Chantal Camenisch

The Potential of Late Medieval and Early Modern Narrative Sources from the Area of Modern Switzerland for the Climate History of the Fourteenth Century

Abstract: The fourteenth century is known to have witnessed several significant environmental and climatological events. This paper analyses Swiss narrative sources to appraise their potential for further study of medieval historical climatology. It examines a number of sources – dating to the fourteenth, fifteenth, and sixteenth centuries – and their references to these fourteenth-century events.

These sources mention major historical events including the Great Famine of 1315 to 1322, the Black Death, floods, and an extremely cold winter. Although they describe some extreme weather events at length, not all of the texts examined mention all the major events, and there are errors in the dating, as well. Such sources do not regularly refer to the weather in general. A reconstruction of the climate in the area of modern Switzerland relying solely on these historical documents is therefore impossible, but they do provide valuable information on various aspects of fourteenth-century environmental and climate history, especially when correlated with other types of climate reconstructions.

Keywords: historical climatology, famine, epidemic disease, narrative sources, 14th century

1 Introduction

In Europe, the fourteenth century was a period of transition in many ways: modern historical research generally acknowledges how disruptions in social structures and economic fluctuations played a role in the late medieval crisis, but scholars also point to the nascent rise of European prosperity during this period.1 Not all social classes ben-

efited from the growing prosperity; many remained vulnerable to crisis. During the fourteenth century, European societies had to cope with numerous challenges – the Hundred Years War, for example, and the struggle for power in the Holy Roman Empire between vying dynasties, as well as between the Emperor, the electors, and the emerging towns. Peasants revolted repeatedly – most notably in the Jacquerie in northern France in 1358 and the English Peasants’ Revolt in 1381. At the same time, the Catholic Church was dealing with a series of crisis of its own – the relocation of the papal residence to Avignon in 1309, the Western Schism after 1378, and heretic movements, such as the Apostles in Lombardy or the Lollards in England. The most severe calamities of all – even apocalyptic in the eyes of contemporaries – were the demographic declines caused by famines from 1315 to 1322 and by the Black Death in the years 1347 to 1351.

The fourteenth century also represents a critical moment in climate history, for many scholars date the onset of the Little Ice Age to the beginning of this period. Over the course of the 1300s, a number of notable climate and weather anomalies occurred, which also affected the area of modern Switzerland. Some of these anomalies significantly impacted human society: the famines from 1315 to 1322, for instance, were a consequence of weather-induced harvest failures. Bruce Campbell has convincingly outlined remarkable links between climate and the plague in the middle of the fourteenth century. Therefore, accounts of the plague in Switzerland are also included into this source sample, although they are not actually weather descriptions per se.

For the area of modern Switzerland, a number of available climate reconstructions based on proxies from natural archives include data on the fourteenth century. Among

3 Ulf DIRLMEIER/ Gerhard FOUQUET/ Bernd FUHRMANN, Europa im Spätmittelalter, 1215–1378 (Oldenbourg Grundriss der Geschichte 8), Munich 2003, pp. 100–109.

8 CAMPBELL (note 1).
these are the different methods of researching glacier movements in the Swiss Alps, varved lake sediments, and tree rings from Alpine areas. Narrative sources form the basis of several existing climate reconstructions which include the Late Middle Age. These reconstructions focus on central or western continental Europe.

This paper discusses the value of Swiss narrative sources for questions regarding the environmental and climate history of the fourteenth century. Using fourteenth to sixteenth-century sources, the paper aims to answer the following questions: What climatic events do the narrative sources describe? Which events known from other sources do not appear in these texts? Does the information provided in these sources allow for a climate reconstruction? How do the Swiss narrative sources match climate reconstructions based on natural archives?

Section 2 presents an overview on the results of climate reconstructions based on Swiss natural archives. Section 3 briefly introduces the narrative sources analyzed in the study before discussing these and comparing them with the other data in section 4.

2 Climate of the Fourteenth Century in the Area of Modern Switzerland

In the area of modern Switzerland, the climate of the fourteenth century has been reconstructed based on different natural archives. Glacier movements are driven by the sum of a variety of climatic factors: Roughly said, cold periods lead to advancing glacier tongues, warm periods to melting glaciers. Moisture also plays a major role. The glaciers respond with a time shift (sometimes even of decades) to changing climatic conditions. Advances of the Aletsch Glacier with a peak in about 1370 suggest the beginning of a cold period around 1300. Similar fluctuations were observed at the Gorner Glacier, where a peak occurred around 1385, and at other glaciers in the Swiss Alps. Christian Pfister argues that the peak of the Gorner Glacier’s advance is linked to the chilly summers from 1345 to 1347 and a subsequent period of cool, wet summers until 1370.

