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Abstract. Extending the notion of bounded variation, a function u € L!(R™) is of
bounded fractional variation with respect to some exponent « if there is a finite
constant C' > 0 such that the estimate

’/u(w) det D(f, g1, -, 9n-1)z dx| < CLip®(f)Lip(g1) - - - Lip(gn—1)

holds for all Lipschitz functions f,g1,...,9,—1 on R™. Among such functions are
characteristic functions of domains with fractal boundaries and Hélder continuous
functions. We characterize functions of bounded fractional variation as a certain
subspace of Whitney’s flat chains and as multilinear functionals in the setting of
Ambrosio—Kirchheim currents. Consequently we discuss extensions to Holder differ-
ential forms, higher integrability, an isoperimetric inequality, a Lusin type property
and change of variables. As an application we obtain sharp integrability results for
Brouwer degree functions with respect to Holder maps defined on domains with
fractal boundaries.
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1 Introduction

1.1 Functions of bounded fractional variation. = The main objects we study
here are functions u € L!(R™) for which there is an exponent o € [0, 1] and a finite
constant C' > 0 such that

[ w0 detDg1, . a1 di| < CLD() Linlor) - Lin(gn)

holds for all f,g1,...,gn—1 € Lip(R"), where

is the usual Holder seminorm with exponent . The smallest such C' is denoted by
V?(u) and the resulting subspace of L!(R") is BV¥(R"). This extends the classical
notion of bounded variation, where u € LL(R") is in BV.(R") if the total variation

V() = sup{ / () div(e) dz : ¢ € CHR™RY), [lgloo < 1}

is finite. Indeed we will see that VO(u) < V(u) < 2nV%(u). In the language of
currents the integral of interest can be written

/n u(z)det D(f, g1, gn—1)zdr = Ou](fdgr A -+ Ndgn—1),

where [u] is the current induced by integrating differential forms with density func-
tion u. This indicates a connection between the definition of BVY(R™) and its action
on differential forms equipped with the a-Holder norm. One of the primary moti-
vations of this work is to understand this connection, respectively, to characterize
functions in L!(R™), or more generally currents of some dimension, that act con-
tinuously on differential forms equipped with some Holder norm. This is achieved
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partially in the following theorem, where the space (1,51 BVZ(R™) is characterized
in three different ways. A more general version is stated in Theorem 4.12.

Theorem 1.1. Assume that u € LL(R") and d € |n—1, n[. The following statements
are equivalent:

(1) u € MNyesen BVE "D (®™).
(2) There is a sequence (ug)k>0 in BV (R™) such that ;- qur = u in L', Urso
spt uy, is bounded and for all § € ]d,n[ there exists C' > 0 such that

gl < €20 and  V(u) < C2F0-(=1)

(3) The map [u] : (f,91,---.9n) — [go u(z)f(x)det D(g1,...,gn)s dx defined on
Lip(R™)"*! has a continuous extension to a multilinear functional

Lip®(R") x Lip” (R") x --- x Lip” (R") = R,
whenever o+ 31 + -+ B3, >n and $1 + - + 3, > d.

In (3) it makes no difference whether continuous refers to the genuine Holder
norms or a weaker topology as used for metric currents in the sense of Ambrosio and
Kirchheim (discussed below). This is due to the strict inequalities for the exponents
in the statement of the theorem.

We want to highlight two classes of functions that are of fractional bounded
variation. If U C R™ is some bounded open set with box counting dimension
of its boundary dimpe(OU) = d < n, then the characteristic function of u is

in Ngcsen BVg_(n_l)(]R”), Corollary 4.13. Formulated in terms of currents, The-
orem 1.1 in particular implies that J[U] extends to Holder differential forms of ex-
ponent o > d — (n — 1). This was already observed by Harrison and Norton [HN92]
and by Olbermann [OLB16].

In analogy to the fact that the classical space BV (R") contains Lipschitz func-
tions with compact support, BVZ(R"™) contains certain Holder functions. Indeed, if
u € Lip®(R™) and o 4 3 > 1, then u € BVZ#(R"). More precisely, for any z € R”
and 7 > 0,

VO((u—u(z))xB(r) < Cn, o, B)ro A1 Lip®(u) |

see Corollary 4.13. This may not come as a surprise since in the one-dimensional case
this is implied by a result of Young [YOU36] concerning the existence of Riemann-
Stieltjes integrals of Holder functions: For «, 5 € ]0,1] with v + 8 > 1 there is a
constant C(a, B) > 0 such that if u € Lip®(R), f € Lip?(R), z € R and r > 0, then

z+r
JET) df‘ < C(a, B)r+? Lip® (u) Lip® (f) .

T

This is sharp and such an estimate does not hold if o + 3 < 1.
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1.2 Additional properties of these functions. The implication (1) = (2)
of Theorem 1.1 shows that BV®-functions can be approximated by classical BV-
functions in a controlled way. See Theorem 3.3 for a quantitative version of this
statement. This approximation is actually the reason for the particular definition
of the fractional variation V¢. This approximation property allows to extend some
classical results for BV-functions to BV“-functions:

(1) (Compactness, Proposition 3.4) Assume that a € [0,1] and that (ug)r>0 is a
sequence in BV¢ (R™) for which supy~g [[uxl[z: +V*(ux) < oo and | J;~ spt(ux)
is bounded. Then there exists a subsequence that converges in L' to some
u € BVY(R™) with V¥(u) < liminfy_,o V*(u).

(2) (Higher integrability, Proposition 3.5) BVZ(R") C LZ(R™) for 1 <p < ;==
and the inclusion {u € BVY(R") : spt(u) C K} — LE(R™) is compact for all
compact sets K C R"™.

(3) (Isoperimetric inequality, Corollary 3.6) Assume that B is a bounded Borel set

with xp € BVZ(R") for some « € [0, 1]. Then for all d € |n — 1 + a,n],
Z"(B) < C(n,d,a,diam(B))V®(xp) 4 .

(4) (Lusin type property, Corollary 4.13) Let o, 8 € ]0,1[. If u € BVZ(R") and
a + (8 < 1, then there exists C' > 0, an exhaustion by measurable sets Dy C
Dy C --- C R™ such that .#"(R"\ D) < Ck~! and

u(z) — u(y)| < Cklz —y[*
for all z,y € Dy.

This Lusin type property can be seen as a partial converse to Lip2(R™) C
BVZ(R") if a 4+ 3 > 1 stated earlier.

1.3 Fractal currents. Theorem 1.1 shows that BV“-functions can be approx-
imated in a controlled way by BV-functions. In the language of currents, BV-
functions correspond to normal currents and this approximation statement implies
that BV®-functions induce a particular type of flat chains as defined by Whitney
[WHI57]. Taking this as a starting point one can extract a subclass of flat chains (of
general dimension and codimension) that can be approximated in an analogous way
by normal or integral currents, see Definition 4.1. This approach is not limited to
Euclidean ambient spaces and also works in the setting of currents in metric spaces
as introduced by Ambrosio and Kirchheim [AK00]. Given a metric space X, an in-
teger n > 0 and parameters v € [n,n + 1[, § € [n — 1,n| we define the subclass
F.,5(X) C F,(X) of flat chains, respectively, the subclass %, 5(X) C %,(X) of
integral flat chains. As flat chains, currents in F, 5(X) may not have finite mass, so
it is natural to work with the theory of currents introduced by Lang [LAN11] that
does not rely on a finite mass axiom. Similar to the observation stated above, namely
that xy € BV, (R") for domains U with fractal boundaries, the space F 5(X) con-
tains currents induced by fractal like objects. The guiding principle here should be
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that T' € F, 5(X) if v > dim(spt(7)) and § > dim(spt(97T)). As a justification for
this, if U C R™ is a domain with box counting dimension dimp(OU) < n, then
[U] € Zns(R™) for all § € | dimpox (AU ), n[, Lemma 4.4. So for example if K C R? is
the Koch snowflake domain, then [K] € F5 5(R?) for all § > dim(9K) = %' In this
sense the results in this work can be seen as a starting point for studying fractal-like
currents. Among other things it is stated in Proposition 4.2 that the class F, 5(X)
behaves well with respect to push forwards, slicing and restriction operations.

An important part in the theory of metric currents is the equivalence of top
dimensional normal currents N, (R™) and functions in BV(R™). The fact that BV-
functions have a measurable decomposition into Lipschitz functions together with
the slicing theory are key tools for the closure and boundary rectifiability theorems
for integer rectifiable metric currents. The space F,, 4(R"™) corresponds in a similar

way to BVg_(n_l)(R”), Theorem 4.12, and since BVZ(R"™) has some of the features
of BV.(R™) it may be possible to further develop a theory of fractal currents using
the structure results for BVY(R") that we obtain.

The extension result Theorem 4.5 shows that a given T € F, 5(X) can be contin-
uously extended to Holder test functions if the Holder exponents are not too small.
This builds on and extends the corresponding result for normal currents [ZUS11b,
Theorem 4.3] by the author. As a special case, Theorem 4.5 applies to Holder dif-
ferential forms and thus generalizes the extension results [HN92, Theorem A] by
Harrison and Norton and [GUS16, Theorem 2.2] by Guseynov for integrating on
domains U C R™ with fractal boundaries. As discussed after Lemma 4.4, the condi-
tions of d-summability of OU in [HN92, Theorem A] and the slightly more general
condition in [GUS16, Theorem 2.2] imply that the corresponding current [U] is in
Fn.d(R™) and for this space our extension theorem applies.

1.4 Change of variables. In Section 5 we study the change of variables formula
in the context of BV®-functions and with respect to maps that may only be Holder
regular. The classical change of variables formula can be stated as follows: Given
u € LL(R™), o € C®°(R",R") and a differential n-form w € Q*(R"), then

[ u o) @de= [ s,

where

v(y) = Z u(x) sign(det Depy,) (1.1)
z€p~(y)

holds almost everywhere. In the language of currents this translates to ¢4[u] = [v].
In a more general setting we obtain sharp conditions under which ¢4 7" is well defined
for T € N, (X), or for 9T if T € F,5(X), and ¢ : X — l(N) has coordinate
functions of possibly different Holder regularity, see Propositions 5.2 and 5.3.

In the specific situation of BV®-functions the following change of variables for-
mula holds. It also includes sharp bounds on LP-norms of the push forward.
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Theorem 1.2. Let n > 1,d € [n — 1,n[, u € Bng(nfl)(]R") and ¢ : R" — R™.
Assume that r > 0, a; € |0,1] for i = 1,...,n are such that:

(1) spt(u) C [=r,r]"
(2) maxis,._n Lip® (') < oc.
(3) Tp =1+ -+ ay > d.

Then ¢4 [u] = [vy,,] is defined for some v, , € LL(R™) with
lougllze < C(n, 7, dop, )V 7D () Lip™ (i01) 7 - - Lip™ (") »

forall1 < p < ™ (or1 <p < ooifd=mn—1=0) Further, if (pg)ren Is a
sequence of maps that converges uniformly to ¢ such that sup,  Lip® (¢},) < oo,
then vy, converges in LP to v, for any p in the same range. Moreover, v, , €

r]d’<5<n ng_(n_l) (Rn) fOI' d/ =n-4+ d_#

max; ; °

In case all the exponents are equal &« = a1 = -+ - = ay,, then d’ = g. The theorem
above is a special case of Theorem 5.8 where also an estimate on V‘;*(”*l)(vu,@)
is given. Note that ¢x[u] = [vy,] cannot be understood as in (1.1) for smooth
functions because Holder maps may not be differentiable anywhere. But ¢4[u] =
[vu,p] is well defined by approximation.

Higher integrability properties of the Brouwer degree function y — deg (¢, U, ),
where U is a domain with fractal boundary and ¢ is a Hélder map, has already been
studied by Olbermann in [OLB16] and by De Lellis and Inauen in [LI17]. In [ZUS16]
domains with finite perimeter are treated but the coordinates of ¢ are allowed to have
different regularity. In the the smooth setting it holds that ¢4 [xv] = [deg (¢, U, -)].
We prove that this identity is also true for Holder maps ¢ if U has fractal boundary,
Lemma 5.6. So these degree functions fit into the scope of Theorem 1.2, and we
obtain:

Theorem 1.3. Let U C R" be an bounded open set such that OU has box counting
dimension d € [n—1,n[. Assume ¢ : R" — R" satisfies max; Lip® (¢?) < oo for some
ag,...,an €10,1] with 7, := a1 + -+ 4+ a, > d. Then

| deg (o, U, ") ||z» < C(U,n, 70, p) Lip™ (") 7 - - - Lip® (¢™) 7

forall1 < p < ™ (or1 < p < ocifd=mn—1=0) Further, if (p3)ren Is a
sequence of maps that converges uniformly to ¢ such that sup,  Lip® (¢},) < oo,

then deg (g, U, -) converges in LP to deg (¢,U,-) for p in the same range.
Moreover, deg (p,U,-) € Nycsen Bng(nfl)(R”) ford :=n+ LT [fF ¢

max; o;

Lip(R™)"™ and (1, ..., B, € ]0,1] satisfy 5 := 1+ -+ [, > d’, then

o =

/ deg (¢, U,y) det DF, dy| < C'(U,n, T, T—1, B)h(@) 1" Hy, 1 (0) Ho(F)

where h(p) = min; Lip®(¢;), Hp-1(p) = max; ][], Lip% (¢%), and H,(F) :=
[T, Lip™ (F?).
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Also here it holds that d' = g in case &« = a1 = -+ = «y. The theorem above
generalizes [ZUS16, Proposition 2.4], [OLB16, Theorems 1.1, 1.2(i)] and [LI17, Theo-
rem 2.1]. It also proves a conjecture stated in [LI17] about the higher integrability of
the Brouwer degree function for a map with coordinate functions of variable Holder
regularity.

1.5 Structure of the paper. In Section 2 we introduce the notation that is
used throughout the paper and review results about metric currents. We do not
follow strictly the theory by Ambrosio and Kirchheim [AKO00] or the modification
by Lang [LAN11]. Mostly for simplicity of presentation we work in a setting where
all currents are assumed to have compact support. With this definition, if a current
is restricted to a compact set that contains its support, then the theory of Lang
applies. This is justified in Section 2.2. The benefit of this approach is also that we
do not have to assume that our ambient space is locally compact and we can talk for
example about push forwards into infinite dimensional Banach spaces as in Section 5
without technical difficulties.

In Section 3 we start by introducing functions of fractional bounded variation and
state some direct consequences of the definition. This section can be read without
any prior knowledge about currents. The main result it contains is Theorem 3.3 that
allows to approximate functions of fractional bounded variation by classical functions
of bounded variation in a controlled way. Building on this approximation result
and the structure of BV-functions we obtain compactness and higher integrability
properties for BV®-functions in Section 3.3.

In Section 4, motivated by Theorem 3.3, we introduce fractal currents and show
that they contain a large class of currents induced by fractal sets in Lemma 4.4. In
this general setting we prove the main extension result Theorem 4.5. This allows to
show that fractal currents of codimension zero in an Euclidean space are induced by
functions of fractional bounded variation. This is done in Section 4.3. With this at
hand we obtain different characterizations of this type of functions in Theorem 4.12
and additional properties in Corollary 4.13. Section 4.5 about smoothings of currents
is used to give one such characterization purely in terms of multiliear functionals
on Holder test functions without assuming that this functional is represented by
integration (has finite mass).

In Section 5 we first study mass bounds of push forwards of currents into the
Banach space {«(N). This allows to study the general situation of push forwards
of fractal currents with respect to Holder regular maps. In Section 5.3 this is then
further specialized to finite dimensional Euclidean targets but arbitrary domains and
even further in Section 5.5 where also the domain is assumed to be Euclidean of the
same finite dimension. In this last subsection we also discuss higher integrability of
such push forwards. This specializes to Brouwer degree functions on fractal domains.
In order to do that these Brouwer degree functions are related to the push forward
of currents with respect to Holder maps in Lemma 5.6.
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2 Preliminaries and Notation

Given a metric space (X, d) we denote by B(z, r) the closed and by U(z,r) the open
ball of radius r > 0 around x € X. Similarly, for any nonempty subset A C X the
closed neighborhood of radius r is B(A,r) := {y € X : dist(A,y) < r} and the open
neighborhood of radius r is U(A,r) := {y € X : dist(4,y) < r}. For R" we use
the notation idg. = (7!,...,7"), where 7(21,...,2,) := x; is the ith coordinate
projection. A similar notation is used for fo := {f : N — R : sup;en | f(4)] < oo},
where we define 7¢(f) := f; := f(i) to be the evaluation of f at i € N. With w,, we
denote the volume of the unit ball in R".

2.1 Holder maps. Let o € [0,1]. Given amap ¢ : (X,dx) — (Y, dy) we define

Llpa((p) = S;lp, dY((ii((:;) "j)(f/))

The set of all such maps where this is finite is denoted by Lip®(X,Y"). For real valued
functions we abbreviate Lip®(X) := Lip®(X,R). In case @ = 1 the usual notation
Lip(X,Y) and Lip(X) are used. If o = 0, then Lip’(X,R") is just the space of
bounded functions. Indeed, given ¢ : X — R™ and some fixed o € X, a simple
consequence of the triangle inequality is that

lp = (x0)lloo < Lip°(¢) < 2/|¢loo- (2.1)

Assume that X is a bounded metric spaceand 0 < a < < 1. If p € Lipﬁ(X, Y),
then for z,2’ € X

dy (o(x),(a")) < Lip®(¢)dx (x,2')" < Lip”(¢) diam(X)7~*dy (2, )" .

Hence
Lip®(g) < Lip” (i) diam(X)"~ (2.2)
and, in particular Lip®(X,Y) C Lip®(X,Y).

Assume that X is a bounded metric space, 0 < a < f < 1 and (fx)gen is a
sequence in Lip®(X) with supj, Lip”(fx) < co and such that fi converges uniformly
to f. Then

lim Lip*(frx — f)=0. (2.3)
k—oo

This is well known but for the sake of convenience we give a proof here.

