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Abstract

Expected Shortfall (ES) is the average return on a risky asset conditional on the return being

below some quantile of its distribution, namely its Value-at-Risk (VaR). The Basel III Accord, which

will be implemented in the years leading up to 2019, places new attention on ES, but unlike VaR,

there is little existing work on modeling ES. We use recent results from statistical decision theory

to overcome the problem of �elicitability� for ES by jointly modelling ES and VaR, and propose

new dynamic models for these risk measures. We provide estimation and inference methods for

the proposed models, and con�rm via simulation studies that the methods have good �nite-sample

properties. We apply these models to daily returns on four international equity indices, and �nd the

proposed new ES-VaR models outperform forecasts based on GARCH or rolling window models.
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1 Introduction

The �nancial crisis of 2007-08 and its aftermath led to numerous changes in �nancial market

regulation and banking supervision. One important change appears in the Third Basel Accord

(Basel Committee, 2010), where new emphasis is placed on �Expected Shortfall�(ES) as a measure

of risk, complementing, and in parts substituting, the more-familiar Value-at-Risk (VaR) measure.

Expected Shortfall is the expected return on an asset conditional on the return being below a given

quantile of its distribution, namely its VaR. That is, if Yt is the return on some asset over some

horizon (e.g., one day or one week) with conditional (on information set Ft�1) distribution Ft,

which we assume to be strictly increasing with �nite mean, the �-level VaR and ES are:

ESt = E [YtjYt � VaRt;Ft�1] (1)

where VaRt = F�1t (�) , for � 2 (0; 1) (2)

and YtjFt�1 s Ft (3)

As Basel III is implemented worldwide (implementation is expected to occur in the period

leading up to January 1st, 2019), ES will inevitably gain, and require, increasing attention from

risk managers and banking supervisors and regulators. The new �market discipline� aspects of

Basel III mean that ES and VaR will be regularly disclosed by banks, and so a knowledge of these

measures will also likely be of interest to these banks�investors and counter-parties.

There is, however, a paucity of empirical models for expected shortfall. The large literature on

volatility models (see Andersen et al. (2006) for a review) and VaR models (see Komunjer (2013)

and McNeil et al. (2015)), have provided many useful models for these measures of risk. However,

while ES has long been known to be a �coherent�measure of risk (Artzner, et al. 1999), in contrast

with VaR, the literature contains relatively few models for ES; some exceptions are discussed below.

This dearth is perhaps in part because regulatory interest in this risk measure is only recent, and

may also be due to the fact that this measure is not �elicitable.� A risk measure (or statistical

functional more generally) is said to be �elicitable�if there exists a loss function such that the risk

measure is the solution to minimizing the expected loss. For example, the mean is elicitable using

the quadratic loss function, and VaR is elicitable using the piecewise-linear or �tick�loss function.
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Having such a loss function is a stepping stone to building dynamic models for these quantities.

We use recent results from Fissler and Ziegel (2016), who show that ES is jointly elicitable with

VaR, to build new dynamic models for ES and VaR.

This paper makes three main contributions. Firstly, we present some novel dynamic models

for ES and VaR, drawing on the GAS framework of Creal, et al. (2013), as well as successful

models from the volatility literature, see Andersen et al. (2006). The models we propose are

semiparametric in that they impose parametric structures for the dynamics of ES and VaR, but are

completely agnostic about the conditional distribution of returns (aside from regularity conditions

required for estimation and inference). The models proposed in this paper are related to the class

of �CAViaR�models proposed by Engle and Manganelli (2004a), in that we directly parameterize

the measure(s) of risk that are of interest, and avoid the need to specify a conditional distribution

for returns. The models we consider make estimation and prediction fast and simple to implement.

Our semiparametric approach eliminates the need to specify and estimate a conditional density,

thereby removing the possibility that such a model is misspeci�ed, though at a cost of a loss of

e¢ ciency compared with a correctly speci�ed density model.

Our second contribution is asymptotic theory for a general class of dynamic semiparametric

models for ES and VaR. This theory is an extension of results for VaR presented in Weiss (1991) and

Engle and Manganelli (2004a), and draws on identi�cation results in Fissler and Ziegel (2016) and

results for M-estimators in Newey and McFadden (1994). We present conditions under which the

estimated parameters of the VaR and ES models are consistent and asymptotically normal, and we

present a consistent estimator of the asymptotic covariance matrix. We show via an extensive Monte

Carlo study that the asymptotic results provide reasonable approximations in realistic simulation

designs. In addition to being useful for the new models we propose, the asymptotic theory we

present provides a general framework for other researchers to develop, estimate, and evaluate new

models for VaR and ES.

Our third contribution is an extensive application of our new models and estimation methods

in an out-of-sample analysis of forecasts of ES and VaR for four international equity indices over

the period January 1990 to December 2016. We compare these new models with existing methods

3



from the literature across a range of tail probability values (�) used in risk management. We use

Diebold and Mariano (1995) tests to identify the best-performing models for ES and VaR, and we

present simple regression-based methods, related to those of Engle and Manganelli (2004a) and

Nolde and Ziegel (2017), to �backtest�the ES forecasts.

Some work on expected shortfall estimation and prediction has appeared in the literature,

overcoming the problem of elicitability in di¤erent ways: Engle and Manganelli (2004b) discuss

using extreme value theory, combined with GARCH or CAViaR dynamics, to obtain forecasts of

ES. Cai and Wang (2008) propose estimating VaR and ES based on nonparametric conditional

distributions, while Taylor (2008) and Gschöpf et al. (2015) estimate models for �expectiles�

(Newey and Powell, 1987) and map these to ES. Zhu and Galbraith (2011) propose using �exible

parametric distributions for the standardized residuals from models for the conditional mean and

variance. Drawing on Fissler and Ziegel (2016), we overcome the problem of elicitability more

directly, and open up new directions for ES modeling and prediction.

In recent independent work, Taylor (2017) proposes using the asymmetric Laplace distribution

to jointly estimate dynamic models for VaR and ES. He shows the intriguing result that the negative

log-likelihood of this distribution corresponds to one of the loss functions presented in Fissler and

Ziegel (2016), and thus can be used to estimate and evaluate such models. Unlike our paper, Taylor

(2017) provides no asymptotic theory for his proposed estimation method, nor any simulation

studies of its reliability. However, given the link he presents, the theoretical results we present

below can be used to justify ex post the methods of his paper.

The remainder of the paper is structured as follows. In Section 2 we present new dynamic

semiparametric models for ES and VaR and compare them with the main existing models for ES and

VaR. In Section 3 we present asymptotic distribution theory for a generic dynamic semiparametric

model for ES and VaR, and in Section 4 we study the �nite-sample properties of the estimators

in some realistic Monte Carlo designs. In Section 5 we apply the new models to daily data on

four international equity indices, and compare these models both in-sample and out-of-sample with

existing models. Section 6 concludes. Proofs and additional technical details are presented in the

appendix, and a supplemental web appendix contains detailed proofs and additional analyses.

4



2 Dynamic models for ES and VaR

In this section we propose some new dynamic models for expected shortfall (ES) and Value-at-Risk

(VaR). We do so by exploiting recent work in Fissler and Ziegel (2016) which shows that these

variables are elicitable jointly, despite the fact that ES was known to be not elicitable on its own,

see Gneiting (2011a). The models we propose are based on the GAS framework of Creal, et al.

(2013) and Harvey (2013), which we brie�y review in Section 2.2 below.

2.1 A consistent scoring rule for ES and VaR

Fissler and Ziegel (2016) show that the following class of loss functions (or �scoring rules�), indexed

by the functions G1 and G2; is consistent for VaR and ES. That is, minimizing the expected loss

using any of these loss functions returns the true VaR and ES. In the functions below, we use the

notation v and e for VaR and ES.

LFZ (Y; v; e;�;G1; G2) = (1 fY � vg � �)
�
G1 (v)�G1 (Y ) +

1

�
G2 (e) v

�
(4)

�G2 (e)
�
1

�
1 fY � vgY � e

�
� G2 (e)

where G1 is weakly increasing, G2 is strictly increasing and strictly positive, and G02 = G2: We will

refer to the above class as �FZ loss functions.�1 Minimizing any member of this class yields VaR

and ES:

(VaRt;ESt) = argmin
(v;e)

Et�1 [LFZ (Yt; v; e;�;G1; G2)] (5)

Using the FZ loss function for estimation and forecast evaluation requires choosing G1 and G2:

To do so, �rst de�ne �L (Yt; v1t; e1t; v2t; e2t) � L (Yt; v1t; e1t)� L (Yt; v2t; e2t) as the loss di¤erence

for two forecasts (vj;t; ej;t), j 2 f1; 2g : We choose G1 and G2 so that the loss function generates

�L that is homogeneous of degree zero, a property that has been shown in volatility forecasting

applications to lead to higher power in Diebold-Mariano (1995) tests, see Patton and Sheppard

(2009). Nolde and Ziegel (2017) show that there does not generally exist an FZ loss function that

1Consistency of the FZ loss function for VaR and ES also requires imposing that e � v; which follows naturally

from the de�nitions of ES and VaR in equations (1) and (2). We discuss how we impose this restriction empirically

in Sections 4 and 5 below.
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generates loss di¤erences that are homogeneous of degree zero, however, we show in Proposition 1

below that zero-degree homogeneity may be attained by exploiting the fact that, for the values of

� that are of interest in risk management applications (namely, values ranging from around 0.01

to 0.10), we may assume that ESt < 0 a.s. 8 t: Proposition 1 shows that if we further impose

that VaRt < 0 a.s. 8 t; then, up to irrelevant location and scale factors, there is only one FZ loss

function that generates loss di¤erences that are homogeneous of degree zero.2 The uniqueness of

the loss function de�ned in Proposition 1 means, of course, that it also has the added bene�t of

there being no remaining shape or tuning parameters to be speci�ed.

Proposition 1 De�ne the FZ loss di¤erence for two forecasts (v1t; e1t) and (v2t; e2t) as

LFZ (Yt; v1t; e1t;�;G1; G2) � LFZ (Yt; v2t; e2t;�;G1; G2) : Under the assumption that VaR and ES

are both strictly negative, the loss di¤erences generated by a FZ loss function are homogeneous of

degree zero i¤ G1(x) = 0 and G2(x) = �1=x: The resulting �FZ0� loss function is:

LFZ0 (Y; v; e;�) = �
1

�e
1 fY � vg (v � Y ) + v

e
+ log (�e)� 1 (6)

All proofs are presented in Appendix A. In Figure 1 we plot LFZ0 when Y = �1: In the left

panel we �x e = �2:06 and vary v; and in the right panel we �x v = �1:64 and vary e: (These values

for (v; e) are the � = 0:05 VaR and ES from a standard Normal distribution.) The left panel shows

that the implied VaR loss function resembles the �tick� loss function from quantile estimation,

see Komunjer (2005) for example. In the right panel we see that the implied ES loss function

resembles the �QLIKE� loss function from volatility forecasting, see Patton (2011) for example.

In both panels, values of (v; e) where v < e are presented with a dashed line, as by de�nition

ESt is below VaRt; and so such values that would never be considered in practice. In Figure 2

we plot the contours of expected FZ0 loss for a standard Normal random variable. The minimum

value, which is attained when (v; e) = (�1:64;�2:06), is marked with a star, and we see that the
2 If VaR can be positive, then there is one free shape parameter in the class of zero-homogeneous FZ loss functions

('1='2; in the notation of the proof of Proposition 1). In that case, our use of the loss function in equation (6) can be

interpreted as setting that shape parameter to zero. This shape parameter does not a¤ect the consistency of the loss

function, as it is a member of the FZ class, but it may a¤ect the ranking of misspeci�ed models, see Patton (2016).
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�iso-expected loss� contours (that is, the level sets) of the expected loss function are boundaries

of convex sets. Fissler (2017) shows that convexity of sublevel sets holds more generally for the

FZ0 loss function under any distribution with �nite �rst moments, unique �-quantiles, continuous

densities, and negative ES.

[ INSERT FIGURES 1 AND 2 ABOUT HERE ]

With the FZ0 loss function in hand, it is then possible to consider semiparametric dynamic

models for ES and VaR:

(VaRt;ESt) = (v (Zt�1;�) ; e (Zt�1;�)) (7)

that is, where the true VaR and ES are some speci�ed parametric functions of elements of the

information set, Zt�1 2 Ft�1: The parameters of this model are estimated via:

�̂T = argmin
�

1

T

XT

t=1
LFZ0 (Yt; v (Zt�1;�) ; e (Zt�1;�) ;�) (8)

Such models impose a parametric structure on the dynamics of VaR and ES, through their rela-

tionship with lagged information, but require no assumptions, beyond regularity conditions, on the

conditional distribution of returns. In this sense, these models are semiparametric. Using theory

for M-estimators (see White (1994) and Newey and McFadden (1994) for example) we establish in

Section 3 below the asymptotic properties of such estimators. Before doing so, we �rst consider

some new dynamic speci�cations for ES and VaR.

2.2 A GAS model for ES and VaR

One of the challenges in specifying a dynamic model for a risk measure, or any other quantity

of interest, is the mapping from lagged information to the current value of the variable. Our �rst

proposed speci�cation for ES and VaR draws on the work of Creal, et al. (2013) and Harvey (2013),

who proposed a general class of models called �generalized autoregressive score�(GAS) models by

the former authors, and �dynamic conditional score�models by the latter author. In both cases

the models start from an assumption that the target variable has some parametric conditional

distribution, where the parameter (vector) of that distribution follows a GARCH-like equation.
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The forcing variable in the model is the lagged score of the log-likelihood, scaled by some positive

de�nite matrix, a common choice for which is the inverse Hessian. This speci�cation nests many

well known models, including ARMA, GARCH (Bollerslev, 1986) and ACD (Engle and Russell,

1998) models. See Koopman et al. (2016) for an overview of GAS and related models.

We adopt this modeling approach and apply it to our M-estimation problem. In this application,

the forcing variable is a function of the derivative and Hessian of the LFZ0 loss function rather

than a log-likelihood. We will consider the following GAS(1,1) model for ES and VaR:264 vt+1
et+1

375 = w +B
264 vt
et

375+AH�1
t rt (9)

where w is a (2� 1) vector and B and A are (2� 2) matrices. The forcing variable in this

speci�cation is comprised of two components, Ht and rt: Using details provided in Appendix B.1,

the latter can be shown to be:

rt �

264 @LFZ0 (Yt; vt; et;�) =@vt
@LFZ0 (Yt; vt; et;�) =@et

375 =
264 1

�vtet
�v;t

�1
�e2t

(�v;t + ��e;t)

375 (10)

where �v;t � �vt (1 fYt � vtg � �) (11)

�e;t � 1

�
1 fYt � vtgYt � et (12)

Note that the expression given for @LFZ0=@vt only holds for Yt 6= vt: As we assume that Yt is

continuously distributed, this holds with probability one. The scaling matrix, Ht; is related to the

Hessian:

It �

264 @2Et�1[LFZ0(Yt;vt;et;�)]
@v2t

@2Et�1[LFZ0(Yt;vt;et;�)]
@vt@et

� @2Et�1[LFZ0(Yt;vt;et;�)]
@e2t

375 =
264 �ft(vt)

�et
0

0 1
e2t

375 (13)

The second equality above exploits the fact that @2Et�1 [LFZ0 (Yt; vt; et;�)] =@vt@et = 0 under the

assumption that the dynamics for VaR and ES are correctly speci�ed. The �rst element of the

matrix It depends on the unknown conditional density of Yt: We would like to avoid estimating

this density, and we approximate the term ft (vt) as being proportional to v�1t : This approximation

holds exactly if Yt is a zero-mean location-scale random variable, Yt = �t�t, where �t s iid F� (0; 1) ;

as in that case we have:

ft (vt) = ft (�tv�) =
1

�t
f� (v�) � k�

1

vt
(14)
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where k� � v�f� (v�) is a constant with the same sign as vt. We de�ne Ht to equal It with the

�rst element replaced using the approximation in the above equation.3 The forcing variable in our

GAS model for VaR and ES then becomes:

H�1
t rt =

264 �1
k�
�v;t

�1
� (�v;t + ��e;t)

375 (15)

Notice that the second term in the model is a linear combination of the two elements of the forcing

variable, and since the forcing variable is premultiplied by a coe¢ cient matrix, say ~A; we can

equivalently use

~AH
�1
t rt = A�t (16)

where �t � [�v;t; �e;t]
0

We choose to work with the A�t parameterization, as the two elements of this forcing variable

(�v;t; �e;t) are not directly correlated, while the elements of H�1
t rt are correlated due to the

overlapping term (�v;t) appearing in both elements. This aids the interpretation of the results of

the model without changing its �t.

To gain some intuition for how past returns a¤ect current forecasts of ES and VaR in this

model, consider the �news impact curve�of this model, which presents (vt+1; et+1) as a function

of Yt through its impact on �t � [�v;t; � e;t]0 ; holding all other variables constant. Figure 3 shows

these two curves for � = 0:05; using the estimated parameters for this model when applied to daily

returns on the S&P 500 index (details are presented in Section 5 below). We consider two values

for the �current�value of (v; e): 10% above and below the long-run average for these variables. We

see that for values where Yt > vt; the news impact curves are �at, re�ecting the fact that on those

days the value of the realized return does not enter the forcing variable. When Yt � vt; we see that

ES and VaR react linearly to Y and this reaction is through the �e;t forcing variable; the reaction

through the �v;t forcing variable is a simple step (down) in both of these risk measures.

3Note that we do not use the fact that the scaling matrix is exactly the inverse Hessian (e.g., by invoking the

information matrix equality) in our empirical application or our theoretical analysis. Also, note that if we considered

a value of � for which vt = 0; then v� = 0 and we cannot justify our approximation using this approach. However,

we focus on cases where �� 1=2; and so we are comfortable assuming vt 6= 0; making k� invertible.

9



[ INSERT FIGURE 3 ABOUT HERE ]

2.3 A one-factor GAS model for ES and VaR

The speci�cation in Section 2.2 allows ES and VaR to evolve as two separate, correlated, processes.

In many risk forecasting applications, a useful simpler model is one based on a structure with only

one time-varying risk measure, e.g. volatility. We will consider a one-factor model in this section,

and will name the model in Section 2.2 a �two-factor�GAS model.

Consider the following one-factor GAS model for ES and VaR, where both risk measures are

driven by a single variable, �t.4

vt = a exp f�tg (17)

et = b exp f�tg , where b < a < 0

and �t = ! + ��t�1 + H
�1
t�1st�1

The forcing variable, H�1
t�1st�1; in the evolution equation for �t is obtained from the FZ0 loss

function, plugging in (a exp f�tg ; b exp f�tg) for (vt; et). Using details provided in Appendix B.2,

we �nd that the score and Hessian are:

st � @LFZ0 (Yt; a exp f�tg ; b exp f�tg ;�)
@�

= � 1
et

�
1

�
1 fYt � vtgYt � et

�
(18)

and It � @2Et�1 [LFZ0 (Yt; a exp f�tg ; b exp f�tg ;�)]
@�2t

=
�� k�a�

�
(19)

where k� is a negative constant and a� lies between zero and one. The Hessian, It, turns out to

be a constant in this case, and since we estimate a free coe¢ cient on our forcing variable, we can

set the scaling matrix, Ht; to any positive constant; we set Ht to one. Note that the VaR score,

�v;t = @L=@v, turns out to drop out from the forcing variable. Thus the one-factor GAS model for

4We use the structure in equation (17) to emphasize its similarity to conditional volatility models, which we

include as competitor models in the next section. The one-factor model for ES and VaR can also be obtained by

considering a zero-mean volatility model for Yt, with iid standardized residuals, say denoted �t: In this case, �t is

the log conditional standard deviation of Yt, and a = F�1� (�) and b = E [�j� � a] : (We exploit this interpretation

when linking these models to GARCH models in Section 2.5.1 below.)
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ES and VaR becomes:

�t = ! + ��t�1 + 
1

b exp f�t�1g

�
1

�
1 fYt�1 � a exp f�t�1ggYt�1 � b exp f�t�1g

�
(20)

We drop the negative sign in st that its coe¢ cient, ; is positive rather than negative. This change,

of course, does not a¤ect the �t of the model. The FZ loss function only identi�es (vt; et) ; and in

the speci�cation in equation (17) this implies that !; a; and b are not separably identi�able: for

any constant c; the parameter vectors (!; a; b; �; ) and (w + c (1� �) ; a exp f�cg ; b exp f�cg ; �; )

yield identical sequences of (vt; et) ; and thus identical values of the objective function. Fixing any

one of !; a; or b resolves this problem; we set ! = 0 for simplicity.

Foreshadowing the empirical results in Section 5, we �nd that this one-factor GAS model

outperforms the two-factor GAS model in out-of-sample forecasts for most of the asset return

series that we study.

2.4 Existing dynamic models for ES and VaR

As noted in the introduction, there is a relative paucity of dynamic models for ES and VaR, but

there is not a complete absence of such models. The simplest existing model is based on a rolling

window estimate of these quantities:

dVaRt = \Quantile fYsgt�1s=t�m (21)

cESt =
1

�m

t�1X
s=t�m

Ys1
n
Ys � dVaRso

where \Quantile fYsgt�1s=t�m denotes the sample quantile of Ys over the period s 2 [t�m; t� 1] :

Common choices for the window size, m; include 125, 250 and 500, corresponding to six months,

one year and two years of daily return observations respectively.

A more challenging competitor for the new ES and VaR models proposed in this paper are those

based on ARMA-GARCH dynamics for the conditional mean and variance, accompanied by some

assumption for the distribution of the standardized residuals. These models all take the form:

Yt = �t + �t�t (22)

�t s iid F� (0; 1)

11



where �t and �
2
t are speci�ed to follow some ARMA and GARCH model, and F� (0; 1) is some

arbitrary, strictly increasing, distribution with mean zero and variance one. What remains is to

specify a distribution for the standardized residual, �t. Given a choice for F�; VaR and ES forecasts

are obtained as:

vt = �t + a�t, where a = F�1� (�) (23)

et = �t + b�t, where b = E [�tj�t � a]

Two parametric choices for F� are common in the literature:

�t s iid N (0; 1) (24)

�t s iid Skew t (0; 1; �; �)

There are various skew t distributions used in the literature; in the empirical analysis below we

use that of Hansen (1994). A nonparametric alternative is to estimate the distribution of �t using

the empirical distribution function (EDF), an approach that is also known as ��ltered historical

simulation,�and one that is perhaps the best existing model for ES, see the survey by Engle and

Manganelli (2004b).5 We consider all of these models in our empirical analysis in Section 5.