Another proxy used in climate reconstruction is tree-ring data. Samples collected from trees either close to the timberline in mountainous areas such as the Alps or close to the northern tree limit provide the most useful data. Based on the tree-ring width or density and with the aid of complex statistical measurements and calibration and verification using instrumental measurements of later periods, scholars can calculate the temperatures of the vegetation periods over time. These methods allow not only for the reconstruction of annual series but also for inter-decadal and low frequency (decadal to multidecadal) climate variability. A June-to-September temperature reconstruction based on numerous samples of live trees and historical timber from Canton Valais revealed a cold period starting at the beginning of the fourteenth century with a nadir around 1320. The years 1315 and 1320 were the coldest of that period. Around the middle of the century, temperatures were moderately higher, only

15 Holzhauser (note 14), p. 94.
to decrease once again. During the last two decades of the century, the temperatures rose slightly to a low but stable level. Further extraordinarily cold summers occurred in 1360, 1376, 1377, and 1378.19 Other studies, however, find a period of increased temperatures in the first two to three decades of the century and a period of low temperatures only around 1350. In one of these studies – the reconstruction of June-to-August temperatures of the Alpine area – details reveal that, depending on the positions of the trees, the segment length and inclusion of the tree pith, the results deviate slightly. For instance, larches in Engadine show a temperature decrease in the second decade of the century. The larches in Valais also show this decrease, but with a time-shift of a few years. Deviations between the reconstructed temperature series can be explained by the use of differing calibration methods.20 In addition, the results are based on different tree species in other areas, and such reconstructions always indicate a range of uncertainty.

Tree rings can also be used to reconstruct precipitation. In the Old World Drought Atlas (OWDA), scholars have access to a database of European June-to-August precipitation indices including year-by-year maps for about two thousand years up until 2012.21 This reconstruction shows wet summer seasons, particularly between 1314 and 1316, in 1342 and 1343, as well as from 1386 to 1389. Summers were evidently dry from 1304 to 1306, 1318 to 1320, in 1360 and 1361, 1385 and 1393 (see figure 1).

Another reconstruction of summer temperature on the basis of varved sediments from Lake Silvaplana shows a colder period during the second and third decade of the fourteenth century. The temperatures increase after that, only to reach another nadir around the middle of the century. The second half of the century is marked by a increasing temperatures, which fall once again during the last years of the period examined here.22 Varved lake sediments from Lake Oeschinen form the basis of a summer precipitation reconstruction showing that the fourteenth century was a period of increased wetness, with peaks in warm season precipitation around 1325 and towards the end of the century. Moreover, from 1300 to 1380 flooding was more frequent – with a clear peak around the middle of the century.23 Lake sediments do not provide yearly but rather decadal resolution.24

In summary, according to the reconstructions based on the archives of nature, it can be assumed that a period of lower temperatures began in the early fourteenth century. Temperature decreases occurred mainly during the second and third decade

19 Büntgen et al. (note 11), p. 5615. The exact annual values of the reconstruction are published on the website of the National Oceanic and Atmospheric Administration (NOAA) ftp://ftp.ncdc.noaa.gov/pub/data/paleo/treering/reconstructions/europe/buentgen2011europe.txt (09.01.2019).
20 Büntgen et al. (note 11).
21 Cook et al. (note 11); link to the database: http://drought.memphis.edu/OWDA/Default.aspx
22 Trachsel et al. (note 11), p. 2728.
23 Amann/ Szidat/ Grosjean (note 10), pp. 94–96.
24 Franz Mauelshagen, Klimageschichte der Neuzeit, 1500–1900. Darmstadt 2010, p. 39.
and around the middle of the century. In addition, precipitation was elevated during the second and third decade, as well as in the middle and at the very end of the century. Moreover, floods were more frequent occurrences around the middle of examined period.

Figure 1: Reconstruction of self-calibrating Palmer Drought Severity Index (PDSI) of June to August precipitation in the area of modern Switzerland derived from Old Worlds Drought Atlas (Cook et al. (note 11) and http://drought.memphis.edu/OWDA).