Proof. We may assume that f = 0 and set H := sup;, Lip®(f;). Fix € > 0 and assume
that k € N is large enough such that || fx||eo < €°. If dx(z,2) <€, then

|fr(z) — fr(@)| < Hdx (z,2")" < Hdx(z,2")~*dx (z, 2")*
< HPdx (z,2") .
If dx(z,2') > €, then
i) — fu(@))] < 2¢° < 27 dx (2, 2))* .
Thus limy_.~ Lip®*(fx) = 0. This proves (2.3). 0
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We avoid this trick for the most part but we will use it in the proof of Theorem 5.8.
This is also the reason for the comment after Theorem 1.1 in the introduction. So
whenever there are open boundary conditions on Holder exponents in a statement
it is often not really relevant what topology on Holder functions we choose. Because
of this, we try to check the sharpness of the boundary case for Holder exponents
whenever there is an open boundary condition in a statement.

The following construction to approximate Holder functions by Lipschitz func-
tions is described for example in the appendix of [GRO99] written by Semmes. For
a proof see [GRO99, Theorem B.6.16] or [ZUS11b, Lemma 2.2]. This construction
is very similar to the one used in order to prove the McShane-Whitney extension
theorem for Lipschitz functions.

LEMMA 2.1. Let f € Lip®(X) for some o € |0, 1] and H > 0 such that Lip®(f) < H.
For e € |0, 1] define f. : X — R by

Je(w) := inf f(y) + He*ld(z,y) . (2.4)

Then

(1) [[fe = flloo < He?,
2) Lip(f.) < He*™ Y

(2)
(3) Llp (fe) <3H,

(4) fe(z) = infyepe f(y) + He* Hd(z,y),

(5) Spt(fe) C B(spt(f),e),

(6) if g € Lip*(X) with Lip®(g) < H, then ||fe — gelloo < ||f — 9ll0o-

In case f is bounded, then

fe := min{max{fe, = flloc}, | flloc }
satisfies all the properties of Lemma 2.1 except (4) but additionally || fclleo < [|.f|lco-

2.2 Metric currents. The space of currents of dimension n in R™ is the dual
space of compactly supported differential n-forms equipped with an appropriate
topology. The resulting theory is described in great detail in the book about this topic
by Federer [FED69]. The theory of metric currents was introduced by Ambrosio and
Kirchheim in [AKO00]. Lang gives a definition of metric currents in locally compact
metric spaces that does not rely on a finite mass assumption [LAN11]. Mostly for
simplicity’s sake we restrict the discussion in this work to currents in metric spaces
that have compact support.

DEFINITION 2.2 (Metric currents with compact support). Let X be a metric space
and n > 0 be an integer. A multilinear map 7" : Lip(X)""! — R is an n-dimensional
metric current if it satisfies:

(1) T(f,g',...,g") = 0 whenever some g is constant in a neighbourhood of spt(f).
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(2) There is a compact set K C X such that T'(f, g',...,¢") = 0 whenever spt(f)N
K = 0.

(3) hmkﬂoo T(fkvgll;a s 79?) = T(f7glv s 7gn) Whenever hmkﬂoo ka - f”oo =
limg oo [|9;, — 9 llco = 0 for all @ and sup; ,{Lip(g;,), Lip(fx)} < oo.

The vector space of such T' is denoted by Z,,(X).

We often abbreviate T(f, g) for T(f,g',...,g") or T(f) for T(f,..., f*1). Here
are some definitions that we will use: The boundary of a current 7' € Z,,(X) for
n > 1 is defined by

8T(f7gl7' i ’gn_l) = T(17f’gl7 R 7gn_1) :

It can be shown that 0T € Z,,_1(X) and spt(9T) C spt(7T'). In case p : X — Y is
Lipschitz, then the push forward ¢4 : Z,(X) — Z,(Y) is defined by

((P#T)(fagly--wgnil) = T(fOQD,gl O<,0,...,g"71 °op) .

The support of T, denoted by spt(T'), is the set of points x € X with the
property that for any € > 0 there are f,g',...,¢" € Lip(X) with spt(f) C B(x,¢)
and T'(f,g) # 0. Compare with Section 3 of [LAN11] for the definitions above. A
sequence (Tj)k>o in Z,(X) converges weakly to T € Z,(X) if there exists a
compact set K C X such that (J, spt(T}) C K and limy_. Ti(f,9) = T(f,g) for
all (f,g) € Lip(X)"+.

Since we use a slightly different definition of current than Lang we want to make
sure that the support of a current as we defined it is actually compact and does
what it is supposed to do. On a temporary basis we define J#7 to be the collection
of all closed sets A C X for which T'(f,g',...,¢") = 0 whenever spt(f) N A = (.
The lemma below is in a slightly different setting contained in [LAN11, Lemma 3.2].
For the sake of convenience we include a proof here.

LEMMA 2.3. For T € 2,(X), the following statements hold:

(1) spt(T) = (N #7. In particular spt(T") is compact.
(2) T(f,g9) = 0 whenever f =0 on spt(T).
(3) T(f,g',...,g") = 0 whenever some g' is constant on spt(f).

Proof. (1): If z € X \ spt(T") there is an € > 0 such that X \ U(x,¢) € 7. Hence
x € X \ [ “#7r and therefore (| #7 C spt(T). On the other hand, if « € spt(T), then
any ball B(z, €) intersects any set in .#7. Thus z is in the closure of any set in 7
and because these sets are closed, z € () #7. This shows that spt(7") = (| #7 and
spt(T') is compact because 7 contains a compact set by definition.

(2): Let K be a compact set as guaranteed by axiom (2). We know that spt(7) C K
by (1). Consider f,g',...,g" € Lip(X) and assume that f = 0 on spt(7). Without
loss of generality we can assume that f > 0. Otherwise we decompose f into Lipschitz
functions f = fy — f- where fy = max{0, f} and f_ := max{0,—f}. Define
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fe(x) == max{0, f(z) — Lk~'} for k € N, where L = Lip(f). If fx(x) > 0, then for
any y € spt(T) it holds

Lk~ < f(x) < f(y) + Ld(z,y) = Ld(z,y) .

Hence z ¢ U(spt(T),k~!). The compact set K \ U(spt(T), k™) can be covered
by finitely many open balls U(x1,¢€1), ..., U(Zy, €,) such that B(xz;, ¢;) Nspt(T) =
() for all ¢ and T'(h,g) = 0 whenever spt(h) C B(z;,¢;) for some i. Consider a
Lipschitz partition of unity (¢;)i”; with spt(y;) C B(z;,€¢) and >, ¢; = 1 in an
open neighbourhood Uk of K\ U(spt(7'), k~'). The Lipschitz function ¢ := 1=, ¢;
satisfies fr(x)p(x) = 0 for # € U U U(spt(T), k™) because if fip(x) # 0, then
xz € Uk but this implies ¢(z) = 1 — >, ¢i(z) = 0. Thus spt(fre) N K = () and
spt(frpi) C B(xs,¢;) for all i and therefore

1<i<m

This holds for all k. By taking the limit, it follows from the continuity axiom that
0=T(f,g",..g").

(3): This can be proved as in [LAN11]. For ¥ € N let 8; : R — R be given by
—Br(—s) = Br(s) = max{0,s —k~1} for s > 0. If g’ is equal to ¢ € R on spt(f), then
Br o (g° — ¢) + ¢ converges to ¢g' and is constant in a neighborhood of spt(f). Thus
the statement follows as above by taking the limit.

The lemma above shows that any 7' € %,(X) can be recovered from its re-
striction T € Z,(K) to any compact set K C X that contains spt(7"). Here,
Tk : Lip(K)""' — R is defined by TK(f,g) = T(f,g), where f and § are arbi-
trary Lipschitz extensions of f and g respectively. It can be shown that Tk actually
defines a metric current, see [LAN11, Proposition 3.3] for the related result about
the restriction of local currents. On the other hand, T" can be recovered from Tk
by restricting the test functions defined on X to K. Because K is compact (and
hence locally compact), the axioms for %, (K) described here are identical to the
axioms for local currents in [LAN11] and all the results for currents obtained in this
reference hold for Z,,(K). We will thus apply the results of [LAN11] to currents in
our setting without mentioning the restriction to some compact set K. Below are
some more basic definitions and properties that use the concept of mass.

As in [LAN1I1, Definition 4.1], for any open set V' C X, the mass in V of a
current T € Z,(X) is defined by

MV(T) = SupZT(f)ng}\a v 791\1) < o0,
AEA

where the supremum ranges over all finite collections {(f, g}\, o, 9%V) baea of Lip-
schitz maps in Lip(X)"*™! that satisfy (J,cospt(fa) € V, Yoyealfal < 1 and
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sup; » Lip(g}) < 1. With M,,(X) we denote the currents T' € %, (X) of finite mass,
i.e. M(T) := Mx(T) < oo. The set function ||T]| : 2% — [0, 00] is defined by

ITI(4) = inf{My (T) : V C X open, AC V}.
Similar to [LAN11, Theorem 4.3] we obtain:

LEMMA 2.4. [|T||(X \ spt(T)) = 0, and if M(T') < oo, then ||T|| is a finite Radon
measure that satisfies

(g g / (@) d|T )|z HLlpgrspt(n

) flloo H Lip(g'[spi(f))
1

for all (f,g',...,g") € Lip(X)"+L.

Proof. ||T|[(X \ spt(T)) = Mx\gpt(r)(T) = 0 follows directly from Lemma 2.3 and
the rest is as in the proof of [LAN11, Theorem 4.3]. O

If T'e M, (X), then T extends to a functional on B°°(X) x Lip(X)™ by [LANI11,
Theorem 4.4], where B>°(X) is the space of bounded Borel functions on X. This in
particular allows to define the restriction T'Lu in case u € B¥(X) by (T'Lu)(f,g) =
T(fu,g), [LAN11, Definition 4.5].

A current T' € 2,(X) with bounded normal mass N(7T') := M(T') + M(9T) < oo
is a normal current. The vector space of all normal currents is N,,(X). Note also
here that because we assume currents to have compact support, a normal current
T € N,,(X) can be seen as a current in N, (K) for any compact set K D spt(7"). All
the results about normal currents in [LAN11] apply to this restriction in N, (K).
Similarly we will rely on the results in [LAN11] about currents with finite mass. If
X = U for some open subset U C R", our notion of metric normal current agrees
with the classical definition in [FED69, Section 4.1.7] and the normal masses are
comparable, [FED69, Theorem 5.5]. Note that normal currents as defined in [LAN11,
Section 4.1.7] are also assumed to have compact support. Standard examples of
currents are given by functions u € LL(U) where U C R" is open. It is shown in
[LAN11, Proposition 2.6, Equation (4.5)] that

[[u]](f,gl,...,g”) ::/u(:v)f(x)detD(gl,...,g”)xdaz
U

defines a current in M, (U) with M([u]) = [ullz: = [ |u(z)|dz. We will also
abbreviate [B] for [xg] in case B C U is some Borel set with compact closure in U.

Given an open subset U C R", a function u € L'(U) is of bounded variation, i.e.
in BV(U), if

V(u) = sup{/Uu(:U) divp(z) dx : o € CHU,R"), ||¢]lc < 1} < 00
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Because our currents are assumed to have compact support we mostly consider the
space BV (U) := LL(U) N BV(U). It is easy to see that for u € BV.(U) we can
replace C} (U, R™) by C}(U,R") in the definition of V (u) above. Because we will use
the relationship between normal currents and functions of bounded variation several
times, we formulate it as a lemma. It follows directly from [LAN11, Theorem 7.2],
see also [AK00, Theorem 3.7].

LEMMA 2.5. Assume that U C R"™ is an open set. If u € BV(U), then

‘/U(w) det D(f,g',..., 9" ")adz| < V(u)|/flle Lip(g") - - - Lip(¢" ),

for all (f,g',...,g" ') € Lip.(U) x Lip(U)"" L. The identification N,,(U) = BV.(U)
holds in the sense that any T € N, (U) is equal to [u] for some u € BV.(U) and
for any u € BV (U), the current [u] is in N, (U). Moreover, u € BV (U) has mass
M([u]) = ||ul|z: and boundary mass M(9[u]) = ||Dul|(U) = V(u), where ||Dul| is
the Borel measure associated with the variation of .

If K C X is a compact subset, then the flat norm of T' € %,,(X) is defined by
F(T) :=inf{M(T — 9S) + M(S) : S € Ny41(X), spt(S) C K} . (2.5)

This defines a norm on Ny, x(X) := {T" € N,,(X) : spt(T') C K}. The closure of
N,k (X) with respect to Fg is Fj, x(X). The space of flat chains in X, denoted
by F,(X), is the union of F,, x(X) ranging over all compact subsets K C X. Note
that in case U C R™ is some open set, then this definition agrees with the classical
definition of F,(U) in [FED69, Section 4.1.12] due to [LAN11, Theorem 5.5]. It
follows from [FEDG69, Theorem 4.1.23] that any T' € F,(U) can be approximated
with respect to the flat norm by real polyhedral chains. Moreover if m = n, the
space F,,(U) can be identified with L.(U), see [FED69, Section 4.1.18].

The space of n-dimensional integral currents in X is I,(X), see [FED69, Sec-
tion 4.1.24] for the classical definition and [AK00, Definition 4.2] or [LAN11, Defi-
nition 8.6] for the definition in the setting of metric currents (again we additionally

assume integral currents to have compact support). Similarly to flat chains we can
define

Fk(T) :=inf {M(T — 05) + M(S) : S € I;1(X), spt(S) C K}, (2.6)

for T € L, k(X) := {T € I,(X) : spt(T) C K}. The resulting space .#,(X) of
integral flat chains in X is obtained analogously to F,,(X) above. In the classical
setting, where U C R™ is some open set, it holds

Fn(U) = {R—l—@S : Re#%,(U), S € :@n_u(U)},

where %, (U) is the space of n-dimensional integer rectifiable currents in U, see
[FEDG69, Section 4.1.24]. If m = n, then %, (U) = %,(U) can be identified with
LLU,Z).
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2.3 Holder currents. Let (X,d) be a metric space, n > 0 be an integer and
a1y .., 0pt1 € ]0,1]. A multilinear map

T :Lip*(X) x --- x Lip®*+(X) — R (2.7)

is a Holder current if it satisfies the same axioms as a current in Definition 2.2
with the occurrences of Lip for the ith coordinate replaced by Lip®’. Note that in
case @ = 1 = -+ = apy1 > 0, then T is a Holder current as in (2.7) if and only
if T € 2,(X,d*). On compact subsets K C X the inclusion Lip(K) C Lip®(K) is
continuous by (2.2) and dense by Lemma 2.1. Therefore any Holder current as in
(2.7) is the unique continuous extension of a current 7' € %,,(X). Note that even
if X is not compact, the support of our functionals are, and it is therefore always
possible to restrict to a compact metric space due to Lemma 2.3. It is stated in
[ZUS11b, Theorem 4.7] that a nonzero Holder current as in (2.7) can only exist if
a1 + -+ + apg1 > n. This is sharp due to [ZUS11b, Theorem 4.3]: Any T' € N, (X)
has a unique continuous extension to a current in Z,(X,d*) if a > 25, or more
generally, to a unique Holder current T as in (2.7) if ag + -+ + apa1 > n. We will
use the following bounds on this extension provided by [ZUS11b, Equation (4.7)].
Let T € No(X), e€]0,1], Bi=ag+ - +ani1, yi=a1+ 6, f=(fL,.... ") e
Lip® (X) x -+ x Lip®+(X) and f. = (fL,..., ") € Lip(X)""L. Assume that
v>mnandforalli=1,....,n+1,

(1) Lip(ff) < Hie* ™,
(2) If* = felloo < Hie,
(3) lIfelloe < Hj,
where H; > Lip®(f') and H| > ||f!||w. These assumptions are justified by
Lemma 2.1. Then
n+1
T(f) = T(f)| < CIM(T)H @ + MOT)H "D [T By, (28)
=2

for some C' = C(n,~) > 0. Note that 3 — (n — 1) > v — n > 0 by assumption.

3 Functions of Bounded Fractional Variation

In this section we define functions of bounded fractional variation and prove some
properties. This section can be read without any knowledge about currents.

3.1 Simple consequences. For an open set U C R", a function u € L'(U)
and an exponent « € [0, 1] we define

V% (u) := sup

/ w(@)det D(fyg", ... g" V), da| | (3.1)
U

where the supremum is taken over all (f,g',...,¢" ') € Lip.(U) x Lip(U)"~! with
Lip®(f) < 1 and Lip(g*) < 1 for i = 1,...,n — 1. The class of functions u € L}(U)
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with V(u) < oo is denoted by BV*(U) and BVY(U) := BV*(U) N LL(U) are those
with (essentially) compact support. The next lemma links this definition with the
classical definition of functions of bounded variation.

LeEMMA 3.1. BV(U) = BVY(U). Indeed, if u € L'(U), then

VO(u) < V(u) < 2nVO(u) .
Proof. Let u € BV(U) and fix some xo € U. It follows from Lemma 2.5 that for all
(f,g',...,g" 1) € Lip,(U) x Lip(U)"! it holds

’/ detD f,g,...,g"_l)xdx

’/ z)det D(f — f(z0), 9 ,...,g”fl)xdx
w)|[f = f(@o)lloo Lip(g") - -- Lip(g" ") - (32)

From (2.1) it follows that ||f — f(z0)|lee < Lip®(f) and thus V°(u) < V(u) and

u € BV(U). For the other inclusion, let v € BVO(U). If ¢ € CLU,R") with
l¢lloo < 1, then Lip®(¢?) < 2[|¢'|loo < 2 for all i = 1,...,n and from (2.1) if follows

n

53

i=1
<2nVO(u) .

