(Rn) ⊂ BVβ

c (Rn) , (4.5)

for all 0 ≤ α < β < 1. A more in-depth analysis of these inclusions is given later in
Theorem 4.12. Note that for α = 0, BV0

c(R
n) = BVc(Rn) = Nn(Rn) = Fn,n−1(Rn)

by Lemmas 2.5, 3.1 and the remark after (4.2). Apart from this, it is not clear to
the author whether Fn,n−1+β(Rn) and BVβ

c (Rn) are the same or different classes.
Example 4.7 of the Koch snowflake domain demonstrates that there is some

information lost in Theorem 3.3. Indeed, if u ∈ L1
c(R

n) has an approximation by
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BV-functions with respect to some exponent α ∈ [0, 1[ as stated at the beginning of
this section in (4.1), then u does not necessarily need to be in BVα

c (Rn). Assuming
a summability condition, this holds though as shown in the proposition above.

Example 4.7. Let ϕ : ∂K → S1 be the inverse of a parametrization of the closed
Koch snowflake curve such that

L−1|x − y| ≤ ∠(ϕ(x), ϕ(y))α ≤ L|x − y|

for all x, y ∈ ∂K, where α = 1
d = log(3)

log(4) is equal to the reciprocal of the Hausdorff
dimension of ∂K and L ≥ 1 is some constant. For k ≥ 1 define fk, gk : S1 → R by

fk(p) :=
k∑

j=1

1
2j(1−α)

cos(2j∠(p)) , gk(p) :=
k∑

j=1

1
2jα

sin(2j∠(p)) .

There is a constant H > 0 such that supk{Lip1−α(fk), Lipα(gk)} ≤ H, see e.g.
[GRO99, Theorem B.6.3], and

∮

S1

fk dgk =
k∑

j=1

∫ 2π

0

1
2j(1−α+α)

cos(2jt)2j cos(2jt) dt

=
k∑

j=1

∫ 2π

0
cos(2jt)2 dt = πk .

The functions fk◦ϕ, gk◦ϕ : ∂K → R are Lipschitz because fk, gk and ϕ are Lipschitz.
Further, for all x, y ∈ ∂K and k ≥ 1,

|fk(ϕ(x)) − fk(ϕ(y))| ≤ H∠(ϕ(x), ϕ(y))1−α ≤ HL
1−α

α |x − y| 1−α

α ,

and similarly |gk(ϕ(x)) − gk(ϕ(y))| ≤ HL|x − y|. Note that 1−α
α = d − 1 and thus

Lipd−1(fk ◦ϕ) ≤ HLd−1 and Lip(gk ◦ϕ) ≤ HL. Using a Whitney type extension, see
e.g. [STE70, Chapter VI Theorem 3], there are Lipschitz extensions Fk, Gk : R2 → R

of fk ◦ ϕ and gk ◦ ϕ respectively with supk{Lipd−1(Fk), Lip(Gk)} < ∞. Now
∫

K
det D(Fk, Gk)x dx =

∮

S1

(Fk ◦ ϕ−1) d(Gk ◦ ϕ−1) =
∮

S1

fk dgk = πk .

The first equation holds because ϕ−1 is Hölder continuous with respect to an ex-
ponent bigger than 1/2 and in terms of (metric) currents it follows from ∂[[K]] =
(ϕ−1)#[[S1]] which is a consequence of [ZUS11b, p. 17]. Thus χK is not in BVd−1

c (R2)
and therefore [[K]] is also not in F2,d(Rn) by Proposition 4.6 above. But χK has a
decomposition as in (4.1) resulting from Theorem 3.3 with ρ = 3 as stated in Ex-
ample 4.3.
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4.4 Hölder functions as fractal currents. Together with Proposition 4.6 the
following lemma shows that Hölder functions are functions of fractional bounded
variation.

Lemma 4.8. Assume that u ∈ Lipα(Rn) for some α ∈ ]0, 1[. Then [[uχB(z,r)]] ∈
Fn,δ(Rn) for z ∈ R

n and r > 0 whenever δ + α > n (note that δ ≥ n − 1 by
assumption). Indeed, if u(x0) = 0 for some x0 ∈ B(z, r), then there is a constant
C = C(n, r) ≥ 0 and a sequence (uk)k≥0 of Lipschitz functions on R

n such that
u =

∑

k≥0 uk uniformly,

‖ukχB(z,r)‖L1 ≤ C Lipα(u)2−kα and V(ukχB(z,r)) ≤ C Lipα(u)2k(1−α) .

Proof. We assume z = 0 and that u(x0) = 0 for some x0 ∈ B := B(0, r). Otherwise
we would decompose u into a function with this property and a constant function.
Because u(x0) = 0 it holds that ‖u|B‖∞ ≤ (2r)α Lipα(u). With the McShane–
Whitney extension theorem we can extend u|B to a function on R

n without changing
Lipα(u|B) and ‖u|B‖∞ and such that the support of the extension is contained in
B′ := B(0, 3r). Indeed define ũ : B ∪ R

n \ B′ → R to be equal to u on B and zero
elsewhere. Note that Lipα(ũ) = Lipα(u|B) and ‖ũ|B‖∞ = ‖u|B‖∞. Then we can
define the extension ū : Rn → R of ũ by

ū(x) := min
{

‖u|B‖∞, max
{

−‖u|B‖∞, inf
y∈B∪Rn\B′

ũ(y) + Lipα(ũ)|x − y|α
}}

.

We thus can assume that the original function u is already zero on R
n\B′ and satisfies

‖u‖∞ ≤ (2r)α Lipα(u). For ε ∈ ]0, 1] let fε : Rn → R be the Lipschitz approximation
of u as defined in Lemma 2.1 with the additional property that ‖fε‖ ≤ ‖u‖∞. It
holds spt(fε) ⊂ B(0, 3r + ε), ‖fε‖∞ ≤ ‖u‖∞ ≤ (2r)α Lipα(u),

‖u − fε‖∞ ≤ Lipα(u)εα and Lip(fε) ≤ Lipα(u)εα−1 .

Define u0 := f1 and uk := f2−k −f2−k−1 for k ≥ 1. Then ‖uk‖∞ ≤ 3 Lipα(u)2−kα and
Lip(uk) ≤ 2 Lipα(u)2k(1−α) for all k ≥ 1. Similarly, Lip(u0) = Lip(f1) ≤ Lipα(u)
and ‖u0‖∞ ≤ (2r)α Lipα(u). If T := [[B]] ∈ Nn(Rn) and f : Rn → R is Lipschitz,
then by [LAN11, Equation (5.1)]

V(fχB) = M(∂[[fχB]]) = M(∂(T�f)) ≤ ‖f‖∞M(∂T ) + Lip(f)M(T )

≤ Cn(‖f‖∞rn−1 + Lip(f)rn) .

Thus there is some C = C(n, r) ≥ 0 such that for all k ≥ 0

V(ukχB) ≤ C Lipα(u)2k(1−α)

and also

‖ukχB‖L1 ≤ C Lipα(u)2−kα .
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Hence if δ > n − α, then
∑

k≥0

M([[ukχB]])2k(n−δ) ≤ C
∑

k≥0

2k(n−α−δ) < ∞ ,

and
∑

k≥0

M(∂[[ukχB]])2k((n−1)−δ) ≤ C
∑

k≥0

2k(n−α−δ) < ∞ .

This proves that [[uχB]] ∈ Fn,δ(Rn) with the decomposition as stated. �
Below is a Lusin type result that can be seen as a partial converse to the lemma

above. Similar to the fact that any function in BV(Rn) has a measurable decom-
position into Lipschitz functions, see e.g. [AFP00, Theorem 5.34], any function of
fractional bounded variation has a measurable decomposition into Hölder functions.

Proposition 4.9. Assume that u ∈ L1
c(R

n) satisfies [[u]] ∈ Fn,δ(Rn) for some
δ ∈ [n − 1, n[. Then there is a constant C = C(n, δ, u) ≥ 0 and an exhaustion
by measurable sets D1 ⊂ D2 ⊂ · · · ⊂ R

n such that L n(Rn \ Dk) ≤ Ck−1 and

|u(x) − u(y)| ≤ Ck|x − y|n−δ

for all x, y ∈ Dk.

Proof. Because [[u]] ∈ Fn,δ(Rn), there is a sequence (Rk)k≥0 in Nn(Rn) such that
[[u]] =

∑

k≥0 Rk as in Definition 4.1. Any Rk ∈ Nn(Rn) can be identified with some
uk ∈ BVc(Rn) by Lemma 2.5. Thus u =

∑

k≥0 uk in L1, and there are constants
V ≥ 0 and ρ > 1 such that

∑

k≥0

‖uk‖L1ρk(n−δ) ≤ V and
∑

k≥0

V(uk)ρk(n−1−δ) ≤ V .

Since
∑

k≥0 ‖uk‖L1 < ∞, a standard argument in measure theory using the mono-
tone convergence theorem shows that the partial sums of

∑
uk also converge point-

wise almost everywhere to u.
For a finite Borel measure μ on R

n the maximal function is defined by

Mμ(x) := sup
r>0

μ(B(x, r))
ωnrn

.

There is a constant cn ≥ 1 such that

L n
({x ∈ R

n : Mμ(x) > s}) ≤ cns−1μ(Rn) , (4.6)

for all s > 0, see e.g. [MAT95, Theorem 2.19], and

|v(x) − v(y)| ≤ cn

(

M‖Dv‖(x) + M‖Dv‖(y)
)|x − y| (4.7)
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holds for all Lebesgue points x, y ∈ R
n of a function v ∈ BV(Rn), see e.g. [LAN11,

Lemma 7.1].
Define Ak,s := {x ∈ R

n : |uk(x)| > sρ−k(n−δ)} and As :=
⋃

k≥0 Ak,s. By the
assumption on the L1-norms,

L n(As) ≤
∑

k≥0

L n(Ak,s) ≤
∑

k≥0

∫

Ak,s

|uk(x)|s−1ρk(n−δ) dx

≤ s−1
∑

k≥0

‖uk‖L1ρk(n−δ) ≤ s−1V .

Similarly, set Bk,s := {x ∈ R
n : M‖Duk‖(x) > sρk(1−n+δ)} and Bs :=

⋃

k≥0 Bk,s. By
the assumption on the variation and (4.6),

cnV ≥ cn

∑

k≥0

‖Duk‖(Rn)ρk(n−1−δ)

≥
∑

k≥0

sL n
({x ∈ R

n : M‖Duk‖(x) > sρk(1−n+δ)})

≥ sL n(Bs) .

Let Ds be the set of all x ∈ R
n \(As ∪Bs) that are Lebesgue points of Rn \(As ∪Bs),

Lebesgue points of uk for all k ≥ 0 and satisfy limk→∞ uk(x) = u(x). With the
estimates above for L n(As) and L n(Bs) it follows L n(Rn \ Ds) ≤ 2cns−1. Given
points x, y ∈ Ds with 0 < |x − y| ≤ 1 let l ≥ 0 be such that ρ−(l+1) < |x − y| ≤ ρ−l.
From (4.7) it follows for α = n − δ,

|u(x) − u(y)| ≤
∑

k≥0

|uk(x) − uk(y)|

≤
∑

k>l

|uk(x)| + |uk(y)| +
∑

0≤k≤l

|uk(x) − uk(y)|

≤ 2s
∑

k>l

ρ−kα + cn

∑

0≤k≤l

(

M‖Duk‖(x) + M‖Duk‖(y)
)|x − y|

≤ 2s
∑

k>l

ρ−kα + cn2s|x − y|
∑

0≤k≤l

ρk(1−α)

=
2s

1 − ρ−α
ρ−(l+1)α + cn2s|x − y|ρ

(l+1)(1−α) − 1
ρ1−α − 1

≤ C ′(n, α, ρ)s
(|x − y|α + |x − y||x − y|α−1

)

≤ 2C ′(n, α, ρ)s|x − y|α .
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If x, y ∈ Ds are such that |x − y| ≥ 1, then similarly

|u(x) − u(y)| ≤
∑

k≥0

|uk(x)| + |uk(y)| ≤ 2s
∑

k≥0

ρ−kα

=
2s

1 − ρ−α
≤ 2s

1 − ρ−α
|x − y|α .