3 Documentary Sources

Depending on the epoch and the area, detailed and reliable documentary sources for climate reconstructions are often available before instrumental measurement started. In England, a fourteenth-century weather diary includes regular observations on temperature, precipitation, and winds over a period of seven years. From the sixteenth century onwards, such diaries are also found in continental Europe – for instance

those of Kilian Leib and Wolfgang Haller, the latter provost in Zurich. Apart from weather diaries, historiographic narrative texts, such as chronicles or annals, often describe weather conditions and their impacts on nature and society. In cases where a sufficient density of weather-related records can be collected, it is thus possible to develop temperature and precipitation reconstructions using climate indices based on such sources. Historical climatologists also reconstruct temperature and/or precipitation derived from information on phenological proxies noted in historical documents, such as grape or grain harvest dates. For the area of modern Switzerland, such series are available for Basel from the late fifteenth century onwards. However, the fourteenth-century Swiss sources are more problematic. Few narrative sources are available for the period of this study, and the available sources refer much less frequently and consistently to the weather than those historical sources outlined above. The information that can be gleaned from this body of evidence is limited, even if written sources recorded in the two subsequent centuries are added to the sample—an addition which requires heightened analytical caution.

The fourteenth-century narrative sources for this region present a number of challenges. In fact, there are few truly contemporary accounts of this period; most of texts which relate events from the early fourteenth century were written much later. One of the most famous truly contemporary sources is the chronicle by Johannes of Winterthur, a Friar Minor who lived in Basel, Schaffhausen, and later Lindau. It was after 1340 in Lindau that he wrote his chronicle. While the focus of the text is, of course, on politics and religious issues, it also repeatedly describes the weather, floods, epidemic diseases, and famines. Johannes of Winterthur is presumed to have died during the Black Death, which he describes in 1348 before the pestilence reached the area around Lake Constance.

A second source for this study is the anonymous chronicle of the town of Zurich, which starts with the foundation of Zurich in antiquity and ends in 1418, though there are a number of anonymous continuations. From about 1380 onwards, it is considered a contemporary account of events that occurred in and around Zurich.31 Committed to parchment around 1415, probably by a lay townsman instead of a cleric, the Zurich chronicle also contains rich descriptions of remarkable weather and other environmental events. Since the author did not copy the most important documents for the history of Zurich into his chronicle, it is unlikely that he had access to the town’s chancellery.

The ‘Grössere Basler Annalen’, written down in 1412 (with a short continuation until 1416), are a rich source for the history of Basel and its surroundings. The annals start in the year 1275; from 1315 onwards, they are considered a reliable – and from 1370 a contemporary – description of events around Basel.32 Basel is also mentioned frequently in the ‘Rötteler Chronik,’ which was originally the private chronicle of a noble family in the Markgräflerland region adjacent to the Swiss border. Written in the first half of the fifteenth century, it also covers the last quarter of the previous century with occasional references to weather conditions.33

In 1420, the town council of Bern commissioned a scribe in the local chancellery, Conrad Justinger, to write an official chronicle of the town’s history in the preceding centuries. Justinger himself had not been born until around 1370, meaning he had not experienced most of the century personally. However, he drew upon quite reliable sources for his account of the earlier part of the fourteenth century, a period during which Bern expanded considerably despite having to stand its ground against opponents. Justinger’s chronicle focuses on politics, especially alliances with different nearby towns, and the military campaigns that resulted in the expansion of Bernese territory.34 From time to time, mainly in his account of the latter half of the fourteenth century, Justinger also mentions events related to the environment.

In the course of the fifteenth century, the Swiss illustrated chronicles developed, in which self-confident towns in the Swiss Confederacy aimed to present their own history in the form of town chronicles.35 Around 1474, Bern commissioned a local scribe, Diebold Schilling, to write a continuation of Conrad Justinger’s official

32 August Bernoulli, Einleitung, in: Id. (ed.), Basler Chroniken, 5, Leipzig 1895, pp. 3–14.

chronicle. Schilling subsequently wrote both the official chronicle of Bern and a private chronicle, the so-called ‘Spiezer Chronik,’ for the noble Rudolf von Erlach around 1484. A comparison to Schilling’s official town account, the ‘Grosse Burgunderchronik’ reveals some deviation between the two texts.