/U u(z) div () dz

/Uu(x) det D(<pi,7rl, T i L ,W”)m dx

Hence V(u) < 2nV9(u). This shows that BV(U) = BV(U) with the estimates on
the variations as stated. O

The following lower semicontinuity result is immediate.

LEMMA 3.2. Let U C R™ be an open subset and o € [0, 1]. If (uy)ren is a sequence
in BV*(U) that converges to u € L'(U) weakly (in L') on compact subsets of U,
then ||u||rr < liminfy o [Jug|z: and V¥(u) < liminfg_ oo V*(ug).

Proof. Note that [lul[z: = sup{| [uv| : v € LX(U), |[v]oc < 1} and that z —
det Dy, is in L°(U) if ¢ € Lip,(U) x Lip(U)""L. So both ||Jul|,: and V%(u) are
defined as the supremum over some set of test functions. The lower semicontinuity
is therefore immediate.

Note that in case u € BVZ(R"™) we can drop the compactness assumption on f in
the definition of V*(u). This can be seen by modifying f € Lip®(f)NLip(f) outside
the support of u. Actually, if u € L!(R"™), then

V% (u) = sup

/ u(x) det D(f,gl, ... ,g”_l)z dx| ,
U
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where the supremum is taken over all functions (f,g',...,¢" ') € Lip(R")" with
Lip®(flspt(u)) < 1 and Lip(gi\spt(u)) <1lfori=1,...,n—1.It is noted in (2.2) that
Lip®(f) < Lip?(f)diam(spt(u))?~® for 0 < o < B < 1. This implies continuous
inclusions

BV.(R") = BVY(R") c BV¥R") c BV(R") for 0<a<f<1, (3.3)

with bounds on the variations depending on diam(spt(u)) and the corresponding
exponents. This dependence on diam(spt(u)) and the restriction to compactly sup-
ported functions in the inclusions above can be avoided by choosing a different
definition of V. We could replace the seminorm Lip®(f) in the definition of V¢
(3.1) by the genuine norm

|fla = max{|| flloc, 2% Lip®(f)} -

Then 0 < a < # < 1 implies V¥(u) > VP(u) for all u € L'(U) and the inclusions in
(3.3) hold without assuming that u has compact support. Qualitatively all the results
we mention below hold true if we make this change, particularly the main result
Theorem 4.12, but for the applications in the last section we get better quantitative
bounds, respectively, we obtain them more directly with the definition we have
chosen in (3.1). Our definition seems also natural because of the observation that
if f is constant equal to ¢ # 0, then [p, u(x)det D(f,g',...,g" Hedr = 0 and
Lip®(flspt(uy) = 0 but |f[a is nonzero.

A simple application of the change of variables formula shows that if . : R" —
R™ is the rescaling n,(z) := ra by » > 0 and v € BVY(R"), then V*(uon,) <
r*("*l)*aVa(u). Scaling back with n,-1 implies equality

Ve(uon,) =r-"H7ave(y) (3.4)

Here is a proof of V¥(uon,) < r~(»=1D=aVe(y): Let F € Lip(R", R") with Lip®(F!)
<1 and Lip(F?%) <1 for i = 2,...,n. Due to the change of variables formula

/n(u on,)(x)det DF, dx

/ (womn,)(z)det D(F o n;l)m(x) det D(n, )y dx

[ wtaer Do),
< V(u) Lip®(F' o n,-1) Lip(F? 0 1) - - - Lip(F™ 0 13,-1)
= rfaf(”fl)Vo‘(u) )

In the last line we used that Lip®(f ons) = Lip®(f)s® for s > 0, 0 < a < 1 and
f:R" - R.
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3.2 Approximation theorem. Below we prove an approximation result for
functions in BVY(R™) by functions in BV (IR™). These approximations are obtained
by averaging on dyadic cubes. In order to obtain the bounds on the total variation
of these approximations the construction of [RR96, Lemma 1] is used. In [RR96]
Riviére and Ye used this is as the elementary starting point to solve the prescribed
Jacobian problem for densities of different regularity. The theorem below can be
seen as the main technical result of this work and it is also the reason why V<(u)
for u € LY(U) is defined as it is and not as

sup{/Uu(a;) div(z)dz : ¢ € CHU,R™), Lip*(yp) < 1} ,

which may seem more appropriate in analogy with the classical definition. It is
actually not clear to the author to what extent these definitions are equivalent. The
specific use of our definition of V*(u) in the proof below is in estimate (3.8).

Theorem 3.3 (Approximation Theorem). For all n € N there exists a constant
C = C(n) > 0 with the following property: For any a € [0,1] and v € BVZ(R")
with spt(u) C [—r,r]" for some r > 0 there is a sequence (uy)r>o in BV.(R™) such
that:

(1) The partial sums of >_ uy, converge to u in L.
(2) spt(ug) C [—r,r]™ for all k > 0.
(3) For k > 0,

lugllzr < Cr=ovVe(w)2¥e=D  and  V(u) < CrmVe(u)2k |

(4) up = ZRG/ arXRr, where ap € R, Py = {[-r,r|"} and & = {r21_k(p+
[0,1]") : p € Z"} for k > 1.

Proof. We first prove the theorem in case that spt(u) C @ := [—1, 1]". By definition

‘/U(ﬂf) det D(f,g",....g" "o da| < V*(u) Lip®(f) Lip(g') - --Lip(g"~")  (3.5)

for all (f,g%,...,¢g" 1) € Lip(R™)™.
For k > 0 let 2 be as in the statement and define vj, € LL(R"™) by

= 3 xngaggy [ ula)da

ReZPy,

The sequence v, converges in L' to u. This follows from the facts that if « is con-
tinuous, then vy converges uniformly to u, the construction of vy is linear in v and
the L'-norm decreases when passing from u to vg. Set n := 2" — % € ]1,2". It
follows from [RR96, Lemma 1] and the discussion thereafter that for any given cube
R C @Q in &7 there is a bi-Lipschitz map ¢g : Q — @Q with goR( ) = x for x € 0Q),
det Dpg = n almost everywhere on R and det Dy =1’ := 57—} almost everywhere
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on @\ R. Note that n + (2" — 1)n = 2" and hence [,det Dpp = 2" = 2"(Q).

Given R € &), for k > 1 let R € P;_; be the unique cube that contains R. Ap-
plying a similarity transformation, there is a bi-Lipschitz map ¢g : :R— RasonQ
above. It is crucial to note that all these maps have a common Lipschitz constant
L=1L(n)>1

For R € & let Ry,...,Ron € P41 be an enumeration of the subcubes of R
and choose some R’ € {Ry, ..., Ron} with

/ Uk41(2) — vg(z) do = sup / Upt1(z) — vi(z) d
: 1<i<en JR,

It holds that
gnt1 / Vsn () — v(z) dz > / (s () — vp(2)] d - (3.6)
/ R

To see this note first that [ vg41—vx = 0andlet J C {1,...,2"} be the (nonempty)
subset with fR» vg+1(z) — vg(x) >0 for j € J. Then

/ k1 — vi| = Z/ U1 — U < (#J)/ Uk41 — Uk

jeJ

and this implies (3.6).
For k£ > 0 define ¢ : Q@ — @ to be equal ppr on any R € &. This makes sense
because ppr is the identity on OR. For any k > 0 the following properties hold:

) [videt Do = [ .
b) [vk41det Doy = [udet Dyy.
(c) [(vrt1 —vx)det Doy > 27" = 1) [ vgs1 — vil.
Statement (a) follows from the observation that for any R € &7 it holds that
Jpdet Do, = Z£"(R) and that vy is constant on R. (b) is a consequence of the

fact that det Dy is essentially constant on any R € &1 and fRu = fR Vk4+1 by
construction. Because of (3.6) and fR Vg1 — v = 0 for R € Py we get

/ (Vk11 — vg) det Doy, = Z / Vky1 — vx) det Doy,
Q

Re,
Z / V41 — Uk) +77/ (Vkg1 — vg)
Re2, R\R/

=Y =) [ (o —w)

Re 2, R
>27" (=) Z/lvk+1—vk|

Re 2,

— 2y — o) /Q R
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This shows (c). Together with (a) and (b) we obtain the following crucial integral
estimate

/ u(det Doy, — det Didg) = / u(det Dy, — 1) = / (udet Dpy, — vy)
Q Q Q
= / (Vi1 — vi) det Dy,
Q

> 971 ) / A (3.7)
Q

Since pr(R) = R for R € Py, it follows that
lor — idglle < diam(R) = 2y/n27"
Assume first that two points z,y € Q satisfy |z — y| > 27%. Then

[k (@) + 2 — or(y) —yl < o) — 2| + |en(y) — Yl
< 4y/n27F = 4y/n2 k- g~k
< 4yn2 FmDg -yl
If 0 < |z — y| < 27%, then due to supy Lip(px) < L,
lou(@) + @ — @r(y) —yl < (L+D]w—y| = (L+ D]z —y[' e —y|*
< (L4127 g — gyl

Hence Lip®(px — idg) < C127%(1=%) for some constant C; = C1(n) > 0. Together
with (3.5) and (3.7) this Hélder seminorm estimate implies that

21— o) /Q S

< ‘/ u(det Dy, — detDidQ)‘
Q

u det D(p4, ..., <p§€_1, b — bt T ™)
udetD wi,cp,lg,...,(pZ_l,WHl,...,W”)
e k(1—a) yn—1
<nV (u)C'12 L. (3.8)

Therefore ||vgy1 — vgllpr < CoV*(1)2 %1% for some constant Cy = Co(n) > 0.
The total variation V(vg41 — vg) is now straight forward to estimate. Given k > 0,
the function vg41 — vg is constant, say equal to ar, on any R € 1. Because
Ixgllz: = 27" and V(xg) = 2n27 =1 we get

V(arxr) = lag|2n27*"Y = 2n2%|agx gl -
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Hence
V(g —vp) < > Viagxr)= Y. 2n2%|agxalc
Re@kﬂ REW}chl
= 2n2kHUk+1 — UkHLl

< 2nCy Ve (u)2ke

Set up := vg and uy 1= vy — vi_1 for k > 1. If spt(u) C @, then

luollz: = ' X
Q

Similarly, V(ug) = n| fQ u| < 2n'V(u). This establishes the result in case the sup-
port of u is contained in [—1, 1]™.

Given u with spt(u) C [—r,7]", the rescaled function uwon,, where n,(z) = rz, has
support in [—1, 1] with V& (uon,) = r1="=*V(u) by (3.4). Using the decomposition
ug for won,. as above, and scaling back we get

< V(u) Lip* (') < 2V°(u) .

g o mpsllzn < 1 lugllzs < POV (w0 y)25O7Y — Crlove ()oka=t)
Similarly,
V(up o) < r" IV (u) < r" IOV (uon, )28 = Cr=ave(u)2ke |
This concludes the proof. O

In Proposition 4.6 we state a partial converse to this theorem. This means that
given a sequence (ug)r>0 in BV (R™) that satisfy (1), (2) and (3) of the theorem
above (with V(u) replaced by some constant V' > 0), then the sum v = ) uy is in
BVZ(R") for all # > . But u may not be in BV¥(R") as we will see in Example 4.7.

3.3 Compactness and higher integrability.  As a consequence of Theorem 3.3
we can generalize the L'-compactness theorem of BV-functions to BV®-functions.

PROPOSITION 3.4 (Compactness in BVY(R™)). Let o € [0,1] and (ug)ken be a se-
quence in BVZ(R") with suppey ||ugl/zr + V¥ (ur) < oo and Uy spt(ur) C K for
some compact K C R"™. Then there exists a subsequence of (uy)ren that converges
in L' to some u € BV¥(R") with V¥(u) < liminfy_ o, V*(uy).

Proof. Up to taking a subsequence we may assume that limy_.., V(uy) exists. Let
r > 0 be such that K C [—r,7r]” and set V := supp~q V*(ux) < oo. From The-
orem 3.3 we obtain functions uy; € BV(R") for k¥ € N and integers [ > 0 with
spt(upg) C [=r, 7)™, Y50 Uy = ug in LY,

upgllr < OV and  V(uyy) < V2| (3.9)

for some constant C' = C(n,a,r) > 0. Using L'-compactness of BV(R"), see e.g.
[AFP00, Theorem 3.23|, and a diagonal argument we obtain a subsequence (k(7));en
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such that (uy(;,)ien converges in L' to some v; € LY(R™) for each [ > 0. Due to the
bound (3.9) and lower semicontinuity in BV(R™), this limit satisfies

ol < CV2HeD and  V(y) < CV2e | (3.10)

for all I > 0. From the first bound it is clear that Y, v, converges in L' to some
u € LY(R™) with spt(u) C [—r,7]™. Fix lp > 0. It follows from (3.9) and (3.10) that

lim sup [[ug() — ullr < limsup »  Jluggy — vl

1—00 1—00 >0
<timsup > (lurgoyallo + lvill) + D Ny — villo
1—00 I>lo 0<I<lo
<> 20v2 eV 1 N Timsup [Jugy, — vl o
1>l 0<I<ly, "

_ 20V pt)an)
20T

Because this is true for all [p > 0 we see that lim; .o Up(;) = u in L'. With the
lower semicontinuity property, Lemma 3.2, we conclude that u € BVY(R™) with the
bound on the variation as stated. O

The classical embedding result BV(R™) < L=-1 (R") together with the approxi-
mation theorem for BVZ(R™) implies higher integrability also for this space.

ProPOSITION 3.5 (Higher integrability). Assume that (uj)r>0 Is a sequence in
BV(R") that satisfies

gl < VareD o V(uy) < Voke

for some a € 10,1[, 0 > 1 and V > 0. Then u = ;o qu is in LP(R") if 1 < p <
=i Indeed, ||ullz» < C(n,0,p)V if p < =iz In particular, BVE(R") C Le(R")

for 1 < p < —¢ — and the inclusion is compact if restricted to functions with

support in some fixed compact set.

Proof. There is a constant C),, > 0 such that for each k£ > 0 the estimate |ug|/zs <
CnV (ug) holds for ¢ = -5 if n > 1 and ¢ = oo if n = 1, see e.g. [AFP00, The-
orem 3.47]. For any 0 € Ja, 1] let pp > 1 be such that the equation pie =9+ %

holds. By Hoélder interpolation,
lurllzee < llugl|Zalluxl|n* < VO~ 0a?MemDgli=0ka
Y OOgket)

Hence ).~ ||uk||zre is finite. In case n > 1 we obtain the boundary value p, =

CiTa and similarly p, = 7 in case n = 1.

The last statement of the proposition follows directly from Theorem 3.3 and
Proposition 3.4. Indeed assume that v € BVZ(R™) with spt(u) C [—r,r]" for some
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—1gl. Pick some ¢ € ]p, ﬁ[ and a corresponding

+ 1;(19. With the decomposition as in Theorem 3.3 it

r > 0. Fix some p € [,
6 € 10,1] such that % =
follows as above that

=S

lullze < Ml 7 llull2® < Ol V()7

for some constant ¢’ = C’(n, a, p,q,r) > 0. Hence Proposition 3.4 implies compact-
ness in LP. O

With this proposition we obtain an isoperimetric type inequality for bounded
Borel sets B C R™ with yp € BVZ(R"™). This statement may not be optimal since
it does not reproduce the isoperimetric inequality for sets of bounded perimeter.

COROLLARY 3.6 (Isoperimetric inequality). Assume that B C [—r,r]™ is a Borel set
with xp € BVY(R") for some « € [0,1[. Then for all d € n — 1+ «,n],

"gn(B) < C(”a da a, T)VOC(XB)% :
Proof. Theorem 3.3 guarantees a decomposition xyp = Zkzo uy, in L' with
lurllzs < OV (xp)2" ™ and V(up)rr < C'V(xp)2™

for some C" = C'(n,a,r) > 0. Proposition 3.5 implies that for d € |n — 1 + a,n] it
holds that

Z"(B)» = |xsllr < C(n,d,a,r)V*(xB) ,
where p := 5. This implies the statement. O

This does not recover the classical isoperimetric inequality for o = 0, in which
case the inequality also holds for d = n—1. But this is not surprising since we already
remarked after Theorem 3.3 that some information about the critical exponent is
lost in the approximation theorem. It thus may be possible that Corollary 3.6 and
also part of Proposition 3.5 are also valid for the exponent d = n — 1 + a. The
compactness of the inclusion in Proposition 3.5 is sharp though, at least in the
classical case a = 0.

4 Fractal Currents

To see the connection between functions of fractional bounded variation with metric
currents, note that the integral in (3.1), the definition of V*(u), can be expressed
as

/Uu(x) det D(f,gl7 . ,g”fl)x dox = 8[[u]](f,gl, . ,g"il)

=[ul(L. f.g" . ")
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Due to the correspondence between BV-functions and normal currents, Lemma 2.5,
the approximation result for BV“- functions, Theorem 3.3, can be formulated as
follows: If u € BVZ(R") for « € [0, 1], there is a sequence (Ry,);>0 of normal currents
in N,,(R™) such that [u] = > ,-, Rk as a weak limit (in mass actually) with mass
bounds

M(Ry,) < Ve and M(ORy) < Ve (4.1)

for constants V' > 0 and p > 1. These mass bounds indicate that [u] has a partic-
ular controlled type of flat approximation by normal currents, compare with (2.5).
The existence of such a decomposition into normal currents for a particular current
T € 2,(R™) does not need any properties of the ambient space and thus can be
formulated in more generality. This is the basic idea behind the definition of fractal
currents below.

4.1 Fractals as fractal currents. Our definition of a fractal current in an
arbitrary metric space X is the following:

DEFINITION 4.1 (Fractal currents). Let n > 0 be an integer, v € [n,n + 1| and
den—1,n[ Acurent T € 2,(X) is a fractal current in F 5(X) if there exists
a compact set K C X, sequences (Ry)r>0 in N, (X), (Sk)r>0 in Np41(X), and
parameters o, p > 1 such that:

(1) Uk>ospt(Lx) Uspt(Sk) C K.
(2) The partial sums of } ;- Ry, + 0Sj converge weakly to 7.