This proves the statement. �
The proposition above contains as a special case that if δ = n − 1, then u as

a function of bounded variation has a measurable partition into Lipschitz pieces.
In this sense Proposition 4.9 is best possible with respect to the condition on the
exponents.

4.5 Smoothing and finite mass. The goal of this subsection is to show that
any metric current T ∈ Dn(Rn) whose boundary has an extension to a current in
Dn−1(Rn, | · |α) for some α < 1 has finite mass, Proposition 4.11. By a result of
De Philippis and Rindler [PR16, Theorem 1.14] it then follows that T = [[u]] for
some u ∈ L1

c(R
n). Proposition 4.11 can be seen as positive evidence that any metric

current in the sense of Lang living in some R
n is a locally flat chain. This problem is

still open even for Dn(Rn) in case n > 1 because these currents are not assumed to
have locally finite mass, and therefore [PR16, Theorem 1.14] does not apply directly.

First we need a smoothing result for currents which is technical but straight
forward. It is for the most part contained in the proof of [ZUS11b, Theorem 4.7].
For the reader’s convenience we repeat the argument here.

Lemma 4.10. Let V := Lipα1(Rn)×· · ·×Lipαn+1(Rn) for exponents satisfying α1 +
· · · + αn+1 > n. Given a Hölder current T : V → R, define for ε > 0

Tε :=
1

ωnεn

∫

B(0,ε)
τx#T dx ,

where τx(y) = x + y. Then Tε : V → R is also a Hölder current and

(1) limε↓0 Tε(f1, . . . , fn+1) = T (f1, . . . , fn+1) for all (f1, . . . , fn+1) ∈ V ,
(2) spt(Tε) ⊂ {x ∈ R

n : dist(x, spt(T )) ≤ ε},
(3) Tε ∈ Nn(Rn).

Proof. For simplicity we assume that α = α1 = · · · = αn+1, i.e. T ∈ Dn(Rn, | · |α),
the general case is proved alike.

The map x �→ τx#T (f) = T (f ◦τx) is continuous for a fixed f = (f1, . . . , fn+1) ∈
Lipα(Rn)n+1 because of the continuity property of T . Hence Tε is a multilinear
functional on Lipα(Rn)n+1 that satisfies the locality axiom by definition. Tε has
compact support because T has, and Tε is continuous as a consequence of Lebesgue’s
dominated convergence theorem. Indeed for fixed L ≥ 0 the Arzelà-Ascoli theorem
and the continuity axiom for metric currents imply that the supremum

sup
{|T (f)| : f ∈ Lipα(Rn)n+1, ‖f1‖∞ ≤ L, Lipα(f i) ≤ L

}

(4.8)
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is attained and therefore finite. Note that because spt(T ) is compact it can be
assumed that each f2, . . . , fn+1 in (4.8) satisfies f i(x0) = 0 for some fixed x0 ∈
spt(T ) and the support of all the functions f1, . . . , fn+1 is contained in some fixed
compact set depending on L and spt(T ). So Tε is indeed a current in Dn(Rn, | · |α).
In order to see that Tε converges weakly to T note that τx#T converges weakly to
T for x → 0. Using Lebesgue’s dominated convergence theorem again on the basis
that (4.8) is finite shows that Tε converges weakly to T . This proves (1). Statement
(2) is obvious.

To check the mass bounds of Tε and ∂Tε seen as currents in Dn(Rn), note first
that

M(Tε) = sup
{

Tε(f, id) : f ∈ Lipc(R
n), ‖f‖∞ ≤ 1

}

, (4.9)
M(∂Tε) ≤ sup

{

n · ∂Tε(f, π̂i) : f ∈ Lipc(R
n), ‖f‖∞ ≤ 1, i = 1, . . . , n

}

, (4.10)

where π̂i(x1, . . . , xn) := (x1, . . . , xi−1, xi+1, . . . , xn). This follows from the chain rule
for currents, see e.g. [LAN11, Theorem 2.5], and the fact that C∞(Rn) is dense in
Lip(Rn) (equipped with the weak topology used in the continuity axiom for metric
currents). If we set

fε(y) :=
1

ωnεn

∫

B(0,ε)
f(y + x) dx

for f ∈ Lipc(Rn) it follows that

T (fε, idRn) =
1

ωnεn

∫

B(0,ε)
T (f ◦ τx, idRn) dx = Tε(f, idRn) , (4.11)

∂T (fε, π̂i) =
1

ωnεn

∫

B(0,ε)
∂T (f ◦ τx, π̂i) dx = ∂Tε(f, π̂i) , (4.12)

for i = 1, . . . , n. This can be seen by approximating the integral by Riemann sums.
Next we estimate Lip(fε) in case ‖f‖∞ ≤ 1. If 0 < |y − z| < 2ε, then By,z,ε :=
B(y+z

2 , ε − |y−z|
2 ) ⊂ B(y, ε) ∩ B(z, ε). Hence

|fε(y) − fε(z)| =
1

ωnεn

∣
∣
∣
∣
∣

∫

B(y,ε)
f(x) dx −

∫

B(z,ε)
f(x) dx

∣
∣
∣
∣
∣

≤ 1
ωnεn

∫

B(y,ε)ΔB(z,ε)
|f(x)| dx

≤ 1
ωnεn

(

L n(B(y, ε)) + L n(B(y, ε)) − 2L n(B(y+z
2 , ε − |y−z|

2 )
)

=
2

ωnεn

(

ωnεn − ωn

(

ε − |y−z|
2

)n)

= 2
(

1 − (

1 − |y−z|
2ε

)n)

≤ n

ε
|y − z| .
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If |y − z| ≥ 2ε, then |fε(y) − fε(z)| ≤ 2 ≤ 1
ε |y − z|. Hence Lip(fε) ≤ n

ε . From
(4.9),(4.10),(4.11) and (4.12) it follows that M(Tε) < ∞ and M(∂Tε) < ∞ with the
same reasoning as used above in order to conclude that the supremum in (4.8) is
achieved. �

The next proposition gives a sufficient condition on a general current in Dn(Rn) to
have finite mass. The crucial part in the proof is an application of [RR96, Theorem 1]
where it is shown that a continuous density can be realized in a weak sense as the
Jacobian determinant of a Hölder map.

Proposition 4.11. Assume that the boundary of T ∈ Dn(Rn) has a continuous
extension to a Hölder current Lipα(Rn)n → R for some α ∈ ]0, 1[, i.e. ∂T extends to
an element in Dn−1(Rn, | · |α). Then M(T ) < ∞.

(Note that in case ∂T �= 0, then α necessarily has to be in the range ]n−1
n , 1[ due

to [ZUS11b, Theorem 4.3]. The assumption in this proposition in particular holds if
T extends to a current in Dn(Rn, | · |α) for some α ∈ ] n

n+1 , 1[.)

Proof. Without loss of generality we can assume that spt(T ) ⊂ int(Q) where Q :=
[0, 1]n and that α > n−1

n . The next statement is a direct consequence of [RR96,
Theorem 1] and the construction of the approximating sequence therein. There are
constants Cα > 0 and 0 < cα < 1

2 with the following property: If f : Q → [1 −
cα, 1 + cα] is a continuous function with

∫

Q f(x) dx = 1, then there is a sequence of
bi-Lipschitz maps ϕk : Q → Q and a homeomorphism ϕ : Q → Q with:

(1) ϕ|∂Q = ϕk|∂Q = id∂Q.
(2) supk{Lipα(ϕk)} ≤ Cα.
(3) limk→∞ ‖ϕk − ϕ‖∞ = 0.
(4) (det Dϕk)k∈N converges to f in L∞(Q).
(5) for all open sets E ⊂ Q,

∫

E
f(x) dx = L n(ϕ(E)) .

Assume that v ∈ BVc(int(Q)). The induced current [[v]] is in Nn(Rn) by Lemma 2.5.
Because of [ZUS11b, Theorem 4.3] and since α > n−1

n , the boundary ∂[[v]] is a normal
current and has an extension to an element of Dn−1(Rn, | · |α). From (2),(3) and (4)
it follows

∫

Q
v(x)f(x) dx = lim

k→∞

∫

Q
v(x) det Dϕk(x) dx = lim

k→∞
∂[[v]](ϕk)

= ∂[[v]](ϕ) . (4.13)

For ε > 0 consider the smoothings Tε ∈ Nn(Rn) of T as defined in Lemma 4.10.
We can assume that ε is small enough such that spt(Tε) ⊂ int(Q). As a normal
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current, Tε = [[uε]] for some uε ∈ BVc(int(Q)) again by Lemma 2.5. Assume further
that f is additionally in Lip(Q, [1, 1 + cα]). Then cf :=

∫

Q f ∈ [1, 1 + cα] and hence

1 − cα ≤ 1
1 + cα

≤ 1
1 + cα

f ≤ 1
cf

f ≤ f ≤ 1 + cα .

Let ϕ : Q → Q be the homeomorphism associated to the density 1
cf

f . From
Lemma 4.10 and (4.13) it follows that

1
cf

T (f, idQ) = lim
ε↓0

1
cf

Tε(f, idQ) = lim
ε↓0

∫

Q
uε(x)

1
cf

f(x) dx

= lim
ε↓0

[[uε]](1, ϕ) = lim
ε↓0

Tε(1, ϕ)

= T (1, ϕ) . (4.14)

Given a function g ∈ Lip(Q, [−1, 1]) define fg := 1 + cα

2 + cα

2 g which is an element
of Lip(Q, [1, 1 + cα]). Equation (4.14) together with cf ≤ 1 + cα implies

sup
{|T (g, idQ)| : g ∈ Lip(Q, [−1, 1])

}

≤ sup
{∣
∣T (1 + 2

cα
, idQ)

∣
∣ + 2

cα
|T (fg, idQ)| : g ∈ Lip(Q, [−1, 1])

}

≤ (

1 + 2
cα

)|T (1, idQ)| + 2
cα

sup
{|T (f, idQ)| : f ∈ Lip(Q, [1, 1 + cα])

}

≤ (

1 + 2
cα

)|∂T (idQ)| + 2(1+cα)
cα

sup
{|∂T (ϕ)| : ‖ϕ‖∞ ≤ √

n, Lipα(ϕ) ≤ Cα

}

.

The supremum in the last line is achieved because of the continuity of ∂T as a
current in Dn−1(Rn, | · |α) and the Arzelà-Ascoli theorem. Hence M(T ) < ∞. �
4.6 Equivalent characterizations. Combined with earlier results we show
here different characterizations for functions of bounded fractional variation. The
theorem below in particular implies Theorem 1.1 stated in the introduction. Note
that Fn,δ(Rn) = Fγ,δ(Rn) for all γ ∈ [n, n + 1[ because the sequence Sk in the
definition of Fγ,δ(Rn) can be neglected due to Dn+1(Rn) = {0}.

Theorem 4.12. Let n ≥ 1 and T ∈ Dn(Rn) be a metric current (or flat chain in the
sense of Whitney [WHI57]) and d ∈ ]n − 1, n[. Consider the following statements:

(1) T ∈ Fn,d(Rn).
(2) T has a continuous extension to a Hölder current

Lipα1(Rn) × · · · × Lipαn+1(Rn) → R ,

whenever α1 + · · · + αn+1 > n and α2 + · · · + αn+1 ≥ d.
(3) ∂T has continuous extensions to Hölder currents

Lipα(Rn)n → R for some α < 1 , and

Lipd−(n−1)(Rn) × Lip(Rn)n−1 → R .
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(4) T = [[u]] for u ∈ BVd−(n−1)
c (Rn).

(5) T = [[u]] for some u ∈ L1
c(R

n) and there is a constant C > 0 and a sequence
(uk)k≥0 in BVc(Rn) such that:
(a)

∑

k≥0 uk = u in L1 and
⋃

k spt(uk) is bounded.