2.5 GARCH and ES/VaR estimation

In this section we consider two extensions of the models presented above, in an attempt to combine

the success and parsimony of GARCH models with this paper�s focus on ES and VaR forecasting.

2.5.1 Estimating a GARCH model via FZ minimization

If an ARMA-GARCH model, including the speci�cation for the distribution of standardized residu-

als, is correctly speci�ed for the conditional distribution of an asset return, then maximum likelihood

is the most e¢ cient estimation method, and should naturally be adopted. If, on the other hand, we

5Some authors have also considered modeling the tail of F� using extreme value theory, however for the relatively

non-extreme values of � we consider here, past work (e.g., Engle and Manganelli (2004b), Nolde and Ziegel (2016)

and Taylor (2017)) has found EVT to perform no better than the EDF, and so we do not include it in our analysis.
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consider an ARMA-GARCH model only as a useful approximation to the true conditional distrib-

ution, then it is no longer clear that MLE is optimal. In particular, if the application of the model

is to ES and VaR forecasting, then we might be able to improve the �tted ARMA-GARCH model

by estimating the parameters of that model via FZ loss minimization, as discussed in Section 2.1.

This estimation method is related to one discussed in Remark 1 of Francq and Zakoïan (2015).

Consider the following model for asset returns:

Yt = �t�t, �t s iid F� (0; 1) (25)

�2t = ! + ��2t�1 + Y
2
t�1

The variable �2t is the conditional variance and is assumed to follow a GARCH(1,1) process. This

model implies a structure analogous to the one-factor GAS model presented in Section 2.3, as we

�nd:

vt = a � �t, where a = F�1� (�) (26)

et = b � �t, where b = E [�j� � a]

Some further results on VaR and ES in dynamic location-scale models are presented in Appendix

B.3. To apply this model to VaR and ES forecasting, we also have to estimate the VaR and ES

of the standardized residual, denoted (a; b) : Rather than estimating the parameters of this model

using (Q)MLE, we consider here estimating via FZ loss minimization. As in the one-factor GAS

model, ! is unidenti�ed and we set it to one,6 so the parameter vector to be estimated is (�; ; a; b).

This estimation approach leads to a �tted GARCH model that is tailored to provide the best-�tting

ES and VaR forecasts, rather than the best-�tting volatility forecasts.

6Similar to the one-factor GAS model, in this case we �nd that for any strictly positive constant c; the parameter

vectors (!; a; b; �; ) and (cw; a=
p
c; b=

p
c; �; c) yield identical sequences of (vt; et) ; and thus identical values of the

objective function. Fixing any one of !; a; or b resolves this problem. As ! must be strictly positive in a GARCH

model, we cannot set it to zero as we did for the one-factor GAS model; instead we set it to one.
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2.5.2 A hybrid GAS/GARCH model

Finally, we consider a direct combination of the forcing variable suggested by a GAS structure for

a one-factor model of returns, described in equation (20), with the successful GARCH model for

volatility. We specify:

Yt = exp f�tg �t, �t s iid F� (0; 1) (27)

�t = ! + ��t�1 + 
1

et�1

�
1

�
1 fYt�1 � vt�1gYt�1 � et�1

�
+ � log jYt�1j

The variable �t is the log-volatility, identi�ed up to scale. As the latent variable in this model is

log-volatility, we use the lagged log absolute return rather than the lagged squared return, so that

the units remain in line for the evolution equation for �t. There are �ve parameters in this model

(�; ; �; a; b) ; and we estimate them using FZ loss minimization.

3 Estimation of dynamic models for ES and VaR

This section presents asymptotic theory for the estimation of dynamic ES and VaR models by min-

imizing FZ loss. Given a sample of observations (Y1; � � � ; YT ) and a constant � 2 (0; 0:5), we are in-

terested in estimating and forecasting the conditional � quantile (VaR) and corresponding expected

shortfall (ES) of Yt. Suppose Yt is a real-valued random variable that has, conditional on information

set Ft�1, distribution function Ft (�jFt�1) and corresponding density function ft (�jFt�1). Let v1(�0)

and e1(�0) be some initial conditions for VaR and ES and let Ft�1 = �fYt�1;Xt�1; � � � ; Y1;X1g;

where Xt is a vector of exogenous variables or predetermined variables, be the information set

available for forecasting Yt. The vector of unknown parameters to be estimated is �0 2 � � Rp.

The conditional VaR and ES of Yt at probability level �; that isVaR� (YtjFt�1) and ES� (YtjFt�1),

are assumed to follow some dynamic model:264 VaR� (YtjFt�1)
ES� (YtjFt�1)

375 =
264 v(Yt�1;Xt�1; � � � ; Y1;X1;�0)
e(Yt�1;Xt�1; � � � ; Y1;X1;�0)

375 �
264 vt(�0)
et(�

0)

375 ; t = 1; � � � ; T: (28)

14



The unknown parameters are estimated as:

�̂T � argmin
�2�

LT (�) (29)

where LT (�) =
1

T

TX
t=1

LFZ0 (Yt; vt (�) ; et (�) ;�)

and the FZ loss function LFZ0 is de�ned in equation (6). Below we provide conditions under which

estimation of these parameters via FZ loss minimization leads to a consistent and asymptotically

normal estimator, with standard errors that can be consistently estimated. In Supplemental Ap-

pendix SA.2 we show that all of these conditions are satis�ed for the widely-used GARCH(1,1)

model, drawing on Lumsdaine (1996) and Carrasco and Chen (2002) among others. See Francq

and Zakoïan (2010) for a review of asymptotic theory for GARCH processes.

Assumption 1 (A) L (Yt; vt (�) ; et (�) ;�) obeys the uniform law of large numbers.

(B)(i) � is a compact subset of Rp for p <1: (ii)fYtg1t=1 is a strictly stationary process. Condi-

tional on all the past information Ft�1, the distribution of Yt is Ft (�jFt�1) which, for all t; belongs to

a class of distribution functions on R with �nite �rst moments and unique �-quantiles. (iii) 8t, both

vt(�) and et(�) are Ft�1-measurable and a.s. continuous in �. (iv) If Pr
�
vt(�) = vt(�

0) \ et(�) = et(�0)
�
=

1 8 t, then � = �0:

Theorem 1 (Consistency) Under Assumption 1, �̂T
p! �0 as T !1:

The proof of Theorem 1, provided in Appendix A, is straightforward given Theorem 2.1 of

Newey and McFadden (1994) and Corollary 5.5 of Fissler and Ziegel (2016). Assumption 1(A) can

be satis�ed by one of a variety of uniform laws of large numbers for the time series applications

we consider here, see Andrews (1987) and Pötscher and Prucha (1989) for example. Assumption

1(B) is standard for parameter time series inference. Zwingmann and Holzmann (2016) show that

if the �-quantile is not unique (violating part of our Assumption 1(B)(ii)), then the convergence

rate and asymptotic distribution of (v̂T ; êT ) are non-standard, even in a setting with iid data. We

do not consider such problematic cases here.

We next turn to the asymptotic distribution of our parameter estimator. In the assumptions
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below, K denotes a �nite constant that can change from line to line, and we use kxk to denote the

Euclidean norm of if x is a vector, and the Frobenius norm if x is a matrix.

Assumption 2 (A) For all t, we have (i) vt(�) and et(�) are a.s. twice continuously di¤erentiable

in �, (ii) et
�
�0
�
< vt(�

0) � 0.

(B) For all t, we have (i) conditional on all the past information Ft�1, Yt has a continuous

density ft (�jFt�1) that satis�es ft(yjFt�1) � K <1 and jft(y0jFt�1)� ft(y00jFt�1)j � K jy0 � y00j,

(ii) E
h
jYtj4+�

i
� K <1, for some 0 < � < 1.

(C) There exists a neighborhood of �0, N
�
�0
�
, such that for all t we have (i) j1=et(�)j � K <

1, 8 � 2 N
�
�0
�
; (ii) there exist some (possibly stochastic) Ft�1-measurable functions V (Ft�1),

V1(Ft�1), H1(Ft�1), V2(Ft�1), H2(Ft�1) that satisfy 8 � 2 N (�0): jvt(�)j � V (Ft�1), krvt(�)k �

V1(Ft�1), kret(�)k � H1(Ft�1),
r2vt(�) � V2(Ft�1), and r2et(�) � H2(Ft�1).

(D) For some 0 < � < 1 and for all t we have (i) E
�
V1(Ft�1)3+�

�
, E
�
H1(Ft�1)3+�

�
, E
h
V2(Ft�1)

3+�
2

i
,

E
h
H2(Ft�1)

3+�
2

i
� K, (ii) E

�
V (Ft�1)2+�V1(Ft�1)H1(Ft�1)2+�

�
� K,

(iii) E
h
H1(Ft�1)1+�H2(Ft�1) jYtj2+�

i
, E
h
H1(Ft�1)3+� jYtj2+�

i
� K:

(E) The matrix D0 de�ned in Theorem 2 is (strictly) positive de�nite for T su¢ ciently large.

(F)
��
Yt; vt

�
�0
�
; et
�
�0
�
;r0vt

�
�0
�
;r0et

�
�0
��	

is �-mixing with
P1
m=1 � (m)

(q�2)=q < 1 for

some q > 2:

(G) For any T; sup�2�
PT
t=1 1 fYt = vt (�)g � K a.s.

Most of the above assumptions are standard. Assumption 2(A)(ii) imposes that the VaR is

negative, but given our focus on the left-tail (� < 0:5) of asset returns, this is not likely a binding

constraint. Assumptions 2(B)�(E) are similar to those in Engle and Manganelli (2004a). Assump-

tion 2(B)(ii) requires at least 4+� moments of returns to exist, however 2(D) may actually increase

the number of required moments, depending on the VaR-ES model employed. Our requirement of

at least 4 + � moments of returns allows returns to be fat tailed, but not without limit: it rules

out applications where kurtosis is not de�ned, for example Student�s t distributions with degrees

of freedom of four or less. (In our simulation study below, we show that the theory here has good

�nite sample properties when using a Skew t with �ve degrees of freedom.) Assumptions 2(C)�(D)
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are conditions on the magnitude of the VaR and ES paths, as well as �rst and second derivatives of

these, making them somewhat hard to interpret. In the Supplemental Appendix we show that for

a GARCH process these reduce to moment conditions on the observed returns. Assumption 2(F)

is a standard condition on the amount of time series dependence, and allows us to invoke a CLT of

Hall and Heyde (1980). Assumption 2(G) limits the number of exact equalities of realized returns

and �tted VaR values; given assumption 2(B), in linear models K = dim (�) ; while in nonlinear

models it may be that K < dim (�) :

Theorem 2 (Asymptotic Normality) Under Assumptions 1 and 2, we have

p
TA

�1=2
0 D0(�̂T � �0)

d! N(0; I) as T !1 (30)

where

D0 = E

"
ft
�
vt(�

0)jFt�1
�

�et(�0)�
r0vt(�0)rvt(�0) +

1

et(�
0)2
r0et(�0)ret(�0)

#
(31)

A0 = E
�
gt(�

0)gt(�
0)0
�

(32)

gt(�) =
@L (Yt; vt (�) ; et (�) ;�)

@�
(33)

= r0vt(�)
1

�et(�)

�
1

�
1 fYt � vt(�)g � 1

�
+r0et(�)

1

et(�)2

�
1

�
1 fYt � vt(�)g (vt(�)� Yt)� vt(�) + et(�)

�
An outline of the proof of this theorem is given in Appendix A, and the detailed lemmas

underlying it are provided in the supplemental appendix. The proof of Theorem 2 builds on Huber

(1967), Weiss (1991) and Engle and Manganelli (2004a), who focused on the estimation of quantiles.

Finally, we present a result for estimating the asymptotic covariance matrix of �̂T ; thereby

enabling the reporting of standard errors and con�dence intervals.

Assumption 3 (A) The deterministic positive sequence cT satis�es cT = o(1) and c�1T = o(T 1=2).

(B)(i) T�1
PT
t=1 gt(�

0)gt(�
0)0 �A0

p! 0, where A0 is de�ned in Theorem 2.

(ii) T�1
PT
t=1

1
et(�

0)2
r0et(�0)ret(�0)� E

h
1

et(�
0)2
r0et(�0)ret(�0)

i
p! 0.

(iii) T�1
PT
t=1

ft(vt(�
0)jFt�1)

�et(�0)�
r0vt(�0)rvt(�0)� E

h
ft(vt(�

0)jFt�1)
�et(�0)�

r0vt(�0)rvt(�0)
i
p! 0.
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Theorem 3 Under Assumptions 1-3, ÂT �A0
p! 0 and D̂T �D0

p! 0, where

ÂT =T
�1

TX
t=1

gt(�̂T )gt(�̂T )
0

D̂T =T
�1

TX
t=1

8<: 1

2cT
1
n���Yt � vt ��̂T���� < cTo r0vt

�
�̂T

�
rvt

�
�̂T

�
��et

�
�̂T

� +
r0et

�
�̂T

�
ret

�
�̂T

�
e2t

�
�̂T

�
9=;

This result extends Theorem 3 in Engle and Manganelli (2004a) from dynamic VaR models to

dynamic joint models for VaR and ES. The key choice in estimating the asymptotic covariance

matrix is the bandwidth parameter in Assumption 3(A). In our simulation study below we set this

to T�1=3 and we �nd that this leads to satisfactory �nite-sample properties.

The results here extend some very recent work in the literature: Dimitriadis and Bayer (2017)

consider VaR-ES regression, but focus on iid data and linear speci�cations. These authors also

consider a variety of FZ loss functions, in contrast with our focus on the FZ0 loss function, and

they consider bothM and GMM estimation, while we focus only onM estimation. Barendse (2017)

considers �interquantile expectation regression,�which nests VaR-ES regression as a special case.

He allows for time series data, but imposes that the models are linear. Our framework allows for

time series data and nonlinear models.

4 Simulation study

In this section we investigate the �nite-sample accuracy of the asymptotic theory for dynamic ES

and VaR models presented in the previous section. For ease of comparison with existing studies of

related models, such as volatility and VaR models, we consider a GARCH(1,1) for the DGP, and

estimate the parameters by FZ loss minimization. Speci�cally, the DGP is

Yt = �t�t (34)

�2t = ! + ��2t�1 + Y
2
t�1

�t s iid F� (0; 1) (35)

We set the parameters of this DGP to (!; �; ) = (0:05; 0:9; 0:05) : We consider two choices for the

distribution of �t: a standard Normal, and the standardized skew t distribution of Hansen (1994),
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with degrees of freedom (#) and skewness (�) parameters in the latter set to (5;�0:5) : Under this

DGP, the ES and VaR are proportional to �t, with

(VaR�t ;ES
�
t ) = (a�; b�)�t (36)

We make the dependence of the coe¢ cients of proportionality (a�; b�) on � explicit here, as we

consider a variety of values of � in this simulation study: � 2 f0:01; 0:025; 0:05; 0:10; 0:20g : Interest

in VaR and ES from regulators focuses on the smaller of these values of �; but we also consider

the larger values to better understand the properties of the asymptotic approximations at various

points in the tail of the distribution.

For a standard Normal distribution, with CDF and PDF denoted � and �; we have:

a� = ��1 (�) (37)

b� = ��
�
��1 (�)

�
=�

For Hansen�s skew t distribution we can obtain VaR (a�) from the inverse CDF, which is available

in closed form. We obtain a closed-form expression for ES (b�) by extending results in Dobrev, et al.

(2017) which provides analyical expressions for ES for (symmetric) Student�s t random variables.

Details are presented in Appendix B.4. As noted in Section 2.5, FZ loss minimization does not

allow us to identify ! in the GARCH model, and in our empirical work we set this parameter to

one, however to facilitate comparisons of the accuracy of estimates of (a�; b�) in our simulation

study we instead set ! at its true value. This is done without loss of generality and merely eases

the presentation of the results. To match our empirical application, we replace the parameter a�

with c� = a�=b�; and so our parameter vector becomes (�; ; b�; c�) :

We consider two sample sizes, T 2 f2500; 5000g corresponding to 10 and 20 years of daily

returns respectively. These large sample sizes enable us to consider estimating models for quantiles

as low as 1%, which are often used in risk management. We repeat all simulations 1000 times. To

mitigate sensitivity to starting values, we initially estimate all models using a �smoothed�version

of the FZ0 loss function, and use the resulting estimate as the starting value for the estimation

problem using the original, �unsmoothed,�FZ0 loss function. Details are in Appendix C.
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Table 1 presents results for the estimation of this model on standard Normal innovations, and

Table 2 presents corresponding results for skew t innovations. The top row of each panel present the

true parameter values, with the latter two parameters changing across �: The second row presents

the median estimated parameter across simulations, and the third row presents the average bias in

the estimated parameter. Both of these measures indicate that the parameter estimates are nicely

centered on the true parameter values. The penultimate row presents the cross-simulation standard

deviations of the estimated parameters, and we observe that these decrease with the sample size and

increase as we move further into the tails (i.e., as � decreases), both as expected. Comparing the

standard deviations across Tables 1 and 2, we also note that they are higher for skew t innovations

than Normal innovations, again as expected.

The last row in each panel presents the coverage probabilities for 95% con�dence intervals

for each parameter, constructed using the estimated standard errors, with bandwidth parameter

cT =
�
T�1=3

�
. For � � 0:05 we see that the coverage is reasonable, ranging from around 0.88 to

0.96. For � = 0:025 or � = 0:01 the coverage tends to be too low, particularly for the smaller sample

size. Thus some caution is required when interpreting the standard errors for the models with the

smallest values of �: In Table S1 of the Supplemental Appendix we present results for (Q)MLE for

the GARCH model corresponding to the results in Tables 1 and 2, using the theory of Bollerslev

and Wooldridge (1992), and in Tables S2 and S3 we present results for CAViaR estimation of this

model, using the �tick� loss function and the theory of Engle and Manganelli (2004a).7 We �nd

that (Q)MLE has better �nite sample properties than FZ minimization, but CAViaR estimation

has slightly worse properties than FZ minimization.

Table 3 presents results for T = 500; which is relatively short given our interest in tail events,

but may be of interest when only limited data are available or when structural breaks are suspected.

7 In (Q)MLE, the parameters to be estimated are (!; �; ) ; and they are obtained by maximizing the sample average

of the Normal log-likelihood. In �CAViaR� estimation, the parameters are (!; �; ; a�) and they are obtained by

minimizing the sample average of the �tick� loss function, de�ned as L (y; v;�) = (1 fy � vg � �) (v � y) : Like FZ

estimation, in the CAViaR approach we �nd that a� and ! are not separately identi�ed. As for the study of FZ

estimation, we set ! to its true value to facilitate interpretation of the results, and estimate the remaining three

parameters.
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We see here that the estimator remains approximately unbiased, however inference (e.g., through

con�dence intervals) is less reliable with this short sample.

[INSERT TABLES 1�3 ABOUT HERE ]

In Table 4 we compare the e¢ ciency of FZ estimation relative to (Q)MLE and to CAViaR

estimation, for the parameters that all three estimation methods have in common, namely (�; ) :

As expected, when the innovations are standard Normal, FZ estimation is substantially less e¢ cient

than MLE, however when the innovations are skew t the loss in e¢ ciency drops and for some

values of � FZ estimation is actually more e¢ cient than QMLE. This switch in the ranking of the

competing estimators is qualitatively in line with results in Francq and Zakoïan (2015). In Panel

B of Table 4, we see that FZ estimation is generally, though not uniformly, more e¢ cient than

CAViaR estimation.

[INSERT TABLE 4 ABOUT HERE ]

In many applications, interest is focused on the forecasted values of VaR and ES rather than

the estimated parameters of the models generating these forecasts. To study this, Table 5 presents

results on the accuracy of the �tted VaR and ES estimates for the three estimation methods:

(Q)MLE, CAViaR and FZ estimation. We consider the same two DGPs as above, and two others

that represent more challenging environments for QMLE. In the two additional DGPs, we assume

the same mean and volatility dynamics as before, and we additionally allow the degrees of freedom

(#) and skewness (�) parameters in the skew t distribution to vary in such a way as to either

�o¤set� or �amplify� the dynamics in volatility, resulting in VaR and ES series that are either

approximately constant, or proportional to the conditional variance rather than the conditional

standard deviation. These two simulation designs represent simple ways to obtain dynamics in

VaR and ES that are �far� from the dynamics in volatility, and is an environment where QMLE

would be expected to perform poorly. Details are provided in Appendix D.

To obtain estimates of VaR and ES from the (Q)ML estimates, we follow common empirical

practice and compute the sample VaR and ES of the estimated standardized residuals. The columns
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labeled MAE present the mean absolute error from (Q)MLE, and in the next two columns of each

panel we present the relative MAE of CAViaR and FZ to (Q)MLE.

For Normal innovations, reported in Panel A, MLE is the most accurate estimation method,

as expected. Averaging across values of �; CAViaR is about 40% worse, while FZ is about 30%

worse. For skew t innovations, reported in Panel B, the gap in performance closes somewhat, with

CAViaR and FZ performing about 24% and 16% worse than QMLE. In Panels C and D we consider

challenging environments for QMLE, where the dynamics in volatility, which is the focus in QMLE,

are very di¤erent from those in VaR and ES, which are the focus in FZ estimation. Unsurprisingly,

QMLE does poorly in this case compared with FZ estimation, with MAE ratios (averaging across

�) of 0.41 and 0.61 in these two panels, indicating that FZ does between 1.5 and 2.5 times better

than QMLE in these simulation designs. CAViaR also outperforms QMLE in these designs, with

average MAE ratios of 0.50 and 0.65.