(3)

D M8 oo Y TM(0Sk)eH T < o0
E>0 E>0

ZM(Rk)pk(”f‘;) <00, ZM(@Rk)pk(("fl)*‘s) <00 .
k>0 k>0

The guiding principle here is that 7' € F, 5(X) for v > dim(spt(7")) and § >
dim(spt(07")) which we will justify in Lemma 4.4. It is straightforward to adapt
this definition to chains with coefficients in a normed Abelian group G as defined in
[PH12]. In this context the approximating sequences of normal currents Ry and Sy
are replaced by rectifiable G-chain in %, (X;G) and %Z,+1(X;G) respectively. The
resulting collection of fractal G-chains .7, 5(X; G) (or just Z, 5(X) if G = Z) is then
a subclass of flat G-chains. It is immediate from the Definitions (2.5) and (2.6) and
the discussion there that F, s(U) and %, s(U) are classical flat chains and integral
flat chains respectively in case U C R™ is open.

Note if v € BVZ(R") for o € [0,1] has a decomposition [u] = > -, Rk as in
(4.1), and if B € |a, 1], then -

ZM(Rk) <VZp <Cna,ﬁ, p)V < oo,
k>0 k>0
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and similarly > ;- M(ORy)p~ "8 < C(n,d,a, p)V. Hence
BVE(R") C Fiypr5(RY) (42)

One may ask why we adopt a summability condition in the definition of a frac-
tal current instead of bounds similar to (4.1) that result from the decomposition in
Theorem 3.3. As we will see in Example 4.7 there is some information lost in Theo-
rem 3.3 and more importantly Theorem 4.5 on extensions to Holder test functions
is most general with the summability condition used. A drawback of Definition 4.1
is that F, 5(X) may not be a vector space unless the parameters p and o are fixed.

It is quite clear that Fy, ,,—1(X) = N, (X) and F, 5(X) C F., 5(X) if y <+ and
d < ¢'. Further, if T € F, 5(X) is n-dimensional for n > 1, then 0T € Fs,_2(X).
We use the convention that 07 = 0 if T € Zy(X) is zero dimensional. Whenever
T is a zero-dimensional fractal current we assume that Ry € My(X) = No(X) and
Ry =0 for k > 1 and thus T € F,, _1(X) for some v € [0,1[. With the remark
above we see that the boundary operator behaves well in the context of fractal
currents. This is also true for other operations on metric currents such as restriction
[LAN11, Definition 2.3], push forward [LAN11, Definition 3.6] and slicing [LAN11,
Definition 6.3].

Slicing is a priori only defined for normal currents. Assume 0 < m < n are
integers, T € F, 5(X) and ¢g € Lip(X)™. In case (Ry) and (Sj) are sequences of
normal currents for 7' as in the Definition 4.1 we define (T, g,y) = limy_.o (R +
0S8k, g,y) for y € R™ in case this makes sense as a weak limit. The restriction to a
Borel set T B is in general only defined if 7" has finite mass [LAN11, Theorem 4.4].
As for slices above we can define for z € X and r > 0 the restricting TLB(z,r) =
limg oo (Rg + OSk)LB(x,7) in case this is well defined as a weak limit. We will
not show that the two definitions above are almost everywhere independent on the
approximating sequences (Ry) and (Sg). With these definitions we have the following
proposition.

PROPOSITION 4.2. Let 0 < m < n be integers, v € [n,n+ 1[, § € [n — 1,n],
T € F,5(X). Then:

(1) If p € Lip(X,Y), then 4T € F, 5(Y).
(2) IF (£.g) € Lip(X)™*, then TL(/.g) & By g-m(X).
(3) If g € Lip(X)™, then (T, g,y) € Fy_p, 5-m(X) for almost all y € R™ and

| @an@a=aa o)) (4.3

for all f € Lip(X)"ti=m,
(4) If v € X, then TLB(z,r) € F, 5(X) for almost all v > 0.

Proof. Assume that (Rj)r>0, (Sk)k>0, K, 0, p are as in the definition of a fractal cur-
rent such that T'= >, ., R + 0S). Statement (1) is clear by simple mass estimates
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for the push forward. (2) is a consequence of Equations (4.10) and (5.1) in [LAN11].
So for all £ > 0 it holds

M(RrL(f,9)) < ||kl Lip(9)"M(Ry) ,

and

M(9(RiL(f.9))) < Lip(g)™ (Lip(/)M(Rk) + || |k [l M(ORy)) ,

with similar estimates for M(SxL(1, f, g)) and M(9(SkL(1, f,g))). It follows from
[LAN11, Theorem 6.4] that for almost all y € R™ the slice (Rg, g,y) is an element
of Ny—p(X) for all £ > 0. Moreover,

Z/ M((Rk, 9,y)) k("5dy<ZL1p )" M(R )( ) <00

k>0 k>0

With the monotone convergence theorem this implies

/ZM (R, 9,9))p "‘”dy—Z/ M((Ry., g,4))p*" ™ < o0 .
R™

k>0 k>0

Since y — 350 M((Ry;, 9, y))pF(=9) has a finite integral, the function itself hast to
be finite almost everywhere, i.e.

> M((Rp, g, )"0 < oo
k>0

for almost all y. Because (0Ry, g,y) = (—1)"0(Ry, g,y) by [LAN11, Equation (6,9)],
we similarly conclude that

ZM Rk;,g y ) k(n—1—m—(6—m)) < 00
k>0

for almost all y € R™. The same reasoning applies to the sequence (S). This shows
that for almost all y € R™,

(T,9,9) =Y (Rr,g,y) + (—=1)"(Sk, 9,y) € Frymsm(X) .
k>0

The additional integral identity (4.3) follows from Lebesgues dominated convergence
theorem and the corresponding identities for Ry and Sy, [LAN11, Theorem 6.4(2)].
(4): For any normal current W it holds that O(WLB(z,r)) = (OW)LB(z,7) +
(W, dy,r) for almost all » > 0 by Definition 6.1 and Theorem 6.2 of [LAN11]. So, for
almost all r > 0,
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S M(RLB(z, 7)o 9 < S M(Ry)pH ) < o0,

k>0 k>0
>~ M(O(RL B r)pH 0 < 37 (MR + MRy, dy,r)) o010
£>0 >0
< 0.
Similar estimates hold for SxLB(z,7) too, and this shows (4). 0

Push forwards of certain fractal currents with respect to Holder maps are treated
in Section 5.

Before proving a more general statement, it is shown that the Koch snowflake
domain induces a fractal current. Similar fractals can be treated alike.

EXAMPLE 4.3. The Koch snowflake domain is a compact subset K C R? with

boundary OK of Hausdorff dimension d := iggﬁ K can be written as the clo-

sure of the union Uk>0 K. where Ky is an equilateral triangle of area ag and Kj

consists of 3-4%~1 disjoint equilateral triangles with area ag3~2* for k > 1. Thus for
k>1

k
LK) =3- 4F=1g372k = 3ao (4 _ 32314(1_2)
4 \ 32 4 ’

and similarly, if vg is the perimeter of K, then the perimeter of K} is

ANF
vV — 3.4kl 3k _ Yo (=) _ Y0ok(d-1) .

If § > d, then for some C' > 0,
S I 3530 < €37 340 < o
h=0 k>0

and

ZV(XKk)Bk(I—(S) < Cz3k(d—5) < o0
k>0 k>0

Hence [K] € 5 5(R?) and 9[K] € F50(R?) for any § € ]d, 2|.

This example generalizes to domains with boundaries of a given box counting
dimension. If A C R™ is a bounded set and € > 0, let N4(¢) be the minimal number
of balls of radius € needed to cover A. The box counting dimension of A is defined
by

' . log(Na(e))
dimpex(A) == fim log(1/e)
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in case this limit exists. Assume that U C R" is bounded and open with a Whitney
decomposition W, see e.g. [STE70, Chapter VI, Theorem 1] for its definition and
existence. For any integer k let W, be the cubes in W of side length 27%. Decom-
posing each cube in Wj, for k& < 0, we may assume that W = J;.~, Wh. It is noted
for example in the proof of [HN92, Lemma 2] that #W), < C(n)Nay(27%) for k > 1.
If 6 > dimpex (OU), then logy(Nay (27)) < dlogy(2%) = Sk for all k big enough. It
follows that there is a constant C’(n,d,U) > 0 such that

#W, < C'(n,d,U)2k (4.4)
for all kK > 0.

LEMMA 4.4. Assume that U C R" is bounded and open with dimypy(0U) < n. For
all § € |dimpoy(9U), n[ there is a constant C(n,0,U) > 0 and compact sets Ry, C U
with

(1) XU = X p>0 XR, almost everywhere and in L,
(2) L™(Ry,) < C(n,6,U)2¥0=™) and V(xg,) < C(n,d,U)2F0-(=1),

In particular, [U] € %, s(R") and O[U] € F5,—2(R™) for all 6 € | dimpox(OU), n].

Proof. Set Ry, := |JWy. (1) is clear since W is composed of countably many es-
sentially disjoint closed cubes with [JW = U. Since .Z"(Ry) = (#W;)27"" and
V(xgr,) < 2n(#We)2 =1 we obtain with (4.4) that Z"(R;) < C'2k92=*" and
also V(xg,) < 2nC"2F92=F=1) for all k > 0. O

More generally we obtain that [U] € %, 4(R") in case OU is d-summable as
defined in [HN92]. This is contained in the proof of [HN92, Lemma 2|, where it is ob-
served that OU is d-summable if and only if ) 7, < Nopr(27%)27F < 0o. With #W;, <
C(n)Nay (27F) for k > 1, M(Ry) = (#Wi)27 and M(dRy,) < 2n(#W)2~ k=1
the statement follows. Similar conclusions can be drawn using the generalization of
d-summability introduced in [GUS16, Theorem 2.2]. Indeed, the condition on U in
[GUS16, Theorem 2.2] immediately implies that [U] € %, 4(R™). Therefore Theo-
rem 4.5 below generalizes the extension results for Holder differential forms [HN92,
Theorem A] and [GUS16, Theorem 2.2].

4.2 Extension theorem. First we state an extension result for fractal currents.
It builds on [ZUS11b, Theorem 4.3] and on the bound (2.8) obtained in the proof
thereof.

Theorem 4.5 (Extension theorem). Let (X, d) be a metric space and n > 0 be an
integer. If T' € F., 5(X) for somey € |n,n+1[ and 6 € |n—1,n[, then T has a unique
continuous extension to a Holder current

T:Lip*(X) x --- x Lip®*(X) - R
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whenever a1 + -+ + apt1 >y and ag + -+ -+ auy1 > 0 (in case n > 1). Moreover, if
(Ry) and (Sy) are approximating sequences for T' as in Definition 4.1 with parameters
p and o, then for all f = (f',..., f"*!) € Lip®(X) x - -- x Lip®+ (X)),

ZRk(f)} < Ol M lay Ho Y - M(R)p" 0 + M(ORy) pH (170
k>0 k>0

ZaSk(f)

k>0

where C' = C(n v,8) > 0, H, = [ Lip® (f’) (H, =1 in casen =0), Hyq1 :=
H, Lip™ (f') and || f*la, = [[/Mlloc + Lip™ (f1).

Proof. Without loss of generality we assume that v := a1 + -+ + au41 and § =
as + -+ + apq1 due to the fact that F 5(X) C Fy 5(X) in case v <7/ and § < 0.
Note that we use the convention that R, =0 for k> 1, = -1 and T € F, _{(X)
in case n = 0. From Lemma 2.1 and the remark thereafter it follows that for any
e € 10,1 and i € {1 ,n + 1} there are approximations f’ € Lip(X) such that
Lip(f1) < Lip® (f)e L, [[fi = Filloo < Lip™(f)e® and [[f]loc < [IFloc With

Lemma 2.4,

< CHpy1 Y M(S)o" (D7) 4 M(9Sy)o* =) |
k>0

1Sk(1, fo)] < M(Sg)Hpyre?™ 0

Hence,
S ISK(L foi)| € Hort Y M(Sp)oH D) < oo
k>0 k>0
Similarly,
n+1
D IRe(fo ) < MR f-4lloo HLlp (fis
k>0 k>0
< Hf ”ooHnZM(Rk)Pk(nﬂs) <00 .
k>0

As recalled in (2.8), for any k& > 0 it holds that
Ri(f) = Ric(fps)|
< C(n, ) Hy [M(Ry) Lip™ (1050 1+ M(OR)| £ |oop™(=D9)] |
and similarly
0Sk(f) — OSk(for)| < C(n,7)M(3Sk)Hyy 107

These two differences are summable in k£ and hence with the estimates above we
see that T has an extension with bounds as in the statement. As in the proof of
[ZUS11b, Theorem 4.3] it can be shown that this extension satisfies all the axioms of
a Holder current as defined above. This uses the additional Lipschitz approximation
properties of Lemma 2.1. O
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4.3 Fractal currents have bounded fractional variation. As stated at the
end of Section 3.2 there is a partial converse to Theorem 3.3. This builds directly on
the extension theorem for fractal currents above in the special case where X = R".

PROPOSITION 4.6. Let § € |0, 1] and assume that (uy)x>0 is a sequence in BV (R"™)
such that {J;~spt(ux) is bounded and there are constants V > 0 and p > 1 such
that for all k > 0,

Skl o <Voand Y V()P <V

k=0 k>0
Then u =3, uy is in BV?(R™) and satisfies VP (u) < C(n, 3, p)V. In particular,
F,n-1+5(R") C BVS(R").

Proof. Set Ry, := [uy] which is in N,,(R™) by Lemma 2.5 with M(Ry) = |lug|/z: and
M(ORy) = V(ug). Since u = >~ ug in L1 it holds that [u] = >, [uk] in mass.
If F € Lip(R™)" with Lip®(F') < 1 and Lip(F*) <1 fori =2,...,n, it follows from
Theorem 4.5 (where ag = 3,y =1 fori 42, d=n—1+Fandy=35+1=n+pf)
that

OLul(F)| < ZaRkw)\ _ ZRku,F)\
k>0 k>0
< (. B) Y. MR 4 M(0R,)pH)
k>0
< C'(n,8) Y M(Ry)p" P + M(ORy,)p™
k>0
<2C'(n,B)V .

With the definition of V& (u) the first part of the proposition follows immediately.
For the second part let T € Fy, ;, 14 3(R™). As in Definition 4.1 there is a sequence
(Rk)k>0 in Ni(R™) such that "= )", ., Ri. Note that there is no sequence (S;)r>0
because Z,,11(R") = 0. By Lemma 2.5 we can write Ry = [ug] for u € N, (R?).
Because Y. Ry converges in mass to T, the sum Y uy converges in L' to some
u € LL(R™). Thus T = [u] and the statement follows from the first part. 0

Together with (4.2) we immediately obtain that
BVZ(R") C Fppo145(R") C BVI(R") (4.5)
for all 0 < a < # < 1. A more in-depth analysis of these inclusions is given later in
Theorem 4.12. Note that for a = 0, BVY(R") = BV.(R") = N,(R") = F,, ,,_1(R")
by Lemmas 2.5, 3.1 and the remark after (4.2). Apart from this, it is not clear to
the author whether F,, ,,_1,3(R") and BVZ(R™) are the same or different classes.

Example 4.7 of the Koch snowflake domain demonstrates that there is some
information lost in Theorem 3.3. Indeed, if u € LL(R™) has an approximation by
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BV-functions with respect to some exponent « € [0, 1] as stated at the beginning of
this section in (4.1), then u does not necessarily need to be in BVZ(R"™). Assuming
a summability condition, this holds though as shown in the proposition above.

EXAMPLE 4.7. Let ¢ : 0K — S! be the inverse of a parametrization of the closed
Koch snowflake curve such that

L7z —y| < Z(p(x),(y))* < Llz —y]
for all z,y € 0K, where a = é = ﬁégig is equal to the reciprocal of the Hausdorff

dimension of K and L > 1 is some constant. For k > 1 define f3, gz : S' — R by

k k
1 ; 1
— j - j
fk(p) T Z 9j(1—a) COS(2 Z(p) > Z 2ja 2 4 ))

J=1 7=1
There is a constant H > 0 such that sup,{Lip*~*(fx), Lip®(gx)} < H, see e.g.
[GRO99, Theorem B.6.3], and

k 27
1 S ,
— - DY j
72 frdgr = E 1/0 Sii—ata) cos(27t)27 cos(27t) dt
‘]:

k 2m ]
= Z/ cos(27t)? dt = nk .
j=1"0

The functions fro, grow : K — R are Lipschitz because fx, gr and ¢ are Lipschitz.
Further, for all z,y € 0K and k > 1,

| fi((@)) = frle(®))] < HZ(p(a), o(y) ™ < HLS |z —y| =,

and similarly [gr(¢(2)) — gi(p(y))| < HL|z — y|. Note that 2= = d — 1 and thus
Lip?!(frop) < HL* ! and Lip(gx o) < HL. Using a Whitney type extension, see
e.g. [STE70, Chapter VI Theorem 3], there are Lipschitz extensions Fj,, Gy, : R? — R
of fi. 0 and g, o ¢ respectively with sup,{Lip?~!(F}), Lip(Gy)} < oo. Now

/ detD(Fk,Gk)x d:L‘ :% (FkOgo_l) d(GkO(p_l) :7{ fk dgk = 7T]<3 .
K St St

The first equation holds because ¢~! is Holder continuous with respect to an ex-

ponent bigger than 1/2 and in terms of (metric) currents it follows from J[K] =
(¢~ 1)»[S'] which is a consequence of [ZUS11b, p. 17]. Thus xx is not in BV4~1(R?)
and therefore [K] is also not in Fy 4(R™) by Proposition 4.6 above. But xx has a
decomposition as in (4.1) resulting from Theorem 3.3 with p = 3 as stated in Ex-
ample 4.3.
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4.4 Holder functions as fractal currents.  Together with Proposition 4.6 the
following lemma shows that Holder functions are functions of fractional bounded
variation.