A few years earlier, around 1470, Benedict Tschachtlan and Heinrich Dittlinger, two influential Bernese politicians, wrote their own chronicle of Bern; this is a private chronicle rather than an official chronicle like Schilling’s. The older sections mainly copy Justinger’s text, adding a further source on the Old Zurich War (1440–1450).

During the sixteenth century, in the wake of the Protestant Reformation, further chronicles intended to glorify the early history of the Swiss Confederacy and inspire the members of both confessions to preserve their political union. An example of such texts is the oeuvre of Aegidius Tschudi of Glarus, a Swiss Humanist. As a young man, Tschudi, himself Catholic, was deeply concerned with confessional reconciliation. With age, however, he became more and more a religious fanatic. His ‘Chronicon Helvetica’ traces the history of the area of the Swiss Confederacy from 1000 to 1470.

The first printed chronicle in the examined area was the Kronica von der loblichen Eydtgnoschaft, jr harkommen und sust selztzm strittem und geschichten by Petermann Etterlin from Lucerne, which appeared in 1507. He used various humanist sources in the composition of his text, such as Hartmut Schedel’s Weltchronik.

Besides these two lengthy, well known historiographical works, there are a number of shorter texts including the ‘Zurich Annals’, which are a compilation of handwritten notes about Zurich in a printed volume of Etterlin’s chronicle. August

38 Jean-Pierre BODNER, Chroniken und Chronisten im Spätmittelalter (Monographien zur Schweizer Geschichte 10), Bern 1976, p. 43.
42 FELLER/ BONJOUR (note 40), pp. 312–325.
43 SCHMID KEELING (note 41), pp. 297–298.
Bernoulli, who published these notes in the nineteenth century, argued that the handwriting is typical of the first half of the sixteenth century. All these texts do not focus on weather, but in some remarkable cases, they give a description of weather conditions – often in the context of the climate’s impacts on society.

4 Events Described

The Great Famine, which began in 1315, is a well-established event in several areas throughout Europe. During the twelfth and thirteenth centuries, the European population was increasing rapidly, requiring the cultivation of more and more land and the introduction of new more intensive, specialized methods of agricultural production. This population pressure and the limits of agricultural yields made these societies vulnerable to external shocks. A series of inclement years from 1314 to 1317 witnessed increased precipitation, especially in the summers, which caused massive crop failures that drove the price of food up dramatically. The resulting famine sparked a massive demographic decline, as people both starved directly and fell prey to the epidemics that spread easily due to undernourishment. With regard to the area of modern Switzerland, information on this famine is quite sparse. On the one hand, it is most probable that the area of the Swiss Plateau also suffered since the Holy Roman Empire, France, Scandinavia, the British Isles, and even parts of the Baltic were affected by the crisis. On the other hand, the Alpine parts of Austria – rather self-sustainable areas – seemed to be spared, so it is possible that not all Swiss regions were affected in the same way.

Johannes of Winterthur mentions the famine, but he gives the year 1313 – probably erroneously. In his description, Johannes attributes the famine to many places on

50 Jordan (note 45), pp. 7–11.
this earth, but he especially mentions Colmar in Alsatia, where hundreds were buried in two trenches outside the town walls:

1313. Around this time, many people died in an Alsatian city called Colmar due to a dearth, which occurred in many parts of the world. 3,700 people were buried in two hastily prepared trenches outside the city walls. In other nations, 99,000 people perished, to a large extent in Westrich [parts of the Palatinate, Saarland, Lorraine, and Alsatia] and Lorraine.51

The ‘Grössere Basler Annalen’ give an account of the famine and the considerable number of people starving:

In the year 1317, there was a great dearth in Basel. One viertel [measure of capacity] rye cost 5 pounds, one viertel spelt 3 pounds, one viertel oats 1 pound 10 shilling. Many people perished because they ate all kinds of food.52

It is remarkable that the chroniclers indicate different years: 1313 and 1317. Neither of them suggests that the dearth lasted for more than one year. The ‘Annales Sancti Victoris Gebennensis’ – a chronicle from Geneva – dates the famine to the year 1322.53 This example shows that dating might be a problem even with contemporary accounts. In retrospect, more than two hundred years later, Tschudi knew that this famine had lasted for at least two years. Since the horror of dying people during that crisis was already distant, it is hardly surprising that his description is brief and includes only two rye prices alongside mention of the dearth and the high mortality rate:

In this year 1316, [...] a viertel rye cost 30 shillings in Bern and, in the countryside, 2 pounds. And the dearth lasted until the next year and was followed by a great mortality.54

52 Anno 1317 was ein grosse thúre zu Basel; galt ein viertel roggen 5 lb, und 1 viertzel korn 3 lb, 1 viertzel habren 1 lb 10s; sturben vil lúten, das sy allerley oessen. August Bernoulli (ed.), Die Grösseren Basler Annalen. 238–1416, in: Id. (ed.), Basler Chroniken, 5, Leipzig 1895, pp. 15–50, here p. 18. In other manuscript versions, the people perish because they starve. English translation by the author.