Overall, these simulation results show that the asymptotic results of the previous section provide

reasonable approximations in �nite samples, with the approximations improving for larger sample

sizes and less extreme values of �: Compared with MLE, estimation by FZ loss minimization is

less accurate when the innovations are Normal or skew t, but when the dynamics in VaR and ES

are di¤erent from those in volatility, the bene�ts of FZ estimation becomes apparent. Across all

simulation designs, we �nd that FZ estimation is generally more accurate than estimation using

the CAViaR approach of Engle and Manganelli (2004a), likely attributable to the fact that FZ

estimation draws on information from two tail measures, VaR and ES, while CAViaR was designed

to only model VaR.

[INSERT TABLE 5 ABOUT HERE ]

5 Forecasting equity index ES and VaR

We now apply the models discussed in Section 2 to the forecasting of ES and VaR for daily returns

on four international equity indices. We consider the S&P 500 index, the Dow Jones Industrial

Average, the NIKKEI 225 index of Japanese stocks, and the FTSE 100 index of UK stocks. Our
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sample period is 1 January 1990 to 31 December 2016, yielding between 6,630 and 6,805 observations

per series (the exact numbers vary due to di¤erences in holidays and market closures). In our out-

of-sample analysis, we use the �rst ten years for estimation, and reserve the remaining 17 years for

evaluation and model comparison.

Table 6 presents full-sample summary statistics on these four return series. Average annualized

returns range from -2.7% for the NIKKEI to 7.2% for the DJIA, and annualized standard deviations

range from 17.0% to 24.7%. All return series exhibit mild negative skewness (around -0.15) and

substantial kurtosis (around 10). The lower two panels of Table 6 present the sample VaR and ES

for four choices of �:

Table 7 presents results from standard time series models estimated on these return series over

the in-sample period (Jan 1990 to Dec 1999). In the �rst panel we present the estimated parameters

of the optimal ARMA(p; q) models, where the choice of (p; q) is made using the BIC. We note that

for three of the four series the optimal model includes just a constant, consistent with the well-

known lack of predictability of daily equity returns. The second panel presents the parameters

of the GARCH(1,1) model for conditional variance, and the lower panel presents the estimated

parameters the skew t distribution applied to the standardized residuals. All of these parameters

are broadly in line with values obtained by other authors for these or similar series.

[ INSERT TABLES 6 AND 7 ABOUT HERE ]

5.1 In-sample estimation

We now present estimates of the parameters of the models presented in Section 2, along with

standard errors computed using the theory from Section 3. In the interests of space, we only report

the parameter estimates for the S&P 500 index for � = 0:05. The two-factor GAS model based

on the FZ0 loss function is presented in the left panel of Table 8. This model allows for separate

dynamics in VaR and ES, and we present the parameters for each of these risk measures in separate

columns. We impose that the B matrix is diagonal for parsimony. We observe that the persistence

of these processes is high, with the estimated b parameters equal to 0.993 and 0.994, similar to

the persistence found in GARCH models (e.g., see Table 7). The model-implied average values
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of VaR and ES are -1.589 and -2.313, similar to the sample values of these measures reported in

Table 6. We observe that the coe¢ cients on �e for both VaR and ES are small in magnitude and

far from being statistically signi�cant. The coe¢ cients on �v are larger and more signi�cant (the

t-statistics are -2.95 and -2.58). The overall imprecision from the coe¢ cients on the four forcing

variables suggests that this model is over-parameterized. For example, proportionality of vt and et

would suggest that a one-factor model is su¢ cient. We can formally test for this in the context of

the two-factor model by testing that we=wv = aev=avv = aee=ave \ bv = be: We obtain a p-value of

0.77 for this restriction, indicating no evidence against proportionality.

The right panel of Table 8 shows three one-factor models for ES and VaR. The �rst is the

one-factor GAS model, which is nested in the two-factor model presented in the left panel. We

see a slight loss in �t (the average loss is slightly greater) but the parameters of this model are

estimated with greater precision. The one-factor GAS model �ts better than the GARCH model

estimated via FZ loss minimization (reported in the penultimate column).8 The �hybrid�model,

augmenting the one-factor GAS model with a GARCH-type forcing variable, �ts better than the

other one-factor models, and also slightly better than the larger two-factor GAS model, and we

observe that the coe¢ cient on the GARCH forcing variable (�) is signi�cantly di¤erent from zero

(with a t-statistic of 9.55). The computation times for these models is reported in the bottom row

of Table 8; for comparison, the computation time for QML estimation of the GARCH model is 0.39

seconds.

[ INSERT TABLE 8 ABOUT HERE ]

5.2 Out-of-sample forecasting

We now turn to the out-of-sample (OOS) forecast performance of the models discussed above, as

well as some competitor models from the existing literature. We will focus initially on the results for

8Recall that in all of the one-factor models, the intercept (!) in the GAS equation is unidenti�ed. We �x it at zero

for the GAS-1F and Hybrid models, and at one for the GARCH-FZ model. This has no impact on the �t of these

models for VaR and ES, but it means that we cannot interpret the estimated (a; b) parameters as the VaR and ES of

the standardized residuals, and we no longer expect the estimated values to match the sample estimates in Table 6.
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� = 0:05; given the focus on that percentile in the extant VaR literature. (Results for other values

of � are considered below, with details provided in the supplemental appendix.) We will consider a

total of ten models for forecasting ES and VaR. Firstly, we consider three rolling window methods,

using window lengths of 125, 250 and 500 days. We next consider ARMA-GARCH models, with the

ARMA model orders selected using the BIC, and assuming that the distribution of the innovations

is standard Normal or skew t; or estimating it nonparametrically using the sample ES and VaR of

the estimated standardized residuals. Finally we consider four new semiparametric dynamic models

for ES and VaR: the two-factor GAS model presented in Section 2.2, the one-factor GAS model

presented in Section 2.3, a GARCH model estimated using FZ loss minimization, and the �hybrid�

GAS/GARCH model presented in Section 2.5. We estimate these models using the �rst ten years

as our in-sample period, and retain those parameter estimates throughout the OOS period.

In Figure 4 below we plot the �tted 5% ES and VaR for the S&P 500 return series, using three

models: the rolling window model using a window of 125 days, the GARCH-EDF model, and the

one-factor GAS model. This �gure covers both the in-sample and out-of-sample periods. The �gure

shows that the average ES was estimated at around -2%, rising as high as around -1% in the mid

90s and mid 00s, and falling to its most extreme values of around -10% during the �nancial crisis

in late 2008. Thus, like volatility, ES �uctuates substantially over time.

Figure 5 zooms in on the last two years of our sample period, to better reveal the di¤erences in

the estimates from these models. We observe the usual step-like movements in the rolling window

estimate of VaR and ES, as the more extreme observations enter and leave the estimation window.

Comparing the GARCH and GAS estimates, we see how they di¤er in reacting to returns: the

GARCH estimates are driven by lagged squared returns, and thus move stochastically each day.

The GAS estimates, on the other hand, only use information from returns when the VaR is violated,

and on other days the estimates revert deterministically to the long-run mean. This generates a

smoother time series of VaR and ES estimates. We investigate below which of these estimates

provides a better �t to the data.

[ INSERT FIGURES 4 AND 5 ABOUT HERE ]
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The left panel of Table 9 presents the average OOS losses, using the FZ0 loss function from

equation (6), for each of the ten models, for the four equity return series. The lowest values in each

column are highlighted in bold, and the second-lowest are in italics. We observe that the one-factor

GAS model, labelled FZ1F, is the preferred model for the two US equity indices, while the Hybrid

model is the preferred model for the NIKKEI and FTSE indices. The worst model is the rolling

window with a window length of 500 days.

While average losses are useful for an initial look at OOS forecast performance, they do not

reveal whether the gains are statistically signi�cant. Table 10 presents Diebold-Mariano t-statistics

on the loss di¤erences, for the S&P 500 index. Corresponding tables for the other three equity

return series are presented in Table S4 of the supplemental appendix. The tests are conducted

as �row model minus column model� and so a positive number indicates that the column model

outperforms the row model. The column �FZ1F� corresponding to the one-factor GAS model

contains all positive entries, revealing that this model out-performed all competing models. This

outperformance is strongly signi�cant for the comparisons to the rolling window forecasts, as well as

the GARCH model with Normal innovations. The gains relative to the GARCH model with skew t

or nonparametric innovations are not signi�cant, with DM t-statistics of 1.79 and 1.53 respectively.

Similar results are found for the best models for each of the other three equity return series. Thus

the worst models are easily separated from the better models, but the best few models are generally

not signi�cantly di¤erent. The supplemental appendix presents results analogous to Table 9, but

with alpha=0.025, which is the value for ES that is the focus of the Basel III accord. The rankings

and results are qualitatively similar to those for alpha=0.05 discussed here.

[ INSERT TABLES 9 AND 10 ABOUT HERE ]

To complement the study of the relative performance of these models for ES and VaR, we now

consider goodness-of-�t tests for the OOS forecasts of VaR and ES. Under correct speci�cation of

the model for VaR and ES, we know that

Et�1

264 @LFZ0 (Yt; vt; et;�) =@vt
@LFZ0 (Yt; vt; et;�) =@et

375 = 0 (38)
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and we note that this implies that Et�1 [�v;t] = Et�1 [�e;t] = 0; where (�v;t; �e;t) are de�ned in

equations (11)-(12). Thus the variables �v;t and �e;t can be considered as a form of �generalized

residual� for this model. To mitigate the impact of serial correlation in these measures (which

comes through the persistence of vt and et) we use standardized versions of these residuals:

�sv;t � �v;t
vt

= 1 fYt � vtg � � (39)

�se;t � �e;t
et

=
1

�
1 fYt � vtg

Yt
et
� 1

These standardized generalized residuals are also conditionally mean zero under correct speci�ca-

tion, and we note that the standardized residual for VaR is simply the demeaned �hit�variable,

which is the focus of well-known tests from the VaR literature, see Christo¤ersen (1998) and Engle

and Manganelli (2004a). We adopt the �dynamic quantile (DQ)� testing approach of Engle and

Manganelli (2004a), which is based on simple regressions of these generalized residuals on elements

of the information set available at the time the forecast was made. Consider, then the following

�DQ�and �DES�regressions:

�sv;t = a0 + a1�
s
v;t�1 + a2vt + uv;t (40)

�se;t = b0 + b1�
s
e;t�1 + b2et + ue;t

where a = [a0; a1; a2]
0 and b = [b0; b1; b2]

0 are the parameters of the regression and uv;t and ue;t

are the regression residuals. We test forecast optimality by testing that all parameters in these

regressions are zero, against the usual two-sided alternative. Similar �conditional calibration�tests

are presented in Nolde and Ziegel (2017). One could also consider a joint test of both of the above

null hypotheses, however we will focus on these separately so that we can determine which variable

is well/poorly speci�ed.

The right two panels of Table 9 present the p-values from the tests of the goodness-of-�t of the

VaR and ES forecasts. Entries greater than 0.10 (indicating no evidence against optimality at the

0.10 level) are in bold, and entries between 0.05 and 0.10 are in italics. For the S&P 500 index and

the DJIA, we see that only one model passes the ES tests: the two-factor GAS model, while no

model passes the VaR tests. For the NIKKEI we see that all of the dynamic models pass these two
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tests, while all three of the rolling window models fail. For the FTSE index, on the other hand,

we see that all ten models considered here fail both the goodness-of-�t tests. The outcomes for the

NIKKEI and the FTSE each, in di¤erent ways, present good examples of the problem highlighted in

Nolde and Ziegel (2017), that many di¤erent models may pass a goodness-of-�t test, or all models

may fail, which makes discussing their relative performance di¢ cult. To do so, one can look at

Diebold-Mariano tests of di¤erences in average loss, as we do in Table 10.

Finally, in Table 11 we look at the performance of these models across four values of �; to see

whether the best-performing models change with how deep in the tails we are. We �nd that this is

indeed the case: for � = 0:01; the best-performing model across the four return series is the GARCH

model estimated by FZ loss minimization, followed by the GARCH model with nonparametric

residuals. These rankings also hold for � = 0:025. For � = 0:05 the two best models are the

GARCH model with nonparametric residuals and the Hybrid model, while for � = 0:10 the two

best models are the Hybrid model and the one-factor GAS model. These rankings are perhaps

related to the fact that the forcing variable in the GAS model depends on observing a violation

of the VaR, and for very small values of � these violations occur only infrequently. In contrast,

the GARCH model uses the information from the squared residual, and so information from the

data moves the risk measures whether a VaR violation was observed or not. When � is not too

small, the forcing variable suggested by the GAS model applied to the FZ loss function starts to

out-perform.

[ INSERT TABLE 11 ABOUT HERE ]

6 Conclusion

With the implementation of the Third Basel Accord in the next few years, risk managers and

regulators will place greater focus on expected shortfall (ES) as a measure of risk, complementing

and partly substituting previous emphasis on Value-at-Risk (VaR). We draw on recent results from

statistical decision theory (Fissler and Ziegel, 2016) to propose new dynamic models for ES and

VaR. The models proposed are semiparametric, in that they impose parametric structures for the
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dynamics of ES and VaR, but are agnostic about the conditional distribution of returns. We also

present asymptotic distribution theory for the estimation of these models, and we verify that the

theory provides a good approximation in �nite samples. We apply the new models and methods

to daily returns on four international equity indices, over the period 1990 to 2016, and �nd the

proposed new ES-VaR models outperform forecasts based on GARCH or rolling window models.

The asymptotic theory presented in this paper facilitates considering a large number of exten-

sions of the models presented here. Our models all focus on a single value for the tail probability

(�) ; and extending these to consider multiple values simultaneously could prove fruitful. For ex-

ample, one could consider the values 0.01, 0.025 and 0.05, to capture various points in the left

tail, or one could consider 0.05 and 0.95 to capture both the left and right tails simultaneously.

Another natural extension is to make use of exogenous information in the model; the models pro-

posed here are all univariate, and one might expect that information from options markets, high

frequency data, or news announcements to also help predict VaR and ES. We leave these interesting

extensions to future research.
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Appendix A: Proofs

Proof of Proposition 1. Theorem C.3 of Nolde and Ziegel (2017) shows that under the

assumption that ES is strictly negative, the loss di¤erences generated by a FZ loss function are

homogeneous of degree zero i¤ G1(x) = '11 fx � 0g and G2(x) = �'2=x with '1 � 0 and '2 > 0.

Denote the resulting loss function as L�FZ0 (Y; v; e;�; '1; '2) ; and notice that:

L�FZ0 (Y; v; e;�; '1; '2) = '1 (1 fY � vg � �) (1 fv � 0g � 1 fY � 0g)

+'2

�
� (1 fY � vg � �) 1

�

v

e
+
1

e

�
1

�
1 fY � vgY � e

�
+ log (�e)

�
= '1 (1 fY � vg � �) (1 fv � 0g � 1 fY � 0g) + '2LFZ0 (Y; v; e;�)

= '2LFZ0 (Y; v; e;�) + '1�1 fY � 0g

+'11 fv � 0g (1 fY � vg � �� 1 f0 � Y � vg)

Under the assumption that v < 0; the third term vanishes. The second term is purely a function

of Y and so can be disregarded; we can set '1 = 0 without loss of generality. The �rst term is

a¤ected by a scaling parameter '2 > 0; and we can set '2 = 1 without loss of generality. Thus we

obtain the LFZ0 given in equation (6). If v can be positive, then setting '1 = 0 is interpretable as

�xing this shape parameter value at a particular value.

Proof of Theorem 1. The proof is based on Theorem 2.1 of Newey and McFadden (1994).

We only need to show that E[LT (�)] is uniquely minimized at �0, because the other assump-

tions of Newey and McFadden�s theorem are clearly satis�ed. By Corollary (5.5) of Fissler and

Ziegel (2016), given Assumption 1(B)(iii) and the fact that our choice of the objective function

LFZ0 satis�es the condition as in Corollary (5.5) of Fissler and Ziegel (2016), we know that

E [L (Yt; vt (�) ; et (�) ;�) jFt�1] is uniquely minimized at (VaR�(YtjFt�1);ES�(YtjFt�1)) ; which equals�
vt(�

0); et(�
0)
�
under correct speci�cation. Combining this assumption and Assumption 1(B)(iv),

we know that �0 is a unique minimizer of E[LT (�)], completing the proof.

Outline of proof of Theorem 2. We consider the population function �(�) = E [gt(�)] ;
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and take a mean-value expansion of �(�̂) around �0: We show in Lemma 1 that:

p
T (�̂ � �0) = ���1(�0) 1p

T

TX
t=1

gt(�
0) + op(1)

where �(��) =
@E [gt(�)]
@�

����
�=��

In the supplemental appendix we prove Lemma 1 by building on and extending Weiss (1991),

who extends Huber (1967) to non-iid data. We draw on Weiss�Lemma A.1, and we verify that

all �ve assumptions (N1-N5 in his notation) for that lemma are satis�ed: N1, N2 and N5 are

obviously satis�ed given our Assumptions 1-2, and we show in Lemmas 3 - 6 that assumptions N3

and N4 are satist�ed. Lemma 7 shows that a CLT applies for the sequence
n
T�1=2

PT
t=1 gt(�

0)
o
;

with asymptotic covariance matrix A0 = E
�
gt(�

0)gt(�
0)0
�
: We denote �(�0) as D0; leading to the

stated result.

Proof of Theorem 3. Given Assumption 3B(i) and the result in Theorem 1, the proof that

ÂT �A0
p! 0 is standard and omitted. Next, de�ne

~DT = T
�1

TX
t=1

f(2cT )�11fjYt � vt(�0)j < cT g
1

�et(�0)�
rvt(�0)0rvt(�0) +

1

et(�
0)2
ret(�0)0ret(�0)g

To prove the result we will show that D̂T � ~DT = op(1) and ~DT �D0 = op(1). Firstly, consider

kD̂T � ~DT k �
(2TcT )�1

�
TX
t=1

f(1fjYt � vt(�̂T )j < cT g � 1fjYt � vt(�0)j < cT g)
1

�et(�̂T )�
rvt(�̂T )0rvt(�̂T )

+1
�
jYt � vt(�0)j < cT

	 1

�et(�̂T )�

�
rvt(�̂T )�rvt(�0)

�0
rvt(�̂T )

+1fjYt � vt(�0)j < cT g
 

1

��et(�̂T )
� 1

��et(�0)

!
rvt(�0)0rvt(�̂T )

+1fjYt � vt(�0)j < cT g
1

��et(�0)
rvt(�0)0(rvt(�̂T )�rvt(�0))


+ T�1

TX
t=1

 1

et(�̂T )2
ret(�̂T )0ret(�̂T )�

1

et(�
0)2
ret(�0)0ret(�0)


The last line above was shown to be op(1) in the proof of Theorem 2. The di¢ cult quantity in the

�rst term (over the �rst six lines above) is the indicator, and following the same steps as in Engle
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and Manganelli (2004a), that term is also op(1): Next, consider ~DT�D0:

~DT�D0 =
1

2TcT

TX
t=1

�
1
���Yt � vt(�0)�� < cT	� E �1���Yt � vt ��0��� < cT	 jFt�1��

�r
0vt(�

0)rvt(�0)
�et(�0)�

+
1

T

TX
t=1

�
1

2cT
E[1fjYt � vt(�0)j < cT gjFt�1]

1

�et(�0)�
r0vt(�0)rvt(�0)

�E
�
ft(vt(�

0))

�et(�0)�
r0vt(�0)rvt(�0)

��
+ op (1)

Following Engle and Manganelli (2004a), assumptions 1-3 are su¢ cient to show ~DT �D0 = op(1)

and the result follows.

Appendix B: Derivations

Appendix B.1: Generic calculations for the FZ0 loss function

The FZ0 loss function is:

LFZ0 (Y; v; e;�) = �
1

�e
1 fY � vg (v � Y ) + v

e
+ log (�e)� 1 (41)

Note that this is not homogeneous, as for any k > 0; LFZ0 (kY; kv; ke;�) = LFZ0 (Y; v; e;�) +

log (k), but this loss function generates loss di¤erences that are homogenous of degree zero, as the

additive additional term above drops out.