LEMMA 4.8. Assume that u € Lip®(R") for some a € ]0,1[. Then [uxp(.,)] €
F, ;(R") for z € R™ and r > 0 whenever 6 + a > n (note that § > n — 1 by
assumption). Indeed, if u(xg) = 0 for some xo € B(z,r), then there is a constant
C = C(n,r) > 0 and a sequence (uy)r>o of Lipschitz functions on R™ such that
U=y ;U uniformly,

ukXB(zryllzr < CLip®(w)27%  and  V(upxp(.y) < CLip™(u)2¥1 =)

Proof. We assume z = 0 and that u(zg) = 0 for some zp € B := B(0,r). Otherwise
we would decompose u into a function with this property and a constant function.
Because u(zg) = 0 it holds that ||u|p|lec < (27)*Lip®(w). With the McShane—
Whitney extension theorem we can extend u|p to a function on R™ without changing
Lip®(u|p) and ||u|p||cc and such that the support of the extension is contained in
B’ := B(0, 3r). Indeed define @ : BUR™\ B’ — R to be equal to u on B and zero
elsewhere. Note that Lip®(a) = Lip®(u|p) and ||i|g|lcc = ||u|B|lcc- Then we can
define the extension % : R” — R of @ by

i) 1= min { sl mx {—ulalles it )+ (@) —ol*

We thus can assume that the original function u is already zero on R™\ B’ and satisfies
lu|loo < (2r)* Lip®(u). For € € ]0,1] let f. : R™ — R be the Lipschitz approximation
of u as defined in Lemma 2.1 with the additional property that || fe|| < ||u|/co. It
holds spt(fe) C B(0,3r +¢€), || felloo < ||tt]loo < (2r) Lip®(u),

llu = felloo < Lip®(u)e® and Lip(f.) < Lipa(u)ea_1 .

Define ug := f1 and uy, := fo-x — fo-x—1 for k > 1. Then ||Jug|/oo < 3Lip®(u)27** and
Lip(ug) < 2Lip®(u)2*(1=®) for all k > 1. Similarly, Lip(ug) = Lip(f1) < Lip®(u)
and |luglleo < (2r)* Lip®(u). If T := [B] € N,(R") and f : R®™ — R is Lipschitz,
then by [LAN11, Equation (5.1)]

V(fxs) = M(3[fxs]) = M(A(TL[)) < || fllocM(OT) + Lip(f)M(T)
< Cu(||flloor™ " + Lip(f)r™) .

Thus there is some C' = C(n,r) > 0 such that for all £ > 0
V(upxp) < C Lip®(u)21-2)
and also

|ugxslz < CLip™(u)2~F
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Hence if § > n — «, then

> M([upxp])2F < ¢ "2kl < oo

k>0 =
and
Y M@[upxp])2 D) < 0N 2k < o0
k>0 =
This proves that [uxpg] € F,s (R™) with the decomposition as stated. O

Below is a Lusin type result that can be seen as a partial converse to the lemma
above. Similar to the fact that any function in BV(R™) has a measurable decom-
position into Lipschitz functions, see e.g. [AFP00, Theorem 5.34], any function of
fractional bounded variation has a measurable decomposition into Holder functions.

PROPOSITION 4.9. Assume that u € LL(R") satisfies [u] € F, s(R") for some
d € [n— 1,n[. Then there is a constant C = C(n,d,u) > 0 and an exhaustion
by measurable sets Dy C Dy C --- C R" such that £™(R"\ D) < Ck~! and

Ju(z) = u(y)| < Ckle —y["~°
for all x,y € Dx.

Proof. Because [u] € F,, s(R"), there is a sequence (Rj)r>0 in N, (R™) such that
[u] = > >0 Rk as in Definition 4.1. Any Ry, € N,(R") can be identified with some
up € BV.(R") by Lemma 2.5. Thus u = Y- uy in L', and there are constants
V >0 and p > 1 such that B

Z gl <V and ZV(uk)pk(”_l_é) <V.
k>0 k>0

Since ) ;< [|ukl/zr < o0, a standard argument in measure theory using the mono-
tone convergence theorem shows that the partial sums of > uy also converge point-
wise almost everywhere to u.

For a finite Borel measure p on R™ the maximal function is defined by

M,(x) = supM .

r>0 wpT™

There is a constant ¢, > 1 such that
ZL"{z eR" © My(z) > s}) < cns L u(R™) (4.6)
for all s > 0, see e.g. [MAT95, Theorem 2.19], and

(@) — v(y)| < e (M py) () + Mjpe(y)) ]z — yl (4.7)
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holds for all Lebesgue points z,y € R™ of a function v € BV(R"), see e.g. [LAN11,
Lemma 7.1].
Define Ay := {z € R" : |up(x)| > sp~ =9} and A, = Ur>o Ak,s- By the

assumption on the L'-norms,

<Z$ Aks <Z/ |ug (z (n %) da

k>0 k>0

51 Z ||uk||L1pk(ni5) < Silv .
k>0

Similarly, set By s := {x € R" : M|p,,(x) > spF1=m+)Y and By = U~ Br.s- By
the assumption on the variation and (4.6), -

cnV 2 e Z ”Duk”(Rn)Pk(n_l_é)
k>0
> Z 53”({x ER™ 1 M|py,(z) > spk(l_"+5)})
k>0
> s.L"(Bs) .

Let D be the set of all x € R™\ (AU Bs) that are Lebesgue points of R™\ (45U By),
Lebesgue points of uy for all & > 0 and satisfy limg o ug(z) = u(z). With the
estimates above for .£"(As) and £"(Bs) it follows .Z"(R™ \ D) < 2¢,s 1. Given
points x,y € Dy with 0 < |z —y| < 1 let I > 0 be such that p~H1) < |z —y| < p~L.
From (4.7) it follows for « = n — 4,

Ju W <Y Ju(e) = ur(y)]

k>0
<Z’uk )|+ |uk(y H—Z\uk — uk(y)|
k>l 0<k<I
<25 p " 4en > (Mypuy (@) + Mypu, )]z —yl
k>l 0<k<I
<2s) p M ten2sle—yl Y M
k>l 0<k<l
2s (+)(1—a) _ 1
_ 5 —(+Da _ P—
_1—p—ap + cp2s|z — y ]

<C'(n,e,p)s(lz —y|* + |z —yllz —y|* )
<20 (n,a, p)slz —y|* .
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If x,y € D are such that |z — y| > 1, then similarly

u(@) —u(y)] <Y Jug(@)| + |un(y)| < 25 p~*
k>0 k>0
2s 2s

= <
l—p " 1—-0p

(0%
— |z —y[*.
This proves the statement. O

The proposition above contains as a special case that if § = n — 1, then u as
a function of bounded variation has a measurable partition into Lipschitz pieces.
In this sense Proposition 4.9 is best possible with respect to the condition on the
exponents.

4.5 Smoothing and finite mass. The goal of this subsection is to show that
any metric current 7' € Z,(R™) whose boundary has an extension to a current in
Dn—1(R",| - |*) for some a < 1 has finite mass, Proposition 4.11. By a result of
De Philippis and Rindler [PR16, Theorem 1.14] it then follows that T = [u] for
some u € LL(R™). Proposition 4.11 can be seen as positive evidence that any metric
current in the sense of Lang living in some R" is a locally flat chain. This problem is
still open even for Z,,(R™) in case n > 1 because these currents are not assumed to
have locally finite mass, and therefore [PR16, Theorem 1.14] does not apply directly.

First we need a smoothing result for currents which is technical but straight
forward. It is for the most part contained in the proof of [ZUS11b, Theorem 4.7].
For the reader’s convenience we repeat the argument here.

LEMMA 4.10. Let V := Lip®* (R"™) x - - - x Lip®*+' (R") for exponents satisfying a; +
-+« 4+ apy1 > n. Given a Holder current T : V — R, define for € > 0
1
T, := / el dx
Wn€"™ JB(0,e)
where 7,(y) =z +y. Then T, : V' — R is also a Hélder current and
(1) Yimeyo Te(f1, .oy /oY) = T(fY o 70 for all (fY..., f7T) eV,

(2) spt(Te) C {x € R™ : dist(z,spt(T)) < €},
(3) Tc € N, (R™).

Proof. For simplicity we assume that « = a1 = -+ = ap41, i.e. T € Z,(R",|-|Y),
the general case is proved alike.

The map  — 7,47 (f) = T(fo7) is continuous for a fixed f = (f!,..., ") €
Lip*(R"™)"*! because of the continuity property of 7. Hence 7. is a multilinear
functional on Lip®(R™)"*! that satisfies the locality axiom by definition. 7, has
compact support because T has, and T is continuous as a consequence of Lebesgue’s
dominated convergence theorem. Indeed for fixed L > 0 the Arzela-Ascoli theorem
and the continuity axiom for metric currents imply that the supremum

sup{|T(f)| : f € Lip®(R")" ", | f'leo < L, Lip®(f") < L} (4.8)
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is attained and therefore finite. Note that because spt(7') is compact it can be
assumed that each f2 ..., f"*t! in (4.8) satisfies fi(x¢) = 0 for some fixed zq €
spt(T) and the support of all the functions f!,..., f**! is contained in some fixed
compact set depending on L and spt(T). So T is indeed a current in %, (R"™,|-|%).
In order to see that T. converges weakly to 1" note that 7,47 converges weakly to
T for x — 0. Using Lebesgue’s dominated convergence theorem again on the basis
that (4.8) is finite shows that T, converges weakly to 7". This proves (1). Statement
(2) is obvious.

To check the mass bounds of T, and JT, seen as currents in Z,(R™), note first
that

M(T.) = sup{Te(f,id) : f € Lip.(R"), [|flloc <1} , (4.9)
M(9T,) < sup{n-OT.(f,7;) : f € Lip,(R"), [[flla <1,i=1,....n}, (4.10)

where 7;(z1,...,2,) == (®1,...,%i—1,Ti+1,...,Zy). This follows from the chain rule
for currents, see e.g. [LAN11, Theorem 2.5], and the fact that C*°(R") is dense in
Lip(R™) (equipped with the weak topology used in the continuity axiom for metric
currents). If we set

1
Jely) == / fly+z)dx
W)= 0 (y+x)
for f € Lip.(R") it follows that
1
T(fE) ian) = / T(f O Tyg, id]Rn) dr = TG(f) lan) N (411)
Wn€"™ JB(0,e)
1
T (for i) = /1 OT(f o1, 72) dw = OT.(f. 7) (4.12)
Wn€" JB(0,e)
for ¢ = 1,...,n. This can be seen by approximating the integral by Riemann sums.

Next we estimate Lip(fc) in case [[f|loo < 1. If 0 < |y — 2| < 2¢, then By .. =
B(%2, e - ng\) C B(y,¢) N B(z,¢). Hence
Wne™

dz — d
-Lmaﬂ@ x'é@dﬂm ’
1

< @) da
Wn€" JB(y,e) AB(z,€)

Fely) — ful2) =

< wnlen (Xn(B(y, 6)) + f”(B(y’ 6)) _ 2$n(B(y;’276 B |y;z\))
I
::2(1"(1"|y£4)”)

n
< —ly—2|.
€
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If |y — 2| > 2¢, then |fe(y) — fe(2)] < 2 < Lly — 2|. Hence Lip(f.) < Z. From
(4.9),(4.10),(4.11) and (4.12) it follows that M(T¢) < co and M(9T¢) < oo with the
same reasoning as used above in order to conclude that the supremum in (4.8) is
achieved. 0

The next proposition gives a sufficient condition on a general current in 7, (R™) to
have finite mass. The crucial part in the proof is an application of [RR96, Theorem 1]
where it is shown that a continuous density can be realized in a weak sense as the
Jacobian determinant of a Holder map.

PROPOSITION 4.11. Assume that the boundary of T € %,(R™) has a continuous
extension to a Holder current Lip®(R™)" — R for some « € |0, 1], i.e. 9T extends to
an element in Zp,_1(R"™,|-|%). Then M(T') < 0.

(Note that in case 9T # 0, then « necessarily has to be in the range ]”T_l, 1] due
to [ZUS11b, Theorem 4.3]. The assumption in this proposition in particular holds if

T' extends to a current in 7, (R", [ -|*) for some a € |55, 1[.)

Proof. Without loss of generality we can assume that spt(7) C int(Q) where @ :=
[0,1]" and that o > “=1. The next statement is a direct consequence of [RR96,
Theorem 1] and the construction of the approximating sequence therein. There are
constants C,, > 0 and 0 < ¢4 < % with the following property: If f : @ — [1 —
Ca, 1+ ¢4 is a continuous function with [, f(z)dxz = 1, then there is a sequence of
bi-Lipschitz maps ¢, : Q@ — @ and a homeomorphism ¢ : Q — Q with:

(1) ¢lag = ¢rlag = idag-

2) supy{Lip®(#r)} < Ca-

3) limy—oo [[ox — ¢lloc = 0.
) (det Dpg)ren converges to f in L™(Q).
) for all open sets F C @,

/ f(x) dz = 27 (p(E)) .
E

Assume that v € BV, (int(Q)). The induced current [v] is in N, (R™) by Lemma 2.5.
Because of [ZUS11b, Theorem 4.3] and since v > =1, the boundary d[v] is a normal
current and has an extension to an element of Z,,_;(R",|-|%). From (2),(3) and (4)
it follows

/Qv(w)f(x) dx = lim [ v(z)det Dpg(z)dx = klig)lo I[v](ex)

k—o0 Q

= alul(y) - (4.13)

For € > 0 consider the smoothings T, € N,,(R") of T" as defined in Lemma 4.10.
We can assume that e is small enough such that spt(7:) C int(Q). As a normal
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current, T, = [u¢] for some u. € BV,(int(Q)) again by Lemma 2.5. Assume further
that f is additionally in Lip(Q, 1,1+ ca]). Then ¢f := [, f € [1,1+ c,] and hence

1 1 1
< < < —fF< <1 .
_1+ca_1+caf_0ff_f_ tCa

1—cq

Let ¢ : @ — @ be the homeomorphism associated to the density % f. From
Lemma 4.10 and (4.13) it follows that

1 1 1
—T(f,idg) =lim —T.(f,idg) = lim [ u.(z)— f(x)dx
- (f,idg) o (f,idg) i, ( )Cff( )
= lglrgﬂus]](l, ®) = lelnge(l, ®)
=T(1,p) . (4.14)

Given a function g € Lip(Q, [~1,1]) define f; := 1 + % + % g which is an element
of Lip(Q, [1,1 + ¢4]). Equation (4.14) together with ¢y < 1 + ¢, implies

sup{|T(g,idg)| : g € Lip(Q, [-1,1])}
<sup{|T(1+ 2, ido)| + Z|T(fy,idq)| : g € Lip(Q,[-1,1])}
< (14 2)IT(L,ido)| + Z sup{|T(/.idg)| : f € Lin(Q.[1,1+ ca))}
< (14 2)|07(idg)| + 2= sup{]0T(2)| : [|@llow < v, Lip®(¢) < Ca} -

The supremum in the last line is achieved because of the continuity of 9T as a
current in Z,_1(R™,|-|%) and the Arzela-Ascoli theorem. Hence M(T') < co. 0

4.6 Equivalent characterizations. Combined with earlier results we show
here different characterizations for functions of bounded fractional variation. The
theorem below in particular implies Theorem 1.1 stated in the introduction. Note
that F,, s(R") = F,5(R") for all v € [n,n + 1] because the sequence Sy in the
definition of F 5(R™) can be neglected due to Z,41(R") = {0}.

Theorem 4.12. Let n > 1 and T € 2,,(R™) be a metric current (or flat chain in the
sense of Whitney [WHI57]) and d € |n — 1,n[. Consider the following statements:

(1) T € Fy, q(R™).
(2) T has a continuous extension to a Hélder current

Lip®(R") x - -+ x Lip**(R") - R ,

whenever ay + -+ + apy1 > n and ag + - - + apg1 > d.
(3) OT has continuous extensions to Holder currents

Lip*(R")® - R for some « <1, and
Lip?~ ("= Y(R") x Lip(R")" ! - R .
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[u] for u € BVE "D (Rn),

= [u] for some u € LL(R") and there is a constant C > 0 and a sequence
ug)k>0 in BV (R™) such that:

(a) D >0 uk = u in L' and |J,, spt(uy) is bounded.

( ) HukHLl < CQk(d ") and V(uk) < C2k( —(n=1)),

Then (1) = (2) = (3) = (4) = (5) and (5) implies that T € (\;_5,, Fns(R"). In
particular, M5 BV " (R™) = Nyosor Frs(R).

Proof. The implication (1) = (2) is a special case of Theorem 4.5.

(2) = (3) is obvious.

(3) = (4): It follows from Proposition 4.11 that the first extension property of (3)
implies M(T') < co. By a result of De Philippis and Rindler [PR16, Theorem 1.14],
the measure ||| is absolutely continuous with respect to the Lebesgue measure and
hence T' = [u] for some u € LL(R"™). With the second extension property of (3) a
direct application of the Arzela-Ascoli theorem shows that

T =
() T
(

sup|O[u] (F)| < oo , (4.15)

where the supremum is taken over all F' € Lip(R™)"™ with Lipdi(”fl)(F1|Spt(u)) <1
and Lip(Fi|Spt(u)) < 1 fori=2,...,n. Note that by translation invariance we can

assume that F'(0) = 0. Now (4.15) is equivalent to u € BVg_(n_l)(R”) and this
shows (4).
(4) = (5) follows from Theorem 3.3 by setting « =d+ 1 —n.