Because these events were traumatic for so many people, one would expect the famine to be described in all the narrative sources examined. Surprisingly, this is not the case. For example, the chronicle of the town of Zurich, which is rich with later comparable accounts, does not mention the famine at all.\(^{55}\) The same is the case with the ‘Nüwe Casus’ and Benedict Tschachtlan’s chronicle.\(^{56}\) It is also remarkable that all the texts remain silent about the reasons for the famine. Sources from other part of Europe prove that extended rainfalls and low temperatures during the summers from 1314 to 1317 destroyed harvests.\(^{57}\) A comparison with the aforementioned temperature and precipitation reconstructions based on varved lake sediments and tree rings shows that cold, wet conditions during these summers are also plausible for the area of Switzerland. The history of the glacier advances likewise confirms a cold period during the first decades of the fourteenth century. The evidence of cold and wet weather gathered from climate proxies located in Alpine areas – together with the written sources here presented – suggests strongly that the area of Switzerland was not spared from the Great Famine.

Almost all the texts used for this study include an account of the St. Mary Magdalene’s Flood in 1342 and the subsequent flood in the following year. The magnitude of these events was enormous and reached far beyond the area of modern Switzerland.\(^{58}\)

According to Johannes of Winterthur, there had been a terrible flood in Hungary along the Danube already in February 1342. In summer of the same year, in what came to be known as the St. Mary Magdalene’s flood, the river burst its banks in the German countries. Finally, according to Johannes’s account, Lombardy was affected by floods in November:

\(^{55}\) Johannes Dierauer (ed.), Chronik der Stadt Zürich (Quellen zur Schweizer Geschichte 18), Basel 1900, pp. 1–271.

\(^{57}\) E.g., Glaser (note 12), pp. 64–65.

In the year of incarnation of the Lord 1342, the River Danube rose extensively due to snow around the Feast of the Purification of the Blessed Virgin Mary [2 February] [...]. Moreover, in the summer of this year, such a large flood occurred as a consequence of rain and rising waters [...]. Around the Feast of Saint Martin [November 11], excessive rainfalls caused a large flood that affected the city of Padua and other parts of Lombardy [...].

For 1343, the same chronicler reports that a famine in the German countries became so severe that people shook with hunger. According to Johannes, it was continuous rainfall and hail that had devastated the entire harvest and caused the famine. The excessive rainfall caused further flooding in central and northeastern Switzerland, where Lake Constance and several rivers burst their banks in a number of places, flooding towns and the surrounding countryside:

Moreover, in this year [1343], at the beginning of September around the feast of Saint Bartholomew, Lake Constance and surrounding rivers flooded due to continuing and immoderate rainfalls. [...] Moreover, in the summer of this year, the Reuss river flooded the whole city of Lucerne due to a sudden rise of water which occurred because of the excessive rainfalls. [...] Also the small unnavigable river called Töss near Winterthur flooded its surroundings. [...].

For the chronology of the weather events, it is crucial that Johannes mentions both floods – in 1342 and 1343 – in these two passages. Without such a reliable description in one single text of similar events occurring in two subsequent years, these events could easily be conflated as one event.

Moreover, the anonymous annals of Zurich mention the severe flood in same town around 25 July 1343:

Flood in Zurich in the year of the Lord 1343, on the Feast of Saint James [25 July]. The water rose to such an extent that it flew over both bridges, and it also flooded the Sihlfeld [a meadow nearby].

61 Regarding the floods in these years, see Andrea Kiss, Floods and weather in 1342 and 1343 in the Carpathian Basin, in: Journal of Environmental Geography 3–4/2 (2009), pp. 37–47.

