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a b s t r a c t 

The main goal of disease mapping is to estimate disease risk and identify high-risk areas. Such analyses 

are hampered by the limited geographical resolution of the available data. Typically the available data 

are counts per spatial unit and the common approach is the Besag–York–Mollié (BYM) model. When pre- 

cise geocodes are available, it is more natural to use Log-Gaussian Cox processes (LGCPs). In a simulation 

study mimicking childhood leukaemia incidence using actual residential locations of all children in the 

canton of Zürich, Switzerland, we compare the ability of these models to recover risk surfaces and iden- 

tify high-risk areas. We then apply both approaches to actual data on childhood leukaemia incidence in 

the canton of Zürich during 1985-2015. We found that LGCPs outperform BYM models in almost all sce- 

narios considered. Our findings suggest that there are important gains to be made from the use of LGCPs 

in spatial epidemiology. 

© 2019 The Author(s). Published by Elsevier Ltd. 
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. Introduction 

Disease mapping, i.e. calculating and visualising disease risk

cross space, is an important exploratory tool in epidemiology. The

nformation obtained can provide new clues about the aetiology

f a disease, identify areas of high risk or hotspots, and support

onitoring prevention efforts. Data used for disease mapping usu-

lly consist of disease counts in smaller area units, typically ad-

inistrative units such as counties, covering a larger area of inter-

st. Mapping directly area-level incidence can be misleading, of-

en yielding extreme estimates when the denominator (population

t risk) is small ( Wakefield, 2007 ). This problem is usually con-

ronted by exploiting spatial autocorrelation and borrowing infor-

ation from neighbouring areas. In the Bayesian framework a pop-

lar class of models are those proposed by Besag et al. (1991) ,
Abbreviations: BYM, Besag–York–Mollié; LGCP, Log-Gaussian Cox process; GMRF, 

aussian Markov Random Field; INLA, Integrated Nested Laplace Approximation; 

RF, Gaussian Random Field (GRF); SPDE, Stochastic Partial Differential Equation; 

CAR, Intrinsic Conditional Auto-regression; RMISE, Root Mean Integrated Squared 

rror; AUC, Area Under the Curve; ROC, Receiver Operating Characteristic; SCCR, 

wiss Childhood Cancer Registry. 
∗ Corresponding author 

E-mail addresses: garyfallos.konstantinoudis@ispm.unibe.ch (G. Konstanti- 

oudis), dominic.schuhmacher@mathematik.uni-goettingen.de (D. Schuhmacher), 

aavard.rue@kaust.edu.sa (H. Rue), ben.spycher@ispm.unibe.ch (B.D. Spycher). 

o  

t  

i  

z  

d  

m  

f  

c  

a  

B  

(  

ttps://doi.org/10.1016/j.sste.2019.100319 

877-5845/© 2019 The Author(s). Published by Elsevier Ltd. This is an open access article

 http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
ften referred to as Besag–York–Mollié (BYM) models, which as-

ume global and local smoothing through conditional autoregres-

ive priors; see Freni-Sterrantino et al. (2018) for a recent treat-

ent. Less frequently, exact geocodes are available, allowing mod-

lling a disease as a point process over the continuous spatial do-

ain. An attractive model class of choice in this situation are the

og-Gaussian Cox processes (LGCPs), among other things because

f the tractability of their first and second moments ( Møller et al.,

998 ). Nowadays we have the computational tools to fit LGCPs in

easonable time but the additional benefits over the widely used

YM model are not well understood. 

Disease mapping based on areal data is commonly

one using the BYM model, see Halonen et al. (2016) and

iesen et al. (2018) for examples. The BYM model is an exten-

ion of the ICAR (Intrinsic Conditional Autoregressive) model,

btained by adding a spatially unstructured random effect to

he already given spatially structured random effect. The latter

s a realisation of a Gaussian Markov random field (GMRF) with

ero mean and a sparse precision matrix capturing strong spatial

ependence ( Rue and Held, 2005 ). The unstructured random effect

ay be seen as a collection of independent random intercepts

or the various areal units. This specification leads to a piecewise

onstant risk surface which depends on the spatial unit selected

nd assumes uniform risk across this spatial unit. Advances in

ayesian inference using integrated nested Laplace approximations

INLA) have made this method widely accessible and investigators
under the CC BY-NC-ND license. 
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can get quickly posterior estimates ( Bakka et al., 2018; Illian et al.,

2012; Rue et al., 2009; 2017 ). The combination of easy accessi-

ble data and freely available code with a toolbox ( Lindgren and

Rue, 2015 ) have contributed significantly to the popularity of the

BYM model ( Blangiardo et al., 2013 ). 

When precise geocodes are available, it is more natural to study

the point pattern using spatial point process models, see Diggle

et al. (2005, 2013) and Giorgi et al. (2016) for examples in disease

mapping. LGCPs model locations of cases (geocodes) as an inho-

mogeneous Poisson process conditional on a latent field, which is

a realisation of a Gaussian random field (GRF) ( Illian et al., 2012;

Møller et al., 1998; Yuan et al., 2017 ). In order to do computations,

the GRF is often discretized to a regular grid. The covariance

matrix of the discretized field has an intuitive interpretation, but

is typically a dense matrix, leading to high computation costs (big

n problem ( Lasinio et al., 2013 )). Computational techniques can

be exploited which make this procedure tractable, but when com-

bined with Monte Carlo algorithms the computational burden re-

mains large. Advances include more efficient inferential tools that

use better proposal mechanisms ( Girolami and Calderhead, 2011 ),

INLA ( Rue et al., 2009 ) or different approximations of the covari-

ance matrix ( Heaton et al., 2017 ). Lindgren et al. (2011) proposed

a finite element based approximation to the stochastic weak so-

lutions of the stochastic partial differential equations (SPDE) that

describe certain GRFs with Matérn covariance function ( Whittle,

1954 ). This approach allows to specify an arbitrary triangulation

of space and yields a GMRF representation of the (approximate)

solution indexed by the vertices; see Bakka et al. (2018) for a

recent review. This is more appealing than the dense LGCP ap-

proach described above, since the Markov property allows to do

computations based on a sparse precision matrix, while keeping

the continuous GRF model without an artificial specification of a

regular grid; see Pereira et al. (2017) for an example. 