The last statement was shown before (4.2). Indeed if v € L!(R") has a decom-
position ), -, uy as in (5), then

Z||Uk||L12k(n_6) < oo and Zv(vk)Qk((n—l)—6) < 00
k>0 k>0

in case ¢ € |d,n[. 0

We have already seen in Example 4.7 that the implication (5) = (4), thus also
(5) = (1), does not hold in general. Note that (3) is a statement purely about the
multilinear functional T" and does not assume that 7' can be expressed as an integral
over some u € LL(R™), or that T has finite mass for that matter. This is precisely
why we needed Proposition 4.11.

Building on the results obtained for fractal currents earlier, we can collect the
following properties for functions of bounded fractional variation.

COROLLARY 4.13. The following statements hold:

(1) Let u € Lip®(R") for a € ]0,1]. Then uxpo,) € BVZ(R") for all r > 0
whenever 4+ o > 1, i.e. f € |1 — a, 1]. Moreover, if z € B(0,r), then

VI ((u = u(@)xBor) < Cn,a, B)roet 1 Lip® (ul g, -
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(2) Let a, 8 € 10,1[. If u € BV?(R") and a + 3 < 1, then there exists C > 0, an
exhaustion by measurable sets D1 C Dy C --- C R™ such that Z"(R"™\ Dy) <
Ck~! and

u(z) = u(y)| < Cklz —y[*
for x,y € Dy.
(3) If U C R" is bounded and open with dimpe(OU) € [n — 1,n[, then xy €
BV " D(R™) for all § € | dimpoy (9U), 7).
(4) If u € BVZ(R") for a € [0,1[ and x € R", then uxpg,) € ()
for almost all r > 0.

acpc1 BVE(R")

Proof. These statements follow directly from Theorem 4.12 and the corresponding
results for fractal currents: (1) from Lemma 4.8, (2) from Proposition 4.9, (3) from
Lemma 4.4 and (4) from Proposition 4.2(4). For the variational bound in (1) note
that if v € Lip*(R") with u(zg) = 0, then it follows from the decomposition in
Lemma 4.8 and the bound in Proposition 4.6 that

VP (uxp(0.1)) < C(n, o, B) Lip®(ulp(o,1)) - (4.16)
Set v := (uxB(0,r)) © M = (U ©Nr)XB(0,1), Where n,.(z) = rx. By (3.4) it holds that
VO(wo 1) = - 1V8(). Because also Lip® ((ulp(y) 0 1) = Lip® (ulg(0m)r
the statement in (1) follows from (4.16). 0

It is not clear if (2) and (4) are sharp or if they also hold at the critical exponent.

The statement in (1) can be seen as a higher dimensional generalization of a result
of Young [YOU36]. Indeed if f € Lip®([—r,7]), g € Lip®([—r, r]) with a+3 > 1, then
the Riemann-Stieltjes integral ffr f dg exists and there is a constant C' = C(«, 5) >
0 such that

‘ " fdg - F(@)(g(r) = g(=r))| < Cro*P Lip®(f) Lip’(g)

for all z € [—r,7].

5 Change of Variables and Brouwer Degree

5.1 Massin . The Banach space £, is the collection of all bounded functions
f N — R equipped with the norm || f||s := sup;cy | fi|- The coordinate projections
7 lo — R for i € N are defined by 7'(f) := f;. It is easy to check that Lip(7’) = 1
for all 7 € N.

LEMMA 5.1. Let T € M,,({~). Then
M(T) =sup ) T(fr, 7, ...,7) (5.1)
A€A

where the supremum is taken over all finite sets A C N and all Lipschitz functions
friloe = Rwith >\ 4 [fa] 1.
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Proof. Let us denote the right-hand side of (5.1) by M(T). Similar to M also M is
lower semicontinuous under weak convergence. This follows directly from the defini-
tion of M(T) as a supremum. Because all the coordinate projections are 1-Lipschitz
it is clear that M(T) > M(T). So it suffices to show the other inequality. First
note that /o, has the metric approximation property. Since spt(7") is compact this
implies that for each & € N there is a linear projection py : oo — V3 of unit norm
onto a finite dimensional subspace Vi, C fs such that ||z — py(z)|e <  for all
x € spt(T'). Indeed, following the proof of [PAU14, Proposition 4.10], we can take
pr so that for all 4,k € N there is a j € N such that 7/ = 7 o p;. This implies
that M(pk#T) < M(T) in analogy to M(pr#T) < M(T) which follows from the
fact that each py is 1-Lipschitz. Since py converges to the identity on spt(7'), the
currents pp4 1" converge weakly to 1" and the lower semicontinuity of M and M then
imply that limy e M(ppxT) = M(T) and limj,_o M(ppxT) = M(T). Thus if we
can show that M(T) < M(T) for any current 7" supported in a finite dimensional
subspace of £, then the same identity holds for all currents in £,. So we will assume
from now on that 7' is supported in a finite dimensional subspace V of {,. For such
aV and ¢ € ]0, 1] there exists k& € N such that the truncating map 5 : V — £%_ given
by tp(z) = (x1,...,xx) satisfies c||v]co < |[te(v)]|oo < ||V]|oo for all v € V. If this
would not be the case, the local compactness of V' would guarantee the existence of
some v € V with ||v]lec = 1 but ||v]|ec = limp— 0 [|t(v)]|ee < 1, which is not possible.
Thus we have ¢®M(T) < M(txxT) < M(T) and also M(t;xT) < M(T) since either
nlot, = w* or wloty, = 0 for any k,i. By letting ¢ tend to 1, limj_.o M(tp4T) = M(T)
and it thus suffices to show M(T') < M(T) in case the support of T is contained in
some truncated subspace £%_.
By a standard smoothing argument in £%_ we obtain that

M(T) = supZT(f)\,g)‘l, e ,g’\") ) (5.2)
AEA

where the supremum is taken over all finite sets A, all smooth functions fy, g™,
o g™ il — R for A € A such that Y-, [fA] < 1 and Lip(¢) < 1 for all A,4.
Locally we can write g* = c+1+7, where ¢ € R, [ : ¥, — R is linear and 1-Lipschitz
and the Lipschitz constant of the second order term 7 : /£ — R is arbitrary small.
Using these decompositions and taking a Lipschitz partition of unity we can, up to
an arbitrary small error, replace the g* in (5.2) by linear functions [ : /£ — R of
operator norm at most 1. Note that the second order terms can be neglected because
of the estimate

T (e, bt )| < MUT) |l oo Lip (R i) - - LiD(A" [spi(u))
for (u, ht,..., h"™) € Lip({oo)™ ™! due to Lemma 2.4.
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The dual space of ¢% is ¢§ and every element [ in its closed unit ball can be
written as [ = Y% i (1), where 2% ui(1)| = [|I]] < 1. We infer that

M(T) =sup » T (fr,1™,...,1%)

AEA
=sup) Z T(fapi, () i, (), 7, )
AEA G1,.yin=1

Note that for i*,... 1M € El,

k n
STl ), )] = T @)1+ 4 a())
i1yeenyin=1 =1
<[P < 1

and hence Yy S8 i, (M) -+ ua, (™)) < 1. Thus M(T) < M(T) if the
support of T' is contained in E’;O. This proves the lemma. O

5.2 Push forwards into fo.. The discussion just below is with only slight
modifications also contained in [ZUS16]. Assume that 7' € N,,(X) is a normal current
in some metric space X and let 0 < a < b < 1. As in [WENO04, Theorem 5.2], which
is a small modification of the cone construction in [AK00, Proposition 10.2], the
multilinear functional [a,b] x T : Lip([0, 1] x X)"*2 — R given by

([a,b] x T)(f,g",...,g"*")
n+1

- Z H_1/ (ftatgzag}w-'agt ,gz—l-l’.“,g;n—l-l) dt )

defines an element in N, 41 ([0, 1] x X). Out of convenience we put the ¢;-metric on
the product [0, 1] x X. It is also important to note that [a,b] x T € I,+1([0,1] x X)
in case T" € I,(X). This construction of a product current has similar properties
as the classical one [FEDG69, Section 4.1.8] and for example satisfies the homotopy
formula

d[a,b] x T) = (] x T) = ([a] x T) — ([a, b] x OT) , (5.3)
where the current [¢] x T in N, ([0, 1] x X) is given by
([L] < T)(f, g s ..o g™) =T (fr, 985 ..., g%) .
From the definition of mass and of [a,b] x T it is straight forward to show that
M([Ja,b] x T) < (n+1)(b—a)M(T) . (5.4)

Consider a map ¢ : X — l, and assume that the sequence @ = (o;);ey in ]0, 1] and
H > 0 are such that

sup Lip® (¢") < H < 00 .
ieN
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Here o' := 7 0 are the coordinate functions of . In order to formulate the results
below we set 7, (a) :=inf;, _; ena;, +-- -+, for any integer £ > 1 and () := 0.
In this definition we omit the the reference to @ when it is understood from the
context. The map ¢ : [0,1] x X — l is defined coordinate-wise by

Gi(x) == inf ¢'(y) + Ht™ 'd(z,y) , (5.5)
yeX

if t > 0 and @)(z) = ¢p(x). From Lemma 2.1 it follows that for all i € N and
t€]0,1]:

gi(z) = inf ©'(y)+ Ht* d(z,y) , (5.6)
yeB(z,t)
Lip(p;) < Ht* 1, (5.7)

16} — ¢ lloo < HE™ .

Using (5.6), we see that for any i and z the function ¢ — (@i(x) is Hba® ~2-Lipschitz
on [a,b]if0 <a<b<1 Thusif u>1and 0 < s < 1 aresuch that us < 1, then it is
a consequence of (5.7) and the choice of the ¢1-metric on [0, 1] x X, that each function
@' is pH s~ 1-Lipschitz on [s, us] x X. In particular, ¢ is continuous on ]0,1] x X.
Together with (5.8) it follows that ¢ is continuous everywhere. From Lemma 5.1,
the product mass estimate (5.4) and the bounds on the Lipschitz constants above it
follows that

M ([, 5] % T)
=sup >~ Gp(ls.us] x T)(fr, 7. )

AT Nea
= sup 3 ([, 5] x T) (fr 0 B, 8N, ..., @)
AT Nea
n+1
= Mo eNM([[S’MS]] x T) H Lip (6™ fsus)x X )
159 An+41 i1
< sup (n1)(p— 1)sM(T)(uH)™ st o, =l
)\17"-7An+1€N
< (n+ 1) (= 1) (uH)" I M(T)sT 47" (5.9)

Similarly, with (5.7) we can estimate,

M (24([s] xT)) < sup  M(T) [ [ Lin(£2)
Aty An EN i=1

< sup M(T)H"s* T tom—n
ALy An €N

< H"M(T)s™ ™ . (5.10)
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Assuming that 7,41 > n and summing up in (5.9) it follows that

[e.0]

M(@#([[Oa :u_k]] X T)) < ZM(SE#([[N_(i+1)’ M_iﬂ X T))
i=k

< (n+ 1)( o 1)(MH n+1M ZM(H-I N—Tni1)

< C(n, Tog1, ) HPHM(T) pF 0= w) . (5.11)

With these estimates we obtain a result about push forwards of normal currents
with respect to Holder maps.

PROPOSITION 5.2. Let n > 1, T € N, (X) (or T € I,(X) ) and ¢ : X — {o be such
that sup; Lip® (¢) < H < oo for some sequence a = (a;)ien in |0,1] that satisfies
Tnt1(e) > n. The current @ 4T = limy o o4 ([t] X T') € Zn(ls) is well defined as a
weak limit.

Given o > 0, there is a constant C = C(n,o) > 0 such that p4T = Ry +
> k1 Bi + 0Sy, for sequences (Rj)r>0 in Ny(loo) and (Sk)k>1 in Nyy1(feo) (or in
L,({oo) and I, 41 (o) ) with

M(Si) < CH™IM(T)" 0= (D) M(9S) < CH"N(T)n0="),
M(Ry) < CH"M(T)p*0",  M(9Ry) < CH"'M(9T)pH0~ (1),
M{(Ro) < H"M(T) , M(dRo) < H" 'M(T),

for k > 1, where v := n4+ 2T § :=n — 1+ =Tt g = g7 T and

Tn+1—Tn Tn—Tn—1
p = o™ ™1 In particular, p4T € F 5 (l) (or T € Fy 5(loo) ) if v € |y, n+1]
and &' € |6, n].
Moreover, if there is some € € ]0,1] such that the maps g, 11 : X — ls satisfy

(A) max;j—g Lip™ (1/)3) < H for all i € N, and
(B) [|vh — ¢i]joo < He™ for all i € N,

then 14T — pouT = R+ 0S for some S € Fj,11({«) and R € F,,({) that satisfy
M(S) < C'H" 'M(T)e™ ™" and M(R) < C'H"M(9T)e™~ =1
for some constant C' = C'(n) >

Proof. Setting u = 0 and s = ¢~ in (5.9) and (5.10) we obtain that there is a
constant C; = Ci(n, o) such that for all k > 1,

M(gy([o™F, 071 x T)) < CLH™ ' M(T)o* =) (5.12)

M (4 ([0, 01 x 8T)) < CLH"M(OT)o" 177 | (5.13)

M(g4(lo"] x T)) < H"M(T)o* ") . (5.14)
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Define Sy := —pg([o™*, 0™ * '] x T) € Npy1(loo) and Ry, := —Gu ([0, 07F1] x
OT) € N, ({) for k > 1. The homotopy formula (5.3) implies

Ry + 0SSy = pu([o " x T) = pu([o* ] x T) . (5.15)
With (5.13) and (5.14) this allows to estimate
M(9S}y,) < CoH"N(T)g*=m)

for some Cy = Cy(n,0) > 0 (note that ™™ < 1). Setting Ry := @x([1] x T') it
follows from (5.10) that M(Rp) < H"M(T) and M(9Rg) < H" 'M(OT). Thus

4T 1= lim p4(lo ¥ x T) = Ro+ Y _ Ry + S},
k>1

is well defined since both » ;~; Ry and ;- Sk converge in mass by (5.12) and
(5.13) because 7,+1 > n and also 7, > n — 1. Note that Y := $([0, 1] x spt(T)) is
a compact set and (M,,(Y), M) is a Banach space for all m > 0, see e.g. [LAN11,

Proposition 4.2]. If v = n + % and 7 = o™+~ ™ ag in the statement, then
vy —(n+1) =" and thus for k > 1

Tn+1

M(Si) < CLH™ I'M(T)o =) = oy HHM(T) 0= (1)
M(9Sy) < CoH"N(T)o* =) = CoH"N(T)n* 0.

Similar estimates hold for Ry, k > 1, with p = 0™ ™1 and § = n — 1 4 21=Te=t

Tn—Tn—1

That T = limy_.oo 94 ([ar] x T) for any sequence (ay)r>o of positive numbers
converging to zero is a direct consequence of (5.9). Indeed, if a € [0, 07*+1] and
F € Lip(£so)™*!, then as in (5.15)

|##(lo *’f]] x T><F> ~ G4(la] x T)(F)|
= |0(¢x([o", a] x T))(F) — ¢x([o _k,a]]xaT)(F)’
’ “Fal x T)(L, F)| + |@4([o ", a] x OT)(F)
3(”’@ H, F) (M(T)g*"= 74 4 M(OT)o™ 177

The latter term is arbitrarily small for k& big.

For the second part consider first two Lipschitz maps 79,71 : X — fs and
¢ €10,1] such that [|7} — yjllc < H¢* and Lip(y}) < H¢™™! for all i € N and
j=0,1. Let I": [0,1] x X — f& be the linear homotopy given by I';(z) := tyi(x) +
(1 — t)yo(x). For i € N it is clear that ||0;I']|cc < H(® and Lip(T%) < H(* L. For
each A = (A1,..., \pa1) € N*"land i€ {1,...,n+ 1} set

<D WA A1 Aic1 Ait1 Ant1
Lyti= (T, Ty T )
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Similarly to the estimate in (5.9) it follows from Lemma 5.1 that
M (' ([0,1] x T7))
= SupZF#([[O, 1] x T)(f/\,ﬂ)\l, . ,7r)‘“+1)

A Nen
S0 % D)o T )
AT Nen
n+1 ‘ 1 ‘
=323 (0 [Cr(periart. i) a
AT Xen i=—1 0
n+1 1 R
: SUPZZ/ ”atr?i”oo<HLip(Ft")>/ fro Tl d|T] dt

1
< (4 DEsup Y ¢t [ orar a
0 X

AF Nea
< (n+ D H™I " M(T)

In the last line we used that » ., [fa] < 1 and 741 < ay, + -+, for any
A€ A. Setting R :=T»([0,1] x 0T) € Np,({so) and S :=T»([0,1] xT') € Np11 (o)
we obtain from the homotopy formula (5.3) that

R+0S = ’)/1#T — ’)/0#T s (516)
M(S) < (n + 1)H" LT+ M(T) | (5.17)
M(R) < nH"¢™~=DM(OT) . (5.18)

Assume that ¢, 1; : X — {4 are as in the statement, i.e. there is some € € |0, 1] and
H > 0 such that Lipai(q/};) < Hforalli € Nand j = 0,1, and ||¢} — 9} || < He® for
alli € N. Weset 0 = 2 and let £ > 0 be the unique integer such that 27kl e <27k
and define v, 91 : [0,1] x X — £ as in (5.5). Due to Lemma 2.1(6) it holds that
for all 7 € N,

9% g = Ppame || < |01 — vl < He™ < Ho b (5.19)
Also, (5.7) implies for all i € N,
s (o0 k(l—qy
max Llp(wjjz,k) < Hok(=e) (5.20)
We set Sj; = —ij([27,27H] x T) € N1 (b)), Ry o= —jp([27, 2771 %

OT) € Nyp(loo) for 1 > 1, j = 0,1, and R' 4+ 05" = 9y g-+4T — 1) 2-+4T for R' and
S" as in (5.16). Equation (5.15) implies that
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14T — ol = V100 — hog—rpT + > (Rig — Rog) + 9(S1y — Soy)
>k

=R+ (R — Roy) + 8<S’ +> (S — 50,0) :

1>k >k

Hence Y1 4T — 1pouT = R+ 0S, where S € Fy,11({x) and R € F,({s) satisfy
M(S) < CLH™ ' M(T)e™ ™™ and M(R) < C4H"M(T)e™ (=1

for some Cy = Cy(n) > 0. Here the mass bounds for R and S’ are obtained by
applying the bounds (5.17) and (5.18) using (5.19) and (5.20). The mass bounds for
the sums are obtained by (5.12) and (5.13) for 0 = 2. Note that this also shows that
@41 does not depend on the approximating map ¢ that we used in the definition
of puT. O

The next proposition treats push forwards of boundaries of fractal currents with
respect to Holder maps.