We will frequently use the �rst derivatives of this loss function, and the second derivatives of

the expected loss for an absolutely continuous random variable with density f and CDF F . These

are (for v 6= Y ):

rv � @LFZ0 (Y; v; e;�)

@v
= � 1

�e
(1 fY � vg � �) � 1

�ve
�v (42)

re � @LFZ0 (Y; v; e;�)

@e
(43)

=
1

�e2
1 fY � vg (v � Y )� v

e2
+
1

e

=
v

�e2
(1 fY � vg � �)� 1

e2

�
1

�
1 fY � vgY � e

�
� �1

�e2
(�v + ��e)
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where

�v � �v (1 fY � vg � �) (44)

�e � 1

�
1 fY � vgY � e (45)

and

@2E [LFZ0 (Y; v; e;�)]
@v2

= � 1

�e
f (v) (46)

@2E [LFZ0 (Y; v; e;�)]
@v@e

=
1

�e2
(F (v)� �) (47)

= 0, at the true value of (v; e)

@2E [LFZ0 (Y; v; e;�)]
@e2

=
1

e2
� 2

�e3
f(F (v)� �) v � (E [1 fY � vgY ]� �e)g (48)

=
1

e2
, at the true value of (v; e)

Appendix B.2: Derivations for the one-factor GAS model for ES and VaR

Here we present the calculations to compute st and It for this model. Below we use:

@v

@�
=

@2v

@�2
= a exp f�g = v (49)

@e

@�
=

@2e

@�2
= b exp f�g = e (50)

And so we �nd (for vt 6= Yt)

st � @LFZ0 (Yt; vt; et;�)

@�t
(51)

=
@LFZ0 (Yt; vt; et;�)

@vt

@vt
@�t

+
@LFZ0 (Yt; vt; et;�)

@et

@et
@�t

=

�
� 1

�et
(1 fYt � vtg � �)

�
vt

+

�
� 1
e2t

�
1

�
1 fYt � vtgYt � et

�
+
vt
e2t

1

�
(1 fYt � vtg � �)

�
et

= � 1
et

�
1

�
1 fYt � vtgYt � et

�
(52)

� ��et=et (53)

Thus, the �vt term drops out of st and we are left with ��et=et:
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Next we calculate It :

It � @2Et�1 [LFZ0 (Yt; vt; et;�)]
@�2t

(54)

=
@2Et�1 [LFZ0 (Yt; vt; et;�)]

@v2t

�
@vt
@�t

�2
+
@2Et�1 [LFZ0 (Yt; vt; et;�)]

@vt@et

@vt
@�t

+
@2Et�1 [LFZ0 (Yt; vt; et;�)]

@e2t

�
@et
@�t

�2
+
@2Et�1 [LFZ0 (Yt; vt; et;�)]

@vt@et

@et
@�t

+
@Et�1 [LFZ0 (Yt; vt; et;�)]

@vt

@2vt
@�2t

+
@Et�1 [LFZ0 (Yt; vt; et;�)]

@et

@2et
@�2t

But note that under correct speci�cation,

@2Et�1 [L (Yt; vt; et;�)]
@vt@et

=
@Et�1 [L (Yt; vt; et;�)]

@vt
=
@Et�1 [L (Yt; vt; et;�)]

@et
= 0 (55)

and so the Hessian simpli�es to:

It =
@2Et�1 [LFZ0 (Yt; vt; et;�)]

@v2t

�
@vt
@�t

�2
+
@2Et�1 [LFZ0 (Yt; vt; et;�)]

@e2t

�
@et
@�t

�2
(56)

= � 1

�et
ft (vt) v

2
t + 1 (57)

= 1� k�
�

a�
b�
, since ft (vt) =

k�
vt
and

vt
et
=
a�
b�
, for this DGP. (58)

Thus although the Hessian could vary with time, as it is a derivative of the conditional expected

loss, in this speci�cation it simpli�es to a (positive) constant.

Appendix B.3: ES and VaR in location-scale models

Dynamic location-scale models are widely used for asset returns and in this section we consider

what such a speci�cation implies for the dynamics of ES and VaR. Consider the following:

Yt = �t + �t�t, �t s iid F� (0; 1) (59)

where, for example, �t is some ARMA model and �2t is some GARCH model. For asset returns

that follow equation (59) we have:

vt = �t + a�t, where a = F�1� (�) (60)

et = �t + b�t, where b = E [�tj�t � a]
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and we we can recover (�t; �t) from (vt; et):264 �t
�t

375 = 1

b� a

264 b �a

�1 1

375
264 vt
et

375 (61)

Thus under the conditional location-scale assumption, we can back out the conditional mean and

variance from the VaR and ES. Next note that if �t = 0 8 t; then vt = c �et, where c = a=b 2 (0; 1).

Daily asset returns often have means that are close to zero, and so this restriction is one that may

be plausible in the data. A related, though less plausible, restriction is that �t = �� 8 t; and in that

case we have the simpli�cation that vt = d+ et, where d = (a� b) �� > 0:

Appendix B.4: VaR and ES for Hansen�s skew t random variables

The VaR for Hansen�s (1994) skew t variable is can be obtained using an expression for the

inverse CDF of the skew t distribution presented in Jondeau and Rockinger (2003). In a recent

paper, Dobrev et al. (2017) present an analyical expression for the expected shortfall for a Student�s

t random variable, X; with degrees of freedom � > 1:

ESx (�; �) =
��=2

2�
p
�

�
�
��1
2

�
�
�
�
2

� �
(V aRx (�; �))

2 + �
��(��1)=2

(62)

where V aRx (�; �) = F�1x (�; �) is the �-quantile of a Student�s t (v) variable. The VaR for a

standardized (unit variance) Student�s t variable, Y; is simply:

ESy (�; �) =

r
� � 2
�

ESx (�; �) (63)

We use the connection between the PDF of a standardized Student�s t random variable and Hansen�s

(1994) skew t variable, Z, to obtain an analogous expression for the expected shortfall of a skew t

random variable. As in Hansen (1994), de�ne

a � 4�c
�
� � 2
� � 1

�
, b �

p
1 + 3�2 � a2, c �

�
�
�+1
2

�
�
�
�
2

�p
� (� � 2)

(64)

De�ne

ES�z (�; �; �) =
~�

�
(1� �)

�
�a
b
+
1� �
b
ESy (�; �)

�
(65)

where ~� � Fz

�
b

1� �

�
V aRy (�; �) +

a

b

�
; �; 0

�
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where Fz (�; �; �) is the CDF of the skew t distribution with parameters (�; �) : Let V aRz (�; �; �) =

F�1z (�; �; �) : It can then be shown that

ESz (�; �; �) =

8><>: ES�z (�; �; �) ; V aRz (�; �; �) � �a=b
1��
� ES�z (1� �; �;��) ; V aRz (�; �; �) > �a=b

(66)

Note that when � = 0 this simpli�es to a symmetric unit-variance Student�s t variable, and we

recover the expression above, i.e., ESz (�; �; 0) = ESy (�; �) : A Matlab function for the VaR and

ES of a skew t variable is available at the link given in the �rst footnote of this paper.

Appendix C: Estimation using the FZ0 loss function
The FZ0 loss function, equation (6), involves the indicator function 1 fYt � vtg and so necessi-

tates the use of a numerical search algorithm that does not rely on di¤erentiability of the objective

function; we use the function fminsearch in Matlab. However, in preliminary simulation analyses

we found that this algorithm was sensitive to the starting values used in the search. To overcome

this, we initially consider a �smoothed� version of the FZ0 loss function, where we replace the

indicator variable with a Logistic function:

~LFZ0 (Y; v; e;�; �) = � 1

�e
� (Yt; vt; �) (v � Y ) +

v

e
+ log (�e)� 1 (67)

where � (Yt; vt; �) � 1

1 + exp f� (Yt � vt)g
, for � > 0 (68)

where � is the smoothing parameter, and the smoothing function � converges to the indicator

function as � ! 1: In GAS models that involve an indicator function in the forcing variable, we

alter the forcing variable in the same way, to ensure that the objective function as a function of �

is di¤erentiable. In these cases the loss function and the model itself are slightly altered through

this smoothing.

In our empirical implementation, we obtain �smart�(or �warm�) starting values by �rst esti-

mating the model using the �smoothed FZ0�loss function with � = 5: This choice of � gives some

smoothing for values of Yt that are roughly within �1 of vt: Call the resulting parameter estimate

~�
(5)
T : Since this objective function is di¤erentiable, we can use more familiar gradient-based numer-

ical search algorithms, such as fminunc or fmincon in Matlab, which are often less sensitive to
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starting values. We then re-estimate the model, using ~�
(5)
T as the starting value, setting � = 20 and

obtain ~�
(20)
T : This value of � smoothes values of Yt within roughly �0:25 of vt; and so this objective

function is closer to the true objective function. Finally, we use ~�
(20)
T as the starting value in the

optimization of the actual FZ0 objective function, with no arti�cial smoothing, using the function

fminsearch, and obtain �̂T . We found that this approach largely eliminated the sensitivity to

starting values.

Appendix D: Dynamics in the Skew t distribution

For each parameter vector (#; �) of the Skew t distribution, we de�ne h (#; �) � [hv (#; �) ; he (#; �)] =

(v; e) to be the VaR and ES at a given value of �:Given the functional form of the Skew t distribu-

tion, not all pairs of VaR and ES are attainable from a set of parameters (#; �) and so the function

h is not invertible everywhere. We de�ne a pseudo-inverse of this mapping as

h(�1) (v; e) � arg min
(#;�)

(hv (#; �)� v)2 + (he (#; �)� e)2 (69)

In words, the pseudo-inverse returns the Skew t parameters (#; �) that lead to VaR and ES that

are as close as possible, in a squared-error distance metric, to the target values (v; e) :

To obtain dynamics in (#; �) that �o¤set� those in the GARCH volatility process, we set

(#t; �t) = h
(�1) (�v=�t; �e=�t) ; and we �x (�v; �e) =

�
��1 (�) ;��

�
��1 (�)

�
=�
�
: If the pseudo-inverse

was actually the proper inverse, we would �nd:

(vt; et) = �th (#t; �t) = �th
�
h(�1) (�v=�t; �e=�t)

�
= (�v; �e) 8 t (70)

In our simulation study, the time series of (vt; et) in the �o¤setting�case were approximately but

not perfectly �at, e.g., for � = 0:05; the min-max spreads for vt and et were around 0.05, when

(�v; �e) = (�1:65;�2:06). As the dynamics in volatility are not completely o¤set, this is helpful for

QMLE and the ratios reported in Panel C of Table 5 are better than if the dynamics could be o¤set

completely.

To obtain �amplifying� dynamics, we set (#t; �t) = h(�1)
�
�a�t;�b�t

�
; and we �x

�
�a;�b
�
=

(�v; �e) = (2��) : If h(�1) were a proper inverse this would lead to:

(vt; et) = �th (#t; �t) = �th
�
h(�1)

�
�a�t;�b�t

��
=
�
�a;�b
�
�2t =

��v�t
2��
;
�e�t
2��

�
�t � (at; bt)�t (71)
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and so the coe¢ cients linking VaR and ES to conditional standard deviation are also increasing in

the standard deviation, yielding the �amplifying� feature of this model. In our simulation study,

the time series of (vt; et) were almost perfectly linear in �2t ; with R
2 values from regressions of vt

and et on �2t of over 0.998 in all cases.
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Table 1: Simulation results for Normal innovations

T = 2500 T = 5000
�  b� c� �  b� c�

� = 0:01
True 0.900 0.050 -2.665 0.873 0.900 0.050 -2.665 0.873

Median 0.901 0.049 -2.615 0.882 0.899 0.049 -2.671 0.877
Avg bias -0.017 0.015 -0.108 0.008 -0.011 0.006 -0.089 0.004
St dev 0.077 0.076 1.095 0.022 0.049 0.033 0.805 0.015

Coverage 0.868 0.827 0.875 0.919 0.884 0.876 0.888 0.937

� = 0:025
True 0.900 0.050 -2.338 0.838 0.900 0.050 -2.338 0.838

Median 0.899 0.047 -2.329 0.842 0.897 0.048 -2.392 0.841
Avg bias -0.017 0.007 -0.137 0.004 -0.011 0.002 -0.111 0.002
St dev 0.066 0.044 0.852 0.017 0.050 0.024 0.656 0.012

Coverage 0.898 0.870 0.911 0.931 0.912 0.888 0.925 0.923

� = 0:05
True 0.900 0.050 -2.063 0.797 0.900 0.050 -2.063 0.797

Median 0.901 0.048 -2.051 0.800 0.899 0.049 -2.094 0.799
Avg bias -0.013 0.005 -0.097 0.002 -0.008 0.002 -0.081 0.001
St dev 0.062 0.046 0.707 0.015 0.041 0.021 0.511 0.010

Coverage 0.913 0.874 0.916 0.947 0.923 0.907 0.927 0.948

� = 0:10
True 0.900 0.050 -1.755 0.730 0.900 0.050 -1.755 0.730

Median 0.900 0.048 -1.769 0.730 0.898 0.048 -1.778 0.730
Avg bias -0.015 0.006 -0.103 0.000 -0.009 0.001 -0.072 0.000
St dev 0.065 0.052 0.623 0.013 0.040 0.020 0.435 0.009

Coverage 0.917 0.883 0.925 0.954 0.922 0.902 0.934 0.960

� = 0:20
True 0.900 0.050 -1.400 0.601 0.900 0.050 -1.400 0.601

Median 0.898 0.048 -1.391 0.602 0.899 0.048 -1.417 0.602
Avg bias -0.017 0.008 -0.091 0.000 -0.010 0.002 -0.064 0.000
St dev 0.078 0.072 0.547 0.014 0.044 0.022 0.374 0.010

Coverage 0.925 0.881 0.934 0.948 0.941 0.923 0.945 0.954

Notes: This table presents results from 1000 replications of the estimation of VaR and ES from
a GARCH(1,1) DGP with standard Normal innovations. Details are described in Section 4. The
top row of each panel presents the true values of the parameters. The second, third, and fourth
rows present the median estimated parameters, the average bias, and the standard deviation (across
simulations) of the estimated parameters. The last row of each panel presents the coverage rates
for 95% con�dence intervals constructed using estimated standard errors.
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Table 2: Simulation results for skew t innovations

T = 2500 T = 5000
�  b� c� �  b� c�

� = 0:01
True 0.900 0.050 -4.506 0.730 0.900 0.050 -4.506 0.730

Median 0.893 0.049 -4.376 0.750 0.895 0.048 -4.562 0.741
Avg bias -0.047 0.038 -0.399 0.018 -0.028 0.014 -0.340 0.009
St dev 0.150 0.134 2.687 0.048 0.094 0.065 1.983 0.034

Coverage 0.797 0.797 0.809 0.894 0.837 0.853 0.839 0.936

� = 0:025
True 0.900 0.050 -3.465 0.695 0.900 0.050 -3.465 0.695

Median 0.895 0.047 -3.448 0.705 0.896 0.048 -3.520 0.701
Avg bias -0.028 0.014 -0.254 0.008 -0.017 0.005 -0.198 0.004
St dev 0.101 0.069 1.591 0.034 0.068 0.033 1.192 0.023

Coverage 0.855 0.835 0.877 0.921 0.874 0.893 0.887 0.939

� = 0:05
True 0.900 0.050 -2.767 0.651 0.900 0.050 -2.767 0.651

Median 0.896 0.048 -2.760 0.656 0.898 0.048 -2.795 0.654
Avg bias -0.021 0.007 -0.187 0.005 -0.011 0.003 -0.114 0.003
St dev 0.081 0.049 1.085 0.025 0.053 0.025 0.782 0.017

Coverage 0.906 0.883 0.921 0.937 0.916 0.904 0.922 0.951

� = 0:10
True 0.900 0.050 -2.122 0.577 0.900 0.050 -2.122 0.577

Median 0.897 0.048 -2.121 0.579 0.898 0.048 -2.140 0.578
Avg bias -0.017 0.006 -0.125 0.003 -0.008 0.002 -0.069 0.002
St dev 0.066 0.045 0.745 0.020 0.040 0.022 0.510 0.014

Coverage 0.931 0.900 0.937 0.949 0.926 0.925 0.927 0.947

� = 0:20
True 0.900 0.050 -1.514 0.431 0.900 0.050 -1.514 0.431

Median 0.899 0.050 -1.485 0.432 0.899 0.049 -1.503 0.432
Avg bias -0.019 0.006 -0.089 0.001 -0.008 0.002 -0.049 0.001
St dev 0.089 0.047 0.618 0.018 0.042 0.022 0.380 0.012

Coverage 0.916 0.888 0.922 0.938 0.929 0.916 0.940 0.944

Notes: This table presents results from 1000 replications of the estimation of VaR and ES
from a GARCH(1,1) DGP with skew t innovations. Details are described in Section 4. The top
row of each panel presents the true values of the parameters. The second, third, and fourth rows
present the median estimated parameters, the average bias, and the standard deviation (across
simulations) of the estimated parameters. The last row of each panel presents the coverage rates
for 95% con�dence intervals constructed using estimated standard errors.
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Table 3: Simulation results for T=500

Normal innovations Skewed t innovations
�  b� c� �  b� c�

� = 0:01
True 0.900 0.050 -2.665 0.873 0.900 0.050 -4.506 0.730

Median 0.915 0.048 -2.165 0.917 0.906 0.033 -3.694 0.813
Avg bias -0.041 0.063 0.056 0.042 -0.086 0.096 -0.250 0.071
St dev 0.161 0.189 1.550 0.049 0.233 0.264 3.552 0.095

Coverage 0.781 0.709 0.779 0.730 0.704 0.666 0.747 0.762

� = 0:025
True 0.900 0.050 -2.338 0.838 0.900 0.050 -3.465 0.695

Median 0.909 0.044 -2.136 0.860 0.906 0.030 -3.170 0.736
Avg bias -0.028 0.031 -0.048 0.020 -0.053 0.048 -0.262 0.037
St dev 0.134 0.134 1.205 0.039 0.176 0.192 2.240 0.070

Coverage 0.862 0.765 0.868 0.899 0.817 0.717 0.835 0.875

� = 0:05
True 0.900 0.050 -2.063 0.797 0.900 0.050 -2.767 0.651

Median 0.905 0.040 -1.976 0.808 0.899 0.028 -2.671 0.672
Avg bias -0.030 0.027 -0.133 0.011 -0.053 0.028 -0.366 0.021
St dev 0.134 0.142 1.098 0.033 0.174 0.165 1.817 0.053

Coverage 0.870 0.749 0.870 0.922 0.829 0.712 0.862 0.920

� = 0:10
True 0.900 0.050 -1.755 0.730 0.900 0.050 -2.122 0.577

Median 0.902 0.038 -1.694 0.736 0.897 0.031 -2.195 0.588
Avg bias -0.032 0.024 -0.156 0.006 -0.058 0.025 -0.373 0.012
St dev 0.132 0.137 0.970 0.029 0.175 0.164 1.413 0.045

Coverage 0.883 0.756 0.880 0.950 0.845 0.746 0.876 0.922

� = 0:20
True 0.900 0.050 -1.400 0.601 0.900 0.050 -1.514 0.431

Median 0.899 0.037 -1.394 0.602 0.894 0.033 -1.564 0.435
Avg bias -0.042 0.036 -0.177 0.001 -0.063 0.027 -0.290 0.004
St dev 0.147 0.174 0.854 0.031 0.187 0.167 1.070 0.038

Coverage 0.894 0.757 0.888 0.944 0.853 0.741 0.866 0.955

Notes: This table presents results from 1000 replications of the estimation of VaR and ES from
a GARCH(1,1) DGP with standard Normal innovations (left panel) or skew t innovations (right
panel). Details are described in Section 4. The top row of each panel presents the true values of
the parameters. The second, third, and fourth rows present the median estimated parameters, the
average bias, and the standard deviation (across simulations) of the estimated parameters. The
last row of each panel presents the coverage rates for 95% con�dence intervals constructed using
estimated standard errors.
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Table 4: Sampling variation of FZ estimation
relative to (Q)MLE and CAViaR

Normal innovations Skew t innovations
T = 2500 T = 5000 T = 2500 T = 5000

� �  �  �  � 

Panel A: FZ/(Q)ML
0.01 1.209 5.940 1.701 3.731 1.577 4.830 2.533 3.723
0.025 1.034 3.394 1.764 2.694 1.055 2.485 1.853 1.905
0.05 0.980 3.576 1.431 2.377 0.850 1.784 1.426 1.458
0.10 1.021 4.074 1.406 2.302 0.698 1.627 1.095 1.250
0.20 1.224 5.558 1.543 2.497 0.939 1.710 1.145 1.242

Panel B: FZ/CAViaR
0.01 0.982 1.162 0.951 0.975 1.062 1.384 0.912 1.465
0.025 0.965 1.139 0.971 1.042 0.976 1.030 0.974 0.997
0.05 0.925 1.238 0.910 0.930 0.885 0.819 0.920 0.903
0.10 0.940 1.283 0.847 0.827 0.831 0.903 0.816 0.819
0.20 0.855 0.671 0.703 0.510 0.736 0.437 0.503 0.515

Notes: This table presents the ratio of cross-simulation standard deviations of parameter es-
timates obtained by FZ loss minimization and (Q)MLE (Panel A), and CAViaR (Panel B). We
consider only the parameters that are common to these three estimation methods, namely the
GARCH(1,1) parameters � and : Ratios greater than one indicate the FZ estimator is more
variable than the alternative estimation method; ratios less than one indicate the opposite.

Notes to Table 5 (next page): This table presents results on the accuracy of the �tted VaR and
ES estimates for the three estimation methods: QML, CAViaR and FZ estimation. In the �rst
column of each panel we present the mean absolute error (MAE) from QML, computed across all
dates in a given sample and all 1000 simulation replications. The next two columns present the
relative MAE of CAViaR and FZ to QML. Values greater than one indicate QML is more accurate
(has lower MAE); values less than one indicate the opposite.
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Table 6: Summary statistics

S&P 500 DJIA NIKKEI FTSE
Mean (Annualized) 6.776 7.238 -2.682 3.987
Std dev (Annualized) 17.879 17.042 24.667 17.730
Skewness -0.244 -0.163 -0.114 -0.126
Kurtosis 11.673 11.116 8.580 8.912
VaR-0.01 -3.118 -3.034 -4.110 -3.098
VaR-0.025 -2.324 -2.188 -3.151 -2.346
VaR-0.05 -1.731 -1.640 -2.451 -1.709
VaR-0.10 -1.183 -1.126 -1.780 -1.193
ES-0.01 -4.528 -4.280 -5.783 -4.230
ES-0.025 -3.405 -3.215 -4.449 -3.295
ES-0.05 -2.697 -2.553 -3.603 -2.643
ES-0.10 -2.065 -1.955 -2.850 -2.031

Notes: This table presents summary statistics on the four daily equity return series studied in
Section 5, over the full sample period from January 1990 to December 2016. The �rst two rows
report the annualized mean and standard deviation of these returns in percent. The second panel
presents sample Value-at-Risk for four choices of �; and the third panel presents corresponding
sample Expected Shortfall estimates.