The continuous nature of LGCPs leads to several preferable the-

oretical characteristics compared to the BYM models. First LGCPs

are resolution invariant, i.e. they bypass all the problems arising

when dealing with arbitrary boundaries; for example, the modifi-

able areal unit problem, where the results are highly dependent

on the areal unit selected ( Openshaw, 1984 ). Inference for BYM is

also complicated by numerous irregular changes in the regions on

which health data is reported ( Li et al., 2012b ). In addition, BYM

assumes constant risk within the spatial units, but in most situa-

tions the unknown spatial covariates associated with the disease of

interest are expected to be continuous, making this starting point

a strong assumption. Furthermore, if the areas of higher risk are

smaller than the areal unit selected, the BYM model is not ex-

pected to be as sensitive and specific as a continuously indexed

model. Lastly covariates are often available at different spatial

scales. LGCPs allow using all the data sources available, retaining

high-resolution and overcoming problems such as spatial misalign-

ment and ecological bias ( Gotway and Young, 2002 ). These prefer-

able theoretical characteristics coupled with the fact that aggregat-

ing point data into regional counts results in an information loss

suggest that LGCPs should outperform the BYM model. But is this

true in practice and how can we quantify any such improvement? 

There are a few published studies that compared these meth-

ods. A study examining lupus incidence in Toronto, simulated 40

Gaussian random fields using a Matérn correlation function with

roughness and variance parameters fixed, varying the range param-

eter ( Li et al., 2012a ). They compared the models’ ability to calcu-

late the risk and identify areas of higher risk and concluded that

LGCPs outperform BYM in all instances. Using similar simulation

procedure and metrics, Li et al. (2012b) extended the LGCP model,

assuming that exact case locations are unknown and information

is only available at larger area units (census tracks in their ex-

ample), and compared this version with the BYM model. They re-
orted that their LGCP version outperforms the BYM model, how-

ver when case locations are available, it is preferable to use LGCP

n the exact points rather than LGCP on aggregated data. It is not

urprising though that in both studies LGCPs performed best, given

hat the processes used to generate and fit the data (Matérn with

oughness parameter 2) were the same. An Australian study us-

ng 6 scenarios consistent with a previous study ( Illian et al., 2012 )

ssessed the performance of, among other models, the BYM and

GCP with a Matérn correlation function on different spatial scales

 Kang et al., 2013 ) by assessing the deviance information criterion

DIC) and the logarithmic score. They concluded that the mod-

ls’ prediction performance was scenario dependent and suggested

hat the analysis should be performed using different spatial scales

nd thus smoothness priors. However, they did not examine their

bility to identify areas of higher risk. All three studies were based

n a small number of datasets and none incorporated the contin-

ous (triangulation-based) specification of the precision matrix by

indgren et al. (2011) . 

Today, more than ever before, geo-referenced data are available

t high spatial resolution. Nevertheless, due to confidentiality con-

erns, such data are often aggregated in some spatial unit. This

ggregation leads automatically to the use of a BYM-type model.

he goal of our investigation is to compare the pairs BYM with

real data and LGCP with point data to examine to what extent

he availability of individual data and use of an LGCP model has

ractical benefits. In addition, we wanted to assess the perfor-

ance of the pair LGCP and SPDE as a toolbox for disease map-

ing compared to the most popular disease mapping method. We

nvestigated the performance of BYM and LGCP when the inter-

st lies in quantifying risk across space (mapping) and identifying

reas of increased risk. For this we perform an extensive simula-

ion study based on a real spatial population. Our findings are then

sed to interpret the BYM and LGCP model fits for the childhood

eukaemia incidence during 1985-2015 in the canton of Zürich. The

emainder of the paper is laid out as follows. Section 2 describes

he methods used in this article, how data was simulated and

hat metrics are used to assess the performance. In Section 3 we

resent and discuss the results of the simulation study, whereas in

ection 4 the models are applied to the childhood leukaemia inci-

ence in the canton of Zürich. Section 5 gives a general discussion

nd areas for future work and Section 6 ends with the conclusion. 

. Methods 

.1. Models 

Let W be an observation window subdivided in spatial units

 1 , . . . , A N and denote by Y i be the disease count in the i th unit.

uppose that Y i ~ Po ( λi P i ), where P i is the population in the i th

patial unit and λi the corresponding risk. The BYM model specifi-

ation assumes: 

og (λi ) = β0 + u i + v i 

u i | u 

u u −i ∼ N 

(∑ N 
j=1 w i j u j ∑ N 

j=1 w i j 

, 
1 

τ1 

∑ N 
j=1 w i j 

)
v i ∼ N (0 , τ−1 

2 ) (1)

here β0 is a constant, u i is a spatially structured random effect

ICAR component; u u u −i denotes ( u j ) j � = i ), and v i is a spatially un-

tructured random effect (independent random intercepts for dif-

erent i ). The w ij represent weights taking the value 1 when spa-

ial units i and j are first order neighbours and 0 otherwise, and

1 and τ 2 denote random precision parameters. Specifying appro-

riate priors for the precision parameters completes the Bayesian

epresentation of the above model. Following the parametrisation
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Fig. 1. The circular high risk areas considered in the simulation study (radii = 1, 5 

and 10km). The shading shows the population density per municipality in quintiles 

in the canton of Zürich based on data of the 20 0 0 census. The population density 

here refers to children < 16 years of age. Although we used the precise geocodes 

in our main analysis, data confidentiality considerations do not allow us to show 

the childhood population density on a finer geographical scale. 
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y Simpson et al. (2017) and Riebler et al. (2016) the above equa-

ion is rewritten as: 

og (λi ) = β0 + 

1 √ 

τ

(√ 

1 − φv i + 

√ 

φu 

∗
i 

)
(2)

here v i ∼ N (0 , 1) , u ∗
i 

is a standardised spatial component that

as characteristic marginal variance equal to 1 ( Sørbye and

ue, 2014 ), φ ∈ [0, 1] is a mixing parameter and τ controls the

arginal precision. Using the representation given in (1) leads to

n independent assignment of priors on the precision parameters,

hich may lead to identifiability issues for the case where no spa-

ial dependence is found ( MacNab, 2011; Simpson et al., 2017 ). In

2) the hyperparameters φ and τ are orthogonal in interpretation,

hich allows us to specify priors independently. 