PROPOSITION 5.3. Let n > 1, T € 2,(X) and ¢ : X — (. Assume that there are
deln—1,n[, V,H >0, 0 > 1 and sequences (Si)r>o in N (X) (or I,(X)) and
a = (w);en in |0, 1] such that:

(1) T'=>"j~o Sk weakly.
(2) For all k > 0,

M(Sy) < Vakld=)  M(0Sy) < Vokld=(=1)
(3) sup;en Lip® (¢") < H and 7,(c) > d.

Then x0T = limy_.o @40 Zfzo S; € Dn—1(lx) is well defined as a weak limit.
Indeed there is a sequence (Sk)r>0 in Ny (le) (or I(fe)) and a constant C =
C(n,d,o) such that x0T = 03 ;. Sk, where

M(gk) < CVHnnk(d’fn) ,M(@Sk) < CVanlnk(du(nfl)) ’

for the parameters n:=c™ ™1 >1andd :=n—1+ ;l*j%jl. Note that d' = g in
case o = oy for all i € N.
Moreover, if there is some € € |0, 1] such that the maps 1o, 11 : X — ls satisfy

(A) max;j—g Lip™ (w;) < H for all i € N, and
(B) |9 — illoo < He for all i € N,

then 11 40T — x0T = 0S where S € F,,({) with
M(S) < C'VH" "™

for some constant C' = C'(n,d, ,,0) > 0.
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Proof. First note that for S] := Zf:o S;, k>0, it holds that
k
M(9S;) < Y Vo'l < oy ghld=(n=1) (5.21)
1=0

for some C; = Ci(n,d,o) > 0. From (5.10) it follows that for all & > 0,

M (G4 ([07"] % Sk1)) < H"M(Spyq)o™ =)
< V H"gk((n=m)+d=n)

= VH"gMd=) | (5.22)
and similarly (5.21) implies that

M(g4(lo "] x 0S})) < H™ "M(9S})oHr—1=7)
< O,V H" L gk((n=1=Tu1)+d—(n-1))

= O WWH" gkld=ma) (5.23)
From (5.9), with s = =% and u = o, it follows that

M(gy(lo", 07" x 9S})) < CoH"M(9S)o™ 1)
< 0,01V H" gk ((n—1=70)+d—(n—1))

= CyC,VH"g"d=m) (5.24)

for some constant Cy = C(n, o). For all kK > 0 we define the currents
Sli = @#([[Uﬁk]] X Sk+1) € Nn(goo) ) (5.25)
SEH = @#([[Uﬁk*lv o] x 95k41) € Ni(lso) - (5.26)

With the homotopy formula (5.3) the boundary of the difference is
(St — Siy1) = @ ([0 "] x 0Sks1 + [0 "] x 98}y — [07"] x 0S441)
= @#([[U_k]] X a(sl::-i-l - Sllc) + [[U_k_l]] X aSl/c—&-l - [[U_k]] X asl::-i-l)
= ¢y ([o "] x 0S)11) — ¢u(lo*] x 0S}) -

The mass estimates (5.22), (5.23) and (5.24) then imply that there is some constant
C3 = C3(n,d, o) > 0 such that for all £ > 0,

M(S} — S7,,) < CsVH"gk =) | (5.27)
M (O(St — S,1)) < CsVH" 1ghld=mam) (5.28)

Since 7, > d, the sum Y, (S} — Sz, ) converges in mass and thus

0T := lim Gy ([07"] x 0S}) = ¢4 ([1] x 0S0) + 0 S = Siyr (5:29)
k>0
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is well defined as a weak limit. Note that with (5.11) and (5.21)
M (34 ([0,07] x 0S})) < C5.11(n — 1,7, 0) H"M(9Sy ) (=D =70
< Cy 1 H'C1VeHdm) | (5.30)

and thus limy_. @x0S5), = limy_.o <ﬁ#([[cr_k]] X 851/9) = ¢40T by Proposition 5.2.
Because of (5.10) the mass bounds M(px([1] x Sp)) < VH™ and M(0g4([1] x
Sp)) < VH™ ! hold. Finally, if n = 0™ ™1 and d' :==n—1+ % =n4
as in the statement, then n#(@ ") = gh(d=7) and phld'—(—1)) — Gk(d=Tn1) Together
with (5.27), (5.28) and (5.29) this concludes the decomposition result for ¢x0T.

In order to see that this push forward does not depend on the approximating
sequence let wg,¢1 and € € |0, 1] be as in the statement. Consider k£ > 0 such that
o F 1 < e <ok Let 1y, 1 : [0,1] X X — Lo be as defined in (5.5). For 0 <1< k
we use the second part of Proposition 5.2 to find that 9405}, — 1o40S; = 0S5’ for
some S' € F,(ls) with mass bound M(S") < Cy(n)H"M(9S})e™ ("=, Due to
(5.21)

M(S') < C4H"M(9S},)o k(= (n=1))
< O5VHnO.k:(d—(n—1))O.k((n—1)—7'n)
= C5VH"g*d=m) | (5.31)
for some C5 = C5(n,d, o) > 0. We define Sj{l and Sj 11
(5.25) and (5.26). For j = 0,1 it holds that

Vip0T — g ([0 x 08;) = > djy([o7 ] x 95]41) — by ([o7'] x 0])
1>k

—ZG Jsl Jl+1)

1>k

for{ >0and j =0,1 as in

With (5.27), (5.30) and (5.31) we obtain that ¢ 40T — x0T = 0S for some
S € F,(ls) with M(S) < Cg(n,d, 7, 0)VH 4=, O

This proposition remains true for d = n — 1 in case we assume that T = Sy €
N,,(X) since the only place we actually assume that d > n — 1 is (5.21).

Note that although the two propositions above are formulated for push forwards
into £, it also covers finite dimensional Euclidean targets as these are bi-Lipschitz
equivalent to some ¢2'. Moreover, since any separable metric space can be isomet-
rically embedded into ¢, using distance functions, these results also treat push
forwards for Holder maps in Lip®(X,Y’) with the appropriate restrictions on a.

Together with Theorem 4.12 we can show that the exponents obtained in Propo-
sitions 5.2 and 5.3 are best possible (up to the critical exponent).

EXAMPLE 5.4. Fix some integer n > 2 and let (ag)ren be some decreasing sequence
of positive numbers such that 3, a}~ ! < co but doks1 4y 17¢ = oo for all € > 0.
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For k € N we define the cubes Qy, := [0, ax]". Because of the summability assumption
on (ay)ken, the current 7' := 37, - [Qx] is an element of I,(R"), i.e. T has finite
boundary mass. Let 1 > a3 > --- > «,, > 0 be such that a3 +---+a, >n—1.In

this case 7, = 7,,—1 + 1. Consider the map ¢ : R" — R” given by ¢(z1,...,x,) =
(", ..., x%). Proposition 5.2 (or also Proposition 5.3) implies that
40T = 0u0[Qu] =D 0[[0,a3*] x -~ x [0,a"]] -
E>1 k>1

By Proposition 5.3 there exists S € %,(R") with 0S = ¢x0T. The particular
decomposition of S in the statement of Proposition 5.3 shows that S € F,, 5(R")

for all 6 € |d',n[, where d =n —1+ % Note that by the constancy theorem
for currents, S is the unique filling of 4 0T. According to Theorem 4.12, since S
belongs to (< s5<p Fn,s(R"), the current 9S = 40T has an extension to a Holder
current on Lip®(R™) x Lip(R™)"~! in case a € |d' — (n — 1),1]. On the other side if

©40T has an extension to a Holder current on Lip®(R™) x Lip(R™)"~!, then

SO#aT(xflxvx% <o 7xn) = Za@#[[Qk]](x?,fEQ, <o 7xn)
>1

= ZIIQk:[I(ly ©T, 92,5 Pn)

k>1

_ Z aza1+a2+~~+an
k>1

. (T —Tn—1)+Tn-1
= E a .

k>1

This sum is finite only if a(7, — 7,—1) + Tn—1 > n — 1. Thus the extension property

can only hold for o € [n;;‘r":l, 1] and this agrees, except for the critical exponent,

—Th—
with the range for o obtained above. Thus d’ as obtained in Proposition 5.3 and §

in Proposition 5.2 are optimal.

5.3 Push forwards into Euclidean spaces. In this subsections we consider
push forwards of n-dimensional currents living in a general metric space into R™. In
the classical setting this is described by the generalized change of variables formula:
If u € LY(R") and ¢ € Lip(R",R"), then ¢4[u] = [v] for the function v € LL(R")
given by

v(y) = Z u(x) sign(det Depy,) , (5.32)
z€P~1(y)

for almost all y € R™, see e.g. [LAN11, Lemma 3.7]. Proposition 5.3 together with
the constancy theorem for currents shows that ¢x[u] = [v] can be extended to a
certain class of Holder maps ¢ in case u is nice enough. We formulate this here first
for arbitrary domains X.
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Theorem 5.5. Letn > 1,d € [n—1,n[and T € 2,,(X) for which there is a sequence
(Rk)k>0 in N (X) (or in I,(X) ) such that

(1) T'= 3 >0 Bi weakly.
(2) There are V> 0 and p > 1 such that for all k > 0,

M(Ry,) < VpFld=n) M(ORy) < Vpkld—(n=1)

Ifd=n—1 we assume T = Ry € N,,(X). Given ¢ : X — R" and ay,...,ay, € ]0,1]
with max; Lip® (¢’) < H < oo and 7, := a1 + --- 4+ o, > d, the current ouT is
well defined by approximation and is equal to [vr] for some vy, € LL(R™) (or
vre € LE(R™,Z)). Indeed, if there is some € € ]0,1] and maps ¢,v : X — R" that
satisfy

(A) max;{Lip® (¢%), Lip® (¢*)} < H, and

(B) ||¢" — ¥||oo < HeY for alli € {1,...,n},

then
lvrg —vrpll < C'VH™ ™

for some constant C' = C'(n,d, 1,,0) > 0.
Moreover, 0p4T = ¢4 0T, where the right-hand side is defined in Proposition 5.3.
Further, there are v, € BV.(R") with:

(1) vrp = X k>0 Uk in L' and such that |J, spt(vk) is bounded.
(ii) There is some C' = C(n,d,o) > 0 such that for all k > 0,

okl < CVHnnk(d’fn) . V() < CVanlnk(d’f(nfl)) ’ (5.33)

d—Tn—1 d—r
=L =7 v and T,_1 =
Tn—Tn—1 + Tn—Tn-1 n-1

where n == o™ ™1 > 1, d :=n—-1+
Tn — MaX; ;.

Note that if « = «; for all i, then n = c® and d’ = g.

Proof. It follows from Proposition 5.3, that 40T = OR for some R € F,(R")
(or R € Z,(R™)) is well defined by approximation. Because R is in the M-closure
of N,(R"), respectively, the L!-closure of BV.(R") (or BV.(R") N L}(R",Z)) by
Lemma 2.5, it follows that R = [vr] for some vr, € LL(R™) (or L'(R"™,Z)). The
constancy theorem for currents implies that there can only be one such function in
LL(R™).

Let ¥ : X — R™ be as in the statement. By the second part of Proposition 5.3
it follows that there is some S € F,(R") with 05 = 40T — 40T and M(S) <
C'(n,d, Tn, p)VH" 4™ Since F,(R") = LI(R") by [FED69, Section 4.1.18] and
[LAN11, Theorem 5.5]. It follows that S = [v] for some v € LL(R") and v =
vT,, — U,y almost everywhere by the constancy theorem for currents. Thus |vr,, —
vrplln < C'(nyd, 7, p)V H"e?~ ™. The rest of the statements follow directly from
Proposition 5.3. O
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It is possible to improve the bounds in (5.33). Take individual approximations in
(5.5), where H is replaced by Lip® (¢?) in each coordinate i. The proofs of Propo-
sitions 5.2 and 5.3 work unchanged replacing the occurrences of H" and H" ™! by
[T, Lip®(¢") and max; ], £ Lip% (¢) respectively. This is so because already in
(5.9), (5.10) and (5.11) this change can be made.

If we consider X = R", then the theorem above shows that the function

Y — Z x) sign(det Dip,(x))
z€P-(y)

converges in L' if ¢ is an appropriate Holder map, u is nice enough and ¢, are good
Lipschitz approximations of ¢. One can take for example coordinatewise smoothing
@l = pexp', where p, is a smooth approximation of the identity. It is a simple exercise
to check that Lip® () < Lip® (p) and that lim.|g pe = ¢ locally uniformly.

Together with Proposition 3.5 we obtain the following integrability result for
push forwards into R™. If 7" and ¢ are as in the theorem above, then 4T = [vr ]
for some vy, € LL(R") and ¢ € LE(R") whenever

1 <p< n(Tn — Tn-1)

. 5.34
- (n—1)1, —n1p_1+d ( )

In case « = a1 = -+ = qy, then 7, = an, 7,1 = a(n — 1) and the integrability
range is 1 < p < 2. This agrees with the values for p that we obtain in Theorems 5.8
and 5.9 in the 81tuat10n X =R"” but it does not in case the exponents are different.
This suggests that (5.34) is not optimal for general domains X.

In the setting of the Brouwer degree it is conjectured in [LI17] that the integra-
bility range is 1 < p < % and hence shouldn’t depend on 7,,_1. We will prove this in
Theorem 5.8 below. The proof relies on a dyadic cube decomposition of the domain
and affine approximations of the functions. It is therefore not obvious how to adapt
this to general ambient spaces.

5.4 Brouwer degree functions as currents. We start with a very short re-
view of the Brouwer degree. All the results about the Brouwer degree we will use
can be found for example in [OR09]. Assume that V' C R™ is a bounded open set
and ¢ : cl(V) — R" is a continuous map. For any point ¢ € R™\ ¢(9V') the Brouwer
degree deg (¢, V,q) € Z is defined. In case C' C R" is compact and cl(int(C)) = C
we also use deg (p,C,q) instead of deg(p,int(C),q). If ¢ is a smooth map and
q € R™\ ¢(9V) is a regular value, then ¢~1(q) is a finite set and

deg(p,Viq)= > sign(det(Dyp)) .
pEp~H(g)NV

Here, as in (5.32), we agree that deg(p,V,q) = 0 in case ¢ !(g) NV is empty.
Additionally, the function ¢ — deg (¢, V,q) is locally constant on the domain of
definition and is homotopy invariant in the sense that if H : [0,1] x cl(V) — R™ is
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a continuous map and 7 : [0,1] — R™ is a continuous path such that n(t) ¢ Hy(0V)
for 0 <t <1, then deg (Hy, V,n(t)) is independent of ¢, see e.g. [OR09, Chapter IV,
Proposition 2.4]. Further, if ¢, : cl(V) — R™ are two continuous extensions of a
boundary map 7 : 9V — R™ and ¢q ¢ v(9V'), then

deg (v, V,q) = deg (¥, V,q) ,

see e.g. [OR09, Chapter IV, Proposition 2.6]. So, the degree is independent of the
particular extension of ~.

The following integrability result is a slight generalization of [ZUS11a, Proposi-
tion 4.6]. For the sake of completeness we add a proof here. It sets the link between
Brouwer degree functions and push forwards of currents. For Lipschitz maps this
result is stated in [FED69, Corollary 4.1.26].

LEMMA 5.6. Let U C R™ be a bounded open set and ¢ : R* — R" be a map such
that ¢' € Lip®(dU) for exponents ay,...,a, € |0,1]. If xy € BVI=("=D(R") for
some d € [n —1,n[ and 7, == a1 + -+ + a, > d, then

(P4 [UDLR™\ 9(9V)) = [deg (¢, U, )] -
If additionally "™ (p(0U)) = 0, then deg (o, U, -) € LL(R™) and

If dimpox (OU) < T, then Z™(p(dU)) = 0 and yy € BVS " V(R") for all § €
| dimpox (OU ), 7.

Proof. First assume that ¢ : R” — R" is a smooth map. The density function
v e LYR",Z) of px[U] is given by

v(y)= Y sign(det(Dy,))

z€p~! (y)NU

as stated in (5.32). This agrees with deg (¢, U, y) for almost all y € R™ \ ¢(0U) by
Sard’s theorem. Thus (¢4 [U])L(R™\ ¢(0U)) = [deg (¢, U, -)].