Table 7: ARMA, GARCH, and Skew t results

SP500 DJIA NIKKEI FTSE
�0 0.056 0.056 -0.029 0.042
�1 � � � 0.075
R2 0.000 0.000 0.000 0.006
! 0.005 0.004 0.072 0.009
� 0.942 0.922 0.865 0.936
 0.052 0.077 0.105 0.053
� 6.358 6.766 6.677 13.663
� -0.035 -0.059 -0.016 -0.024

Notes: This table presents parameter estimates for the four daily equity return series studied in
Section 5, over the in-sample period from January 1990 to December 1999. The �rst panel presents
the optimal ARMA model according to the BIC, along with the R2 of that model. The second
panel presents the estimated GARCH(1,1) parameters, and the third panel presents the estimated
parameters of the skewed t distribution applied to the estimated standardized residuals.
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Table 8: Estimated paramters of GAS models for VaR and ES

GAS-2F GAS-1F GARCH-FZ Hybrid
VaR ES

w -0.009 -0.010 � 0.995 0.944 0.974
(s.e.) (0.003) (0.004) (s.e.) (0.002) (0.058) (0.006)
b 0.993 0.994  0.007 0.031 0.003

(s.e.) (0.002) (0.003) (s.e.) (0.0001) (0.010) (0.003)
av -0.358 -0.351 � � � 0.017
(s.e.) (0.109) (0.129) (s.e.) (0.002)
ae -0.003 -0.003 a -1.164 -1.955 -2.320
(s.e.) (0.002) (0.003) (s.e.) (0.420) (0.256) (4.671)

b -1.757 -2.829 -3.434
(s.e.) (0.634) (0.522) (6.874)

Avg loss 0.592 0.603 0.637 0.590
Time (secs) 44.773 0.594 0.767 1.343

Notes: This table presents parameter estimates and standard errors for four GAS models of
VaR and ES for the S&P 500 index over the in-sample period from January 1990 to December 1999.
The left panel presents the results for the two-factor GAS model in Section 2.2. The right panel
presents the results for the three one-factor models: a one-factor GAS model (from Section 2.3),
and a GARCH model estimated by FZ loss minimization, and �hybrid�one-factor GAS model that
includes a additional GARCH-type forcing variable (both from Section 2.5). The penultimate row
of this table presents the average (in-sample) losses from each of these four models, and the bottom
row presents the estimation time for each model (using Matlab R2018b on a 3.4GHz machine).
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Table 10: Diebold-Mariano t-statistics on average out-of-sample loss di¤erences
alpha=0.05, S&P 500 returns

RW125 RW250 RW500 G-N G-Skt G-EDF FZ-2F FZ-1F G-FZ Hybrid
RW125 -2.257 -3.527 1.952 2.478 2.625 2.790 3.600 2.736 2.684
RW250 2.257 -3.215 2.752 3.129 3.246 3.364 4.039 3.399 3.538
RW500 3.527 3.215 3.706 3.997 4.087 4.334 4.818 4.223 4.454
G-N -1.952 -2.752 -3.706 3.526 2.965 1.418 2.483 2.847 0.634
G-Skt -2.478 -3.129 -3.997 -3.526 1.954 0.626 1.791 1.179 -0.436
G-EDF -2.625 -3.246 -4.087 -2.965 -1.954 0.335 1.529 -0.023 -0.756
FZ-2F -2.790 -3.364 -4.334 -1.418 -0.626 -0.335 1.000 -0.329 -0.904
FZ-1F -3.600 -4.039 -4.818 -2.483 -1.791 -1.529 -1.000 -1.624 -2.049
G-FZ -2.736 -3.399 -4.223 -2.847 -1.179 0.023 0.329 1.624 -0.895
Hybrid -2.684 -3.538 -4.454 -0.634 0.436 0.756 0.904 2.049 0.895

Notes: This table presents t-statistics from Diebold-Mariano tests comparing the average losses,
using the FZ0 loss function, over the out-of-sample period from January 2000 to December 2016, for
ten di¤erent forecasting models. A positive value indicates that the row model has higher average
loss than the column model. Values greater than 1.96 in absolute value indicate that the average
loss di¤erence is signi�cantly di¤erent from zero at the 95% con�dence level. Values along the main
diagonal are all identically zero and are omitted for interpretability. The �rst three rows correspond
to rolling window forecasts, the next three rows correspond to GARCH forecasts based on di¤erent
models for the standardized residuals, and the last four rows correspond to models introduced in
Section 2.
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Table 11: Out-of-sample performance rankings for various alpha

� = 0:01 � = 0:025
S&P DJIA NIK FTSE Avg S&P DJIA NIK FTSE Avg

RW-125 8 8 10 8 8.50 8 8 9 7 8.00
RW-250 9 9 8 9 8.75 9 9 8 8 8.50
RW-500 10 10 9 10 9.75 10 10 10 10 10.00
G-N 7 7 5 4 5.75 7 6 4 3 5.00
G-Skt 6 3 1 2 3.00 5 3 1 1 2.50
G-EDF 5 2 2 1 2.50 2 2 3 2 2.25
FZ-2F 4 4 6 7 5.25 4 5 7 9 6.25
FZ-1F 3 6 7 6 5.50 3 4 6 5 4.50
G-FZ 2 1 3 3 2.25 1 1 2 4 2.00
Hybrid 1 5 4 5 3.75 6 7 5 6 6.00

� = 0:05 � = 0:10
S&P DJIA NIK FTSE Avg S&P DJIA NIK FTSE Avg

RW-125 8 8 8 8 8.00 8 8 8 8 8.00
RW-250 9 9 9 9 9.00 9 9 9 9 9.00
RW-500 10 10 10 10 10.00 10 10 10 10 10.00
G-N 7 7 5 6 6.25 3 4 7 4 4.50
G-Skt 5 6 4 2 4.25 7 6 6 3 5.50
G-EDF 3 3 2 3 2.75 4 2 3 5 3.50
FZ-2F 2 2 7 4 3.75 2 3 5 7 4.25
FZ-1F 1 1 6 7 3.75 1 7 2 2 3.00
G-FZ 4 5 3 5 4.25 6 5 4 6 5.25
Hybrid 6 4 1 1 3.00 5 1 1 1 2.00

Notes: This table presents the rankings (with the best performing model ranked 1 and the worst
ranked 10) based on average losses using the FZ0 loss function, for four daily equity return series,
over the out-of-sample period from January 2000 to December 2016, for ten di¤erent forecasting
models. The �rst three rows in each panel correspond to rolling window forecasts, the next three
rows correspond to GARCH forecasts based on di¤erent models for the standardized residuals, and
the last four rows correspond to models introduced in Section 2. The last column in each panel
represents the average rank across the four equity return series.
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Figure 1: This �gure plots the FZ0 loss function when Y = �1 and � = 0:05: In the left panel we
�x e = �2:06 and vary v; in the right panel we �x v = �1:64 and vary e: Values where v < e are
indicated with a dashed line.
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Figure 2: Contours of expected FZ0 loss when the target variable is standard Normal. Only values
where ES<VaR<0 are considered. The optimal value is marked with a star.
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Figure 3: This �gure shows the values of VaR and ES as a function of the lagged return, when the
lagged values of VaR and ES are either low (10% below average) or high (10% above average). The
function is based on the estimated parameters for daily S&P 500 returns.
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Figure 4: This �gure plots the estimated 5% Value-at-Risk (VaR) and Expected Shortfall (ES)
for daily returns on the S&P 500 index, over the period January 1990 to December 2016. The
estimates are based on a one-factor GAS model, a GARCH model, and a rolling window using 125
observations.
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Figure 5: This �gure plots the estimated 5% Value-at-Risk (VaR) and Expected Shortfall (ES)
for daily returns on the S&P 500 index, over the period January 2015 to December 2016. The
estimates are based on a one-factor GAS model, a GARCH model, and a rolling window using 125
observations.
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This appendix contains three parts. Part 1 presents lemmas that provide further details on the

proof of Theorem 2 presented in the main paper. Part 2 presents a detailed veri�cation that the

high level assumptions made in the theorems of the paper hold for the widely-used GARCH(1,1)

process. Part 3 contains additional tables of analysis.

Appendix SA.1: Detailed proofs
Throughout this appendix, we suppress the subscript on �̂T for simplicity of presentation, and

we denote the conditional distribution and density functions as Ft and ft rather than Ft (�jFt�1)

and ft (�jFt�1) :

In Lemmas 1 and 3 below, we will refer to the expected score, de�ned as:

�(�) = E [gt(�)] (1)

= E
�

1

�et(�)

�
Ft (vt(�))

�
� 1
�
rvt(�)0+

1

et(�)2

�
Ft (vt(�))

�
vt(�)�

1

�
Et�1[Ytj1 fYt � vt(�)g]� vt(�) + et(�)

�
ret(�)0

�

Lemma 1 Let

�(��) =
@E [gt(�)]
@�

����
�=��

(2)

Then under Assumptions 1-2,

p
T (�̂ � �0) =

�
��1(�0) + op(1)

� 
� 1p

T

TX
t=1

gt(�
0) + op(1)

!
(3)

1



Proof of Lemma 1. Consider a mean-value expansion of �(�̂) around �0:

�(�̂) =�(�0) +
@E [gt(�)]
@�

����
�=��

(�̂ � �0) (4)

= �(��)(�̂ � �0) (5)

where �� lies between �̂ and �0, and noting that �(�0) = 0 and the de�nition of �(��) given in the

statement of the lemma. Proving the claim involves two results: (I) ��1(��) = ��1(�0)+op(1); and

(II)
p
T�(�̂) = � 1p

T

PT
t=1 gt(�

0) + op(1): Part (I) is easy to verify: Since vt(�) and et(�) are twice

continuously di¤erentiable, and et(�0) < 0 , �(�) is continuous in � and �(�) is non-singular in a

neighborhood of �0. Then by the continuous mapping theorem, ��
p! �0 ) �(��)�1

p! ��1(�0).

Establishing (II) builds on Theorem 3 of Huber (1967) and Lemma A.1 of Weiss (1991), which

extends Huber�s conclusion to the case of non-iid dependent random variables. We are going to

verify the conditions of Weiss�s Lemma A.1. Since the other conditions are easily checked, we only

need to show that T�1=2
PT
t=1 gt(�̂) = op(1), which we show in Lemma 2, and that his assumptions

N3 and N4 hold, which we show in Lemmas 3-6.

Lemma 2 Under Assumptions 1-2, T�1=2
PT
t=1 gt(�̂) = op(1):

Proof of Lemma 2. Let fejgpj=1 be the standard basis of Rp and de�ne

LjT (a) = T
�1=2

TX
t=1

LFZ0

�
Yt; vt(�̂ + aej); et(�̂ + aej);�

�
(6)

where a is a scalar. Let GjT (a) (a scalar) be the right partial derivative of L
j
T (a), that is

GjT (a) = T
�1=2

TX
t=1

 
rjvt(�̂ + aej)
�et(�̂ + aej)

(
1

�
1
n
Yt � vt(�̂ + aej)

o
� 1)+ (7)

rjet(�̂ + aej)
et(�̂ + aej)2

�
1

�
1
n
Yt � vt(�̂ + aej)

o
(vt(�̂ + aej)� Yt)� vt(�̂ + aej) + et(�̂ + aej)

�!

GjT (0) = lim
�1!0+

GjT (�1) is the right partial derivative of LT (�) at �̂ in the direction �j , while

lim
�2!0+

GjT (��2) is the left partial derivative of LT (�) at �̂ in the direction �j . Because LT (�)

achieves its minimum at �̂; and its left and right partial derivatives exist, its left derivative must

2



be non-positive and its right derivative must be non-negative. Thus,

jGjT (0)j � lim
�1!0+

GjT (�1)� lim
�2!0+

GjT (��2)

= T�1=2
TX
t=1

 
rjvt(�̂)
�et(�̂)

1

�
1
n
Yt = vt(�̂)

o
+
rjet(�̂)
et(�̂)2

1

�

�
vt(�̂)� Yt

�
1
n
Yt = vt(�̂)

o!
(8)

= T�1=2
TX
t=1

jrjvt(�̂)j
�et(�̂)

1

�
1
n
Yt = vt(�̂)

o
The second term in the penultimate line vanishes as 1fYt = vt(�̂)g(vt(�̂)� Yt) is always zero.

By Assumption 2(C), for all t, jrjvt(�̂)j � krvt(�̂)k � V1(Ft�1) and
���1=et(�̂)��� � H, thus:

jGjT (0)j �
H

�

�
T�1=2 max

1�t�T
V1(Ft�1)

�" TX
t=1

1
n
Yt = vt(�̂)

o#
(9)

H is �nite by Assumption 2(C). Next note that for all � > 0;

Pr

�
T�1=2 max

1�t�T
V1(Ft�1) > �

�
�

TX
t=1

Pr
h
V1(Ft�1) > �T 1=2

i
�

TX
t=1

E[V1(Ft�1)3]
�3T 3=2

! 0 (10)

with the latter inequality following from Markov�s inequality. Since E[V1(Ft�1)3] is �nite by as-

sumption 2(D), we then have that T�1=2 max
1�t�T

V1(Ft�1) = op (1) : Finally, by Assumption 2(G) we

have
PT
t=1 1

n
Yt = vt(�̂)

o
= Oa:s: (1). We therefore have GjT (0)

p! 0. Since this holds for every j,

we have T�1=2
PT
t=1 gt(�̂) = op(1).

The following three lemmas show each of the three parts of Assumption N3 of Weiss (1991)

holds. In the proofs below we make repeated use of mean-value expansions, and we use �� to denote

a point on the line connecting �̂ and �0; and ��� to denote a point on the line connecting �� and

�0: The particular point on the line can vary from expansion to expansion.

Lemma 3 Under assumptions 1-2, Assumption N3(i) of Weiss (1991) holds:

k�T (�)k � ak� � �0k; for k� � �0k � d0.

for T su¢ ciently large, where a and d0 are strictly positive numbers.

3



Proof of Lemma 3. A mean-value expansion yields:

�T (�̂) = �T (�
0) + �(��)(�̂ � �0) = �T (��)(�̂ � �0) (11)

since �T (�0) = 0; where �(�) = @E[gt(�)]=@�: Using the fact that

@E[Yt1fYt � vt(�)gjFt�1]
@�

=
@

@�

(Z vt(�)

�1
yft(y)dy

)
= vt(�)ft(vt(�))rvt(�) (12)

we can write:

�(�) = E
��
r2vt(�)
�et(�)

+
rvt(�)0ret(�)

et(�)2
+
ret(�)0rvt(�)

et(�)2

��
Ft(vt(�))

�
� 1
�

(13)

+

�
r2et(�)

1

et(�)2
+

�2
et(�)3

ret(�)0ret(�)
�

�
��

Ft(vt(�))

�
� 1
�
vt(�)�

1

�
E [Yt1fYt � vt(�)gjFt�1] + et(�)

�
+
ft(vt(�))

��et(�)
r0vt(�)rvt(�)

+
1

et(�)2
r0et(�)ret(�)]g

����Ft�1�
Evaluated at �0, the �rst two terms of � drop out because Ft

�
vt(�

0)
�
= � and 1

�E[Yt1fYt �

vt(�
0)gjFt�1] = et

�
�0
�
: De�ne D as

D � �(�0) = T�1
TX
t=1

E
�
ft(vt(�

0))

��et(�0)
rvt(�0)0rvt(�0) +

1

et(�
0)2
ret(�0)0ret(�0)

�
(14)

Below we show that �(��) = D +O(k�̂ � �0k) by decomposing k�T (��)�Dk into four terms and

showing that each is bounded by a O(k�̂ � �0k) term.

First term: Using a mean-value expansion around �0 and Assumptions 2(C)-(D) we obtain:E ��r2vt(��)�et(��)
+
rvt(��)0ret(��)

et(�
�)2

+
ret(��)0rvt(��)

et(�
�)2

��
Ft(vt(�

�))

�
� 1
��

� E
��HV2(Ft�1) + 2H2V1(Ft�1)H1(Ft�1)

��ft(vt(���))
�

rvt(���)(�� � �0)
�� (15)

� K

�

n
HE[V1(Ft�1)3]1=3E[V2(Ft�1)3=2]2=3 + 2H2E[V1(Ft�1)3]2=3E[H1(Ft�1)3]1=3

o
k�� � �0k

4



Second term: Again using a mean-value expansion around �0 and Assumptions 2(C)-(D):E �� 1

et(�
�)2
r2et(��)�

2

et(�
�)3
ret(��)0ret(��)

�
�
��

Ft(vt(�
�))

�
� 1
�
vt(�

�)� 1

�
E[Yt1fYt � vt(��)gjFt�1] + et(��)

��
�E[k

�
H2(Ft�1)H2 +H1(Ft�1) � 2H3 �H1(Ft�1)

�
(16)

� ((Ft (vt(���)) =�� 1)rvt(���) +ret(���)) (�� � �0)k]

� f(1=�+ 1)(H2E[V1(Ft�1)H2(Ft�1)] + 2H3E[V1(Ft�1)H1(Ft�1)2])

+ (H2 � E[H1(Ft�1)H2(Ft�1)] + 2H3E[H1(Ft�1)3])gk�� � �0k

Third term:E �ft(vt(��))�et(��)�
rvt(��)0rvt(��)�

ft(vt(�
0))

�et(�0)�
rvt(�0)0rvt(�0)

�
=
1

�

T�1
TX
t=1

Efft(vt(�
�))

�et(��)
rvt(��)0rvt(��)�

ft(vt(�
�))

�et(��)
rvt(�0)0rvt(��) (17)

+
ft(vt(�

�))

�et(��)
rvt(�0)0rvt(��)�

ft(vt(�
0))

�et(��)
rvt(�0)0rvt(��)

+
ft(vt(�

0))

�et(��)
rvt(�0)0rvt(��)�

ft(vt(�
0))

�et(�0)
rvt(�0)0rvt(��)

+
ft(vt(�

0))

�et(�0)
rvt(�0)0rvt(��)�

ft(vt(�
0))

�et(�0)
rvt(�0)0rvt(�0)g


=
1

�

T�1
TX
t=1

Efft(vt(�
�))

�et(��)
[r2vt(���)(�� � �0)]rvt(��)

+
ft(vt(�

�))� ft(vt(�0))
�et(��)

rvt(�0)0rvt(��)

+
ft(vt(�

0))

et(�
��)2

(�� � �0)rvt(�0)0rvt(��)

+
ft(vt(�

0))

�et(�0)
rvt(�0)0(�� � �0)2vt(���)g


� 1

�
T�1

TX
t=1

EfV2(Ft�1) (KH � V1(Ft�1)) +KH � V1(Ft�1)3

+KH2H1(Ft�1)V1(Ft�1)2 +KHV1(Ft�1)V2(Ft�1)g � k�� � �0k
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Fourth term: The bound on this term follows similar steps to that of the third term:T�1
TX
t=1

Ef 1

et(�
�)2
ret(��)0ret(��)�

1

et(�
0)2
ret(�0)0ret(�0)g


=

T�1
TX
t=1

Ef 1

et(�
�)2
ret(��)0ret(��)�

1

et(�
�)2
ret(�0)0ret(��) (18)

+
1

et(�
�)2
ret(�0)0ret(��)�

1

et(�
0)2
ret(�0)0ret(��)

+
1

et(�
0)2
ret(�0)0ret(��)�

1

et(�
0)2
ret(�0)0ret(�0)g

 j
� T�1

TX
t=1

fH2 � E[H1(Ft�1)H2(Ft�1)] + 2H3E
�
H1(Ft�1)3

�
+H2E[H1(Ft�1)H2(Ft�1)]gk�� � �0k

Therefore, �T (��) = DT +O(k�̂� �0k)) k�T (��)�DT k � Kk�̂� �0k;where K is some constant

< 1 , for T su¢ ciently large. By Assumption 2(E), DT has eigenvalues bounded below by a

positive constant, denoted as a; for T su¢ ciently large. Thus,

k�T (�̂)k = k�T (��)
�
�̂ � �0

�
k

= kDT (�̂ � �0)� (DT � �T (��))(�̂ � �0)k (19)

� kDT (�̂ � �0)k � k(DT � �T (��))(�̂ � �0)k

� (a�Kk�̂ � �0k) � k�̂ � �0k

The penultimate inequality holds by the triangle inequality, and the �nal inequality follows from As-

sumption 2(E) on the minimum eigenvalue of DT : Thus, for T su¢ ciently large so that

a�Kk�̂ � �0k > 0; the result follows.

Lemma 4 De�ne

�t(�; d) = sup
k���k�d

kgt(� )� gt(�)k (20)

Then under assumptions 1-2, Assumption N3(ii) of Weiss (1991) holds

E[�t(�; d)] � bd; for k� � �0k+ d � d0; d � 0 (21)

for T su¢ ciently large, where b; d;and d0 are strictly positive numbers.

Proof of Lemma 4. In this proof, the strictly positive constant c and the mean-value

expansion term, � �, can change from line to line. Pick d0 such that for any � that satis�es

6



k� � �0k � d0, all the conditions in Assumption 2(C) and 2(D) hold as well as et(�) � vt(�) � 0.

Let us expand gt(�) into six terms:

gt(�) =
1

�

r0vt(�)
�et(�)

1fYt � vt(�)g �
r0vt(�)
�et(�)

+
1

�

vt(�)r0et(�)
et(�)2

1fYt � vt(�)g (22)

� vt(�)r
0et(�)

et(�)2
� 1

�

r0et(�)
et(�)2

1fYt � vt(�)gYt +
r0et(�)
et(�)

We will bound �t(�; d) by considering six terms, �t(�; d)
(i); i = 1; 2; � � � ; 6, de�ned below. Each

term is shown to be bounded by a constant times d.

First term:

�t(�; d)
(1) =

1

�
sup

k���k�d

r0vt(� )�et(� )
1fYt � vt(� )g �

r0vt(�)
�et(�)

1fYt � vt(�)g
 (23)

Set � 1 = argmink���k�d vt(� ) and � 2 = argmaxk���k�d vt(� ). Since vt(�) and et(�) are assumed

to be twice continously di¤erentiable, � 1 and � 2 exist. We want to take the indicator function out

from the �sup�operator. To this end, let us discuss what � � �t(�; d)(1) equals in two cases.