Turning now to the continuous domain, let Y be a an inhomo-

eneous Poisson point process on W with mean expected number

f points in any set A ⊂ W equal to ∫ A p ( s ) λ( s ) ds , where p ( s ) is the

opulation density and λ( s ) is the risk at location s ( Simpson et al.,

016 ). In an LGCP model we assume that the log-risk log λ( s ) (and

ence the log-intensity of Y ) is the realisation of a Gaussian ran-

om field Z = (Z s ) s ∈W 

. Assuming stationarity and isotropy yields

he model specification: 

og λ(s ) = β0 + Z(s ) 

 [ Z(s )] = 0 

ov [ Z (s ) , Z (s + h )] = k (h ) (3) 

here k ( · ) is a symmetric non-negative definite function de-

ending on the marginal variance σ 2 and a range parameter ϱ,

eyond which correlations fall below a certain threshold of ap-

roximately 0.1. The LGCP specification (3) allows for the inclusion

f covariates via further additive terms in the first equation; the

ame holds for the BYM specification (1) . Typical choices for k ( · )

nclude the exponential, Gaussian, and spherical covariance func-

ions. For this particular approach we used the popular and very

exible class of Matérn covariance functions, which has an addi-

ional roughness parameter ν that is fixed (determined by the in-

estigator). Following Lindgren et al. (2011) , we assume a finite el-

ment representation of the Matérn field based on a fairly dense

riangulation referred to as mesh (online supplement, Fig. S1): 

(s ) ≈
M ∑ 

i =1 

ψ i (s ) Z i , (4)

here M denotes the total number of mesh nodes, Z i are random

eights and { ψ i } is a set of piecewise linear basis functions tak-

ng the value 1 at the i th mesh node, and 0 at every other node.

hittle (1954) ; Whittle (1963) showed that the solution Z ( s ) of the

tochastic partial differential equation 

(κ2 − �) α/ 2 Z(s ) = W (s ) (5)

s a GRF with Matérn covariance function under the reparametriza-

ion 

= ν + d/ 2 , κ = 

√ 

8 ν  

−1 , and 

2 = 

�(ν) 

�(ν + d/ 2)(4 π) d/ 2 κ2 ν
σ−2 , 

here d is the dimension of the space. Here W ( s ) denotes Gaus-

ian white noise and � = 

∑ 

i ∂ 
2 /∂s 2 

i 
is the Laplacian. For this anal-

sis we use ν = 1 . Computing an approximate stochastic weak so-

ution of (5) based on the finite element representation (4) results

n a Gaussian vector Z = (Z i ) 1 ≤i ≤M 

with mean zero and sparse pre-

ision matrix Q ( θ , κ). Unlike traditional methods for inference in

GCP models, this appoach uses the precise locations in the point

attern without aggregation and provides a continuous approxima-

ion of the latent field. 
.2. Data simulation 

To compare the performance of the two models described

bove, we conducted a simulation study. In this section, we de-

cribe the data simulation procedure. 

The selection of scenarios was motivated by the exam-

le of childhood leukaemia incidence in Switzerland. Childhood

eukaemia is a rare cancer and over the period 1985–2015 we ob-

erved n = 334 childhood leukaemia cases in the canton of Zürich,

hich had a total childhood population ( < 16 years of age) of

 W 

= 206 , 532 in 20 0 0. Precise geocodes were available from the

ational census in 20 0 0 allowing to simulate case locations from

he true underlying geographic distribution of the population at

isk. 

We considered scenarios varying in the size of high-risk areas

radius r of circular high risk areas in km; r ∈ {1, 5, 10}), the risk

atio between the low risk area and the high risk area ( c ∈ {2, 5}),

he expected number of cases generated ( kn , where k ∈ {1, 5, 10}

ith n = 334 from above) and the shape of the risk surface (step

unction or smooth function). All of the resulting 36 scenarios in-

luded 3 high risk areas with centres located in a highly urban

rea (Zürich; Fig. 1 , circles on the left), a semi-urban area (Win-

erthur; Fig. 1 , top-right circles) and a highly rural area (Gossau;

ig. 1 , bottom-right circles). We also included 3 scenarios with a

at risk surface for k ∈ {1, 5, 10}. For each of the resulting 39 sce-

arios, we generated 300 datasets. 

We selected a circular shape for the high risk areas because of

ts simplicity (defined only by centre and radius), rotational invari-

nce (thus avoiding arbitrary choices of angular orientation), and

ecause it can be regarded as a generic model of environmental

ontamination from a point source. Furthermore it is unlikely to

avour any of the models by unintentional alignment with the sub-

ivisions of space used in model fitting, i.e. municipalities for BYM

r a Voronoi tesselation or regular grid for LGCP models. 
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In the scenarios for which the true risk surface is a step func-

tion set 

λstep (s ) = λ0 

(
1 + α max 

l 
1 {‖ s − x l ‖ ≤ r} ), s ∈ W, 

where λ0 is the risk outside the circles, α = c − 1 is the proportion

of the excess risk inside the circles, x l is the centre of the l -th cir-

cle, l = 1 , 2 , 3 , and 1 { condition } takes the value 1 if the condition

is satisfied and 0 otherwise. The risk at the location of residence s i 
of the i th child is then given by λi = λ(s i ) for i = 1 , . . . , P W 

. 

For each value of c and k , the baseline risk λ0 was selected such

that the overall number of expected cases generated would equal

kn . To generate case locations, we sampled a value from Uniform (0,

1) for each person i = 1 , . . . , P W 

, and declared the person to be a

case if the sampled value was smaller than λi . We thus generated

J = 300 datasets. The full algorithm used to generate the datasets

is given in the online supplement as Algorithm S1. 

In the scenarios with a smooth risk surface the excess risk was

modelled using Gaussian functions as follows: 

λsmooth (s ) = λ0 + β max 
l 

{ 

exp 

(
−‖ s − x l ‖ 

2 

2 γ 2 

)} 

, s ∈ W, 

where λ0 denotes the background risk and x l are as above. While

taking the sum of the three Gaussian components may seem more

intuitive, we selected the max , because this way the shape of the

high risk areas remains intact (clear circles). For each combination

of c and r , we selected the new parameters β , γ > 0 such that (a)

on average 80% of the excess cases produced by an isolated Gaus-

sian risk function over an infinite area occur within a circle of ra-

dius r ; (b) the expected number of excess cases produced by the

risk surface λsmooth over the canton of Zürich is the same as un-

der λstep , and (c) the expected total number of cases is the same

under both risk surfaces. To sample locations we used the same

procedure as described above. For more information how γ and

β were derived, for the sampling algorithm and a graphical repre-

sentation of the risk surfaces under different scenarios, refer to the

online supplement, Section 1, Algorithm S2 and Figs. S2– 4. 