The chronicle of the town of Zurich depicts the same event in different words and gives some additional information about the destruction of houses and infrastructure:

In the year of the Lord 1343, on the Feast of Saint James [25 July], the water level rose a great deal, and a surge flooded both bridges in Zurich and it also flooded the Sihlfeld. It was necessary to weight down the deluged bridges with “torkelbäume” [heavy vine presses] and large rocks. Hans Müller’s large house and three mills were washed away by the Aa river [Limmat] during the night. The debris impounded the river at the bridge near the Hardturm. While people were trying to clear the debris of the house (from the bridges pillars), the bridge collapsed and was washed away. People went into Fraumünster church by ship.63

In this account, as well, both bridges in Zurich were flooded. People tried to secure them by weighing down the constructions with the massive, heavy logs used in wine presses and with stones. A house and three mills, which were adjacent to small bridges in Zurich, were washed away. Like driftwood, their debris endangered and finally destroyed a bridge further downstream.

The ‘Kleinere Basler Annalen,’ also contain evidence of a flood along the Rhine on 25 July:

In the year of the Lord 1340, on the Feast of the Apostle James [25 July], a Rhine flood occurred, which ripped apart the Rhine bridges in Basel, Laufenburg, Säckingen, Rheinfelden, and Breisach and led to great damage in the countryside.64

The chronicler dates the flood to the year 1340. The editor of the annals argued already in the early twentieth century that the events described happened in 1343 and not in 1340.65 The ‘Grössere Basler Annalen’ likewise date the flood event to the year 1340.66 Of course, the chroniclers from Basel were mistaken – the descriptions of these events which all occurred on the Feast of Saint James are too similar to be a coincidence. Evidence from throughout Europe overwhelmingly suggests that this flood occurred in 1343.

The tree-ring-based OWDA confirms wet weather conditions in 1342 and 1343, whereas the varved sediments from Lake Oeschinen also display an increased flood

63 Anno domini 1343 jar, an sant Jacobs tag, do wart das wasser so grus, das es Zúrich über beid bruggen gieng von dem grossen wuͤtgús, und gieng über das Silveld. Und mút man die bruggen beswaren mit trotbőimen und standen vol wassers und mit groβen steinen. Und ran das groß hus enweg, und runnent dri múllinen uf der A mit dem hus enweg, das Hans Müllers was, in der nacht, und gestünd an der brugg, dà im Hard an dem turn über gieng. Un do man das hus sleizen wolt, do brach die brugg und ran als enweg. Und für man auch ze Fröwenmünster in der kilchen mit schiffen. DIERAUER (note 55), pp. 44–45. English translation by the author.
66 BERNOULLI (note 52), p. 20.
frequency around the middle of the fourteenth century. Moreover, contemporary witnesses experienced the flooding as a remarkable event. Aegidius Tschudi’s account overlaps with that outlined above, adding that, after to the Limmat flood in Zurich, people erected a stone marker in the Niederdorf to remember the height of the water in 1343:

A stone with an inscription was erected on the street in the city of Zurich [Niederdorf] where the tavern “Sternen” is located, for the purpose of commemorating the depth of the water.67

One of the most defining disasters of the fourteenth century was the Black Death. The bacterium *Yersinia Pestis*, which caused this epidemic,68 originated in Asia and presumably travelled along the Silk Roads to Europe. The plague reached the north shore of the Black Sea in 1347, claiming its first victims in Constantinople in the same year. Shortly thereafter, it had arrived in Sicily and in Marseilles, and it spread from there to the harbor towns of the Adriatic and Tyrrhenian Seas. By the spring of 1348, the Black Death was also raging in the German countries.69 The spread of the disease was influenced and considerably favored by the climatic conditions of the epoch and the weather of the respective years.70

The sources reviewed for this study describe three phenomena around the Black Death, of which two were linked only indirectly to the plague. As one might expect, the chronicles go into some depth regarding the epidemic’s spread and its typical characteristics. Several of the local chronicles also mention flagellants, which were a manifestation of the collective panic that afflicted people faced with this devastating disease and soaring mortality rates.71 However, flagellants had already appeared before the Black Death hit Europe, and, therefore, this religious movement was not caused by the plague but rather intensified by it.72

Others reacted by looking for scapegoats to blame for the epidemic: The chronicles also report how, in several towns in the Holy Roman Empire, Jews were suspected of having poisoned city wells. These accusations resulted in antisemitic violence and pogroms during this period.73 Of course, pogroms had occurred long before this time

70 CAMPBELL (note 1), pp. 3–19.
and independently of the plague, and the idea of minorities poisoning well water in order to cause epidemic diseases was also not new.\(^74\)