Case 1: Yt � vt(�). (a) If Yt > vt(� 2), � � �t(�; d)(1) =
r0vt(�)�et(�)

. (b) If Yt < vt(� 1), � �

�t(�; d)
(1) = sup

k���k�d

r0vt(� )�et(� ) �
r0vt(�)
�et(�)

. (c) If vt(� 1) � Yt � vt(� 2),
� � �t(�; d)(1) =max

(
sup

k���k�d;Yt�v(� )

r0vt(� )�et(� )
� r

0vt(�)

�et(�)

 ;r0vt(�)�et(�)


)

(24)

� sup
k���k�d

r0vt(� )�et(� )
� r

0vt(�)

�et(�)

+ r0vt(�)�et(�)


Case 2: Yt > vt(�),

� � �t(�; d)(1) = 1fYt � v(� 2)g � sup
k���k�d;Yt�v(� )

r0vt(� )�et(� )

 (25)

� 1fYt � v(� 2)g � sup
k���k�d

r0vt(� )�et(� )


k� � �0k + d � d0 implies that both � and � (which are in a d-neighborhood of �) are in a

d0-neighborhood of �0 , and sor0vt(�)�et(�)

 � sup
k���k�d

r0vt(� )�et(� )

 � sup
k���0k�d0

r0vt(�)�et(�)

 (26)
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Thus,

� � �t(�; d)(1)

� (1fvt(� 2) < Yt � vt(�)g+ 1fvt(� 1) � Yt � vt(�)g+ 1fvt(�) < Yt � vt(� 2)g) (27)

� sup
k���0k�d0

r0vt(�)�et(�)

+ sup
k���k�d

r0vt(� )�et(� )
� r

0vt(�)

�et(�)

 ;
where

Et�1[1fvt(� 2) < Yt � vt(�)g] =
Z vt(�)

vt(�2)
ft(y)dy (28)

�Kjvt(� 2)� vt(�)j � KV1(Ft�1)k� 2 � �k � KV1(Ft�1)d

and similarly,

E [1fvt(�) < Yt � vt(� 2)gjFt�1] � KV1(Ft�1)d (29)

and E [1fvt(� 1) < Yt � vt(�)gjFt�1] � KV1(Ft�1)d

Further

sup
k���0k�d

r0vt(�)�et(�)

 � HV1(Ft�1) (30)

and by the mean-value theorem,

r0vt(� )
�et(� )

� r
0vt(�)

�et(�)
=

r2vt(� �)�et(� �)
+
r0vt(� �)ret(� �)

et(� �)2

 � (� � �) (31)

) sup
k���k�d

r0vt(� )�et(� )
� r

0vt(�)

�et(�)

 � �HV2(Ft�1) +H2V1(Ft�1)H1(Ft�1)
�
� d: (32)

By Assumption 2(D), E[V2(Ft�1)] and E[V1(Ft�1)H1(Ft�1)] are �nite, so E[�t(�; d)(1)] � cd, where

c is a strictly positive constant.

Second term: �t(�; d)(2) = sup
k���k�d

r0vt(� )�et(� ) �
r0vt(�)
�et(�)

 : It was shown in the derivations for
the �rst term that E[�t(�; d)(2)] � cd, where c is a strictly positive constant.

Third term:

�t(�; d)
(3) =

1

�
sup

k���k�d

vt(� )r0et(� )et(� )2
1fYt � vt(� )g �

vt(�)r0et(�)
et(�)2

1fYt � vt(�)g
 (33)

8



Similar to the �rst term, � � �t(�; d)(3) can be bounded by

(1fvt(� 2) < Yt � vt(�)g+ 1fvt(� 1) � Yt � vt(�)g+ 1fvt(�) < Yt � vt(� 2)g) (34)

� sup
k���0k�d0

vt(�)r0et(�)et(�)2

+ sup
k���k�d

vt(� )r0et(� )et(� )2
� vt(�)r

0et(�)

et(�)2


where

E [1fvt(� 2) < Yt � vt(�)g+ 1fvt(� 1) � Yt � vt(�)g+ 1fvt(�) < Yt � vt(� 2)gjFt�1] � 3KV1(Ft�1)d

(35)

and

sup
k���0k�d

vt(�)r0et(�)et(�)2

 � H �H1(Ft�1) (36)

where et(�) � vt(�) � 0 is used, and by the mean-value theorem,

vt(� )r0et(� )
et(� )2

� vt(�)r
0et(�)

et(�)2
(37)

=

r0et(� �)rvt(� �)et(� �)2
� 2vt(�

�)r0et(� �)ret(� �)
et(� �)3

+
vt(�

�)r2et(� �)
et(� �)2

 � (� � �)
) sup

k���k�d

vt(� )r0et(� )et(� )2
� vt(�)r

0et(�)

et(�)2

 (38)

�
�
H2V1(Ft�1)H1(Ft�1) + 2H2H1(Ft�1)2 +H �H2(Ft�1)

�
� d

By Assumption 2(D), E[V1(Ft�1)H1(Ft�1)], E[H1(Ft�1)2], E[H2(Ft�1)]<1. Therefore, E[�t(�; d)(3)] �

cd, where c is a strictly positive constant.

Fourth term: �t(�; d)(4) = sup
k���k�d

vt(� )r0et(� )et(� )2
� vt(�)r0et(�)

et(�)2

 : In the derivations for the third
term we showed that E[�t(�; d)(4)] � cd, where c is a strictly positive constant.

Fifth term:

�t(�; d)
(5) =

1

�
sup

k���k�d

r0et(� )et(� )2
1fYt � vt(� )gYt �

r0et(�)
et(�)2

1fYt � vt(�)gYt
 (39)

Similar to the �rst term, � � �t(�; d)(5) can be bounded by

(1fvt(� 2) < Yt � vt(�)g+ 1fvt(� 1) � Yt � vt(�)g+ 1fvt(�) < Yt � vt(� 2)g) (40)

� jYtj sup
k���0k�d0

r0et(�)et(�)2

+ jYtj sup
k���k�d

r0et(� )et(� )2
� r

0et(�)

et(�)2
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where

E [1fvt(� 2) < Yt � vt(�)gjYtj jFt�1] =
Z vt(�)

vt(�2)
jyjft(y)dy � Kjvt(� 2)j � jvt(� 2)� vt(�)j (41)

� KV (Ft�1)V1(Ft�1)k� 2 � �k � KV (Ft�1)V1(Ft�1)d

and similarly,

E [1fvt(� 1) < Yt � vt(�)gjYtj jFt�1] � KV (Ft�1)V1(Ft�1)d (42)

and E [1fvt(�) < Yt � vt(� 2)gjYtj jFt�1] � KV (Ft�1)V1(Ft�1)d

Further

sup
k���0k�d

r0et(�)et(�)2

 � H2H1(Ft�1) (43)

and by the mean-value theorem,

r0et(� )
et(� )2

� r
0et(�)

et(�)2
=

�2r0et(� �)ret(� �)et(� �)3
+
r2et(� �)
et(� �)2

 � (� � �) (44)

) sup
k���k�d

r0et(� )et(� )2
� r

0et(�)

et(�)2

 � �2H3H1(Ft�1)2 +H2H2(Ft�1)
�
� d

By Assumption 2(D), E[V (Ft�1)V1(Ft�1)H1(Ft�1)], E[H1(Ft�1)2jYtj], E[H2(Ft�1)jYtj]<1. There-

fore, E[�t(�; d)(5)] � cd, where c is a strictly positive constant.

Sixth term:

�
(6)
t (�; d) = sup

k���k�d

r0et(� )�et(� )
� r

0et(�)

�et(�)

 (45)

By the mean-value theorem,

r0et(� )
�et(� )

� r
0et(�)

�et(�)
=

r0et(� �)ret(� �)et(� �)2
+
r2et(� �)
�et(� �)

 � (� � �) (46)

) sup
k���k�d

r0et(� )�et(� )
� r

0et(�)

�et(�)

 � �H2H1(Ft�1)2 +H �H2(Ft�1)
�
� d: (47)

By Assumption 2(D), E[H1(Ft�1)2], E[H2(Ft�1)] <1. Therefore, E[�t(�; d)(6)] � cd, where c is a

strictly positive constant.

Thus we have shown that �t(�; d) �
P6
i=1 �t(�; d)

(i) with E[�t(�; d)(i)] � cd, 8i = 1; 2; � � � ; 6,

where c is a strictly positive constant, proving the lemma.
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Lemma 5 Under Assumptions 1-2, Assumption N3(iii) of Weiss (1991) holds:

E[�t(�; d)q] � cd; for k� � �0k+ d � d0; and some q > 2

for T su¢ ciently large, and where c > 0; d � 0 and d0 > 0:

Proof of Lemma 5. In this proof, the strictly positive constant c and the mean-value

expansion term, � �, can change from line to line. Pick d0 such that for any � that satis�es

k� � �0k � d0, all the conditions in Assumption 2(C) and 2(D) hold as well as et(�) � vt(�) � 0.

Similar to Lemma 4, we will decompose �t(�; d) into six terms, �t(�; d)
(i); for i = 1; 2; :::; 6. By

Jensen�s inequality, E [�t(�; d)q] � 6q�1
P6
i=1 E[

�
�t(�; d)

(i)
�q
]; q > 2. We will show that for some

0 < � < 1, E[
�
�t(�; d)

(i)
�2+�

] � cd, 8 i = 1; 2; � � � ; 6, where c is a strictly positive constant.

First term:

�t(�; d)
(1) =

1

�
sup

k���k�d

r0vt(� )�et(� )
1fYt � vt(� )g �

r0vt(�)
�et(�)

1fYt � vt(�)g
 (48)

Set � 1 = argmink���k�d vt(� ) and � 2 = argmaxk���k�dvt(� ). Following the same argument as in

the proof of Lemma 4, we obtain

[� � �t(�; d)(1)]2+� � (1fvt(� 2) < Yt � vt(�)g+ 1fvt(� 1) � Yt � vt(�)g+ 1fvt(�) < Yt � vt(� 2)g)(49)

�
 

sup
k���0k�d0

r0vt(�)�et(�)


!2+�

+

 
sup

k���k�d

r0vt(� )�et(� )
� r

0vt(�)

�et(�)


!2+�

where

Et�1 [1fvt(� 2) < Yt � vt(�)g+ 1fvt(� 1) � Yt � vt(�)g+ 1fvt(�) < Yt � vt(� 2)g] � 3KV1(Ft�1)d

(50)

and  
sup

k���0k�d

r0vt(�)�et(�)


!2+�

� (HV1(Ft�1))2+� (51)

For

 
sup

k���k�d

r0vt(� )�et(� ) �
r0vt(�)
�et(�)

!2+�, we need to combine the two following two results:
sup

k���k�d

r0vt(� )�et(� )
� r

0vt(�)

�et(�)

 � �HV2(Ft�1) +H2V1(Ft�1)H1(Ft�1)
�
d (52) 

sup
k���k�d

r0vt(� )�et(� )
� r

0vt(�)

�et(�)


!1+�

� (2HV1(Ft�1))1+�

11



Combining with Assumption 2(D), we thus have E[
�
�t(�; d)

(1)
�2+�

] � cd.

Second term: �t(�; d)(2) = sup
k���k�d

r0vt(� )�et(� ) �
r0vt(�)
�et(�)

 : It was shown in the derivations for
the �rst term that E[

�
�t(�; d)

(2)
�2+�

] � cd.

Third term:

�t(�; d)
(3) =

1

�
sup

k���k�d

vt(� )r0et(� )et(� )2
1fYt � vt(� )g �

vt(�)r0et(�)
et(�)2

1fYt � vt(�)g
 (53)

Similar to the �rst term,
�
� � �t(�; d)(3)

�2+�
can be bounded by

(1fvt(� 2) < Yt � vt(�)g+ 1fvt(� 1) � Yt � vt(�)g+ 1fvt(�) < Yt � vt(� 2)g) (54)

�
 

sup
k���0k�d0

vt(�)r0et(�)et(�)2


!2+�

+

 
sup

k���k�d

vt(� )r0et(� )et(� )2
� vt(�)r

0et(�)

et(�)2


!2+�

where

Et�1 (1fvt(� 2) < Yt � vt(�)g+ 1fvt(� 1) � Yt � vt(�)g+ 1fvt(�) < Yt � vt(� 2)g) � 3KV1(Ft�1)d

(55)

and  
sup

k���0k�d

vt(�)r0et(�)et(�)2


!2+�

� (H �H1(Ft�1))2+� (56)

For

 
sup

k���k�d

vt(� )r0et(� )et(� )2
� vt(�)r0et(�)

et(�)2

!2+�, we need to combine the following two results:
sup

k���k�d

vt(� )r0et(� )et(� )2
� vt(�)r

0et(�)

et(�)2

 � �H2V1(Ft�1)H1(Ft�1) + 2H2H1(Ft�1)2 +H �H2(Ft�1)
�
d

(57) 
sup

k���k�d

vt(� )r0et(� )et(� )2
� vt(�)r

0et(�)

et(�)2


!1+�

� (2H �H1(Ft�1))1+� (58)

Combining with Assumption 2(D), we thus have E[
�
�t(�; d)

(3)
�2+�

] � cd.

Fourth term: �t(�; d)(4) = sup
k���k�d

vt(� )r0et(� )et(� )2
� vt(�)r0et(�)

et(�)2

 : It was shown in the deriva-
tions for the third term that E[

�
�t(�; d)

(4)
�2+�

] � cd.
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Fifth term:

�t(�; d)
(5) =

1

�
sup

k���k�d

r0et(� )et(� )2
1fYt � vt(� )gYt �

r0et(�)
et(�)2

1fYt � vt(�)gYt
 (59)

Similar to the �rst and third terms,
�
� � �t(�; d)(5)

�2+�
can be bounded by

(1fvt(� 2) < Yt � vt(�)g+ 1fvt(� 1) � Yt � vt(�)g+ 1fvt(�) < Yt � vt(� 2)g) (60)

� jYtj2+�
 

sup
k���0k�d0

r0et(�)et(�)2


!2+�

+ jYtj2+�
 

sup
k���k�d

r0et(� )et(� )2
� r

0et(�)

et(�)2


!2+�

where

Et�1[1fvt(� 2) < Yt � vt(�)gjYtj2+�] =
Z vt(�)

vt(�2)
jyj2+�ft(y)dy � Kjvt(� 2)j2+� � jvt(� 2)� vt(�)j (61)

� KV (Ft�1)2+�V1(Ft�1)k� 2 � �k � KV (Ft�1)2+�V1(Ft�1)d

and similarly,

E
h
1fvt(� 1) < Yt � vt(�)gjYtj2+� jFt�1

i
� KV (Ft�1)2+�V1(Ft�1)d (62)

and E
h
1fvt(�) < Yt � vt(� 2)gjYtj2+� jFt�1

i
� KV (Ft�1)2+�V1(Ft�1)d

Further

sup
k���0k�d

r0et(�)et(�)2

 � H2H1(Ft�1) (63)

For

 
sup

k���k�d

r0et(� )et(� )2
� r0et(�)

et(�)2

!2+�, we need to combine the following two results:
sup

k���k�d

r0et(� )et(� )2
� r

0et(�)

et(�)2

 � �2H3H1(Ft�1)2 +H2H2(Ft�1)
�
d (64) 

sup
k���0k�d

r0et(�)et(�)2


!1+�

�
�
2H2H1(Ft�1)

�1+�
Combining with Assumption 2(D), we thus have E[

�
�t(�d)

(5)
�2+�

] � cd.

Sixth term:

�
(6)
t (�; d) = sup

k���k�d

r0et(� )�et(� )
� r

0et(�)

�et(�)

 (65)

We have

sup
k���k�d

r0et(� )�et(� )
� r

0et(�)

�et(�)

 � �H2H1(Ft�1)2 +HH2(Ft�1)
�
d (66) 

sup
k���k�d

r0et(� )�et(� )
� r

0et(�)

�et(�)


!1+�

� (2HH1(Ft�1))1+�
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Combining with Assumption 2(D), we thus have E[
�
�t(�; d)

(6)
�2+�

] � cd. Thus E[�t(�; d)(i)]2+� �

cd, 8i = 1; 2; :::; 6; proving the lemma.

Lemma 6 Under Assumptions 1-2, Ekgt(�0)k2+� �M , for all t and some M > 0.

Proof of Lemma 6.

Ekgt(�0)k2+� �41+�
(
E
r0vt(�0)�et(�0)

�
1

�
1
�
Yt � vt(�0)

	
� 1
�2+�

+ E
vt(�0)r0et(�0)et(�

0)2

�
1

�
1
�
Yt � vt(�0)

	
� 1
�2+�

+ E
r0et(�0)et(�

0)2
1

�
1
�
Yt � vt(�0)

	
Yt

2+�
+E

r0et(�0)et(�
0)

2+�
)

�41+�
�
(
1

�
+ 1)2+�H2+�E

h
V1(Ft�1)2+�

i
+ (

1

�
+ 1)2+�H2+�E

h
H1(Ft�1)2+�

i
+

1

�2+�
H4+2�E[H1(Ft�1)2+� jYtj2+�]

+H2+�E
h
H1(Ft�1)2+�

io
�M

since all the four expectations in the penultimate inequality are �nite by assumption 2(D). As-

sumption N4 of Weiss (1991) only requires Ekgt(�0)k2 �M , which is implied by the above.

Lemma 7 Under Assumptions 1-2, we have T�1=2
PT
t=1 gt(�

0)
d�! N (0;A0) as T ! 1; where

A0 � E
�
gt(�

0)gt(�
0)0
�
:

Proof of Lemma 7. First note that the sequence
�
gt(�

0)
	
is stationary by Assumption

1(B)(ii), and has zero mean. Under Assumption 2(F) and Lemma 6, we can use Corollary 5.1 of

Hall and Heyde (1980) and the Cramer-Wold device to obtain the result.
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Appendix SA.2: Estimating a GARCH(1,1) model by FZ loss
minimization

In this appendix we show that we can estimate the popular GARCH(1,1) model via FZ loss

minimization. We then verify that the assumptions required to show this are implied by the

Assumptions 1-2 in the main paper. Throughout, jjxjj refers to the Euclidean norm if x is a vector

and to the Frobenius norm if x is a matrix.

Appendix SA.2.1: Model speci�cation
Assume that the data generating process for Yt is:

Yt = �t�t; �t ?? �t; �t s iid F�(0; 1) (67)

�2t = !0 + �0�
2
t�1 + 0Y

2
t�1

Under this model, the conditional VaR and ES of Yt at a probability level � 2 (0; 1), that is

V aR�(YtjFt�1) and ES�(YtjFt�1), follow the dynamics:24 V aR�(YtjFt�1)
ES�(YtjFt�1)

35 =

24 c0 � ES�(YtjFt�1)
b0 � �t

35 (68)

where c0 � F�1� (�)=E[�tj�t � F�1� (�)]

b0 � E[�tj�t � F�1� (�)]

We �x the level � 2 (0; 1) throughout this appendix. Our goal is to estimate the parameter vector

�0 = [�0; 0; b0; c0] by minimizing the FZ loss function. Note that the parameters do not include

!0 because only two of the three parameters !0; b0; 0 are identi�able under this model. A detailed

discussion about the identi�cation of the GARCH model via FZ loss minimization is provided in

Section SA.2.3 of this appendix.

In the simulation study (Section 4 of the main paper), for estimating the GARCH model via

FZ loss minimization, we �x ! at its true value !0. Put � = [�; ; b; c] and its true value is
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�0 = [�0; 0; b0; c0] . We will estimate �
0 by

�T � argmin
�2�

LT (�)

where LT (�) =
1

T

TX
t=1

LFZ0(Yt; vt(�); et(�);�)

�2t (�) = !0 + ��
2
t�1(�) + Y

2
t�1

vt(�) = c � et(�)

et(�) = b � �t(�)

and the FZ loss function LFZ0 is de�ned in equation (6)

Appendix SA.2.2: Assumptions to estimate GARCH by FZ minimization
GARCH Assumption 1: F� has zero mean, unit variance, �nite fourth moment, and a unique

�-quantile, which is non-positive. It has density f�(�) that satis�es f�(�) � K and jf�(�1)�f�(�2)j �

Kj�1 � �2j.

The distributions we often assume for the innovations of GARCH model, like the normal dis-

tribution or t-distribution with degrees of freedom greater than four, all satisfy this assumption.

GARCH Assumption 2: 0 < !0 < 1. The true parameter vector �0 = [�0; 0; b0; c0] 2

� 2 R4 is in the interior of �, a compact and convex parameter space. Speci�cally, for any vector

[�; ; b; c] 2 �, assume that �1 � � � (1� �1), �1 �  � (1� �1) for some constant �1 > 0, �2 � c �

(1��2), �B1 � b � �B2, for some constants �2; B1; B2 > 0, and (� + )2+
�
E
�
�4t
�
� 1
�
2 � 1��3

for some constant �3 > 0:

This assumption is similar to Assumption 1 of Lumsdaine (1996) with the exception of the third

condition on the parameter vector, which is used to validate the mixing condition in Assumption

2(F), which we now discuss. It is not hard to show that

�
��
Yt; vt (�) ; et (�) ;r0vt (�) ;r0et (�)

�	
� �

��
Yt; �

2
t (�) ; @�

2
t (�) =�

�	
and thus we need to consider the mixing properties of

�
Yt; �

2
t (�) ; @�

2
t (�) =�

�
: Using De�nition 3 of

Carrasco and Chen (2002),
��
Yt; �

2
t (�) ; @�

2
t (�) =�

�
; t � 0

	
is a generalized hidden Markov model

with a hidden chain
��
�2t (�) ; @�

2
t (�) =�

�
; t � 0

	
: By their Proposition 4, if

�
�2t (�) ; @�

2
t (�) =�

�
is

stationary and �-mixing then
�
Yt; �

2
t (�) ; @�

2
t (�) =�

�
is stationary and �-mixing with a decay rate

at least as fast as that of
��
�2t (�) ; @�

2
t (�) =�

�
; t � 0

	
:

16



We use Proposition 3 of Carrasco and Chen (2002). First, we express
��
�2t (�) ; @�

2
t (�) =�

�
; t � 0

	
in the polynomial random coe¢ cient form:0@ �2t (�)

@�2t (�) =�

1A =

0@ !0

0

1A+
0@ �2t�1 + � 0

1 �

1A0@ �2t�1 (�)

@�2t�1 (�) =�

1A (69)

First, note that by GARCH Assumption 1
�
�2t
	
satis�es their condition (e) and that by GARCH

Assumption 2, their Assumption A0 is obviously satis�ed. For Assumption A1; the spectral ra-

dius of

0@ � 0

1 �

1A is � < 1: For Assumption A02; the spectral radius of

0@ �2t�1 + � 0

1 �

1A is

E
h�
�2t�1 + �

�2i
= (� + )2 +

�
E
�
�4t
�
� 1
�
2 < 1:Then, if

�
�2t (�) ; @�

2
t (�) =�

�
is initialized from

the invariant distribution (which we did in our simulations) then
��
�2t (�) ; @�

2
t (�) =�

�
; t � 0

	
is

strictly stationary and �-mixing with exponential decay. It is well known that �-mixing implies

�-mixing and so Assumption 2(F) of the paper is satis�ed.