(b) ‖uk‖L1 ≤ C2k(d−n) and V(uk) ≤ C2k(d−(n−1)).

Then (1) ⇒ (2) ⇒ (3) ⇒ (4) ⇒ (5) and (5) implies that T ∈ ⋂

d<δ<n Fn,δ(Rn). In
particular,

⋂

d<δ<n BVδ−(n−1)
c (Rn) =

⋂

d<δ<n Fn,δ(Rn).

Proof. The implication (1) ⇒ (2) is a special case of Theorem 4.5.
(2) ⇒ (3) is obvious.
(3) ⇒ (4): It follows from Proposition 4.11 that the first extension property of (3)
implies M(T ) < ∞. By a result of De Philippis and Rindler [PR16, Theorem 1.14],
the measure ‖T‖ is absolutely continuous with respect to the Lebesgue measure and
hence T = [[u]] for some u ∈ L1

c(R
n). With the second extension property of (3) a

direct application of the Arzelà-Ascoli theorem shows that

sup
∣
∣∂[[u]](F )

∣
∣ < ∞ , (4.15)

where the supremum is taken over all F ∈ Lip(Rn)n with Lipd−(n−1)(F 1|spt(u)) ≤ 1
and Lip(F i|spt(u)) ≤ 1 for i = 2, . . . , n. Note that by translation invariance we can

assume that F (0) = 0. Now (4.15) is equivalent to u ∈ BVd−(n−1)
c (Rn) and this

shows (4).
(4) ⇒ (5) follows from Theorem 3.3 by setting α = d + 1 − n.

The last statement was shown before (4.2). Indeed if u ∈ L1
c(R

n) has a decom-
position

∑

k≥0 uk as in (5), then
∑

k≥0

‖vk‖L12k(n−δ) < ∞ and
∑

k≥0

V(vk)2k((n−1)−δ) < ∞

in case δ ∈ ]d, n[. �
We have already seen in Example 4.7 that the implication (5) ⇒ (4), thus also

(5) ⇒ (1), does not hold in general. Note that (3) is a statement purely about the
multilinear functional T and does not assume that T can be expressed as an integral
over some u ∈ L1

c(R
n), or that T has finite mass for that matter. This is precisely

why we needed Proposition 4.11.
Building on the results obtained for fractal currents earlier, we can collect the

following properties for functions of bounded fractional variation.

Corollary 4.13. The following statements hold:

(1) Let u ∈ Lipα(Rn) for α ∈ ]0, 1]. Then uχB(0,r) ∈ BVβ
c (Rn) for all r > 0

whenever β + α > 1, i.e. β ∈ ]1 − α, 1]. Moreover, if x ∈ B(0, r), then

Vβ((u − u(x))χB(0,r)) ≤ C(n, α, β)rα+β+n−1 Lipα(u|B(0,r)) .
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(2) Let α, β ∈ ]0, 1[. If u ∈ BVβ
c (Rn) and α + β < 1, then there exists C ≥ 0, an

exhaustion by measurable sets D1 ⊂ D2 ⊂ · · · ⊂ R
n such that L n(Rn \ Dk) ≤

Ck−1 and

|u(x) − u(y)| ≤ Ck|x − y|α

for x, y ∈ Dk.
(3) If U ⊂ R

n is bounded and open with dimbox(∂U) ∈ [n − 1, n[, then χU ∈
BVδ−(n−1)

c (Rn) for all δ ∈ ] dimbox(∂U), n].
(4) If u ∈ BVα

c (Rn) for α ∈ [0, 1[ and x ∈ R
n, then uχB(x,r) ∈ ⋂

α<β<1 BVβ
c (Rn)

for almost all r > 0.

Proof. These statements follow directly from Theorem 4.12 and the corresponding
results for fractal currents: (1) from Lemma 4.8, (2) from Proposition 4.9, (3) from
Lemma 4.4 and (4) from Proposition 4.2(4). For the variational bound in (1) note
that if u ∈ Lipα(Rn) with u(x0) = 0, then it follows from the decomposition in
Lemma 4.8 and the bound in Proposition 4.6 that

Vβ(uχB(0,1)) ≤ C(n, α, β) Lipα(u|B(0,1)) . (4.16)

Set v := (uχB(0,r)) ◦ ηr = (u ◦ ηr)χB(0,1), where ηr(x) = rx. By (3.4) it holds that
Vβ(v ◦ ηr−1) = rβ+n−1Vβ(v). Because also Lipα((u|B(0,r)) ◦ ηr) = Lipα(u|B(0,r))rα,
the statement in (1) follows from (4.16). �

It is not clear if (2) and (4) are sharp or if they also hold at the critical exponent.
The statement in (1) can be seen as a higher dimensional generalization of a result

of Young [YOU36]. Indeed if f ∈ Lipα([−r, r]), g ∈ Lipβ([−r, r]) with α+β > 1, then
the Riemann-Stieltjes integral

∫ r
−r f dg exists and there is a constant C = C(α, β) >

0 such that
∣
∣
∣
∣

∫ r

−r
f dg − f(x)(g(r) − g(−r))

∣
∣
∣
∣
≤ Crα+β Lipα(f) Lipβ(g) ,

for all x ∈ [−r, r].

5 Change of Variables and Brouwer Degree

5.1 Mass in �∞. The Banach space �∞ is the collection of all bounded functions
f : N → R equipped with the norm ‖f‖∞ := supi∈N |fi|. The coordinate projections
πi : �∞ → R for i ∈ N are defined by πi(f) := fi. It is easy to check that Lip(πi) = 1
for all i ∈ N.

Lemma 5.1. Let T ∈ Mn(�∞). Then

M(T ) = sup
∑

λ∈Λ

T
(

fλ, πλ1 , . . . , πλn
)

, (5.1)

where the supremum is taken over all finite sets Λ ⊂ N
n and all Lipschitz functions

fλ : �∞ → R with
∑

λ∈Λ |fλ| ≤ 1.
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Proof. Let us denote the right-hand side of (5.1) by M̃(T ). Similar to M also M̃ is
lower semicontinuous under weak convergence. This follows directly from the defini-
tion of M̃(T ) as a supremum. Because all the coordinate projections are 1-Lipschitz
it is clear that M(T ) ≥ M̃(T ). So it suffices to show the other inequality. First
note that �∞ has the metric approximation property. Since spt(T ) is compact this
implies that for each k ∈ N there is a linear projection pk : �∞ → Vk of unit norm
onto a finite dimensional subspace Vk ⊂ �∞ such that ‖x − pk(x)‖∞ ≤ 1

k for all
x ∈ spt(T ). Indeed, following the proof of [PAU14, Proposition 4.10], we can take
pk so that for all i, k ∈ N there is a j ∈ N such that πj = πi ◦ pk. This implies
that M̃(pk#T ) ≤ M̃(T ) in analogy to M(pk#T ) ≤ M(T ) which follows from the
fact that each pk is 1-Lipschitz. Since pk converges to the identity on spt(T ), the
currents pk#T converge weakly to T and the lower semicontinuity of M and M̃ then
imply that limk→∞ M̃(pk#T ) = M̃(T ) and limk→∞ M(pk#T ) = M(T ). Thus if we
can show that M(T ) ≤ M̃(T ) for any current T supported in a finite dimensional
subspace of �∞, then the same identity holds for all currents in �∞. So we will assume
from now on that T is supported in a finite dimensional subspace V of �∞. For such
a V and c ∈ ]0, 1[ there exists k ∈ N such that the truncating map tk : V → �k∞ given
by tk(x) := (x1, . . . , xk) satisfies c‖v‖∞ ≤ ‖tk(v)‖∞ ≤ ‖v‖∞ for all v ∈ V . If this
would not be the case, the local compactness of V would guarantee the existence of
some v ∈ V with ‖v‖∞ = 1 but ‖v‖∞ = limk→∞ ‖tk(v)‖∞ < 1, which is not possible.
Thus we have cnM(T ) ≤ M(tk#T ) ≤ M(T ) and also M̃(tk#T ) ≤ M̃(T ) since either
πi◦tk = πi or πi◦tk = 0 for any k, i. By letting c tend to 1, limk→∞ M(tk#T ) = M(T )
and it thus suffices to show M(T ) ≤ M̃(T ) in case the support of T is contained in
some truncated subspace �k∞.

By a standard smoothing argument in �k∞ we obtain that

M(T ) = sup
∑

λ∈Λ

T
(

fλ, gλ1 , . . . , gλn
)

, (5.2)

where the supremum is taken over all finite sets Λ, all smooth functions fλ, gλ1 ,
. . ., gλn : �k∞ → R for λ ∈ Λ such that

∑

λ∈Λ |fλ| ≤ 1 and Lip(gλi) ≤ 1 for all λ, i.
Locally we can write gλi = c+l+r, where c ∈ R, l : �k∞ → R is linear and 1-Lipschitz
and the Lipschitz constant of the second order term r : �k∞ → R is arbitrary small.
Using these decompositions and taking a Lipschitz partition of unity we can, up to
an arbitrary small error, replace the gλi in (5.2) by linear functions l : �k∞ → R of
operator norm at most 1. Note that the second order terms can be neglected because
of the estimate

∣
∣T

(

μ, h1, . . . , hn
)∣
∣ ≤ M(T )‖μ‖∞ Lip(h1|spt(μ)) · · ·Lip(hn|spt(μ))

for (μ, h1, . . . , hn) ∈ Lip(�∞)n+1 due to Lemma 2.4.
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The dual space of �k∞ is �k
1 and every element l in its closed unit ball can be

written as l =
∑k

i=1 μi(l)πi, where
∑k

i=1 |μi(l)| = ‖l‖ ≤ 1. We infer that

M(T ) = sup
∑

λ∈Λ

T
(

fλ, lλ1 , . . . , lλn
)

= sup
∑

λ∈Λ

k∑

i1,...,in=1

T
(

fλμi1(l
λ1) · · ·μin

(lλn), πi1 , . . . , πin
)

.

Note that for lλ1 , . . . , lλn ∈ �k
1,

k∑

i1,...,in=1

|μi1(l
λ1) · · ·μin

(lλn)| =
n∏

i=1

(|μ1(lλi)| + · · · + |μk(lλi)|)

≤ ‖lλ1‖ · · · ‖lλn‖ ≤ 1 ,

and hence
∑

λ∈Λ

∑k
i1,...,in=1 |fλμi1(lλ1) · · ·μin

(lλn)| ≤ 1. Thus M(T ) ≤ M̃(T ) if the
support of T is contained in �k∞. This proves the lemma. �
5.2 Push forwards into �∞. The discussion just below is with only slight
modifications also contained in [ZUS16]. Assume that T ∈ Nn(X) is a normal current
in some metric space X and let 0 ≤ a < b ≤ 1. As in [WEN04, Theorem 5.2], which
is a small modification of the cone construction in [AK00, Proposition 10.2], the
multilinear functional [[a, b]] × T : Lip([0, 1] × X)n+2 → R given by

([[a, b]] × T )(f, g1, . . . , gn+1)

:=
n+1∑

i=1

(−1)i+1

∫ b

a
T

(

ft∂tg
i
t, g

1
t , . . . , g

i−1
t , gi+1

t , . . . , gn+1
t

)

dt ,

defines an element in Nn+1([0, 1] × X). Out of convenience we put the �1-metric on
the product [0, 1] × X. It is also important to note that [[a, b]] × T ∈ In+1([0, 1] × X)
in case T ∈ In(X). This construction of a product current has similar properties
as the classical one [FED69, Section 4.1.8] and for example satisfies the homotopy
formula

∂([[a, b]] × T ) = ([[b]] × T ) − ([[a]] × T ) − ([[a, b]] × ∂T ) , (5.3)

where the current [[t]] × T in Nn([0, 1] × X) is given by

([[t]] × T )(f, g1, . . . , gn) := T (ft, g
1
t , . . . , g

n
t ) .