Johannes of Winterthur briefly mentions the Black Death twice in his entry for 1348. He tells how countless people perished in Sicily, Avignon, and Marseilles. In Messina, all the brethren of the Carmelite Convent and the hermits there perished from this unknown disease.\(^75\)

Conrad Justinger also writes about the disease in Bern in 1349, reporting that many days about sixty bodies had to be carried out of the town. The plague also affected those living in the countryside.\(^76\) Diebold Schilling incorporates this passage into his ‘Spiezer Chronik,’ as does Benedict Tschachtlan into his account. Furthermore, Schilling and Tschachtlan tell of unmanned ships at sea after their entire crews died of the plague:

And people say that many ship crews died at sea, and, therefore, nobody steered the ships.\(^77\)

Tschudi wrote his chronicle two centuries after the Black Death had ravaged this area; he still has a sense that the Black Death was a unique and remarkable demographic catastrophe that left many towns, monasteries, landscapes, and islands nearly devoid of human inhabitants:

In the same year, 1348, and also in the following, an unprecedented and cruel mortality occurred throughout Christendom. As a consequence of that, [the populations of] many cities, towns, monasteries, countrysides, and island almost became extinct.\(^78\)

The flagellants are also mentioned in some of the narrative sources under consideration here. Justinger tells us that they came to Bern in 1349.\(^79\) Tschudi describes how they whipped themselves in public, wandering from one place to another. According to Tschudi, this fanatical movement attracted people from all classes and included

\(^75\) BAETHGEN (note 51), pp. 275–276, 279.

\(^78\) Des selben 1348. jars und ochh das nechstvolgende darauf was ein mercklicher unerhörter grusamer sterbend in gantzer christenheit, also das vil stett flecken clöster landschaften und inslen schier gar ußsturbent. STETTLER (note 54), p. 345. English translation by the author.

\(^79\) STUDER (note 76), p. 111; ZAHND (note 77), p. 504.
noblemen, priests, citizens, countrymen, sundry craftspeople, and wealthy individuals. As the chronicler says, an amazing number of people joined that horde.80

Moreover, Justinger and Schilling report that Jews were blamed for poisoning wells all over the world. Obviously, they had doubts about the truth of the story, since they use the term \textit{verlúmdet}, which means “defame.”81 Tschudi also describes the pogroms which ensued and how many Jews committed suicide by burning their own houses to avoid falling into the hands of the angry mob.82

The major annals from Basel give only a brief account of the events linked to the Black Death. They mention the both flagellants and the epidemic disease. Because the Jews were blamed for the plague, they were burned in Basel, Zurich, and Augsburg, according to these annals.83 There are even narrative texts, such as the anonymous annals of Zurich, that do not mention the Black Death at all. Astonishingly, in the text from Zurich, the author reports that all the Jews in Zurich were burned in 1349 but says nothing else about those years, not even mentioning the plague.84 Keeping in mind that these annals were written as additions to a printed edition of Etterlin’s ‘Kronica von der loblichen Eydtgnoschaft,’ the author presumably considered it unnecessary to add anything further about the Black Death. However, Etterlin himself describes only the flagellants in his work without explicitly mentioning the Black Death.85 Of course Etterlin’s chronicle was committed to paper more than 150 years after these events.

Europe experienced an exceptional winter in 1363/1364. The written records in many places report on the bitter cold temperatures and the bodies of water which froze during this time.86

The authors of the chronicle of the town of Zurich and the ‘Klingenberger Chronik’ give an account of extremely low temperatures in this winter, when Lake Zurich froze over so solidly that horses and carriages could travel over it. The ice lasted until Good Friday, 30 March 1364, but had thawed by the evening of Easter.87 As Justinger describes – and Schilling as well as Tschachtlan repeat in their accounts – the winter of 1363 was terribly cold all over the German countries, and the icy temperatures

80 Stettler (note 54), p. 333.
81 Studer (note 76), p. 111; Zahnd (note 77), p. 504.
83 Bernoulli (note 52), p. 20.
84 Bernoulli (note 44), p. 275.
86 Glaser (note 12), p. 77.
lasted through March.88 The anonymous town chronicle apparently contains an error; it copies Justinger’s text more or less verbatim but reports that the frost lasted until May.89 The ‘Kleinere Basler Annalen’ also provide details regarding the exact dating, claiming that winter began on 13 December and lasted fourteen weeks until March:

\begin{quote}
In the year of the Lord 1364 occurred a cold winter. This winter began on the day of Saint Lucius’ Feast [3 December] and lasted for 14 weeks without interruption.90
\end{quote}

This cold winter cannot appear in tree-ring based temperature reconstructions because tree rings only indicate weather conditions during the trees’ vegetation period.