GARCH Assumptions 1�2 imply that the distribution and density of Yt conditional on Ft�1
satisfy Assumption 2(B)(i). Since Yt = �t�t and �t 2 Ft�1,

Ft(xjFt�1) =F�(
x

�t
)

ft(xjFt�1) =
1

�t
f�(

x

�t
)

Thus,

jft(xjFt�1)j �
K
p
!0
; since �2t = !0 + ��

2
t�1 + y

2
t�1 � !0 > 0

jft(�1jFt�1)� ft(�2jFt�1)j =
1

�t
jf�(

�1
�t
)� f�(

�1
�t
)j � K

�2t
j�1 � �2j �

K

!0
j�1 � �2j

GARCH Assumption 3: EjYtj5+� <1, for some � > 0.

GARCH Assumption 3 is needed to show the uniform LLN Assumption 1(A) of the paper and

also to ensure the moment conditions in Assumptions 2 (C) and (D).

For the GARCH model it is possible to obtain the results of the paper under a weaker version

of Assumption 2(D). An inspection of the proofs shows that it is su¢ cient to replace Assumption

2(D) by the following.

Assumption 2(D�): For some 0 < � < 1 and 8 t :

(i) E
h
V1 (Ft�1)3+�

i
; E
h
H1 (Ft�1)3+�

i
; E
h
V2 (Ft�1)

3+�
2

i
; E
h
H2 (Ft�1)

3+�
2

i
� K;
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(ii) E
h
V (Ft�1)2+� V1 (Ft�1)1+�

i
� K;

(iii) E
h
H1 (Ft�1)2+� jYtj2+�

i
; E
h
H2 (Ft�1)1+� jYtj2+�

i
� K:

Assumption 2(D�) is in turn ful�lled if EjYtj4+� < 1, for some � > 0. For reasons of brevity,

we omit the arguments and work instead with the stronger GARCH Assumption 3.

Appendix SA.2.3: Identi�cation
In Theorem 1, we discussed the identi�cation of a general dynamic model for ES and VaR model

by minimizing the FZ loss, with the form of a general model given by equation (4). Under cor-

rect speci�cation of the model, that is (V aR�(YtjFt�1); ES�(YtjFt�1)) = (vt(�0); et(�0)) 8 t a.s., the

condition required for identi�cation is given by Assumption 1(B) (iv): Pr
�
vt(�) = vt(�

0) \ et(�) = et(�0)
�
=

1 ;8 t)� = �0: This assumption is equivalent to

Pr
�
vt(�) = vt(�

0) \ et(�) = et(�0); 8t
�
= 1

In the case of the GARCH model we have:

Pr
�
fvt(�) = vt(�0)g \ fet(�) = et(�0)g; 8t

�
= 1

)Pr
�
fc � et(�) = c0 � et(�0)g \ fet(�) = et(�0)g; 8t

�
= 1

)Pr
�
fc = c0g \ fb � �t(�) = b0 � �t(�0)g; 8t

�
= 1

)c = c0; Pr
�
b2 � �2t (�) = b20 � �2t (�0); 8t

�
= 1

)c = c0; Pr
�
b2(! + ��2t�1(�) + Y

2
t�1) = b

2
0(!0 + �0�

2
t�1(�

0) + 0Y
2
t�1); 8t

�
= 1

)c = c0; Pr
�
b2! + �b20�

2
t�1(�

0) + b2Y 2t�1 = b
2
0!0 + �0b

2
0�
2
t�1(�

0) + b200Y
2
t�1; 8t

�
= 1

where the third line holds because et(�0) = b0�t(�0) and we assume that b0 < 0, thus et(�0) < 0, and

in the last line, we replaced b2�2t�1(�) by b
2
0�
2
t�1(�

0) because we started with b2�2t (�) = b
2
0�
2
t (�

0);8t

almost surely.

Since the GARCH model assumes that Yt�1j�t�1(�0) � F�(0; �2t�1(�0)),

Pr
�
b2! + �b20�

2
t�1(�

0) + b2Y 2t�1 = b
2
0!0 + �0b

2
0�
2
t�1(�

0) + b200Y
2
t�1; 8t

�
= 1

) Pr
�
fb2 = b200g \ fb2! + �b20�2t�1(�0) = b20!0 + �0b20�2t�1(�0)g; 8t

�
= 1

) b2 = b200; Pr
�
b2! + �b20�

2
t�1(�

0) = b20!0 + �0b
2
0�
2
t�1(�

0); 8t
�
= 1

If �b20 6= �0b
2
0 and Pr

�
b2! + �b20�

2
t�1(�

0) = b20!0 + �0b
2
0�
2
t�1(�

0); 8t
�
= 1 hold at the same time,
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then we have

Pr

�
�2t�1(�

0) =
b20!0 � b2!
�b20 � �0b20

; 8t
�
= 1

)Pr

�
!0 + �0�

2
t�2(�

0) + 0Y
2
t�2 =

b20!0 � b2!
�b20 � �0b20

; 8t
�
= 1

This contradicts the assumption of the GARCH model,that Yt�2j�t�2(�0) � F�(0; �2t�2(�0)). Thus,

�b20 6= �0b
2
0 and Pr

�
b2! + �b20�

2
t�1(�

0) = b20!0 + �0b
2
0�
2
t�1(�

0); 8t
�
= 1 cannot hold at the same

time. This means that Pr
�
b2! + �b20�

2
t�1(�

0) = b20!0 + �0b
2
0�
2
t�1(�

0); 8t
�
= 1 implies �b20 = �0b

2
0,

which further implies that � = �0 and b
2! = b20!0. In summary, we have shown that

Pr
�
vt(�) = vt(�

0) \ et(�) = et(�0)
�
= 1 ;8 t

)c = c0; b2 = b200; �b20 = �0b20; b2! = b20!0

)c = c0; � = �0; b2 = b200; b2! = b20!0

Therefore, Assumption 1(B)(iv) holds if we normalize one of the three parameters b; ; !. We

choose to normalize !.

Appendix SA.2.4: Uniform LLN
In this section, we show that under the GARCH assumptions we have made in Section SA.2.2,

Assumption 1(A) is satis�ed: LFZ0 (Yt; vt (�) ; et (�) ;�) obeys the uniform law of large numbers.

Since the parameter space is assumed to be compact, we can establish the uniform LLN by

combining the pointwise LLN with stochastic equicontinuity.

Appendix SA.2.4.1: LLN

The LLN is based on Davidson (1994, Corollary 19.3) which we restate here as Theorem 4 for

convenience.

Theorem 4 (Davidson) Suppose that (Xt)t2N satis�es:

sup
t2N

EjXtj2+� <1 for some � > 0

and (Xt)t2N is � mixing with
P1
m=1m

�1� (m)�=(2+�) <1, then

1

n

nX
t=1

(Xt � E[Xt])
L2! 0:
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Under Assumption 2(F), which we discussed in the context of the GARCH model in Section

SA.2.2 above, implies that LFZ0 (Yt; vt (�) ; et (�)) is �-mixing with a decay rate no slower than

that required by Theorem 4. Also, LFZ0 (Yt; vt (�) ; et (�)) is strictly stationary as we have shown

that
�
Yt; �

2
t (�) ; @�

2
t (�) =@�

�
is strictly stationary. We then need only show that

EjLFZ0(Yt; vt(�); et(�);�)j2+� <1

jLFZ0(Yt; vt(�); et(�);�)j

=j � 1

�et(�)
1fYt � vt(�)g(vt(�)� Yt) +

vt(�)

et(�)
+ log(�et(�))� 1j

=jvt(�)
et(�)

� (1� 1

�
1fYt � vt(�)g) +

Yt
�et(�)

1fYt � vt(�)g+ log(�et(�))� 1j

=jc � (1� 1

�
1fYt � vt(�)g)�

�t
�b
1fYt � vt(�)g+ log(�b�t(�))� 1j

�c(1 + 1

�
) + j log(�b)j+ 1 + j�tj

�jbj + j log �tj

By Cr-inequality, it is su¢ cient to show that

Ej�tj2+� <1 and Ej log �tj2+� <1:

The moment condition on �t is directly implied by the structure of the model and GARCH Assump-

tion 3. Recall that �2t = !0+��
2
t�1+y

2
t�1 � !0 > 0. Therefore, if �2t < 1 then j log �tj � j log

p
!0j,

and if �2t � 1 then j log �tj � �t. In summary, j log �tj � j log
p
!0j+�t. Therefore, by Cr-inequality

Ej log �tj2+� � E(j log
p
!0j+ �t)2+�

� 21+�(j logp!0j2+� + E�2+�t ):

Thus, a su¢ cient condition for Ej log �tj2+� < 1 is E
h
�2+�t

i
< 1 which is implied by GARCH

Assumption 3. Hence, LFZ0 (Yt; vt (�) ; et (�)) obeys the law of large numbers for any �xed � by

Theorem 4.

Appendix SA.2.4.2: Stochastic equicontinuity

The stochastic equicontinuity condition is derived using Davidson (1994, Theorem 21.10) which

we restate here as Theorem 5 for convenience.
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Theorem 5 (Davidson) Let Qn(�) be the objective function for an M-estimator. Suppose there

exists N 2 N such that

jQn(�)�Qn(�0)j � anh(k� � �0k); a.s.

holds for all �;�0 2 � and n � N, where h is a deterministic function with h(x) # 0 as x # 0, and

an = Op(1). Then (Qn)n2N is stochastically equicontinuous.

Observe that

1fYt � vt(�)g(vt(�)� Yt) =
1

2
(vt(�)� Yt + jvt(�)� Ytj): (70)

Let �1 = [�1; 1; b1; c1];�2 = [�2; 2; b2; c2] 2 �. Then, using (70), we obtain����1fYt � vt(�1)g(vt(�1)� Yt)et(�1)
� 1fYt � vt(�2)g(vt(�2)� Yt)

et(�2)

����
=
1

2

����vt(�1)� Yt + jvt(�1)� Ytjet(�1)
� vt(�2)� Yt + jvt(�2)� Ytj

et(�2)

����
�1
2

����vt(�1)� Ytet(�1)
� vt(�2)� Yt

et(�2)

����+ 12
���� jvt(�1)� Ytjet(�1)

� jvt(�2)� Ytj
et(�2)

���� (71)

�
����vt(�1)� Ytet(�1)

� vt(�2)� Yt
et(�2)

���� (72)

=

����vt(�1)et(�1)
� vt(�2)
et(�2)

�
�

Yt
et(�1)

� Yt
et(�2)

�����
=

����c1 � c2 � ��tb1 � �tb2
�����

�jc1 � c2j+
jb1 � b2j
jb1b2j

j�tj:

The inequality between (71) and (72) holds because���� jvt(�1)� Ytjet(�1)
� jvt(�2)� Ytj

et(�2)

���� = ���� jvt(�1)� Ytj�jet(�1)j
� jvt(�2)� Ytj�jet(�2)j

����
=

���� jvt(�2)� Ytjjet(�2)j
� jvt(�1)� Ytjjet(�1)j

����
�
����vt(�2)� Ytet(�2)

� vt(�1)� Yt
et(�1)

���� :
By Taylor�s theorem,

j log(�et(�1))� log(�et(�2))j =
���� 1

�et(��1)

���� � kret(��1)k � k�1 � �2k
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for some ��1 between �1 and �2. Since,

kret(�)k =kb � r�t(�) + �t(�) � [0; 0; 1; 0]k

�jbj � kr�t(�)k+ �t(�)

) kret(�)k
jet(�)j

�jbj � kr�t(�)k+ �t(�)jb � �t(�)j
� kr�t(�)k

�t(�)
+
1

jbj ;

we obtain

j log(�et(�1))� log(�et(�2))j �
�
kr�t(��1)k
�t(�

�
1)

+
1

jb�1j

�
� k�1 � �2k:

Therefore,

jLFZ0(Yt; vt(�1); et(�1);�)� LFZ0(Yt; vt(�2); et(�2);�)j

� 1
�

�
jc1 � c2j+

jb1 � b2j
jb1b2j

j�tj
�
+ jc1 � c2j+

�
kr�t(��1)k
�t(�

�
1)

+
1

jb�1j

�
� k�1 � �2k

�
�
1 +

1

�
+
1

B2
+
j�tj
�B22

+
kr�t(��1)k
�t(�

�
1)

�
� k�1 � �2k

The last inequality holds because by GARCH Assumption 2, jb1j; jb2j; jb�1j � B2 > 0.

Using Lemma 8 in Section SA.2.5, we obtain

kr�t(�)k
�t(�)

�1
2
�
"
1=2��1=2�t(�)

�1
1X
i=2

(i� 1)�(i�2)=2jYt�ij+ �1
#

�1
2
�
"
(1� �1)1=2��1=21 !

�1=2
0

1X
i=2

(i� 1)(1� �1)(i�2)=2jYt�ij+ ��11

#
using the bounds on  and � in GARCH Assumption 2. De�ne

Zt =
1

2
�
"
(1� �1)1=2��1=21 !

�1=2
0

1X
i=2

(i� 1)(1� �1)(i�2)=2jYt�ij+ ��11

#
Then,

jLT (�1)� LT (�2)j �
 
1 +

1

�
+
1

B2
+

1

�B22
� 1
T

TX
t=1

j�tj+
1

T

TX
t=1

Zt

!
� k�1 � �2k:

Ej�tj = const <1 and E [Zt] = const <1 (because EjYtj = const <1 by GARCH Assumptions

2 and 3). Then, 1T
PT
t=1 j�tj = Op(1) and 1

T

PT
t=1 Zt = Op(1).

Therefore, by Theorem 5, LT is stochastically equicontinuous.

Appendix SA.2.5: Assumptions 2(C) and 2(D)
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We de�ne

X1(t;�) =
1X
i=2

(i� 1)�i�2Y 2t�i

X2(t;�) =
1X
i=2

(i� 1)�(i�2)=2jYt�ij

X3(t;�) =
1X
i=3

(i� 1)(i� 2)
2

�i�3Y 2t�i

Lemma 8 Under GARCH Assumption 2, we have

kr�2t (�)k � X1(t;�) + �1�2t (�)

kr�t(�)k �
1

2
� [1=2��1=2X2(t;�) + �1�t(�)]

kr2�2t (�)k � 2[
!0

(1� �)3 + X3(t;�) +X1(t;�)]

kr2�t(�)k �
!
�1=2
0

4
� ��1X2(t;�)2 + �1=2��1=2X2(t;�) +

1

4
�2�t(�)

+ !
�1=2
0 � [ !0

(1� �)3 + X3(t;�) +X1(t;�)]

Proof of Lemma 8.

�2t (�) = !0 + ��
2
t�1(�) + Y

2
t�1 =

!0
1� � + 

1X
i=1

�i�1Y 2t�i: (73)

Therefore,

r�2t (�) =
"
!0=(1� �)2 + 

1X
i=2

(i� 1)�i�2Y 2t�i;
1X
i=1

�i�1Y 2t�i; 0; 0

#

=
�
!0=(1� �)2 + X1(t;�); �1(�2t � !0=(1� �)); 0; 0

�
(74)

kr�2t (�)k � !0=(1� �)2 + X1(t;�) + �1(�2t � !0=(1� �))

= X1(t;�) + 
�1�2t +

!0
1� �

�
1

1� � �
1



�
� X1(t;�) + �1�2t ;

since � +  � 1 implies 1=(1� �)� 1= � 0. Furthermore,

kr�t(�)k =
kr�2t (�)k
2�t(�)

� 1

2

24 
P1
i=2(i� 1)�i�2Y 2t�iq

!0
1�� + 

P1
i=1 �

i�1Y 2t�i

+
�1�2t
�t

35 :
23



For all j � 2, we have

(j � 1)�j�2Y 2t�jq
!0
1�� + 

P1
i=1 �

i�1Y 2t�i

�
(j � 1)�j�2Y 2t�jq

�j�1Y 2t�j

= (j � 1)1=2�(j�3)=2jYt�j j

as all summands in the denominator are positive. This implies

kr�t(�)k �
1

2
�
"
1=2��1=2

1X
i=2

(i� 1)�(i�2)=2jYt�ij+ �1�t(�)
#

=
1

2
� [1=2��1=2X2(t;�) + �1�t(�)]:

Using equation (74), we obtain

r2�2t (�) =

26666664
a11 a12 0 0

a21 0 0 0

0 0 0 0

0 0 0 0

37777775
where

a11 =
2!0

(1� �)3 + 
1X
i=3

(i� 1)(i� 2)�i�3Y 2t�i

a12 = a21 =

1X
i=2

(i� 1)�i�2Y 2t�i

Thus, since the Frobenius norm is always less than the sum of the absolute values of the matrix

entries,

kr2�2t (�)k � 2[
!0

(1� �)3 + X3(t;�) +X1(t;�)]:

Using that r�t(�) = r�2t (�)=(2�t(�)), we �nd that

r2�t(�) =
r02t (�)r�t(�)
�2�2t (�)

+
r2�2t (�)
2�t(�)

=
r0�t(�)r�t(�)

��t(�)
+
r2�2t (�)
2�t(�)

;

therefore,

kr2�t(�)k �
kr�t(�)k2
�t(�)

+
kr2�2t (�)k
2�t(�)

Since �2t � !0 > 0 and using our previous results, we obtain the claimed bound on kr2�t(�)k.
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Lemma 9 Under GARCH Assumption 2, it holds that

jvt(�)j �V (Ft�1) = B1 � S1(Ft�1)

kret(�)k �H1(Ft�1) = B1 � S2(Ft�1) + S1(Ft�1)

krvt(�)k �V1(Ft�1) = H1(Ft�1) + V (Ft�1)

kr2et(�)k �H2(Ft�1) = B1 � S3(Ft�1) + 2S2(Ft�1)

kr2vt(�)k �V2(Ft�1) = H2(Ft�1) + 2H1(Ft�1);

where

S1(Ft�1) =

vuut!0��11 + 

1X
i=1

(1� �1)i�1Y 2t�i

S2(Ft�1) =
1

2
� [(1� �1)1=2��1=21 X2(t; 1� �1) + ��11 S1(Ft�1)]

S3(Ft�1) =
!
�1=2
0

4
� (��11 � 1)X2(t; 1� �1)2 + ��11 X2(t; 1� �1) +

1

4
��21 S1(Ft�1)

+ !
�1=2
0 � [!0��31 + (1� �1)X3(t; 1� �1) +X1(t; 1� �1)]:

Proof of Lemma 9. As a function in � and , �t(�) is increasing in both arguments, see

equation (73), and, in fact, it does not depend on the parameters b and c. Therefore, �t(�) �

S1(Ft�1). The quantities X1(t; �), X2(t; �), X3(t; �) de�ned in the beginning of this section are all

increasing in �, and thus, bounded by X1(t; 1� �1), X2(t; 1� �1), X3(t; 1� �1), respectively. Recall

that jbj � B1 under GARCH Assumption 2.

The �rst inequality holds because jvt(�)j � jet(�)j = jbj ��t(�). The remaining ones are implied

by Lemma 8 and

kret(�)k = kb � r�t(�) + �t(�) � [0; 0; 1; 0]k � jbj � kr�t(�)k+ �t(�)

krvt(�)k = kc � ret(�) + et(�) � [0; 0; 0; 1]k � kret(�)k+ jbj � �t(�)

kr2et(�)k = kbr2�t(�) + [0; 0; 1; 0]0r�t(�) +r0�t(�)[0; 0; 1; 0]k

� jbj � kr2�t(�)k+ 2kr�t(�)k

kr2vt(�)k = kcr2et(�) + [0; 0; 0; 1]0ret(�) +r0et(�)[0; 0; 0; 1]k

� kr2et(�)k+ 2kret(�)k:
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Lemma 10 Let fXigi2N be a sequence of random variables and de�ne X =
P1
i=1 aijXij, where

ai > 0 for all i 2 N and
P1
i=1 ai <1. Let p > 1. If supi2N EjXijp � K <1 for some constant K,

then EjXjp � (
P1
i=1 ai)

pK.

Proof of Lemma 10. By Jensen�s inequality, EjZjp � jEZjp. We rewrite X as

X =
1X
i=1

aijXij =
 1X
i=1

ai

!
�
1X
i=1

 1X
i=1

ai

!�1
aijXij:

Note that
P1
i=1(

P1
i=1 ai)

�1ai = 1, namely f(
P1
i=1 ai)

�1aig1i=1 is a probability measure. Then,

using Jensen�s inequality,

Xp =

0@ 1X
j=1

aj

1Ap �
0@ 1X
i=1

0@ 1X
j=1

aj

1A�1 aijXij
1Ap �

0@ 1X
j=1

aj

1Ap � 1X
i=1

0@ 1X
j=1

aj

1A�1 aijXijp:
Thus,

E [Xp] �

0@ 1X
j=1

aj

1Ap � 1X
i=1

0@ 1X
j=1

aj

1A�1 aiEjXijp �
0@ 1X
j=1

aj

1Ap � 1X
i=1

0@ 1X
j=1

aj

1A�1 aiK =

0@ 1X
j=1

aj

1ApK

Lemma 11 Under GARCH Assumption 2 and for any p > 1, p1; : : : ; p6 > 0, the following state-

ments hold for all t:

(1) If EjYtjp <1, then the following quantities are all �nite: E[V p(Ft�1)], E[V p1 (Ft�1)], E[H
p
1 (Ft�1)],

E[V p=22 (Ft�1)], E[Hp=2
2 (Ft�1)].