From the definition of mass and of [[a, b]] × T it is straight forward to show that

M([[a, b]] × T ) ≤ (n + 1)(b − a)M(T ) . (5.4)

Consider a map ϕ : X → �∞ and assume that the sequence ααα = (αi)i∈N in ]0, 1] and
H ≥ 0 are such that

sup
i∈N

Lipαi(ϕi) ≤ H < ∞ .
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Here ϕi := πi ◦ϕ are the coordinate functions of ϕ. In order to formulate the results
below we set τk(ααα) := infi1,...,ik∈N αi1 + · · ·+αik

for any integer k ≥ 1 and τ0(ααα) := 0.
In this definition we omit the the reference to ααα when it is understood from the
context. The map ϕ̃ : [0, 1] × X → �∞ is defined coordinate-wise by

ϕ̃i
t(x) := inf

y∈X
ϕi(y) + Htαi−1d(x, y) , (5.5)

if t > 0 and ϕ̃i
0(x) := ϕ(x). From Lemma 2.1 it follows that for all i ∈ N and

t ∈ ]0, 1]:

ϕ̃i
t(x) = inf

y∈B(x,t)
ϕi(y) + Htαi−1d(x, y) , (5.6)

Lip(ϕ̃i
t) ≤ Htαi−1 , (5.7)

‖ϕ̃i
t − ϕi‖∞ ≤ Htαi . (5.8)

Using (5.6), we see that for any i and x the function t �→ ϕ̃i
t(x) is Hbaαi−2-Lipschitz

on [a, b] if 0 < a ≤ b ≤ 1. Thus if μ > 1 and 0 < s < 1 are such that μs ≤ 1, then it is
a consequence of (5.7) and the choice of the �1-metric on [0, 1]×X, that each function
ϕ̃i is μHsαi−1-Lipschitz on [s, μs] × X. In particular, ϕ̃ is continuous on ]0, 1] × X.
Together with (5.8) it follows that ϕ̃ is continuous everywhere. From Lemma 5.1,
the product mass estimate (5.4) and the bounds on the Lipschitz constants above it
follows that

M
(

ϕ̃#([[s, μs]] × T )
)

= sup
Λ,f

∑

λ∈Λ

ϕ̃#([[s, μs]] × T )
(

fλ, πλ1 , . . . , πλn+1
)

= sup
Λ,f

∑

λ∈Λ

([[s, μs]] × T )
(

fλ ◦ ϕ̃, ϕ̃λ1 , . . . , ϕ̃λn+1
)

≤ sup
λ1,...,λn+1∈N

M
(

[[s, μs]] × T
)

n+1∏

i=1

Lip
(

ϕ̃λi |[s,μs]×X

)

≤ sup
λ1,...,λn+1∈N

(n + 1)(μ − 1)sM(T )(μH)n+1sαλ1+···+αλn+1−(n+1)

≤ (n + 1)(μ − 1)(μH)n+1M(T )sτn+1−n . (5.9)

Similarly, with (5.7) we can estimate,

M
(

ϕ̃#([[s]] × T )
) ≤ sup

λ1,...,λn∈N

M
(

T
)

n∏

i=1

Lip
(

ϕ̃λi
s )

≤ sup
λ1,...,λn∈N

M(T )Hnsαλ1+···+αλn−n

≤ HnM(T )sτn−n . (5.10)
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Assuming that τn+1 > n and summing up in (5.9) it follows that

M
(

ϕ̃#([[0, μ−k]] × T )
) ≤

∞∑

i=k

M
(

ϕ̃#([[μ−(i+1), μ−i]] × T )
)

≤ (n + 1)(μ − 1)(μH)n+1M(T )
∞∑

i=k

μ(i+1)(n−τn+1)

≤ C(n, τn+1, μ)Hn+1M(T )μk(n−τn+1) . (5.11)

With these estimates we obtain a result about push forwards of normal currents
with respect to Hölder maps.

Proposition 5.2. Let n ≥ 1, T ∈ Nn(X) (or T ∈ In(X) ) and ϕ : X → �∞ be such
that supi Lipαi(ϕi) ≤ H < ∞ for some sequence ααα = (αi)i∈N in ]0, 1] that satisfies
τn+1(ααα) > n. The current ϕ#T := limt↓0 ϕ̃#([[t]] × T ) ∈ Dn(�∞) is well defined as a
weak limit.

Given σ > 0, there is a constant C = C(n, σ) ≥ 0 such that ϕ#T = R0 +
∑

k≥1 Rk + ∂Sk for sequences (Rk)k≥0 in Nn(�∞) and (Sk)k≥1 in Nn+1(�∞) (or in
In(�∞) and In+1(�∞) ) with

M
(

Sk

) ≤ CHn+1M(T )ηk(γ−(n+1)), M
(

∂Sk

) ≤ CHnN(T )ηk(γ−n),

M
(

Rk

) ≤ CHnM(∂T )ρk(δ−n), M
(

∂Rk

) ≤ CHn−1M(∂T )ρk(δ−(n−1)),
M(R0) ≤ HnM(T ) , M(∂R0) ≤ Hn−1M(∂T ),

for k ≥ 1, where γ := n + n−τn

τn+1−τn
, δ := n − 1 + n−1−τn−1

τn−τn−1
, η := στn+1−τn and

ρ := στn−τn−1 . In particular, ϕ#T ∈ Fγ′,δ′(�∞) (or ϕ#T ∈ Fγ′,δ′(�∞) ) if γ′ ∈ ]γ, n+1[
and δ′ ∈ ]δ, n[.

Moreover, if there is some ε ∈ ]0, 1] such that the maps ψ0, ψ1 : X → �∞ satisfy

(A) maxj=0,1 Lipαi(ψi
j) ≤ H for all i ∈ N, and

(B) ‖ψi
0 − ψi

1‖∞ ≤ Hεαi for all i ∈ N,

then ψ1#T − ψ0#T = R + ∂S for some S ∈ Fn+1(�∞) and R ∈ Fn(�∞) that satisfy

M(S) ≤ C ′Hn+1M(T )ετn+1−n and M(R) ≤ C ′HnM(∂T )ετn−(n−1)

for some constant C ′ = C ′(n) ≥ 0.

Proof. Setting μ = σ and s = σ−k in (5.9) and (5.10) we obtain that there is a
constant C1 = C1(n, σ) such that for all k ≥ 1,

M
(

ϕ̃#([[σ−k, σ−k+1]] × T )
) ≤ C1H

n+1M(T )σk(n−τn+1) , (5.12)

M
(

ϕ̃#([[σ−k, σ−k+1]] × ∂T )
) ≤ C1H

nM(∂T )σk(n−1−τn) , (5.13)

M
(

ϕ̃#([[σ−k]] × T )
) ≤ HnM(T )σk(n−τn) . (5.14)
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Define Sk := −ϕ̃#([[σ−k, σ−k+1]] × T ) ∈ Nn+1(�∞) and Rk := −ϕ̃#([[σ−k, σ−k+1]] ×
∂T ) ∈ Nn(�∞) for k ≥ 1. The homotopy formula (5.3) implies

Rk + ∂Sk = ϕ̃#([[σ−k]] × T ) − ϕ̃#([[σ−k+1]] × T ) . (5.15)

With (5.13) and (5.14) this allows to estimate

M(∂Sk) ≤ C2H
nN(T )σk(n−τn)

for some C2 = C2(n, σ) ≥ 0 (note that στn−n ≤ 1). Setting R0 := ϕ̃#([[1]] × T ) it
follows from (5.10) that M(R0) ≤ HnM(T ) and M(∂R0) ≤ Hn−1M(∂T ). Thus

ϕ#T := lim
k→∞

ϕ̃#([[σ−k]] × T ) = R0 +
∑

k≥1

Rk + ∂Sk

is well defined since both
∑

k≥1 Rk and
∑

k≥1 Sk converge in mass by (5.12) and
(5.13) because τn+1 > n and also τn > n − 1. Note that Y := ϕ̃([0, 1] × spt(T )) is
a compact set and (Mm(Y ),M) is a Banach space for all m ≥ 0, see e.g. [LAN11,
Proposition 4.2]. If γ = n + n−τn

τn+1−τn
and η = στn+1−τn as in the statement, then

γ − (n + 1) = n−τn+1

τn+1−τn
and thus for k ≥ 1

M(Sk) ≤ C1H
n+1M(T )σk(n−τn+1) = C1H

n+1M(T )ηk(γ−(n+1)) ,

M(∂Sk) ≤ C2H
nN(T )σk(n−τn) = C2H

nN(T )ηk(γ−n) .

Similar estimates hold for Rk, k ≥ 1, with ρ = στn−τn−1 and δ = n − 1 + n−1−τn−1

τn−τn−1
.

That ϕ#T = limk→∞ ϕ̃#([[ak]] × T ) for any sequence (ak)k≥0 of positive numbers
converging to zero is a direct consequence of (5.9). Indeed, if a ∈ [σ−k, σ−k+1] and
F ∈ Lip(�∞)n+1, then as in (5.15)

∣
∣ϕ̃#([[σ−k]] × T )(F ) − ϕ̃#([[a]] × T )(F )

∣
∣

=
∣
∣∂(ϕ̃#([[σ−k, a]] × T ))(F ) − ϕ̃#([[σ−k, a]] × ∂T )(F )

∣
∣

≤ ∣
∣ϕ̃#([[σ−k, a]] × T )(1, F )| + |ϕ̃#([[σ−k, a]] × ∂T )(F )

∣
∣

≤ C3(n, σ, H, F )
(

M(T )σk(n−τn+1) + M(∂T )σk(n−1−τn)
)

.

The latter term is arbitrarily small for k big.
For the second part consider first two Lipschitz maps γ0, γ1 : X → �∞ and

ζ ∈ ]0, 1] such that ‖γi
1 − γi

0‖∞ ≤ Hζαi and Lip(γi
j) ≤ Hζαi−1 for all i ∈ N and

j = 0, 1. Let Γ : [0, 1] × X → �∞ be the linear homotopy given by Γt(x) := tγ1(x) +
(1 − t)γ0(x). For i ∈ N it is clear that ‖∂tΓi

t‖∞ ≤ Hζαi and Lip(Γi
t) ≤ Hζαi−1. For

each λ = (λ1, . . . , λn+1) ∈ N
n+1 and i ∈ {1, . . . , n + 1} set

Γ̂λ,i
t :=

(

Γλ1
t , . . . ,Γλi−1

t , Γλi+1
t , . . . ,Γλn+1

t

)

.
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Similarly to the estimate in (5.9) it follows from Lemma 5.1 that

M (Γ#([[0, 1]] × T ))

= sup
Λ,f

∑

λ∈Λ

Γ#([[0, 1]] × T )
(

fλ, πλ1 , . . . , πλn+1
)

= sup
Λ,f

∑

λ∈Λ

([[0, 1]] × T )
(

fλ ◦ Γ, Γλ1 , . . . ,Γλn+1
)

= sup
Λ,f

∑

λ∈Λ

n+1∑

i=1

(−1)i+1

∫ 1

0
T

(

fλ ◦ Γt ∂tΓλi

t , Γ̂λ,i
t

)

dt

≤ sup
Λ,f

∑

λ∈Λ

n+1∑

i=1

∫ 1

0
‖∂tΓλi

t ‖∞
(

∏

j �=i

Lip(Γλj

t )
)∫

X
|fλ ◦ Γt| d‖T‖ dt

≤ (n + 1)Hn+1 sup
Λ,f

∑

λ∈Λ

ζαλ1+···+αλn+1−n

∫ 1

0

∫

X
|fλ ◦ Γt| d‖T‖ dt

≤ (n + 1)Hn+1ζτn+1−nM(T ) .