2.3. Prior selection and inference 

Both for the BYM and LGCP models and across all

datasets in the simulation, we followed the results from

Simpson et al. (2017) to construct penalised complexity pri-

ors. These priors are invariant to parametrisations, have a natural

connection with Jeffrey’s priors, are parsimonious and have excel-

lent robustness properties ( Fuglstad et al., 2018; Simpson et al.,

2017; Sørbye and Rue, 2017 ). For the BYM model we set a prior

for τ in (2) such that Pr (1 / 
√ 

τ > 1) = 0 . 01 indicating that the

log-risk in a fixed area is unlikely to have variance more than

1. For the mixing parameter φ we assigned Pr (φ ≤ 0 . 5) = 0 . 5

implying that the median of the mixing parameter is 0.5 (i.e.

equal contribution of the overdispersion component and the ICAR

component to the latent field). For the LGCP model we followed

a similar approach for the marginal standard deviation, setting

again Pr (σ > 1) = 0 . 01 , whereas for the range parameter we set

Pr ( < 30 0 0 0) = 0 . 5 corresponding to a weakly informative prior

using the fact that 30,0 0 0 m is roughly half of the diameter

of the domain. Inference for both models was conducted using

INLA as introduced by Rue et al. (2009) ; see Blangiardo and

Cameletti (2015) for book-treatment of the subject. 

2.4. Performance measures 

We used the root mean integrated squared error evaluated on

a fine grid as a metric to assess the ability of a model to estimate

the true risk surface: 

RMISE = 

(
E 

∫ 
b(s )( ̂  R (s ) − R (s )) 2 ds 

)1 / 2 
W 
≈
( 

E 

G ∑ 

g=1 

b g | D g | ( ̂  R g − R g ) 
2 

) 1 / 2 

, (6)

here b ( s ) denotes a weight function, ˆ R (s ) is the fitted value at s

a random variable having the marginal posterior distribution) and

 ( s ) is the true value at s . For approximating the integral we use

n the right hand side the partition { D 1 , . . . , D G } of the domain W
nto small pixels and b g , ˆ R g , R g are suitably chosen representative

alues of b ( s ), ˆ R (s ) , R ( s ) on D g , respectively. More precisely, ˆ R g is a

alue simulated from the marginal posterior distribution at g ≈ s

nd the expectation on the right hand side is the average over all

uch simulated values. We considered four versions of this RMISE,

arying the weights among b g = 1 and b g = #( people in D g ) / | D g |
here | · | denotes the area of D g and the R -values among ˆ R g =

og ( ̂ λg ) and 

ˆ R g = ̂

 λg , where λg is evaluated at the centroid of grid

ells. For the rest of the paper, RMISE refers to the version with

 g = 1 and 

ˆ R g = log ( ̂ λg ) unless otherwise stated. 

As a second measure to assess a model’s ability to capture the

rue risk, we used the coverage probability. Let δjg be an indicator

aking the value one whenever λg lies inside the 95% credibility re-

ion of ˆ λg and zero otherwise for the j -th dataset. We defined the

overage probability of the g -th cell as p g = 

∑ 300 
j=1 δ jg / 300 . We also

alculated a coverage proportion of cells correctly covered by the

 -th map defined as p j = 

∑ G 
g=1 δ jg /G . For the BYM on municipali-

ies we used the credibility regions of the municipality, in which

he centroid of the grid cell lay. 

To assess a model’s ability to identify high-risk areas we esti-

ated the receiver operating characteristic (ROC) curve and deter-

ined the area under this curve (AUC). More specifically, we de-

ned regions of high risk based on exceedance probabilities as the

et of grid cells satisfying Pr ( ̂ λg > n/P W 

) > q for some q ∈ [0, 1),

here the probability is taken over the posterior distribution of
ˆ 

g . Denoting the true high risk region, given by λg > n / K , as A and

he region of high risk indicated by the exceedance probability as

 α , we define the area-based sensitivity and specificity as 

ensitivity q = 

| A ∩ B q | 
| A | and specificity q = 

| A 

c ∩ B 

c 
q | 

| A 

c | , 

here | · | denotes area and A 

c and B c q denote the complements

f A and B q , respectively; see Fig. S5 in the online supplement for

llustration. We evaluate the area-based sensitivity and specificity

t q = 0 , 0 . 05 , 0 . 1 , . . . , 0 . 95 and calculate AUC as the area under the

OC curve defined by plotting sensitivity against 1 −specificity. We

lso use a population-based version of sensitivity and specificity

sing the same formulae as above with | · | denoting population

n a given area. For the rest of the manuscript, AUC refers to the

rea-based version unless otherwise stated. 

. Results 

Table 1 shows the median and the 2.5th and 97.5th percentile

ver the 300 simulations of the area-based RMISE, evaluating the

rror on the log scale ( b g = 1 and 

ˆ R g = log ( ̂ λg ) ). Regardless of the

ample size or the shape of the data-generating risk surface, LGCP

utperforms BYM for large radii (10km), but also for medium radii

5km) combined with high risk increases ( c = 5 ). In contrast, BYM

ends to outperfom LGCP in the case of small radii, small risk in-

reases, and when the risk surface is flat (online supplement, Table

1). The results across the scenarios are similar when we consider

he population weights or the fitted values on the risk scale; refer

o the online supplement, Tables S2– 4. 

Maps of coverage probabilities are shown in Figs. S6– 11 in

he online supplement. From these it is clear that LGCP outper-

orms BYM for all data-generating scenarios with medium (5km)

o large (10km) size of the high risk areas. Coverage probabilities
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Table 1 

Root mean integrated squared error (RMISE) divided by 1,0 0 0 for b g = 1 and ˆ R g = log ( ̂ λg ) based on (6) in the 

36 scenarios with high risk areas. BYM stands for the Besag–York–Mollié model, LGCP for the Log-Gaussian 

Cox process model and c for the factor of risk increase within the high risk areas. 