(2) If p = p1 + p2 + p3 + 2p4 + 2p5 + p6 and EjYtjp <1, then

E[V p1(Ft�1)V p21 (Ft�1)H
p3
1 (Ft�1)V

p4
2 (Ft�1)H

p5
2 (Ft�1)jYtjp6 ] <1:

(3) If EjYtj4+� < 1 for some � > 0, all the moment conditions in Assumption 2(D)� could be

satis�ed.

Proof of Lemma 11. Part (1) follows by combining Lemma 9 with Lemma 10, and part (2)

is a consequence of part (1) and Hölder�s inequality.

Lemma 11 implies that GARCH Assumption 3 implies Assumption 2(D) of the paper.
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Appendix SA.2.6: Assumption 2(E)
D0 is the Hessian of the expected loss at �0, so it is positive semi-de�nite. Let x = (x1; : : : ; x4)0 2

R4 such that x0D0x = 0. This implies that x0rvt(�0) = 0, x0ret(�0) = 0 almost surely. We have,

x0rvt(�0) = cx0ret(�0) + x4et(�0). Therefore, x4 = 0. Furthermore,

2�t(�
0)x0ret(�0) = 2�t(�0)bx0r�t(�0) + 2x3�2t (�0)

= bx0r�2t (�0) + 2x3�2t (�0) = 0; a.s. (75)

The stationarity of fYtg implies that �2t (�0) is stationary. Therefore it also holds that

bx0r�2t�1(�0) + 2x3�2t�1(�0) = 0; a.s. (76)

Computing (75) ���(76), we obtain that a.s.

0 = bx0[�2t�1(�
0); Y 2t�1; 0; 0]

0 + 2x3(!0 + Y
2
t�1) = (bx2 + 2x3)Y

2
t�1 + (2!0x3 + bx1�

2
t�1(�

0)): (77)

By the assumption that Yt�1j�2t�1 � F�(0; �2t�1(�0)) and that �2t�1(�0) = !0+�0�2t�2(�0)+0Y 2t�2,

we can conclude from the above equation that x1 = x2 = x3 = 0. Thus D0 is positive de�nite.

Appendix SA.2.7: Assumption 2(G)
We now verify this assumption for the GARCH(1,1) model. Set a = bc; so that vt = a�t: Then

for T � 5, a necessary condition for Yt = vt(�), t = 1; : : : ; T is given by the set of equations

Y 2t = a
2�t�20 + a

2�t�1(!0 + Y
2
0 ) + a

2
t�1X
k=1

�t�1�k(!0 + Y
2
k ); t = 1; : : : ; 4

or, equivalently,

Y 21 = a
2��20 + a

2(!0 + Y
2
0 ) (78)

Y 22 = �Y
2
1 + a

2(!0 + Y
2
1 ) (79)

Y 23 = �Y
2
2 + a

2(!0 + Y
2
2 ) (80)

Y 24 = �Y
2
3 + a

2(!0 + Y
2
3 ): (81)

Solving equations (79)-(81) for � and equating the results, we obtain

a2

!0
=
Y 42 � Y 21 Y 23
Y 22 � Y 21

=
Y 43 � Y 22 Y 24
Y 23 � Y 22

: (82)
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Therefore, a necessary condition such that Yt = vt(�), t = 1; : : : ; T for some parameter � 2 �

is that (Y1; : : : ; YT ) lies in the set p�1(0) = f(Y1; :::; YT ) 2 RT jp(Y1; :::; YT ) = 0g, where p is the

polynomial function

p(Y1; : : : ; YT ) = (Y
4
2 � Y 21 Y 23 )(Y 23 � Y 22 )� (Y 43 � Y 22 Y 24 )(Y 22 � Y 21 ):

The set p�1(0) has Hausdor¤ dimension less than T . Therefore, as the distribution of (Y1; : : : ; YT )

is assumed to be absolutely continuous from GARCH Assumption 1, we obtain the claim with

K = 4.

Appendix SA.2.8: Summary
We summarize the arguments showing that Assumption 1 and 2 of the paper are satis�ed under

GARCH Assumptions 1�3.

Assumption 1: Part (A) holds as it has been shown in Section SA.2.4.1 that the uniform law of

large number holds under our GARCH Assumptions. Part (B)(i)-(ii) are satis�ed under GARCH

Assumptions 1-2. Part (B)(iii) is easy to check. Concerning Part (B)(iv), we have shown in Section

SA.2.3 that the GARCH model is identi�able when ! is normalized.

Assumption 2: Part (A)(i) is easy to check, (ii) is satis�ed by GARCH Assumption 1. Part

(B)(i) is satis�ed by GARCH Assumption 1, (ii) is clearly weaker than GARCH Assumption 3.

Part (C)(i) follows easily from �t(�)
2 � !0 > 0 and the bounds on the parameter jbj. Part (C)(ii)

has been shown in Lemma 9. Part (D) is implied by Lemma 11. Part (E) is discussed in Section

SA.2.6. Part (F) is satis�ed under GARCH Assumptions 2�3 as discussed in Section SA.2.2, and

Part (G) is satis�ed by GARCH Assumption 1 as discussed in Section SA.2.7.
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Appendix SA.3: Additional tables

Table S1: Finite-sample performance of (Q)MLE

T = 2500 T = 5000
! �  ! � 

Panel A: N(0,1) innovations
True 0.050 0.950 0.050 0.050 0.950 0.050
Median 0.053 0.897 0.050 0.051 0.899 0.050
Avg bias 0.011 (0.011) 0.000 0.005 (0.005) 0.000
St dev 0.056 0.064 0.013 0.023 0.029 0.009
Coverage 0.936 0.930 0.928 0.936 0.933 0.937

Panel B: Skew t (5,-0.5) innovations
True 0.050 0.950 0.050 0.050 0.950 0.050
Median 0.052 0.895 0.049 0.052 0.897 0.050
Avg bias 0.017 (0.023) 0.005 0.006 (0.008) 0.002
St dev 0.077 0.095 0.028 0.026 0.037 0.017
Coverage 0.899 0.907 0.897 0.913 0.907 0.903

Notes: This table presents results from 1000 replications of the estimation of the parameters
of a GARCH(1,1) model, using the Normal likelihood. In Panel A the innovations are standard
Normal, and so estimation is then ML. In Panel B the innovations are standardized skew t; and so
estimation is QML. Details are described in Section 4 of the main paper. The top row of each panel
presents the true values of the parameters. The second, third, and fourth rows present the median
estimated parameters, the average bias, and the standard deviation (across simulations) of the
estimated parameters. The last row of each panel presents the coverage rates for 95% con�dence
intervals constructed using estimated standard errors.
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Table S2: Simulation results for Normal innovations,
estimation by CAViaR

T = 2500 T = 5000
�  a� �  a�

� = 0:01
True 0.900 0.050 -2.326 0.900 0.050 -2.326
Median 0.901 0.048 -2.275 0.899 0.048 -2.347
Avg bias -0.017 0.012 -0.120 -0.011 0.006 -0.095
St dev 0.079 0.066 0.957 0.051 0.034 0.718
Coverage 0.881 0.874 0.907 0.892 0.886 0.905

� = 0:025
True 0.900 0.050 -1.960 0.900 0.050 -1.960
Median 0.898 0.047 -1.953 0.896 0.047 -2.009
Avg bias -0.018 0.005 -0.136 -0.012 0.002 -0.110
St dev 0.068 0.038 0.728 0.052 0.023 0.566
Coverage 0.906 0.879 0.934 0.913 0.892 0.918

� = 0:05
True 0.900 0.050 -1.645 0.900 0.050 -1.645
Median 0.901 0.047 -1.639 0.899 0.049 -1.667
Avg bias -0.014 0.005 -0.085 -0.009 0.002 -0.070
St dev 0.068 0.037 0.597 0.045 0.023 0.436
Coverage 0.909 0.884 0.930 0.918 0.900 0.935

� = 0:10
True 0.900 0.050 -1.282 0.900 0.050 -1.282
Median 0.898 0.047 -1.291 0.898 0.048 -1.289
Avg bias -0.016 0.006 -0.076 -0.010 0.003 -0.055
St dev 0.069 0.041 0.482 0.047 0.025 0.364
Coverage 0.916 0.883 0.933 0.921 0.896 0.937

� = 0:20
True 0.900 0.050 -0.842 0.900 0.050 -0.842
Median 0.898 0.048 -0.848 0.899 0.048 -0.840
Avg bias -0.023 0.022 -0.058 -0.016 0.007 -0.049
St dev 0.091 0.107 0.391 0.063 0.044 0.304
Coverage 0.914 0.876 0.931 0.929 0.901 0.940

Notes: This table presents results from 1000 replications of the estimation of VaR from a
GARCH(1,1) DGP with standard Normal innovations. Details are described in Section 4 of the
main paper. The top row of each panel presents the true values of the parameters. The second,
third, and fourth rows present the median estimated parameters, the average bias, and the standard
deviation (across simulations) of the estimated parameters. The last row of each panel presents the
coverage rates for 95% con�dence intervals constructed using estimated standard errors.
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Table S3: Simulation results for skew t innovations,
estimation by CAViaR

T = 2500 T = 5000
�  a� �  a�

� = 0:01
True 0.900 0.050 -3.290 0.900 0.050 -3.290
Median 0.898 0.045 -3.272 0.899 0.045 -3.306
Avg bias -0.041 0.022 -0.355 -0.027 0.008 -0.306
St dev 0.142 0.097 1.928 0.103 0.044 1.546
Coverage 0.771 0.805 0.827 0.785 0.808 0.823

� = 0:025
True 0.900 0.050 -2.408 0.900 0.050 -2.408
Median 0.899 0.047 -2.371 0.898 0.049 -2.414
Avg bias -0.026 0.012 -0.190 -0.016 0.004 -0.144
St dev 0.103 0.067 1.135 0.070 0.033 0.862
Coverage 0.832 0.841 0.877 0.830 0.862 0.859

� = 0:05
True 0.900 0.050 -1.800 0.900 0.050 -1.800
Median 0.899 0.047 -1.780 0.899 0.049 -1.792
Avg bias -0.023 0.008 -0.146 -0.013 0.004 -0.087
St dev 0.092 0.060 0.782 0.057 0.028 0.563
Coverage 0.863 0.861 0.892 0.883 0.871 0.890

� = 0:10
True 0.900 0.050 -1.223 0.900 0.050 -1.223
Median 0.900 0.049 -1.205 0.900 0.049 -1.217
Avg bias -0.019 0.008 -0.074 -0.010 0.004 -0.043
St dev 0.080 0.050 0.495 0.050 0.027 0.356
Coverage 0.895 0.892 0.919 0.892 0.905 0.910

� = 0:20
True 0.900 0.050 -0.652 0.900 0.050 -0.652
Median 0.903 0.051 -0.619 0.902 0.051 -0.636
Avg bias -0.027 0.026 -0.035 -0.016 0.009 -0.028
St dev 0.122 0.109 0.353 0.084 0.042 0.271
Coverage 0.867 0.887 0.897 0.890 0.889 0.916

Notes: This table presents results from 1000 replications of the estimation of VaR from a
GARCH(1,1) DGP with skew t innovations. Details are described in Section 4 of the main paper.
The top row of each panel presents the true values of the parameters. The second, third, and
fourth rows present the median estimated parameters, the average bias, and the standard deviation
(across simulations) of the estimated parameters. The last row of each panel presents the coverage
rates for 95% con�dence intervals constructed using estimated standard errors.
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Table S4: Diebold-Mariano t-statistics on average out-of-sample
loss di¤erences for the DJIA, NIKKEI and FTSE100 (alpha=0.05)

RW125 RW250 RW500 G-N G-Skt G-EDF FZ-2F FZ-1F G-FZ Hybrid

Panel A: DJIA
RW125 -2.200 -3.536 2.324 2.860 2.935 3.006 3.821 3.244 3.494
RW250 2.200 -3.349 2.983 3.411 3.502 3.989 4.522 3.926 3.957
RW500 3.536 3.349 3.979 4.336 4.417 4.805 5.321 4.829 4.860
G-N -2.324 -2.983 -3.979 3.573 2.787 0.791 1.419 1.472 1.670
G-Skt -2.860 -3.411 -4.336 -3.573 1.385 -0.034 0.625 0.195 0.302
G-EDF -2.935 -3.502 -4.417 -2.787 -1.385 -0.266 0.432 -0.119 -0.031
FZ-2F -3.006 -3.989 -4.805 -0.791 0.034 0.266 1.085 0.192 0.247
FZ-1F -3.821 -4.522 -5.321 -1.419 -0.625 -0.432 -1.085 -0.796 -0.613
G-FZ -3.244 -3.926 -4.829 -1.472 -0.195 0.119 -0.192 0.796 0.126
Hybrid -3.494 -3.957 -4.86 -1.670 -0.302 0.031 -0.247 0.613 -0.126

Panel B: NIKKEI
RW125 -0.225 -1.047 3.703 3.687 3.719 3.733 3.219 3.692 3.868
RW250 0.225 -1.162 4.048 4.058 4.098 3.897 3.582 4.076 4.249
RW500 1.047 1.162 3.733 3.748 3.785 3.768 3.387 3.773 3.847
G-N -3.703 -4.048 -3.733 1.165 2.110 -1.841 -1.261 1.861 0.457
G-Skt -3.687 -4.058 -3.748 -1.165 1.797 -1.888 -1.378 1.468 0.295
G-EDF -3.719 -4.098 -3.785 -2.110 -1.797 -1.984 -1.522 -0.797 0.100
FZ-2F -3.733 -3.897 -3.768 1.841 1.888 1.984 1.209 1.958 2.489
FZ-1F -3.219 -3.582 -3.387 1.261 1.378 1.522 -1.209 1.487 2.624
G-FZ -3.692 -4.076 -3.773 -1.861 -1.468 0.797 -1.958 -1.487 0.134
Hybrid -3.868 -4.249 -3.847 -0.457 -0.295 -0.100 -2.489 -2.624 -0.134

Table continued on next page.
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Table S4 (cont�d): Diebold-Mariano t-statistics on average out-of-sample
loss di¤erences for the DJIA, NIKKEI and FTSE100 (alpha=0.05)

RW125 RW250 RW500 G-N G-Skt G-EDF FZ-2F FZ-1F G-FZ Hybrid

Panel C: FTSE
RW125 -2.329 -3.439 3.275 3.485 3.450 2.732 3.279 3.300 3.141
RW250 2.329 -2.751 4.146 4.337 4.305 3.663 4.264 4.160 4.025
RW500 3.439 2.751 4.682 4.845 4.817 4.232 4.848 4.696 4.661
G-N -3.275 -4.146 -4.682 4.327 4.446 -0.210 -0.070 0.581 1.048
G-Skt -3.485 -4.337 -4.845 -4.327 -3.853 -0.746 -0.877 -4.066 0.428
G-EDF -3.450 -4.305 -4.817 -4.446 3.853 -0.648 -0.731 -3.949 0.545
FZ-2F -2.732 -3.663 -4.232 0.210 0.746 0.648 0.213 0.249 1.401
FZ-1F -3.279 -4.264 -4.848 0.070 0.877 0.731 -0.213 0.128 1.321
G-FZ -3.300 -4.160 -4.696 -0.581 4.066 3.949 -0.249 -0.128 1.006
Hybrid -3.141 -4.025 -4.661 -1.048 -0.428 -0.545 -1.401 -1.321 -1.006

Notes: This table presents t-statistics from Diebold-Mariano tests comparing the average losses,
using the FZ0 loss function, over the out-of-sample period from January 2000 to December 2016, for
ten di¤erent forecasting models. A positive value indicates that the row model has higher average
loss than the column model. Values greater than 1.96 in absolute value indicate that the average
loss di¤erence is signi�cantly di¤erent from zero at the 95% con�dence level. Values along the main
diagonal are all identically zero and are omitted for interpretability. The �rst three rows correspond
to rolling window forecasts, the next three rows correspond to GARCH forecasts based on di¤erent
models for the standardized residuals, and the last four rows correspond to models introduced in
Section 2 of the main paper.
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Table S6: Diebold-Mariano t-statistics on average out-of-sample
loss di¤erences for the S&P 500, DJIA, NIKKEI and FTSE100 (alpha=0.025)

RW125 RW250 RW500 G-N G-Skt G-EDF FZ-2F FZ-1F G-FZ Hybrid

Panel A: S&P 500
RW125 -1.836 -2.988 1.025 2.479 2.788 2.146 3.371 2.891 2.419
RW250 1.836 -2.815 1.725 2.747 3.004 2.602 3.712 3.135 2.992
RW500 2.988 2.815 2.823 3.673 3.893 3.630 4.624 4.023 4.045
G-N -1.025 -1.725 -2.823 4.019 3.368 2.083 2.429 3.698 1.928
G-Skt -2.479 -2.747 -3.673 -4.019 2.275 0.270 0.815 2.742 -0.594
G-EDF -2.788 -3.004 -3.893 -3.368 -2.275 -0.592 -0.074 1.393 -1.483
FZ-2F -2.146 -2.602 -3.630 -2.083 -0.270 0.592 0.487 1.227 -0.729
FZ-1F -3.371 -3.712 -4.624 -2.429 -0.815 0.074 -0.487 0.579 -1.605
G-FZ -2.891 -3.135 -4.023 -3.698 -2.742 -1.393 -1.227 -0.579 -2.172
Hybrid -2.419 -2.992 -4.045 -1.928 0.594 1.483 0.729 1.605 2.172

Panel B: DJIA
RW125 -0.971 -2.294 1.892 2.981 3.051 3.132 3.590 3.332 1.840
RW250 0.971 -2.527 1.954 2.844 2.968 3.640 3.732 3.311 2.043
RW500 2.294 2.527 2.891 3.717 3.852 4.680 4.679 4.195 3.093
G-N -1.892 -1.954 -2.891 3.705 2.900 0.765 1.305 3.236 -0.459
G-Skt -2.981 -2.844 -3.717 -3.705 1.421 -0.706 -0.291 2.335 -2.666
G-EDF -3.051 -2.968 -3.852 -2.900 -1.421 -1.022 -0.705 2.213 -2.693
FZ-2F -3.132 -3.640 -4.680 -0.765 0.706 1.022 1.344 1.740 -1.229
FZ-1F -3.590 -3.732 -4.679 -1.305 0.291 0.705 -1.344 1.539 -1.943
G-FZ -3.332 -3.311 -4.195 -3.236 -2.335 -2.213 -1.740 -1.539 -3.127
Hybrid -1.840 -2.043 -3.093 0.459 2.666 2.693 1.229 1.943 3.127

Table continued on next page.
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Table S6 (cont�d): Diebold-Mariano t-statistics on average out-of-sample
loss di¤erences for the S&P 500, DJIA, NIKKEI and FTSE100 (alpha=0.025)

RW125 RW250 RW500 G-N G-Skt G-EDF FZ-2F FZ-1F G-FZ Hybrid

Panel C: NIKKEI
RW125 0.010 -0.901 3.956 3.896 3.944 3.703 3.093 3.895 3.829
RW250 -0.010 -1.486 4.105 4.149 4.177 3.544 3.340 4.136 4.102
RW500 0.901 1.486 3.935 3.999 4.012 3.886 3.441 3.980 3.996
G-N -3.956 -4.105 -3.935 1.799 2.032 -2.541 -2.010 2.052 -0.226
G-Skt -3.896 -4.149 -3.999 -1.799 -0.785 -2.726 -2.532 -0.310 -0.977
G-EDF -3.944 -4.177 -4.012 -2.032 0.785 -2.741 -2.499 0.459 -0.903
FZ-2F -3.703 -3.544 -3.886 2.541 2.726 2.741 1.481 2.687 2.739
FZ-1F -3.093 -3.34 -3.441 2.010 2.532 2.499 -1.481 2.454 2.971
G-FZ -3.895 -4.136 -3.98 -2.052 0.310 -0.459 -2.687 -2.454 -0.919
Hybrid -3.829 -4.102 -3.996 0.226 0.977 0.903 -2.739 -2.971 0.919

Panel D: FTSE
RW125 -1.557 -3.197 2.938 3.467 3.157 -1.683 2.978 2.570 2.173
RW250 1.557 -2.864 3.646 4.172 3.863 -0.758 3.788 3.355 2.985
RW500 3.197 2.864 4.350 4.789 4.532 1.179 4.688 4.173 3.972
G-N -2.938 -3.646 -4.350 4.520 3.634 -3.549 -0.239 -0.340 -2.352
G-Skt -3.467 -4.172 -4.789 -4.520 -4.471 -3.863 -1.996 -3.05 -3.991
G-EDF -3.157 -3.863 -4.532 -3.634 4.471 -3.686 -0.949 -1.612 -3.218
FZ-2F 1.683 0.758 -1.179 3.549 3.863 3.686 3.924 3.468 3.271
FZ-1F -2.978 -3.788 -4.688 0.239 1.996 0.949 -3.924 0.046 -1.602
G-FZ -2.570 -3.355 -4.173 0.340 3.050 1.612 -3.468 -0.046 -2.354
Hybrid -2.173 -2.985 -3.972 2.352 3.991 3.218 -3.271 1.602 2.354

Notes: This table presents t-statistics from Diebold-Mariano tests comparing the average losses,
using the FZ0 loss function, over the out-of-sample period from January 2000 to December 2016, for
ten di¤erent forecasting models. A positive value indicates that the row model has higher average
loss than the column model. Values greater than 1.96 in absolute value indicate that the average
loss di¤erence is signi�cantly di¤erent from zero at the 95% con�dence level. Values along the main
diagonal are all identically zero and are omitted for interpretability. The �rst three rows correspond
to rolling window forecasts, the next three rows correspond to GARCH forecasts based on di¤erent
models for the standardized residuals, and the last four rows correspond to models introduced in
Section 2 of the main paper.
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