In the last line we used that
∑

λ∈Λ |fλ| ≤ 1 and τn+1 ≤ αλ1 + · · · + αλn+1 for any
λ ∈ Λ. Setting R := Γ#([[0, 1]]×∂T ) ∈ Nn(�∞) and S := Γ#([[0, 1]]×T ) ∈ Nn+1(�∞)
we obtain from the homotopy formula (5.3) that

R + ∂S = γ1#T − γ0#T , (5.16)

M(S) ≤ (n + 1)Hn+1ζτn+1−nM(T ) , (5.17)

M(R) ≤ nHnζτn−(n−1)M(∂T ) . (5.18)

Assume that ψ0, ψ1 : X → �∞ are as in the statement, i.e. there is some ε ∈ ]0, 1] and
H ≥ 0 such that Lipαi(ψi

j) ≤ H for all i ∈ N and j = 0, 1, and ‖ψi
0−ψi

1‖∞ ≤ Hεαi for
all i ∈ N. We set σ = 2 and let k ≥ 0 be the unique integer such that 2−k−1 < ε ≤ 2−k

and define ψ̃0, ψ̃1 : [0, 1] × X → �∞ as in (5.5). Due to Lemma 2.1(6) it holds that
for all i ∈ N,

‖ψ̃i
1,2−k − ψ̃i

0,2−k

∥
∥

∞ ≤ ∥
∥ψi

1 − ψi
0

∥
∥

∞ ≤ Hεαi ≤ H2−kαi . (5.19)

Also, (5.7) implies for all i ∈ N,

max
j=0,1

Lip
(

ψ̃i
j,2−k

) ≤ H2k(1−αi) . (5.20)

We set S̃j,l := −ψ̃j#([[2−l, 2−l+1]] × T ) ∈ Nn+1(�∞), R̃j,l := −ψ̃j#([[2−l, 2−l+1]] ×
∂T ) ∈ Nn(�∞) for l ≥ 1, j = 0, 1, and R′ + ∂S′ = ψ̃1,2−k#T − ψ̃0,2−k#T for R′ and
S′ as in (5.16). Equation (5.15) implies that
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ψ1#T − ψ0#T = ψ̃1,2−k#T − ψ̃0,2−k#T +
∑

l>k

(R̃1,l − R̃0,l) + ∂(S̃1,l − S̃0,l)

= R′ +
∑

l>k

(R̃1,l − R̃0,l) + ∂

(

S′ +
∑

l>k

(S̃1,l − S̃0,l)
)

.

Hence ψ1#T − ψ0#T = R + ∂S, where S ∈ Fn+1(�∞) and R ∈ Fn(�∞) satisfy

M(S) ≤ C4H
n+1M(T )ετn+1−n and M(R) ≤ C4H

nM(T )ετn−(n−1)

for some C4 = C4(n) ≥ 0. Here the mass bounds for R′ and S′ are obtained by
applying the bounds (5.17) and (5.18) using (5.19) and (5.20). The mass bounds for
the sums are obtained by (5.12) and (5.13) for σ = 2. Note that this also shows that
ϕ#T does not depend on the approximating map ϕ̃ that we used in the definition
of ϕ#T . �

The next proposition treats push forwards of boundaries of fractal currents with
respect to Hölder maps.

Proposition 5.3. Let n ≥ 1, T ∈ Dn(X) and ϕ : X → �∞. Assume that there are
d ∈ ]n − 1, n[, V, H ≥ 0, σ > 1 and sequences (Sk)k≥0 in Nn(X) (or In(X) ) and
ααα = (αi)i∈N in ]0, 1] such that:

(1) T =
∑

k≥0 Sk weakly.
(2) For all k ≥ 0,

M(Sk) ≤ V σk(d−n) , M(∂Sk) ≤ V σk(d−(n−1)) .

(3) supi∈N Lipαi(ϕi) ≤ H and τn(ααα) > d.

Then ϕ#∂T := limk→∞ ϕ#∂
∑k

l=0 Sl ∈ Dn−1(�∞) is well defined as a weak limit.
Indeed there is a sequence (S̃k)k≥0 in Nn(�∞) (or In(�∞) ) and a constant C =
C(n, d, σ) such that ϕ#∂T = ∂

∑

k≥0 S̃k, where

M
(

S̃k

) ≤ CV Hnηk(d′−n) , M
(

∂S̃k

) ≤ CV Hn−1ηk(d′−(n−1)) ,

for the parameters η := στn−τn−1 > 1 and d′ := n − 1 + d−τn−1

τn−τn−1
. Note that d′ = d

α in
case α = αi for all i ∈ N.

Moreover, if there is some ε ∈ ]0, 1] such that the maps ψ0, ψ1 : X → �∞ satisfy

(A) maxj=0,1 Lipαi(ψi
j) ≤ H for all i ∈ N, and

(B) ‖ψi
0 − ψi

1‖∞ ≤ Hεαi for all i ∈ N,

then ψ1#∂T − ψ0#∂T = ∂S where S ∈ Fn(�∞) with

M(S) ≤ C ′V Hnεd−τn

for some constant C ′ = C ′(n, d, τn, σ) ≥ 0.
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Proof. First note that for S′
k :=

∑k
l=0 Sl, k ≥ 0, it holds that

M(∂S′
k) ≤

k∑

l=0

V σl(d−(n−1)) ≤ C1V σk(d−(n−1)) (5.21)

for some C1 = C1(n, d, σ) ≥ 0. From (5.10) it follows that for all k ≥ 0,

M
(

ϕ̃#([[σ−k]] × Sk+1)
) ≤ HnM(Sk+1)σk(n−τn)

≤ V Hnσk((n−τn)+d−n)

= V Hnσk(d−τn) , (5.22)

and similarly (5.21) implies that

M
(

ϕ̃#([[σ−k]] × ∂S′
k)

) ≤ Hn−1M(∂S′
k)σ

k(n−1−τn−1)

≤ C1V Hn−1σk((n−1−τn−1)+d−(n−1))

= C1V Hn−1σk(d−τn−1) . (5.23)

From (5.9), with s = σ−k and μ = σ, it follows that

M
(

ϕ̃#([[σ−k, σ−k+1]] × ∂S′
k)

) ≤ C2H
nM(∂S′

k)σ
k(n−1−τn)

≤ C2C1V Hnσk((n−1−τn)+d−(n−1))

= C2C1V Hnσk(d−τn) , (5.24)

for some constant C2 = C2(n, σ). For all k ≥ 0 we define the currents

S1
k := ϕ̃#

(

[[σ−k]] × Sk+1

) ∈ Nn(�∞) , (5.25)

S2
k+1 := ϕ̃#

(

[[σ−k−1, σ−k]] × ∂S′
k+1

) ∈ Nn(�∞) . (5.26)

With the homotopy formula (5.3) the boundary of the difference is

∂
(

S1
k − S2

k+1

)

= ϕ̃#

(

[[σ−k]] × ∂Sk+1 + [[σ−k−1]] × ∂S′
k+1 − [[σ−k]] × ∂S′

k+1

)

= ϕ̃#

(

[[σ−k]] × ∂(S′
k+1 − S′

k) + [[σ−k−1]] × ∂S′
k+1 − [[σ−k]] × ∂S′

k+1

)

= ϕ̃#

(

[[σ−k−1]] × ∂S′
k+1

) − ϕ̃#

(

[[σ−k]] × ∂S′
k

)

.

The mass estimates (5.22), (5.23) and (5.24) then imply that there is some constant
C3 = C3(n, d, σ) ≥ 0 such that for all k ≥ 0,

M
(

S1
k − S2

k+1

) ≤ C3V Hnσk(d−τn) , (5.27)

M
(

∂(S1
k − S2

k+1)
) ≤ C3V Hn−1σk(d−τn−1) . (5.28)

Since τn > d, the sum
∑

k≥0(S
1
k − S2

k+1) converges in mass and thus

ϕ#∂T := lim
k→∞

ϕ̃#

(

[[σ−k]] × ∂S′
k

)

= ϕ̃#([[1]] × ∂S0) + ∂
∑

k≥0

S1
k − S2

k+1 (5.29)
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is well defined as a weak limit. Note that with (5.11) and (5.21)

M
(

ϕ̃#([[0, σ−k]] × ∂S′
k)

) ≤ C5.11(n − 1, τn, σ)HnM(∂S′
k)σ

k((n−1)−τn)

≤ C5.11HnC1V σk(d−τn) , (5.30)

and thus limk→∞ ϕ#∂S′
k = limk→∞ ϕ̃#

(

[[σ−k]] × ∂S′
k

)

= ϕ#∂T by Proposition 5.2.
Because of (5.10) the mass bounds M(ϕ̃#([[1]] × S0)) ≤ V Hn and M(∂ϕ̃#([[1]] ×
S0)) ≤ V Hn−1 hold. Finally, if η = στn−τn−1 and d′ := n−1+ d−τn−1

τn−τn−1
= n+ d−τn

τn−τn−1

as in the statement, then ηk(d′−n) = σk(d−τn) and ηk(d′−(n−1)) = σk(d−τn−1). Together
with (5.27), (5.28) and (5.29) this concludes the decomposition result for ϕ#∂T .

In order to see that this push forward does not depend on the approximating
sequence let ψ0, ψ1 and ε ∈ ]0, 1] be as in the statement. Consider k ≥ 0 such that
σ−k−1 < ε ≤ σ−k. Let ψ̃0, ψ̃1 : [0, 1] × X → �∞ be as defined in (5.5). For 0 ≤ l ≤ k
we use the second part of Proposition 5.2 to find that ψ1#∂S′

k − ψ0#∂S′
k = ∂S′ for

some S′ ∈ Fn(�∞) with mass bound M(S′) ≤ C4(n)HnM(∂S′
k)ε

τn−(n−1). Due to
(5.21)

M(S′) ≤ C4H
nM(∂S′

k)σ
−k(τn−(n−1))

≤ C5V Hnσk(d−(n−1))σk((n−1)−τn)

= C5V Hnσk(d−τn) , (5.31)

for some C5 = C5(n, d, σ) ≥ 0. We define S1
j,l and S2

j,l+1 for l ≥ 0 and j = 0, 1 as in
(5.25) and (5.26). For j = 0, 1 it holds that

ψj#∂T − ψ̃j#

(

[[σ−k]] × ∂S′
k

)

=
∑

l≥k

ψ̃j#

(

[[σ−l−1]] × ∂S′
l+1

) − ψ̃j#

(

[[σ−l]] × ∂S′
l

)

=
∑

l≥k

∂
(

S1
j,l − S2

j,l+1

)

.

With (5.27), (5.30) and (5.31) we obtain that ψ1#∂T − ψ0#∂T = ∂S for some
S ∈ Fn(�∞) with M(S) ≤ C6(n, d, τn, σ)V Hnεd−τn . �

This proposition remains true for d = n − 1 in case we assume that T = S0 ∈
Nn(X) since the only place we actually assume that d > n − 1 is (5.21).

Note that although the two propositions above are formulated for push forwards
into �∞ it also covers finite dimensional Euclidean targets as these are bi-Lipschitz
equivalent to some �m∞. Moreover, since any separable metric space can be isomet-
rically embedded into �∞ using distance functions, these results also treat push
forwards for Hölder maps in Lipα(X, Y ) with the appropriate restrictions on α.

Together with Theorem 4.12 we can show that the exponents obtained in Propo-
sitions 5.2 and 5.3 are best possible (up to the critical exponent).

Example 5.4. Fix some integer n ≥ 2 and let (ak)k∈N be some decreasing sequence
of positive numbers such that

∑

k≥1 an−1
k < ∞ but

∑

k≥1 an−1−ε
k = ∞ for all ε > 0.
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For k ∈ N we define the cubes Qk := [0, ak]n. Because of the summability assumption
on (ak)k∈N, the current T :=

∑

k≥1[[Qk]] is an element of In(Rn), i.e. T has finite
boundary mass. Let 1 ≥ α1 ≥ · · · ≥ αn > 0 be such that α1 + · · · + αn > n − 1. In
this case τn = τn−1 + α1. Consider the map ϕ : Rn → R

n given by ϕ(x1, . . . , xn) :=
(xα1

1 , . . . , xαn
n ). Proposition 5.2 (or also Proposition 5.3) implies that

ϕ#∂T =
∑

k≥1

ϕ#∂[[Qn]] =
∑

k≥1

∂[[[0, aα1
k ] × · · · × [0, aαn

k ]]] .