Data generating model Step function Smooth function 

Fitted model BYM LGCP BYM LGCP 

k = 1 

Radius = 1km 

c = 2 6.76 (4.8, 12.1) 6.83 (4.5, 12.4) 6.71 (4.7, 12.2) 6.76 (4.37, 12.1) 

c = 5 11.8 (7.92, 17.8) 16.4 (10.5, 21.9) 12.3 (8.15, 19.4) 16.2 (10.9, 22.6) 

Radius = 5km 

c = 2 14.8 (12.4, 19.5) 14.6 (12, 18.9) 13.6 (10.7, 18.3) 13.8 (10.9, 18.4) 

c = 5 28.3 (25.4, 33.3) 26.6 (24.1, 32.3) 25.1 (22.6, 30.1) 23.3 (20.3, 28.9) 

Radius = 10km 

c = 2 16.9 (15.1, 19.7) 14.7 (13.5, 17.9) 15.4 (13.3, 18.3) 13.5 (11.6, 17.4) 

c = 5 35.6 (34, 37.6) 27 (25.4, 29.5) 27.2 (25.6, 29.4) 19.8 (18.1, 23.5) 

k = 5 

Radius = 1km 

c = 2 4.47 (3.17, 6.81) 6.62 (4.24, 9.88) 4.48 (3.1, 6.88) 6.51 (4.27, 9.9) 

c = 5 10.4 (8.77, 12.5) 14.8 (13.1, 17.1) 10.8 (8.82, 12.5) 14.8 (13, 16.8) 

Radius = 5km 

c = 2 11.6 (10.6, 13.1) 12.2 (10.8, 14.7) 10.4 (9.32, 12) 11 (9.33, 14.3) 

c = 5 22.8 (21.4, 24.5) 21.5 (19.6, 24.6) 19.2 (18, 20.6) 16.8 (14.8, 19.9) 

Radius = 10km 

c = 2 14.9 (14.3, 15.8) 12.1 (11, 14.4) 12.3 (11.5, 13.4) 10.1 (8.57, 12.7) 

c = 5 28.4 (27.3, 29.8) 22.3 (20.8, 24.6) 21.8 (21, 22.8) 13.9 (12.1, 17) 

k = 10 

Radius = 1km 

c = 2 4 (3.01, 5.77) 7.32 (5.42, 9.68) 3.99 (2.89, 5.89) 7.34 (5.43, 9.82) 

c = 5 9.76 (8.65, 11) 14 (12.8, 15.7) 9.88 (8.77, 11.1) 13.9 (12.7, 15.6) 

Radius = 5km 

c = 2 10.4 (9.8, 11.4) 11.5 (10.2, 13.4) 9.12 (8.44, 10) 10.3 (8.66, 12.4) 

c = 5 20.6 (19.6, 21.8) 19.9 (18.2, 22.8) 16.9 (16.1, 18.1) 14.7 (12.9, 17.2) 

Radius = 10km 

c = 2 13.6 (13.1, 14.2) 11.8 (10.4, 13.9) 11.1 (10.5, 11.8) 9.17 (7.75, 11.7) 

c = 5 25 (24.2, 26) 21 (19.7, 23.3) 19 (18.2, 19.8) 11.9 (10.5, 14.8) 
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f LGCP are high both in and outside the high-risk areas, and the

nly regions of poor coverage are along the immediate boundaries

f the high risk areas in the step function scenarios. This was to

e expected, given that it is impossible for a smooth function to

erfectly approximate a step function. For the BYM, considerable

xtents of areas within or without the high risk areas show sub-

ptimal coverage in all these scenarios. None of the models prop-

rly capture the high risk areas when these are confined to small

ircles (1km). However, even for this case the areas of low cover-

ge are restricted to the circles for LGCP, while they extend to the

ntire municipalities for BYM. 

Table 2 shows the median and 2.5th and 97.5th percentiles of

he coverage proportions p j (proportion of area for which the true

isks lie within the credibility regions). In line with the maps of

overage probabilities, LGCP consistently shows a higher coverage

roportion when the data-generating process has a smooth risk

urface, while the BYM coverage proportion remains often under

5%. In this scenario, the only situation in which BYM and LGCP

erform similarly is when high risk areas are small (1km) and the

isease rare ( k = 1 ). Similarly, LGCP outperforms BYM in almost

ll scenarios when the underlying risk is a step function. There

re few exceptions for which BYM appears to perform marginally

etter, namely for the combinations of medium or large circles,

igher risk increases, and higher incidence rates. But as the Figs.

6– 11 in the online supplement show, areas of poorer coverage

or LGCPs are confined to the circular transition areas from high

o low risk. On the remaining area (both within and outside of

igh risk areas) coverage probabilities tend to be high in all these

ituations. 

Fig. 2 shows the variation across grid cells of the mean (over

imulations) of the posterior mean and standard deviation of esti-

ated risk when the expected number of generated cases is set

o 5 n ( k = 5 ). In all scenarios the geographic variability of risks
stimated by LGCP is closer to the true variability of risks com-

ared to estimates from BYM. This suggests a stronger tendency

or shrinkage to the mean for BYM. Thus, even when the high risk

reas are small ( r = 1 km ), LGCP models attempt to capture these

isk increases, likely leading to greater variability in the estimates

ven for the areas outside the circles. This is a plausible explana-

ion for the poorer performance of LGCPs in terms of RMISE for

mall radii and small risk increase: The BYM model better cap-

ures the risk outside the circles and, although it fails to capture

he risks within the circles, this yields a better RMISE because the

ircles are very small. Stronger shrinkage to the mean is also a

lausible explanation for the better performance of the BYM model

n the constant risk scenario (online supplement, Fig. S12). Except

n the scenarios of small risk areas, the LGCP risk estimates tend

o be more stable, i.e. on average have narrower posterior distribu-

ion as shown by the distribution of standard deviations. The re-

ults are similar for k = 1 and k = 10 (online supplement, Figs. S13

nd S14). 

Fig. 3 shows the pointwise median and 95% envelopes of the

rea-based sensitivity against 1 −specificity (ROC curve). The leg-

nd states the median and 2.5th and 97.5th percentiles of the

UC over the simulations, where the expected number of gener-

ted cases is set to 5 n . For all scenarios LGCP clearly outperforms

YM in terms of identifying areas of high risk (AUC consistently

igher). While the two ROC curves are similar for scenarios with

oth small risk areas ( r = 1 km ) and small risk increases ( c = 2 ), it

s clearly visible that LGCP has higher sensitivity and specificity in

ll other scenarios for all the exceedance probability thresholds q

onsidered. We observe similar results when increasing or decreas-

ng the number of cases or using the population-based version of

ensitivity and specificity (online supplement, Figs. S15– 19). For

ore information on the sensitivity and specificity per probability

hreshold q refer to the online supplement, Figs. S20– 25. 
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Fig. 2. Spatial variation in the true risk, the mean (over the 300 simulations) of the posterior means and standard deviation (sd). The expected number of cases is kept at 

5 n ( k = 5 ). 
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Table 2 

Coverage proportion for the 36 scenarios. BYM stands for the Besag–York–Mollié model, LGCP for the 

Log-Gaussian Cox process model and c for the risk increase within the high risk areas. The coverage 

proportion is defined as the proportion of grid cells for which the true risk lies within the credibility 

region. Given are the median and in parenthesis the 2.5 and 97.5 percentiles of the mean coverage over 

the simulations. 