There are also other especially cold or warm seasons, thunderstorms, comets, and further remarkable events mentioned only in few sources or only in one source, such as a flood in 1387 in Fribourg. An anonymous chronicle of that town describes the event on the day before Saint Francis (3 October). The Sarine, a river that crosses the city, burst its river banks and destroyed all the mills and some houses and barns:

\begin{quote}
In this year, 1387, on the eve of the Feast of Saint Francis [4 October], the water rose of the Sarine river that flows across Fribourg to such an extent that all the mills, and many houses and barns, were destroyed.91
\end{quote}

Indeed, also the OWDA and the varved sediments from Lake Oeschinen show particularly wet weather conditions in the years from 1386 to 1389, and again around the end of the century.

As a final example, the summer of 1393 was extremely hot and dry. Justinger tells his readers that it was so dry that the soil was like ash. No rain fell in the period between the time when the barley was sown, nor when it was harvested, milled, baked, or eaten.92 The drought is reported in other places in Europe; a number of rivers including the Rhine and Mosel fell to remarkably low levels.93 Once again, the same drought is also visible in the year 1393 in the OWDA.

90 Anno domini 1364 do was ein kalter winter. Und vieng der selbe winter an sant Lucien tag an, und wert 14 wochen ganz an enander, das underlibung ni was. August Bernoulli (ed.), Die Kleineren Basel Annalen. 1308–1415, in: Id. (ed.), Basler Chroniken, 5, Leipzig 1895, pp. 55–67, here p. 57. English translation by the author.
92 Studer (note 76), p. 178.
93 Glaser (note 12), p. 67; Rohr (note 89), pp. 442–443. Christian Rohr dates the event to the year 1394, although the chronicle gives the year 1393.
5 Conclusion

The selection of narrative sources presented here shows that the texts describe only a part of those extreme weather events that occurred during the period examined. The most obvious case is the Great Famine: given its dramatic nature, one might expect these sources to report on it in more detail. Instead, the few texts which mention the famine at all do not go into great detail or try to explain its causes. Again, the sources seem incomplete regarding the floods in 1342 and 1343. Only Johannes of Winterthur describes events in both years, the other sources focus only on one. Therefore, further analysis will be necessary in order to determine the exact chronology of floods in those years.

This source availability differs from weather sensitive sources in other areas and epochs. Moreover, the comparison of the Swiss narrative sources with the reconstructions based on proxies from natural archives, such as tree rings, varved lake sediments, and glacier movements, suggest information is missing in the written texts. Therefore, the data density will not be sufficient in order to produce classical climate reconstructions with the use of indices only for this area.

Nonetheless, the narrative sources can provide exact dating – given that dating errors are carefully eliminated, for even contemporary chroniclers are sometimes inaccurate in that regard. These exact dates clearly represent an advantage compared to other methods of climate reconstruction. In addition, unlike reconstructions based on natural archives, the narrative sources can provide information on societal impacts.

Furthermore, the assumption of societal teleconnections\(^{94}\) between the weather conditions, the output of agricultural production, food availability, and demographic development in the area of Switzerland offers the possibility of combining the results of reconstructions derived from natural archives with the written records. In the case of the Great Famine, this means that when the sparse famine descriptions of Basel, Geneva, and Colmar are linked to the results of reconstructions based on tree-ring data and varved lake sediments, a considerable probability is shown of large areas of today’s Switzerland having suffered from wet and cold weather conditions during the summers in question and possibly also endured crop failures like other European areas. In this case, it seems likely that large parts of the population also suffered from famine.

In addition, the comparison between the descriptions in the narrative sources and reconstructions based on proxies from natural archives also shows that, in most cases, documentary data and natural proxies are consistent. This suggests that the narrative sources are highly reliable. The Swiss narrative sources of the fourteenth century obviously develop their full potential for historical climatology when compared to documentary sources of a broader area and to results from reconstructions based on natural archives.

\(^{94}\) See chapter 1 in this volume in regard to the societal teleconnections.