By Proposition 5.3 there exists S ∈ Dn(Rn) with ∂S = ϕ#∂T . The particular
decomposition of S in the statement of Proposition 5.3 shows that S ∈ Fn,δ(Rn)
for all δ ∈ ]d′, n[, where d′ = n − 1 + d−τn−1

τn−τn−1
. Note that by the constancy theorem

for currents, S is the unique filling of ϕ#∂T . According to Theorem 4.12, since S
belongs to

⋂

d′<δ<n Fn,δ(Rn), the current ∂S = ϕ#∂T has an extension to a Hölder
current on Lipα(Rn) × Lip(Rn)n−1 in case α ∈ ]d′ − (n − 1), 1]. On the other side if
ϕ#∂T has an extension to a Hölder current on Lipα(Rn) × Lip(Rn)n−1, then

ϕ#∂T (xα
1 , x2, . . . , xn) =

∑

k≥1

∂ϕ#[[Qk]](xα
1 , x2, . . . , xn)

=
∑

k≥1

[[Qk]](1, ϕα
1 , ϕ2, . . . , ϕn)

=
∑

k≥1

aαα1+α2+···+αn

k

=
∑

k≥1

a
α(τn−τn−1)+τn−1

k .

This sum is finite only if α(τn − τn−1) + τn−1 ≥ n − 1. Thus the extension property
can only hold for α ∈ [n−1−τn−1

τn−τn−1
, 1] and this agrees, except for the critical exponent,

with the range for α obtained above. Thus d′ as obtained in Proposition 5.3 and δ
in Proposition 5.2 are optimal.

5.3 Push forwards into Euclidean spaces. In this subsections we consider
push forwards of n-dimensional currents living in a general metric space into R

n. In
the classical setting this is described by the generalized change of variables formula:
If u ∈ L1

c(R
n) and ϕ ∈ Lip(Rn,Rn), then ϕ#[[u]] = [[v]] for the function v ∈ L1

c(R
n)

given by

v(y) =
∑

x∈ϕ−1(y)

u(x) sign(det Dϕx) , (5.32)

for almost all y ∈ R
n, see e.g. [LAN11, Lemma 3.7]. Proposition 5.3 together with

the constancy theorem for currents shows that ϕ#[[u]] = [[v]] can be extended to a
certain class of Hölder maps ϕ in case u is nice enough. We formulate this here first
for arbitrary domains X.
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Theorem 5.5. Let n ≥ 1, d ∈ [n−1, n[ and T ∈ Dn(X) for which there is a sequence
(Rk)k≥0 in Nn(X) (or in In(X) ) such that

(1) T =
∑

k≥0 Rk weakly.
(2) There are V ≥ 0 and ρ > 1 such that for all k ≥ 0,

M(Rk) ≤ V ρk(d−n) , M(∂Rk) ≤ V ρk(d−(n−1)) .

If d = n − 1 we assume T = R0 ∈ Nn(X). Given ϕ : X → R
n and α1, . . . , αn ∈ ]0, 1]

with maxi Lipαi(ϕi) ≤ H < ∞ and τn := α1 + · · · + αn > d, the current ϕ#T is
well defined by approximation and is equal to [[vT,ϕ]] for some vT,ϕ ∈ L1

c(R
n) (or

vT,ϕ ∈ L1
c(R

n,Z) ). Indeed, if there is some ε ∈ ]0, 1] and maps ϕ, ψ : X → R
n that

satisfy

(A) maxi{Lipαi(ϕi), Lipαi(ψi)} ≤ H, and
(B) ‖ϕi − ψi‖∞ ≤ Hεαi for all i ∈ {1, . . . , n},
then

‖vT,ϕ − vT,ψ‖L1 ≤ C ′V Hnεd−τn ,

for some constant C ′ = C ′(n, d, τn, σ) ≥ 0.
Moreover, ∂ϕ#T = ϕ#∂T , where the right-hand side is defined in Proposition 5.3.

Further, there are vk ∈ BVc(Rn) with:

(i) vT,ϕ =
∑

k≥0 vk in L1 and such that
⋃

k spt(vk) is bounded.
(ii) There is some C = C(n, d, σ) ≥ 0 such that for all k ≥ 0,

‖vk‖L1 ≤ CV Hnηk(d′−n) , V(vk) ≤ CV Hn−1ηk(d′−(n−1)) , (5.33)

where η := στn−τn−1 > 1, d′ := n − 1 + d−τn−1

τn−τn−1
= n + d−τn

τn−τn−1
and τn−1 :=

τn − maxi αi.

Note that if α = αi for all i, then η = σα and d′ = d
α .

Proof. It follows from Proposition 5.3, that ϕ#∂T = ∂R for some R ∈ Fn(Rn)
(or R ∈ Fn(Rn)) is well defined by approximation. Because R is in the M-closure
of Nn(Rn), respectively, the L1-closure of BVc(Rn) (or BVc(Rn) ∩ L1(Rn,Z)) by
Lemma 2.5, it follows that R = [[vT,ϕ]] for some vT,ϕ ∈ L1

c(R
n) (or L1(Rn,Z)). The

constancy theorem for currents implies that there can only be one such function in
L1

c(R
n).

Let ψ : X → R
n be as in the statement. By the second part of Proposition 5.3

it follows that there is some S ∈ Fn(Rn) with ∂S = ϕ#∂T − ψ#∂T and M(S) ≤
C ′(n, d, τn, ρ)V Hnεd−τn . Since Fn(Rn) = L1

c(R
n) by [FED69, Section 4.1.18] and

[LAN11, Theorem 5.5]. It follows that S = [[v]] for some v ∈ L1
c(R

n) and v =
vT,ϕ − vT,ψ almost everywhere by the constancy theorem for currents. Thus ‖vT,ϕ −
vT,ψ‖L1 ≤ C ′(n, d, τn, ρ)V Hnεd−τn . The rest of the statements follow directly from
Proposition 5.3. �
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It is possible to improve the bounds in (5.33). Take individual approximations in
(5.5), where H is replaced by Lipαi(ϕi) in each coordinate i. The proofs of Propo-
sitions 5.2 and 5.3 work unchanged replacing the occurrences of Hn and Hn−1 by
∏n

i=1 Lipαi(ϕi) and maxj
∏

i�=j Lipαi(ϕi) respectively. This is so because already in
(5.9), (5.10) and (5.11) this change can be made.

If we consider X = R
n, then the theorem above shows that the function

y �→
∑

x∈ϕ−1
ε (y)

u(x) sign(det Dϕε(x))

converges in L1 if ϕ is an appropriate Hölder map, u is nice enough and ϕε are good
Lipschitz approximations of ϕ. One can take for example coordinatewise smoothing
ϕi

ε = ρε∗ϕi, where ρε is a smooth approximation of the identity. It is a simple exercise
to check that Lipαi(ϕε) ≤ Lipαi(ϕ) and that limε↓0 ϕε = ϕ locally uniformly.

Together with Proposition 3.5 we obtain the following integrability result for
push forwards into R

n. If T and ϕ are as in the theorem above, then ϕ#T = [[vT,ϕ]]
for some vT,ϕ ∈ L1

c(R
n) and ϕ ∈ Lp

c(Rn) whenever

1 ≤ p <
n(τn − τn−1)

(n − 1)τn − nτn−1 + d
. (5.34)

In case α = α1 = · · · = αn, then τn = αn, τn−1 = α(n − 1) and the integrability
range is 1 ≤ p < αn

d . This agrees with the values for p that we obtain in Theorems 5.8
and 5.9 in the situation X = R

n but it does not in case the exponents are different.
This suggests that (5.34) is not optimal for general domains X.

In the setting of the Brouwer degree it is conjectured in [LI17] that the integra-
bility range is 1 ≤ p < τn

d and hence shouldn’t depend on τn−1. We will prove this in
Theorem 5.8 below. The proof relies on a dyadic cube decomposition of the domain
and affine approximations of the functions. It is therefore not obvious how to adapt
this to general ambient spaces.

5.4 Brouwer degree functions as currents. We start with a very short re-
view of the Brouwer degree. All the results about the Brouwer degree we will use
can be found for example in [OR09]. Assume that V ⊂ R

n is a bounded open set
and ϕ : cl(V ) → R

n is a continuous map. For any point q ∈ R
n \ϕ(∂V ) the Brouwer

degree deg (ϕ, V, q) ∈ Z is defined. In case C ⊂ R
n is compact and cl(int(C)) = C

we also use deg (ϕ, C, q) instead of deg (ϕ, int(C), q). If ϕ is a smooth map and
q ∈ R

n \ ϕ(∂V ) is a regular value, then ϕ−1(q) is a finite set and

deg (ϕ, V, q) =
∑

p∈ϕ−1(q)∩V

sign(det(Dϕp)) .

Here, as in (5.32), we agree that deg (ϕ, V, q) = 0 in case ϕ−1(q) ∩ V is empty.
Additionally, the function q �→ deg (ϕ, V, q) is locally constant on the domain of
definition and is homotopy invariant in the sense that if H : [0, 1] × cl(V ) → R

n is
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a continuous map and η : [0, 1] → R
n is a continuous path such that η(t) /∈ Ht(∂V )

for 0 ≤ t ≤ 1, then deg (Ht, V, η(t)) is independent of t, see e.g. [OR09, Chapter IV,
Proposition 2.4]. Further, if ϕ, ψ : cl(V ) → R

n are two continuous extensions of a
boundary map γ : ∂V → R

n and q /∈ γ(∂V ), then

deg (ϕ, V, q) = deg (ψ, V, q) ,

see e.g. [OR09, Chapter IV, Proposition 2.6]. So, the degree is independent of the
particular extension of γ.

The following integrability result is a slight generalization of [ZUS11a, Proposi-
tion 4.6]. For the sake of completeness we add a proof here. It sets the link between
Brouwer degree functions and push forwards of currents. For Lipschitz maps this
result is stated in [FED69, Corollary 4.1.26].

Lemma 5.6. Let U ⊂ R
n be a bounded open set and ϕ : Rn → R

n be a map such
that ϕi ∈ Lipαi(∂U) for exponents α1, . . . , αn ∈ ]0, 1]. If χU ∈ BVd−(n−1)(Rn) for
some d ∈ [n − 1, n[ and τn := α1 + · · · + αn > d, then

(ϕ#[[U ]])�(Rn \ ϕ(∂U)) = [[deg (ϕ, U, ·)]] .
If additionally L n(ϕ(∂U)) = 0, then deg (ϕ, U, ·) ∈ L1

c(R
n) and

ϕ#[[U ]] = [[deg (ϕ, U, ·)]] .

If dimbox(∂U) < τn, then L n(ϕ(∂U)) = 0 and χU ∈ BVδ−(n−1)
c (Rn) for all δ ∈

] dimbox(∂U), τn[.

Proof. First assume that ϕ : R
n → R

n is a smooth map. The density function
v ∈ L1(Rn,Z) of ϕ#[[U ]] is given by

v(y) =
∑

x∈ϕ−1(y)∩U

sign(det(Dϕx))

as stated in (5.32). This agrees with deg (ϕ, U, y) for almost all y ∈ R
n \ ϕ(∂U) by

Sard’s theorem. Thus (ϕ#[[U ]])�(Rn \ ϕ(∂U)) = [[deg (ϕ, U, ·)]].
For a given Hölder map ϕ : Rn → R

n as in the statement the current ϕ#[[U ]]
is well defined as a consequence of Theorems 3.3 and 5.5. Consider coordinate-
wise smoothings ϕi

k := ρ1/k ∗ ϕi, k ∈ N, for some smooth approximation of the
identity ρε : R

n → R, ε > 0. This approximating sequence has a uniform bound
supi,k Lipαi(ϕi

k) < ∞ on the Hölder constants and ϕk converges to ϕ uniformly on
U . Let vk, v ∈ L1

c(R
n) be given by [[vk]] = ϕk#[[U ]] and [[v]] = ϕ#[[U ]]. It follows from

Theorem 5.5 that vk converges to v in L1. Let y /∈ ϕ(∂U) and r > 0 such that
B(y, r) ⊂ R

n \ ϕ(∂U). Because ϕk converges uniformly to ϕ, the ball B(y, r) does
not intersect ϕk(∂U) for large enough k and

deg (ϕk, U, z) = deg (ϕ, U, z) = deg (ϕ, U, y) (5.35)
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for all z ∈ B(y, r). For such an integer k, deg (ϕk, U, z) = vk(z) for almost all
z ∈ B(y, r) by the preparation for smooth maps above. By the constancy theorem
for currents [[v]]�B(y, r) = n[[B(y, r)]] for some n ∈ R (note that spt(∂[[v]]) ⊂ ϕ(∂U)).
With (5.35) the L1-convergence of vk to v implies

0 = lim
k→∞

∫

B(y,r)
|vk(z) − v(z)| dz = L n(B(y, r))(deg (ϕ, U, y) − n) .