Data generating model Step function Smooth function 

Fitted model BYM LGCP BYM LGCP 

k = 1 

Radius = 1km 

c = 2 0.99(0.94,0.99) 1.00(0.94,1.00) 0.99(0.95,1.00) 0.99(0.94,1.00) 

c = 5 0.94(0.90,0.99) 0.99(0.98,1.00) 0.94(0.91,0.99) 0.99(0.98,1.00) 

Radius = 5km 

c = 2 0.94(0.85,0.97) 0.97(0.87,1.00) 0.95(0.93,0.96) 0.99(0.94,1.00) 

c = 5 0.90(0.86,0.94) 0.95(0.91,0.97) 0.92(0.90,0.93) 1.00(0.97,1.00) 

Radius = 10km 

c = 2 0.62(0.29,0.99) 0.90(0.47,0.98) 0.97(0.54,1.00) 0.99(0.84,1.00) 

c = 5 0.51(0.43,0.91) 0.82(0.59,0.90) 0.86(0.62,0.96) 0.99(0.92,1.00) 

k = 5 

Radius = 1km 

c = 2 0.94(0.91,0.99) 0.99(0.89,1.00) 0.95(0.91,0.99) 0.99(0.88,1.00) 

c = 5 0.90(0.88,0.90) 0.99(0.98,0.99) 0.90(0.89,0.93) 0.99(0.98,1.00) 

Radius = 5km 

c = 2 0.90(0.85,0.94) 0.95(0.89,0.97) 0.92(0.90,0.93) 0.99(0.93,1.00) 

c = 5 0.88(0.84,0.90) 0.92(0.89,0.94) 0.87(0.85,0.89) 1.00(0.96,1.00) 

Radius = 10km 

c = 2 0.88(0.52,0.95) 0.88(0.8,0.94) 0.93(0.82,0.95) 1.00(0.94,1.00) 

c = 5 0.85(0.76,0.9) 0.84(0.78,0.88) 0.85(0.71,0.9) 0.99(0.96,1.00) 

k = 10 

Radius = 1km 

c = 2 0.94(0.90,0.99) 0.98(0.85,0.99) 0.94(0.91,0.99) 0.99(0.86,1.00) 

c = 5 0.90(0.88,0.90) 0.98(0.98,0.99) 0.90(0.88,0.90) 0.99(0.98,0.99) 

Radius = 5km 

c = 2 0.89(0.85,0.91) 0.92(0.85,0.96) 0.90(0.88,0.91) 0.97(0.91,1.00) 

c = 5 0.87(0.82,0.89) 0.92(0.88,0.93) 0.85(0.82,0.87) 0.99(0.94,1.00) 

Radius = 10km 

c = 2 0.88(0.74,0.93) 0.86(0.79,0.91) 0.90(0.82,0.93) 0.98(0.92,1.00) 

c = 5 0.86(0.80,0.90) 0.84(0.79,0.87) 0.83(0.77,0.86) 0.99(0.95,1.00) 
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. Childhood leukaemia incidence in the Canton of Zürich 

Childhood leukaemia is a rare cancer and the only estab-

ished environmental risk factor is ionising radiation in high doses

 Wakeford, 2013 ). The childhood leukaemia example is of particu-

ar interest, as there have been a number of reports of childhood

eukaemia clusters in the literature ( McNally and Eden, 2004 ).

ost of these clusters were discovered incidentally and it is not

ossible, in retrospect, to judge whether they represent true devi-

tions from a flat risk scenario. Indeed in a recent systematic in-

estigation of spatial clustering in Switzerland, we found that quite

emarkable aggregations of cases are well compatible with a flat

isk scenario ( Konstantinoudis et al., 2017 ). Disease mapping is an-

ther approach of identifying areas of high risk, that may be more

ensitive to areas of irregular shapes and long range spatial trends.

Data for childhood leukaemia were available through the Swiss

hildhood Cancer Registry (SCCR), which is a nationwide reg-

stry with a estimated completeness > 95% since the mid

0s ( Schindler et al., 2015 ). For this study we used the pre-

ise geocoded locations of place at diagnosis of the 334 regis-

ered childhood leukaemia cases diagnosed during 1985–2015 in

he canton of Zürich. Precise geocodes for all children of the

eneral population were available through the previous decennial

uestionnaire-based national censuses (1990, 20 0 0) and the annual

egister-based censuses beginning in 2010. The population denomi-

ator was calculated in a similar way as in Li et al. (2012b) . Briefly,

e calculated the expected number of cases E g per g th Voronoi cell

or municipality for the BYM) as follows: 

 g = 

∑ 

i j 

�i H j P i jg 
here �i is the childhood leukaemia incidence in the canton of

ürich in the i th year, H j are age effects corresponding to the 0–

, 5–9 and 10–15 age groups, and P ijg the population in the i th

ear, j th age group and g th Voronoi cell (or municipality). For the

on-census years we assume that the population size is the same

s in the closest census year, which leads to a constant size for

he years 1985–1994, 1995–20 04, 20 05-2010, and from 2011 an

nwards we have the population available. We fitted LGCP and

YM models using the same specifications as in the simulation

tudy (see online supplement, Fig. S26 for prior-posterior plots of

he hyperparameters). Having the expected number of cases as the

enominator, adjusted for risk variations over time and age, the

odels estimate the standardized incidence ratio (SIR), defined as
ˆ IR g = ̂

 λg /E g . We mapped the SIR estimates of both models as well

s the exceedance probabilities defined as Pr ( ˆ SIR g > 1) . We high-

ighted areas, for which the exceedance probabilities surpass the

hresholds 0.5 and 0.75. The sensitivity and specificity observed in

ur simulation study for these thresholds are reported in Table S5

f the online supplement. 