For a given Holder map ¢ : R" — R™ as in the statement the current ¢4[U]
is well defined as a consequence of Theorems 3.3 and 5.5. Consider coordinate-
wise smoothings cp}; = Pk * o', k € N, for some smooth approximation of the
identity p. : R™ — R, ¢ > 0. This approximating sequence has a uniform bound
sup; j, Lip® (i) < oo on the Hélder constants and ¢y, converges to ¢ uniformly on
U. Let vg,v € LL(R™) be given by [vr] = prx[U] and [v] = p4[U]. It follows from
Theorem 5.5 that vy, converges to v in L!. Let y ¢ p(0U) and r > 0 such that
B(y,r) C R™\ ¢(90U). Because ¢, converges uniformly to ¢, the ball B(y,r) does
not intersect ¢ (0U) for large enough k and

deg (pr, U, z) = deg (o, U, z) = deg (p, U, y) (5.35)
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for all z € B(y,r). For such an integer k, deg (vx,U,2) = vi(z) for almost all
z € B(y,r) by the preparation for smooth maps above. By the constancy theorem
for currents [v]LB(y,r) = n[B(y, r)] for some n € R (note that spt(d[v]) C ¢(9U)).
With (5.35) the L'-convergence of vy to v implies

0= klim log(2) —v(2)|dz = Z"(B(y,r))(deg (¢, U,y) — n) .
= JB(y,r)

Thus n = deg (¢, U, z) for almost all z € B(y, 7). By exhaustion [v]L (R™\¢(0U)) =

IIdeg (907 U, )]]

For the final part, fix some 0 € |dimpex(OU), 7,[. Then [U] € #,s(R"™) by
Lemma 4.4 and hence xy € BVg_(n_l)(R") by Theorem 4.12. Since dimpga,s(OU) <
dimpey (OU) it holds that #°(0U) < oo (it is equal zero actually). Hence there is a
C > 0 such that for all small € € ]0, 1] there is a countable cover [,y 4i D OU with
d; := diam(4;) < e and Y,y d? < C. Set H := max; Lip® (¢?). Each image ¢(A;)
is contained in a box that is a translation of [0,2Hd;"] x - -- x [0,2Hd;"]. Hence,

L (p(0U)) < 2" H™Y d - dit < 2"H"e 0y d) < 2"H'Cem 0
1€EN €N

Since 7, > ¢ this converges to 0 for ¢ — 0. Hence ¢(9U) is a set of Lebesgue measure
Z€ero. O

5.5 Higher integrability of Brouwer degree functions. Lemma 5.6 shows
that the degree function for certain Holder maps is integrable. Discussing higher
integrability, we first treat the special case where the domain is a cube. Although the
proof uses quite a bit of notation, the basic idea is rather simple. The original map
is approximated by piecewise affine maps on successive simplicial decompositions
of the cube. The LP-norm of these approximations are easy to estimate because
|| deg (A, A, ) |lzr = Z”(A(A))i in case A : R" — R" is affine and A C R" is a

simplex.

LEMMA 5.7. Let n > 1, @ C R™ be a cube and ¢ : Q — R"™ be a map such
that ¢' € Lip™(Q) for i = 1,...,n and some exponents «; € ]0,1] that satisfy
Tp = a1 + -+ a, >n — 1. Then the degree function deg (¢, Q,-) is in LE(R™) in
case 1 <p < =y forn >1and 1 <p < oo forn = 1. Indeed (assuming p < oo in
casen = 1),

[ deg (0, Q,) ||1r < C (1,70, p)L™(Q) w Lip™ (p1)7 -+~ Lip® (") .

Proof. We abbreviate H; := Lip® (y') for i = 1,...,n and H := Hy--- H,. The
statement for n = 1 is trivial:

Sl

| deg (¢, @, ) [l» < (/ © 1p> " < diam(p(Q))r < diam(Q) 7 Lip™ (")
)
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FI

Figure 1: Depicted are some sets used in the construction of the piecewise affine approxi-
mation.

So we may assume that n > 2. We prove the lemma for the cube @ = [0,1]", and
then a scaling argument will imply the statement for cubes of all volumes. For each
integer k > 0 let &, := {27%(p + Q) : p € Z"} be the dyadic decomposition of
R” to the scale 27%. For any permutation ¢ € S, there is an associated simplex
{re@:0<2,0) <+ <X < 1} in Q. The collection .74 of these n! simplices
defines a simplicial complex with underlying set Q. If k > 0 and R = 27 (p+Q) € &
set g = {27F(p+A): A€ S} and 7, = Ures, rcq /R As before, 7 defines
a simplicial complex with underlying set (). For any integer k£ > 1 and any of the 2n
faces F' of Q we let ./, be the union over all . where R € & is such that FN R
is a face of R and int(R) Nint(Q) = (. Note that the underlying set Fy := |J ZFk
is the set of points {z +tv € R" : x € F, t € [0,27*]}, where v is the outward unit
normal to F', see Figure 1.

For k > 0 we define ¢y : Q — R™ as the map with ¢ (x) = ¢(x) for any vertex x
of a simplex A € .¥}, and for other points in this simplex ¢ is the affine extension. If

x and y are different vertices of A, then |z —y| > 27% and hence for all i = 1,...,n,
ok (2) — 0k ()] =[¢' (@) — &' ()| < Hilw — y|* < Hilz — y|* o -y
< Hi2PA=o) | — |

This shows that Lip(¢}|a) < C1 H;2F(0=%) for any k,i and A € .7, where C} is some
constant depending only on n. It is clear that ¢} converges uniformly to (. Similarly,
for k > 1 we define vypy, : F, — R" as follows: If x is a vertex of some A € Sry,
that is contained in F', then ypi(z) := ¢i(z). If z is a vertex of some A € Spy,
that is not in F, i.e. it has distance 2% from F, then vyr 1 (x) := pr_1(p(z)), where
p : Fr — F is the orthogonal projection. On the remaining points of such a A,
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Yr is the affine extension. As before, Lip(v,|a) < CoH;2(=%) for any F ki and
A € Sy, where Co > C is some constant depending only on n. For all £ > 1 and
almost all ¢ € R™ it follows from the additivity of the Brouwer degree that

deg (pr-1,Q,9) + Y deg (ve, Fi, q) = deg ¢k, Q. q) - (5.36)
FCQ

Since A € /F, has volume %2"“”, it follows that ygx(A) is a simplex with volume
estimate

LM (vek(A)) < 2 Lip(vpkla) - Lip(vEla)
< %Cgﬂg—kngk(l—al) ... 9k(l—ay)
< C3H2M,
where C5 1= %C’Q Since (vrk|a) "1 (q) consists of at most one point for almost every

)_
g € R™, it holds that for all p € [1, o0,

| deg (vrrs A, ) |[or = L (vri(A))r < CoH»27F5

The number of faces F of Q is 2n, the corresponding set F}, consists of 2(*~D¥ cubes
in &, and each such cube is composed of n! simplices. Hence
N Il deg (vp i) e < Cal»2H 71750, (5.37)

FcQ

where Cy := n!2nCy . Similarly we obtain the estimate || deg (¢o, Q, ") [|r < CyHv.
Assuming 1 < p < = it follows from (5.36) and (5.37) that

n—1
” deg (9007 Q7 ) ”Lp + Z H deg (onv Q7 ) - deg (@k*l? Q7 ) HLP
k>1
< ldeg (g0, @) e + 3" 3 [l deg (5, Fi ) s
k>1 FCQ
< CsHo

for some constant C5 = C5(n, p, 7,) > 0. So, (deg (¢, @, *))ken is a Cauchy-sequence
in LP(R™) and hence converges to some u € LP(R™). Because ¢(9Q) is a set of
measure zero by Lemma 5.6 and (¢k)ken converges uniformly to ¢, the sequence
(deg (k, @, -))ken converges pointwise almost everywhere to deg (, @, -). Hence u =
deg (¢, Q,-) € LP(R™) with a norm estimate as in the statement.

In the general situation for an arbitrary cube @@ C R" with side length r =
Z™(Q)x let ny : [0,1] — @ be the bi-Lipschitz map given by n.(z) := p + ra for
some p € R™. It holds deg (p, @, ) = deg (¢ on,, [0,1]",-) and it is simple to check
that Lip® (¢’ o n,) < Lip® (¢")r® for all i = 1,...,n. Thus

Lipo‘l(gol o 77,,)% < Lip* (o™ o m)i < Hors = H%X”(Q)Tv )
With the part above, the statement for arbitrary cubes @) follows. O
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Due to Theorem 3.3, any function of bounded fractional variation can be approx-
imated in a controlled way by sums over cubes. Thus we obtain an estimate of the
LP-norm for the push forward of currents induced by such functions.

Theorem 5.8. Let n > 1, d € [n—1,n[, u € Bng(nfl)(]R”) and ¢ : R" — R™
Assume that oy, ...,a, € ]0,1] and r > 0 are such that:

(1) spt(u) C [—r,7]™ ,
(2) max;=1,..n Lip (¢") < o0.
B) Tmi=a1+ - +a, >d

Then ¢y [u] = [vy] is defined for some v, , € LL(R™) with
|vupllzr < C(n, Ty, d, p, r) VI~ =1 () Lip® (1) - - - Lip® (™) »

forall1 < p < ™ (or1 <p < ooifd=mn—1=0) Further, if (pg)ren Is a
sequence of maps that converges uniformly to ¢ with sup;  Lip® (¢}) < oo, then
Uy,p, converges in LP to v, for p in the same range.

B\/g_("_l)(R") ford i=n—1+T —py _d-Tn

<o<n Tn—Tn—1 Tn—Tn—1"
where 7,_1 = T, — max; o; (note that d' = g in case « = ag = -+ = ayp). If
F € Lip(R™)™ and f1, ..., B, € |0,1] satisfy 3 := 31 + -+ B, > d’, then there is a
constant C' = C'(n,d,r, 7, Tn—1,3) > 0 such that

Moreover, vy, € (g

/ vu,(y) det DE, dy| < C'VE =D () h(p) " H,, 1 () Ha(F) ,  (5.38)
Rn

where h(p) = min; Lip™ (¢;), Hp-1(p) = max; [, ,; Lip® (¢"), and H,(F) =
[T, Lip™ (F).

Proof. Abbreviate H, () := Lip®™ (¢!)---Lip® (¢™). From Theorem 3.3 it follows
that there is an L' converging sum u = >, <, ux, for u, € BV (R™) with spt(uy) C
[—7,r]™ and N

uglzr < CLVE D ()2Rd=1) v () < 0y VA1 () 2kd=(n=1) (5 39)

for some constant Cy = C1(n,d,r) > 0. Indeed, up = Y pc 5, arXr, Where Py =
{[=r,r]"}, Py, = {r2' 7 (p+[0,1]") : p € Z"} for k > 1 and ap € R. From Lemma 5.6
and Lemma 5.7 it follows that ¢4 (ar[R]) = ag[deg (¢, R, )] for any R € & and
lag deg (2, R, ) | < CoHn(p)? |ag| 2™ (R) "™
= CoHu ()" larxrl o (r2 757", (5.40)

where Cy = Cy(n, Tn,p) > 0. Let wy € LL(R™) be defined by [wi] = ¢xfux]. As a
finite sum wy = Y pc 5, ardeg (o, R, ) almost everywhere. Due to (5.40) and (5.39)
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lwelle < Y llardeg (¢, R,-) ||
Re P,

< CoHu()» (r2")» ™" > Jlarxallw
ReP,

Tn

= CoHo ()7 (r2' ™) 5" Jug |
< C1Co(2r) F VD )y ()21

Thus the partial sums of ) wy converge in LP and almost everywhere to some
w e LY(R™) for 1 < p < T+ with

wllze < C(n, 7o, dop, r) VD (w) Hy () (5.41)

Since Y wy converges in L' to w, the partial sums of >_[wy] converge in mass to [w]
and in particular weakly as currents. It follows that the boundaries ) ¢40uy] =
> OJwg] converge weakly to OJw]. Thus p40[u] = Ow] by the definition of this
push forward in Proposition 5.3. From Theorem 5.5 it follows that px[u] = [vy,,]
is well defined by approximation for some v, , € LL(R") and together with Theo-
rem 4.12 we obtain that v, , € BVS " (R") for all those § as in the statement.
Since Ofvy,,] = px0[u] = OJw] by Theorem 5.5, the constancy theorem for currents
implies that w = v, , almost everywhere.

If (¢r)r>0 is a sequence of maps on [—r,r]" that converges uniformly to ¢ with
Sup; g, Lipai(cp};) < oo, then v, , converges in L' to Uy, by Theorem 5.5. Let 1 <
p < %. Fix some 7; € ]0,q;[ such that v := v + -+ + v, > dp. Then L :=
sup; , Lip7 (¢},) < oo by (2.2) and limy .o Lip7 (¢* — ¢}) = 0 by (2.3). Define the

maps Fi .= (9017 ey SDi—l’ Spi o 90;@7 90?_17 o 7302) from [—’I", T]n to R™. Then 80#[[“]] .
erplul = >0, Fé# [u] and by (5.41)
n n
loue = vupller < Y [lvwrll < Cny,dp ) VD () S Ho () »
i=1 i=1

—1

< C(n,,d,p,r) VD (W)L

T =

sup Lip” (¢}, — ¢})

i=1,...,n

— 0

for k — oo.

It remains to show the bound in (5.38). From the decomposition of u in (5.39)
it is a consequence of Theorem 5.5 (and the comment after its proof) that there are
v, € BV (R") such that >, [vi] = [vu,] and

lollze < C3VE D () Hy (@) (5.42)
V(o) < GV D () Hy o ()@ =07 1) (5.43)
d—Tn71

where C3 = C3(n,d,r) > 0 is a constant, n = 2™ -t > 1, d =n—1+4 —2L =

Tn—Tn—1

n + Td:i:",l and 7,—1 = T, — max; o; as in the statement of the theorem. Without
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loss of generality we assume that 0 < h(p) = Lip™(p') < .-+ < Lip® (™). If
h(¢) = 0, then some ¢* is constant and thus (5.38) is obvious because the left hand
side vanishes. Let A : R™ — R™ be the linear map A(z) = h(p)z. With (5.32) it is
clear that T := (A7) x[vup] = [vue o A] and Ry, := (A7) o] = [vg o A]. With
(5.42),

M(Ry) < (@) "M([ox]) < CsV D (u)h(p) ™" Hy, (@)™ )
= sV D () () T Hyy o (0) )
and with (5.43)
M(ORy) < h(p)' ™ "M(3[vi])
< Cng_(n_l)(u)h(g@)l_anfl((p)nk(d,_(n_l)) ]

From Proposition 4.6 it follows that 7' = >, . R, € Fp, g(R™) for § = By +-- -+, >
d’ and with Theorem 4.5 (where f = (1,Fo A), a1 =1, a; = B;_1 fori > 1, 6 = 3,
7=1+fand p=n),
0lvu ] (F)| = 0T (F o A)| = |T(1, F o A)|
1—

< VD () h (@) " Hyy 1 () Lip™ (F' 0 A) - - Lip® (F" 0 A)
yoh Vd n—1) (u)h(g@)l ngr ( ) Lipﬁl (Fl)hﬁl . -Lipﬂ" (Fn)hﬁn
= Cy VD () ()T Hy o () Lip™ (F1) - - - Lip™ (F7)

for a constant Cy = Cy(n,d,r, 7, Tn—1,3) > 0 and F € Lip(R™)" as in the statement.
This proves the theorem. O

As a direct consequence we obtain the following result about degree functions
that generalizes [ZUS16, Proposition 2.4], [OLB16, Theorems 1.1, 1.2(i)] and [LI17,
Theorem 2.1]. It also proves a conjecture stated in [LI17] about the higher integra-
bility of the Brouwer degree function for a map with coordinate functions of variable
Holder regularity. This is a restatement of Theorem 1.3 in the introduction.

Theorem 5.9. Let U C R™ be a bounded open set such that OU has box counting
dimension d € [n—1,n[. Assume ¢ : R" — R" satisfies max; Lip® (') < oo for some
al, ..., €10,1] with 7, :== a1 + -+ + a,, > d. Then

|| deg (@a U’ ) ||L” < C(U7 n, Tnvp) Lip&1 (901); T Lipan (Spn);

foralll1<p<™ (or1<p<ocifd=mn—1=0). Further, if (pr)ren is a sequence
of maps that converges uniformly to o with sup, , Lip® (¢},) < oo, then deg (¢, U, )
converges in LP to deg (¢,U,-) for p in the same range.

MOFGOVGI‘ deg (gp, ’.) c ﬂd’<5<nBV6 (n— 1)(]Rn) fOI‘ d=n—-—1+ Ad—Tn_1 _

Tn—Tn-1

n—i—Td_% where 1,1 := T, —max; «; (note that d’ = 1n case o = o = =ap).

If F € Lip(R™)™ and (4, ..., B, € ]0,1] satisfy 3 := (1 + -+ B, > d, then

/ deg (¢, U,y) det DF, dy| < C'(U,n, T, T—1, B)h(@) 1" H,, 1 (0) Ho(F)
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where h(p) = min; Lip® (i), Hp-1(p) = max; ][], Lip®(¢"), and H,(F) :=
[T, Lip™ (FY).

Proof. This is a direct consequence of Corollary 4.13, Lemma 5.6 and Theorem 5.8.

In order to see that the integral estimate in the theorem above generalizes the
second part of [LI17, Theorem 2.1] assume that ¢ € Lip®(R™, R"™) for some @ € ]%, 1].
fy=pp>d—-(n—-1),8=--=p,=1, f € Lip(R") and i € {1,...,n}, then

[ aesevmas) dy‘ - ‘ /R deg (2, U y) det D(f, s .. .. o), dy

<C'(U,n, a,fy)h(ap)ﬁ_(n_l)Hn—l(W) Lip”(f)
< C'(U,n, a,~) Lip®(p)’ Lip? (f) .

Note that 8 = v+ n — 1 and the condition (7 +n —1)a > d in [LI17, Theorem 2.1]
is precisely v > d’ — (n — 1) because d' = g.

In this situation where all the exponents «; are identical, it is shown in [OLB16,
Theorem 1.2(ii)] and [LI17, Theorem 1.3] that the integrability range for p in The-
orem 5.9 is best possible (except possibly for the critical exponent).

Although the condition on U in Theorem 5.9 is given in terms of the box
counting dimension d of OU, we could have made the more general assumption
XU € Nicsen Bve (b (R™) and Z"(p(0U)) = 0. The first assumption also holds
for domains that satisfy the condition used in [HN92, Theorem A,B] or [GUS16,
Theorem 2.2] as discussed after Lemma 4.4.
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