Thus n = deg (ϕ, U, z) for almost all z ∈ B(y, r). By exhaustion [[v]]�(Rn \ϕ(∂U)) =
[[deg (ϕ, U, ·)]].

For the final part, fix some δ ∈ ] dimbox(∂U), τn[. Then [[U ]] ∈ Fn,δ(Rn) by
Lemma 4.4 and hence χU ∈ BVδ−(n−1)

c (Rn) by Theorem 4.12. Since dimHaus(∂U) ≤
dimbox(∂U) it holds that H δ(∂U) < ∞ (it is equal zero actually). Hence there is a
C > 0 such that for all small ε ∈ ]0, 1] there is a countable cover

⋃

i∈N
Ai ⊃ ∂U with

di := diam(Ai) ≤ ε and
∑

i∈N
dδ

i ≤ C. Set H := maxi Lipαi(ϕi). Each image ϕ(Ai)
is contained in a box that is a translation of [0, 2Hdα1

i ] × · · · × [0, 2Hdαn

i ]. Hence,

L n(ϕ(∂U)) ≤ 2nHn
∑

i∈N

dα1
i · · · dαn

i ≤ 2nHnετn−δ
∑

i∈N

dδ
i ≤ 2nHnCετn−δ .

Since τn > δ this converges to 0 for ε → 0. Hence ϕ(∂U) is a set of Lebesgue measure
zero. �
5.5 Higher integrability of Brouwer degree functions. Lemma 5.6 shows
that the degree function for certain Hölder maps is integrable. Discussing higher
integrability, we first treat the special case where the domain is a cube. Although the
proof uses quite a bit of notation, the basic idea is rather simple. The original map
is approximated by piecewise affine maps on successive simplicial decompositions
of the cube. The Lp-norm of these approximations are easy to estimate because
‖ deg (A, Δ, ·) ‖Lp = L n(A(Δ))

1
p in case A : Rn → R

n is affine and Δ ⊂ R
n is a

simplex.

Lemma 5.7. Let n ≥ 1, Q ⊂ R
n be a cube and ϕ : Q → R

n be a map such
that ϕi ∈ Lipαi(Q) for i = 1, . . . , n and some exponents αi ∈ ]0, 1] that satisfy
τn = α1 + · · · + αn > n − 1. Then the degree function deg (ϕ, Q, ·) is in Lp

c(Rn) in
case 1 ≤ p < τn

n−1 for n > 1 and 1 ≤ p ≤ ∞ for n = 1. Indeed (assuming p < ∞ in
case n = 1),

‖ deg (ϕ, Q, ·) ‖Lp ≤ C(n, τn, p)L n(Q)
τn
np Lipα1(ϕ1)

1
p · · ·Lipαn(ϕn)

1
p .

Proof. We abbreviate Hi := Lipαi(ϕi) for i = 1, . . . , n and H := H1 · · ·Hn. The
statement for n = 1 is trivial:

‖ deg (ϕ, Q, ·) ‖Lp ≤
(∫

ϕ(Q)
1p

) 1
p

≤ diam(ϕ(Q))
1
p ≤ diam(Q)

α1
p Lipα1(ϕ1)

1
p .
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Q

F ′

F ′
1

F

Δ∈ 1F,

Figure 1: Depicted are some sets used in the construction of the piecewise affine approxi-
mation.

So we may assume that n ≥ 2. We prove the lemma for the cube Q = [0, 1]n, and
then a scaling argument will imply the statement for cubes of all volumes. For each
integer k ≥ 0 let Pk := {2−k(p + Q) : p ∈ Z

n} be the dyadic decomposition of
R

n to the scale 2−k. For any permutation σ ∈ Sn there is an associated simplex
{x ∈ Q : 0 ≤ xσ(1) ≤ · · · ≤ xσ(n) ≤ 1} in Q. The collection SQ of these n! simplices
defines a simplicial complex with underlying set Q. If k ≥ 0 and R = 2−k(p+Q) ∈ Pk

set SR := {2−k(p+Δ) : Δ ∈ SQ} and Sk :=
⋃

R∈Pk,R⊂Q SR. As before, Sk defines
a simplicial complex with underlying set Q. For any integer k ≥ 1 and any of the 2n
faces F of Q we let SF,k be the union over all SR where R ∈ Pk is such that F ∩R
is a face of R and int(R) ∩ int(Q) = ∅. Note that the underlying set Fk :=

⋃
SF,k

is the set of points {x + tv ∈ R
n : x ∈ F, t ∈ [0, 2−k]}, where v is the outward unit

normal to F , see Figure 1.
For k ≥ 0 we define ϕk : Q → R

n as the map with ϕk(x) = ϕ(x) for any vertex x
of a simplex Δ ∈ Sk and for other points in this simplex ϕk is the affine extension. If
x and y are different vertices of Δ, then |x − y| ≥ 2−k and hence for all i = 1, . . . , n,

∣
∣ϕi

k(x) − ϕi
k(y)

∣
∣ =

∣
∣ϕi(x) − ϕi(y)

∣
∣≤ Hi|x − y|αi ≤ Hi|x − y|αi−1|x − y|

≤ Hi2k(1−αi)|x − y| .

This shows that Lip(ϕi
k|Δ) ≤ C1Hi2k(1−αi) for any k,i and Δ ∈ Sk, where C1 is some

constant depending only on n. It is clear that ϕk converges uniformly to ϕ. Similarly,
for k ≥ 1 we define γF,k : Fk → R

n as follows: If x is a vertex of some Δ ∈ SF,k

that is contained in F , then γF,k(x) := ϕk(x). If x is a vertex of some Δ ∈ SF,k

that is not in F , i.e. it has distance 2−k from F , then γF,k(x) := ϕk−1(ρ(x)), where
ρ : Fk → F is the orthogonal projection. On the remaining points of such a Δ,
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γF,k is the affine extension. As before, Lip(γi
F,k|Δ) ≤ C2Hi2k(1−αi) for any F ,k,i and

Δ ∈ SF,k, where C2 ≥ C1 is some constant depending only on n. For all k ≥ 1 and
almost all q ∈ R

n it follows from the additivity of the Brouwer degree that

deg (ϕk−1, Q, q) +
∑

F⊂Q

deg (γF,k, Fk, q) = deg (ϕk, Q, q) . (5.36)

Since Δ ∈ SF,k has volume 1
n!2

−kn, it follows that γF,k(Δ) is a simplex with volume
estimate

L n(γF,k(Δ)) ≤ 1
n!2

−kn Lip(γ1
F,k|Δ) · · ·Lip(γn

F,k|Δ)

≤ 1
n!C

n
2 H2−kn2k(1−α1) · · · 2k(1−αn)

≤ C3H2−kτn ,

where C3 := 1
n!C

n
2 . Since (γF,k|Δ)−1(q) consists of at most one point for almost every

q ∈ R
n, it holds that for all p ∈ [1, ∞[,

‖ deg (γF,k, Δ, ·) ‖Lp = L n(γF,k(Δ))
1
p ≤ C

1
p

3 H
1
p 2−k τn

p .

The number of faces F of Q is 2n, the corresponding set Fk consists of 2(n−1)k cubes
in Pk and each such cube is composed of n! simplices. Hence

∑

F⊂Q

‖ deg (γF,k, Fk, ·) ‖Lp ≤ C4H
1
p 2k(n−1− τn

p
), (5.37)

where C4 := n!2nC
1
p

3 . Similarly we obtain the estimate ‖ deg (ϕ0, Q, ·) ‖Lp ≤ C4H
1
p .

Assuming 1 ≤ p < τn

n−1 it follows from (5.36) and (5.37) that

‖ deg (ϕ0, Q, ·) ‖Lp +
∑

k≥1

‖ deg (ϕk, Q, ·) − deg (ϕk−1, Q, ·) ‖Lp

≤ ‖ deg (ϕ0, Q, ·) ‖Lp +
∑

k≥1

∑

F⊂Q

‖ deg (γF,k, Fk, ·) ‖Lp

≤ C5H
1
p ,

for some constant C5 = C5(n, p, τn) ≥ 0. So, (deg (ϕk, Q, ·))k∈N is a Cauchy-sequence
in Lp(Rn) and hence converges to some u ∈ Lp(Rn). Because ϕ(∂Q) is a set of
measure zero by Lemma 5.6 and (ϕk)k∈N converges uniformly to ϕ, the sequence
(deg (ϕk, Q, ·))k∈N converges pointwise almost everywhere to deg (ϕ, Q, ·). Hence u =
deg (ϕ, Q, ·) ∈ Lp(Rn) with a norm estimate as in the statement.

In the general situation for an arbitrary cube Q ⊂ R
n with side length r =

L n(Q)
1
n let ηr : [0, 1]n → Q be the bi-Lipschitz map given by ηr(x) := p + rx for

some p ∈ R
n. It holds deg (ϕ, Q, ·) = deg (ϕ ◦ ηr, [0, 1]n, ·) and it is simple to check

that Lipαi(ϕi ◦ ηr) ≤ Lipαi(ϕi)rαi for all i = 1, . . . , n. Thus

Lipα1(ϕ1 ◦ ηr)
1
p · · ·Lipαn(ϕn ◦ ηr)

1
p ≤ H

1
p r

τn
p = H

1
pL n(Q)

τn
np .

With the part above, the statement for arbitrary cubes Q follows. �
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Due to Theorem 3.3, any function of bounded fractional variation can be approx-
imated in a controlled way by sums over cubes. Thus we obtain an estimate of the
Lp-norm for the push forward of currents induced by such functions.

Theorem 5.8. Let n ≥ 1, d ∈ [n − 1, n[, u ∈ BVd−(n−1)
c (Rn) and ϕ : Rn → R

n.
Assume that α1, . . . , αn ∈ ]0, 1] and r > 0 are such that:

(1) spt(u) ⊂ [−r, r]n.
(2) maxi=1,...,n Lipαi(ϕi) < ∞.
(3) τn := α1 + · · · + αn > d.

Then ϕ#[[u]] = [[vu,ϕ]] is defined for some vu,ϕ ∈ L1
c(R

n) with

‖vu,ϕ‖Lp ≤ C(n, τn, d, p, r)Vd−(n−1)(u) Lipα1(ϕ1)
1
p · · ·Lipαn(ϕn)

1
p

for all 1 ≤ p < τn

d (or 1 ≤ p < ∞ if d = n − 1 = 0). Further, if (ϕk)k∈N is a
sequence of maps that converges uniformly to ϕ with supi,k Lipαi(ϕi

k) < ∞, then
vu,ϕk

converges in Lp to vu,ϕ for p in the same range.