Fig. 4 shows the fitted SIR suggested by the BYM and LGCP

odels in the top panels and the exceedance probabilities in the

ower panels. Overall there appears to be little spatial variation of

hildhood leukaemia SIR in the canton of Zürich. The variation of

IR estimates from the LGCP is somewhat larger with a median

IR of 0.98 and [ min , max ] = [0 . 90 , 1 . 10] compared to the varia-

ion retrieved from the BYM model, where the median risk is 0.99

nd [ min , max ] = [0 . 95 , 1 . 10] . The map based on the BYM model is

ore patchy, highlighting individual municipalities that stand out

uite markedly from their neighbours. In contrast the risk surface

ased on the LGCP model shows gradual changes with two spa-

ially coherent areas of higher risk, one near the city of Zürich and
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Fig. 3. Pointwise median receiver operating characteristic (ROC) curves and their corresponding pointwise envelopes. The envelopes were calculated by taking the 2.5th 

and 97.5th percentiles of sensitivity for given values of 1 −specificity across the 300 simulations. The legend shows the median and, in parenthesis, the 2.5th and 97.5th 

percentiles of the AUC across the simulations. The expected number of cases is 5 n and we used area-weights. 
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one in the South-East of the canton. While the BYM highlights the

whole municipality of Zürich, the LGCP shows no elevated risk in

the western part of the municipality, but locates a high risk area

in the eastern part of the municipality. The exceedance probabil-

ity in this small area surpasses 0.75, while the BYM does not find

any region exceeding this threshold. The estimated median of SIR

increase of this particular area is 1.07 with 95% CI of (0.91, 1.28).

Assuming that there is a real increase at this location, LGCP would

have greater sensitivity than the BYM in identifying it. This illus-
rates that assuming constant risk over administrative areas may

e quite misleading. When we increased the exceedance probabil-

ty to 0.80 none of the methods reported any excess in the SIR. 

We cannot know if there is true spatial variation in risk over

he period considered. The observed geographical variation in the

osterior mean of the risk is compatible with the scenario of the

imulation study, where c = 2 and r = 1 km ; see online supple-

ent, Fig. S12. The observed risk increase could be spurious and

n attribute to sampling variability or imperfect spatial adjustment
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Fig. 4. Posterior median standardized incidence ratio (SIR) per municipality in the BYM model (top-left panel) and per 500 x 500m grid cell in the LGCP model (top-right 

panel). The plots bellow show the exceedance probabilities Pr ( ˆ SIR > 1) , where ˆ SIR is computed per municipality ( ˆ SIR = 

ˆ SIR i ) in the BYM model (bottom-left) and per grid 

cell ( ˆ SIR = 

ˆ SIR g ) in the LGCP model (bottom-right panel). The red lines delimit areas where Pr ( ̂ λ > 1) > 0 . 5 (solid line) and Pr ( ̂ λ > 1) > 0 . 75 (dashed line). 
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or person years at risk. On the other hand, the observed risk in-

rease could be also real and an attribute to environmental factors,

uch as traffic related air pollutants ( Spycher et al., 2015 ), though it

s not obvious which environmental factor might be implicated in

he two areas indicated by the LGCP. Identifying potential factors

nderlying the observed variation is out of the scope of this study,

nd more research is required incorporating putative risk factors. 

. Discussion 

Overall, we have found that in the framework of our study

GCP models perform better than BYM models in quantifying dis-

ase risk over space and in identifying areas of high-risk. LGCP

learly outperformed BYM when risk increases and the areas af-

ected by these were sufficiently large to be detected. In these situ-

tions LGCP remained superior regardless of whether the underly-

ng risk surface was a step function or a baseline risk plus a Gaus-

ian, and regardless of any changes in the disease incidence rate.

hen the high-risk areas were small none of the models man-

ged to reliably detect the increases or quantify the risks within

hese areas. In these scenarios BYM tended to produce a smaller

MISE due to a more efficient estimation of the flat risk surface

n the large remaining area. The more reliable estimation of a flat

isk surface appears to be the only advantage of BYM over LGCP. In

ur example using true childhood leukaemia incidence data from

he canton of Zürich, the LGCP model identified smooth risk in-
reases over the continuous domain in two spatially coherent ar-

as, while the map produced by BYM was patchy, with multiple

on-contiguous areas of elevated risk. Furthermore, risks estimated

y LGCP showed greater variation over space and revealed vari-

tion at the sub-municipal level that could not be picked up by

YM. 

Our results are consistent with two out of three previous stud-

es in the literature. Motivated by studying the lupus incidence

n Toronto, Li et al. (2012b) simulated 40 Gaussian surfaces with

ero mean, keeping the variance and roughness parameters con-

tant ( θ = 0 . 5 and ν = 2 ) and varying the range parameter (  =
 , 2 , 3 , 4 km ). They compared the performance of BYM and LGCP.

rguing that lupus risk is too low, they simulated cases using

tomach and lung cancer risk. They used the mean squared er-

or and ROC curves to examine the ability of the models to

stimate the risk and pick up areas of higher risk. They con-

istently reported that the LGCP outperforms the BYM model.

i et al. (2012a) extended the LGCP model to aggregated data and

ompared them with the LGCP model based on case locations and

he BYM model using a similar simulation procedure and metrics

s in their previous study. They reported that the LGCP extension

n aggregated data performed better than the BYM on aggregated

ata, however the LGCP on case location data was always superior.

ang et al. (2013) simulated point data, as guided by a previous

tudy by Illian et al. (2012) , aggregated this data on a range of dif-

erent spatial scales and used a variety of smoothness priors to ex-
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amine the impact of spatial scale and prior in the predictive per-

formance of spatial models. Among the different priors were the

BYM and a Matérn model, which with a fine grid selection approx-

imates an LGCP. They conducted inference with INLA and reported

mixed results in the sense that model performance depended on

the individual scenarios. 

Our work has some strengths. At its heart it is an extensive

simulation study using samples from a true population that yields

datasets with realistic spatial distribution of cases and persons

at risk. We considered a range of different scenarios with differ-

ent sizes of high-risk areas, risk increases, levels of urbanicity and

shapes of the risk function, attempting not to favour either of the

models used for fitting. The shape of the high-risk areas was al-

ways circular, which is an intuitive shape for disease mapping (hot

spots). This choice also provides parsimony with respect to the pa-

rameters that need to be set and varied (centres and radii). These

strengths make our study stand out from the literature, where pre-

vious studies were based on small simulation samples (40 samples

in ( Li et al., 2012b ) in contrast with our 300) and limited scenarios

(4 scenarios in Li et al., 2012b in contrast with our 39). In addi-

tion, previous simulation studies based their scenarios on a Matérn

field, which is expected to favour LGCPs ( Li et al., 2012a; 2012b ).

Our simulation study is based on scenarios that are unlikely to

favour any of the models we selected. In addition, we selected the

SPDE approach with a mesh triangulation that allows for projec-

tions on any resolution required rather than an ad-hoc grid spec-

ification. To the best of our knowledge, this is the first study that

compares LGCPs with SPDE on a mesh with a BYM model. 