Moreover, vu,ϕ ∈ ⋂

d′<δ<n BVδ−(n−1)
c (Rn) for d′ := n−1+ d−τn−1

τn−τn−1
= n+ d−τn

τn−τn−1
,

where τn−1 := τn − maxi αi (note that d′ = d
α in case α = α1 = · · · = αn). If

F ∈ Lip(Rn)n and β1, . . . , βn ∈ ]0, 1] satisfy β := β1 + · · · + βn > d′, then there is a
constant C ′ = C ′(n, d, r, τn, τn−1, β) ≥ 0 such that

∣
∣
∣
∣

∫

Rn

vu,ϕ(y) det DFy dy

∣
∣
∣
∣
≤ C ′Vd−(n−1)(u)h(ϕ)β+1−nHn−1(ϕ)Hn(F ) , (5.38)

where h(ϕ) := mini Lipαi(ϕi), Hn−1(ϕ) := maxj
∏

i�=j Lipαi(ϕi), and Hn(F ) :=
∏n

i=1 Lipβi(F i).

Proof. Abbreviate Hn(ϕ) := Lipα1(ϕ1) · · ·Lipαn(ϕn). From Theorem 3.3 it follows
that there is an L1 converging sum u =

∑

k≥0 uk for uk ∈ BVc(Rn) with spt(uk) ⊂
[−r, r]n and

‖uk‖L1 ≤ C1Vd−(n−1)(u)2k(d−n) , V(uk) ≤ C1Vd−(n−1)(u)2k(d−(n−1)) , (5.39)

for some constant C1 = C1(n, d, r) ≥ 0. Indeed, uk =
∑

R∈Pk
aRχR, where P0 =

{[−r, r]n}, Pk = {r21−k(p+[0, 1]n) : p ∈ Z
n} for k ≥ 1 and aR ∈ R. From Lemma 5.6

and Lemma 5.7 it follows that ϕ#(aR[[R]]) = aR[[deg (ϕ, R, ·)]] for any R ∈ Pk and

‖aR deg (ϕ, R, ·) ‖Lp ≤ C2Hn(ϕ)
1
p |aR|L n(R)

τn
np

= C2Hn(ϕ)
1
p ‖aRχR‖L1(r21−k)

τn
p

−n , (5.40)

where C2 = C2(n, τn, p) ≥ 0. Let wk ∈ L1
c(R

n) be defined by [[wk]] = ϕ#[[uk]]. As a
finite sum wk =

∑

R∈Pk
aR deg (ϕ, R, ·) almost everywhere. Due to (5.40) and (5.39)
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‖wk‖Lp ≤
∑

R∈Pk

‖aR deg (ϕ, R, ·) ‖Lp

≤ C2Hn(ϕ)
1
p (r21−k)

τn
p

−n
∑

R∈Pk

‖aRχR‖L1

= C2Hn(ϕ)
1
p (r21−k)

τn
p

−n‖uk‖L1

≤ C1C2(2r)
τn
p

−nVd−(n−1)(u)Hn(ϕ)
1
p 2k(d− τn

p
) .

Thus the partial sums of
∑

wk converge in Lp and almost everywhere to some
w ∈ Lp

c(Rn) for 1 ≤ p < τn

d with

‖w‖Lp ≤ C(n, τn, d, p, r)Vd−(n−1)(u)Hn(ϕ)
1
p . (5.41)

Since
∑

wk converges in L1 to w, the partial sums of
∑

[[wk]] converge in mass to [[w]]
and in particular weakly as currents. It follows that the boundaries

∑
ϕ#∂[[uk]] =

∑
∂[[wk]] converge weakly to ∂[[w]]. Thus ϕ#∂[[u]] = ∂[[w]] by the definition of this

push forward in Proposition 5.3. From Theorem 5.5 it follows that ϕ#[[u]] = [[vu,ϕ]]
is well defined by approximation for some vu,ϕ ∈ L1

c(R
n) and together with Theo-

rem 4.12 we obtain that vu,ϕ ∈ BVδ−n+1
c (Rn) for all those δ as in the statement.

Since ∂[[vu,ϕ]] = ϕ#∂[[u]] = ∂[[w]] by Theorem 5.5, the constancy theorem for currents
implies that w = vu,ϕ almost everywhere.

If (ϕk)k≥0 is a sequence of maps on [−r, r]n that converges uniformly to ϕ with
supi,k Lipαi(ϕi

k) < ∞, then vu,ϕk
converges in L1 to vu,ϕ by Theorem 5.5. Let 1 ≤

p < τn

d . Fix some γi ∈ ]0, αi[ such that γ := γ1 + · · · + γn > dp. Then L :=
supi,k Lipγi(ϕi

k) < ∞ by (2.2) and limk→∞ Lipγi(ϕi − ϕi
k) = 0 by (2.3). Define the

maps F i
k := (ϕ1, . . . , ϕi−1, ϕi − ϕi

k, ϕ
i+1
k , . . . , ϕn

k) from [−r, r]n to R
n. Then ϕ#[[u]] −

ϕk#[[u]] =
∑n

i=1 F i
k#[[u]] and by (5.41)

‖vu,ϕ − vu,ϕk
‖Lp ≤

n∑

i=1

∥
∥vu,F i

k

∥
∥

Lp ≤ C(n, γ, d, p, r)Vd−(n−1)(u)
n∑

i=1

Hn(F i
k)

1
p

≤ C(n, γ, d, p, r)Vd−(n−1)(u)L
n−1

p sup
i=1,...,n

Lipγi(ϕi
k − ϕi

k)
1
p

→ 0

for k → ∞.
It remains to show the bound in (5.38). From the decomposition of u in (5.39)

it is a consequence of Theorem 5.5 (and the comment after its proof) that there are
vk ∈ BVc(Rn) such that

∑

k≥0[[vk]] = [[vu,ϕ]] and

‖vk‖L1 ≤ C3Vd−(n−1)(u)Hn(ϕ)ηk(d′−n) , (5.42)

V(vk) ≤ C3Vd−(n−1)(u)Hn−1(ϕ)ηk(d′−(n−1)) , (5.43)

where C3 = C3(n, d, r) ≥ 0 is a constant, η = 2τn−τn−1 > 1, d′ = n − 1 + d−τn−1

τn−τn−1
=

n + d−τn

τn−τn−1
and τn−1 = τn − maxi αi as in the statement of the theorem. Without
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loss of generality we assume that 0 < h(ϕ) = Lipα1(ϕ1) ≤ · · · ≤ Lipαn(ϕn). If
h(ϕ) = 0, then some ϕi is constant and thus (5.38) is obvious because the left hand
side vanishes. Let A : Rn → R

n be the linear map A(x) = h(ϕ)x. With (5.32) it is
clear that T := (A−1)#[[vu,ϕ]] = [[vu,ϕ ◦ A]] and Rk := (A−1)#[[vk]] = [[vk ◦ A]]. With
(5.42),

M(Rk) ≤ h(ϕ)−nM([[vk]]) ≤ C3Vd−(n−1)(u)h(ϕ)−nHn(ϕ)ηk(d′−n)

= C3Vd−(n−1)(u)h(ϕ)1−nHn−1(ϕ)ηk(d′−n) ,

and with (5.43)

M(∂Rk) ≤ h(ϕ)1−nM(∂[[vk]])

≤ C3Vd−(n−1)(u)h(ϕ)1−nHn−1(ϕ)ηk(d′−(n−1)) .

From Proposition 4.6 it follows that T =
∑

k≥0 Rk ∈ Fn,β(Rn) for β = β1+· · ·+βn >
d′ and with Theorem 4.5 (where f = (1, F ◦ A), α1 = 1, αi = βi−1 for i > 1, δ = β,
γ = 1 + β and ρ = η),

|∂[[vu,ϕ]](F )| = |∂T (F ◦ A)| = |T (1, F ◦ A)|
≤ C4Vd−(n−1)(u)h(ϕ)1−nHn−1(ϕ) Lipβ1(F 1 ◦ A) · · ·Lipβn(Fn ◦ A)

= C4Vd−(n−1)(u)h(ϕ)1−nHn−1(ϕ) Lipβ1(F 1)hβ1 · · ·Lipβn(Fn)hβn

= C4Vd−(n−1)(u)h(ϕ)β+1−nHn−1(ϕ) Lipβ1(F 1) · · ·Lipβn(Fn)

for a constant C4 = C4(n, d, r, τn, τn−1, β) ≥ 0 and F ∈ Lip(Rn)n as in the statement.
This proves the theorem. �

As a direct consequence we obtain the following result about degree functions
that generalizes [ZUS16, Proposition 2.4], [OLB16, Theorems 1.1, 1.2(i)] and [LI17,
Theorem 2.1]. It also proves a conjecture stated in [LI17] about the higher integra-
bility of the Brouwer degree function for a map with coordinate functions of variable
Hölder regularity. This is a restatement of Theorem 1.3 in the introduction.

Theorem 5.9. Let U ⊂ R
n be a bounded open set such that ∂U has box counting

dimension d ∈ [n−1, n[. Assume ϕ : Rn → R
n satisfies maxi Lipαi(ϕi) < ∞ for some

α1, . . . , αn ∈ ]0, 1] with τn := α1 + · · · + αn > d. Then

‖ deg (ϕ, U, ·) ‖Lp ≤ C(U, n, τn, p) Lipα1(ϕ1)
1
p · · ·Lipαn(ϕn)

1
p

for all 1 ≤ p < τn

d (or 1 ≤ p < ∞ if d = n − 1 = 0). Further, if (ϕk)k∈N is a sequence
of maps that converges uniformly to ϕ with supi,k Lipαi(ϕi

k) < ∞, then deg (ϕk, U, ·)
converges in Lp to deg (ϕ, U, ·) for p in the same range.

Moreover, deg (ϕ, U, ·) ∈ ⋂

d′<δ<n BVδ−(n−1)
c (Rn) for d′ := n − 1 + d−τn−1

τn−τn−1
=

n+ d−τn

τn−τn−1
, where τn−1 := τn−maxi αi (note that d′ = d

α in case α = α1 = · · · = αn).

If F ∈ Lip(Rn)n and β1, . . . , βn ∈ ]0, 1] satisfy β := β1 + · · · + βn > d′, then
∣
∣
∣
∣

∫

Rn

deg (ϕ, U, y) det DFy dy

∣
∣
∣
∣
≤ C ′(U, n, τn, τn−1, β)h(ϕ)β+1−nHn−1(ϕ)Hn(F ) ,
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where h(ϕ) := mini Lipαi(ϕi), Hn−1(ϕ) := maxj
∏

i�=j Lipαi(ϕi), and Hn(F ) :=
∏n

i=1 Lipβi(F i).

Proof. This is a direct consequence of Corollary 4.13, Lemma 5.6 and Theorem 5.8.

In order to see that the integral estimate in the theorem above generalizes the
second part of [LI17, Theorem 2.1] assume that ϕ ∈ Lipα(Rn,Rn) for some α ∈ ] d

n , 1].
If γ = β1 > d′ − (n − 1), β2 = · · · = βn = 1, f ∈ Lip(Rn) and i ∈ {1, . . . , n}, then

∣
∣
∣
∣

∫

Rn

deg (ϕ, U, y) ∂if(y) dy

∣
∣
∣
∣
=

∣
∣
∣
∣

∫

Rn

deg (ϕ, U, y) det D(f, π1, . . . , π̂i, . . . , πn)y dy

∣
∣
∣
∣

≤ C ′(U, n, α, γ)h(ϕ)β−(n−1)Hn−1(ϕ) Lipγ(f)

≤ C ′(U, n, α, γ) Lipα(ϕ)β Lipγ(f) .

Note that β = γ + n − 1 and the condition (γ + n − 1)α > d in [LI17, Theorem 2.1]
is precisely γ > d′ − (n − 1) because d′ = d

α .
In this situation where all the exponents αi are identical, it is shown in [OLB16,

Theorem 1.2(ii)] and [LI17, Theorem 1.3] that the integrability range for p in The-
orem 5.9 is best possible (except possibly for the critical exponent).

Although the condition on U in Theorem 5.9 is given in terms of the box
counting dimension d of ∂U , we could have made the more general assumption
χU ∈ ⋂

d<δ<n BVδ−(n−1)
c (Rn) and L n(ϕ(∂U)) = 0. The first assumption also holds

for domains that satisfy the condition used in [HN92, Theorem A,B] or [GUS16,
Theorem 2.2] as discussed after Lemma 4.4.
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