We need to acknowledge some limitations. Even if circles is

an intuitive and parsimonious shape, more complex shapes should

be considered in future studies. We also did not examine the

effect of any spatially varying covariates, an issue discussed by

Sørbye et al. (2017) . In addition, the BYM for the current study de-

pends on a single type of aggregation (municipalities). Presumably

ZIP-code areas (the smallest areal unit in Switzerland, 268 in the

canton of Zurich) would have led to preciser results. However, the

choice of municipalities is justified as the smallest regional unit at

which routinely collected data commonly become available while

preserving data confidentiality. Our results may be sensitive to the

particular setting in the canton of Zürich (population distributions,

shapes of municipalities etc.). However, we decided to focus on the

canton of Zürich for computational considerations and because it

provides a representative setting with different degrees of urban-

ization. 

The results we found are subject to the mesh specification and

a denser mesh provides more precise estimates (see Teng et al.,

2017 ). It is tempting to assume that the failure of LGCPs to capture

the risk increases over small areas (radius 1km) can be attributed

to the mesh selection and the resulting loss of spatial resolution.

However, this is unlikely to be the case: We performed an ad-hoc

analysis simulating 100 datasets to examine the effect of the mesh

size on the RMISE, setting b g = 1 and 

ˆ R g = log ( ̂ λg ) and assuming

smooth risk surface and k = 5 . We selected the centroids of 500 x

500m grid cells as the mesh nodes, which resulted in a mesh with

M = 7563 nodes, almost twice as many as used for the main anal-

ysis ( M = 4376 ; supplementary Fig. S1). The reason for choosing

this regular grid is that the same grid is used for estimating the

posterior risk and calculating RMISE, so that no projection of the

representation (4) to the regular grid is required but the values Z i 
can be used directly. Consequently, we expect our estimates to be

as close to the truth as a model of this grid size can produce. The

results are reported in the online supplement, Fig. S27. As expected

the denser mesh yields a more accurate risk surfaces for the LGCP

model, with the results being more pronounced for radius = 5 km .

However, the denser mesh does not remove the outperformance of

BYM when radius = 1 km . Increasing the mesh comes with a con-
iderable increase in computation time: the mean processing time

f the LGCP model in this case is approximately 400s in contrast to

6 s needed on average for the same scenarios under the coarser

esh specification. This initial mesh selection was a compromise

etween precision and computation time across all simulations. 

A more plausible explanation for the tendency of BYM to per-

orm better when there are just a few peaks of radius = 1 km

eems to be that the large flat risk surface dominates the esti-

ation of parameters determining variance and spatial correlation

f the Gaussian field, and as a consequence these risk peaks are

moothed out. At the same time the sensitivity estimates for both

odels are fairly similar (online supplement, Fig. S20– 25 and Ta-

le S5). These findings are in line with previous simulation stud-

es that reported a tendency of the BYM model to oversmooth the

oint estimates but to perform well at overall classification of ar-

as into higher-risk areas ( Best et al., 2005 ). 

Our results suggest that, under the given scenarios and when

sing exceedance probabilities to define areas of high-risk, LGCPs

ay be a promising tool for cluster detection. The most popu-

ar cluster detection test is Kulldorff’s circular (or elliptic) scan

 Kulldorff, 1997; Kulldorff et al., 2006 ). However, these methods

o not provide smooth risk estimates over the domain, have dif-

culties in detecting clusters of irregular shapes and are slightly

onservative when there is more than one cluster in the domain.

sing a model-based approach we bypass some of these issues.

owever results are expected to be sensitive to the prior specifica-

ion. Furthermore the selection of a threshold q for the exceedance

robabilities is often arbitrary, creates an additional bottleneck in

he analysis and possibly multiple testing issues. For our scenarios

he circular scan would be expected to perform better, as it is con-

tructed to be used for circular cluster detection. LGCP and other

isease mapping models provide no formal test for the presence of

lusters, however this avenue might be pursued in future research.

uture studies should examine different methods for identifying

igh-risk areas using LGCP or BYM models, such as excursion sets

 Bolin and Lindgren, 2015 ) or quantile regression ( Padellini and

ue, 2018 ), and compare these approaches with Kulldorff’s scan. 

This study highlights the strengths of continuous domain mod-

ls for disease mapping when precise geocodes are available. How-

ver, patient confidentiality concerns are an important reason for

ot making such data available. Future research should seek ways

o utilizing data at its maximum resolution while fully respect-

ng privacy concerns. In this line, it would be interesting to ex-

mine how sensitive the results are to data perturbation (jittering)

s a way for preserving data confidentiality. Future studies should

lso compare the performance of discrete and continuous domain

odels when the underlying risk is linked to individual or spa-

ial covariates. In theory, continuous domain models should allow

ypassing problems in regression models based on discrete area

nits, including ecological bias and spatial misalignment. 

A discrete approach based on administrative regions might be

referable in certain contexts. Public health policies and inter-

entions are likely to be employed on such geographical scales

nd thus stakeholders and public health experts are interested in

egional-based estimates. Alternatively, one could use the contin-

ous approach and integrate the estimates on the administrative

egion of interest. Such integration has been previously used, but

f it provides more precise estimates than the discrete approach

as not yet been demonstrated Wakefield et al. (2018) . In ad-

ition, the choice of the model can be driven by any informa-

ion one has about the unknown spatial confounding. In aetiolog-

cal studies the unknown spatial confounding is likely driven by

uantities that vary continuously in space (air-pollution, temper-

ture etc.). However in other applications, the nature of the un-

nown spatial confounding makes it natural to use a BYM-type

pecification. For instance, when a landslide occurs potential debris
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ow vary homogeneously within slope units, making it natural to

se a BYM-type specification on the slope units ( Lombardo et al.,

018 ). In epidemiological studies, contextual factors such as vac-

ine scepticism might affect individual behaviour homogeneously

ithin a geographical region, leading again to a discrete approach

 Riesen et al., 2018 ). Thus the main evaluation criteria for selecting

ethods should be based on the research question and the nature

f the problem, but taking into account the benefit that can be

ained by using a continuous approach. 

. Conclusion 

This study suggests that the use of LGCP models in combina-

ion with point pattern data in disease mapping offers important

dvantages over traditional BYM models in combination with ag-

regated areal counts. LGCPs outperform BYM models in quantify-

ng risks and in identifying areas of high risk when the true risk

urface shows important spatial variation. In contrast BYM models

how a stronger tendency for shrinkage toward the mean and, al-

hough being efficient in retrieving flat risk surfaces, tend to over-

mooth risk increases that occur on an intermediate spatial scale.

ur findings suggest that there are important gains to be made

rom the use of continuous domain models in spatial epidemiol-

gy. 
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