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Abstract
Reduced tillage, permanent ground cover and crop diversification are the three core pillars of
ConservationAgriculture (CA).We assess and compare on-farm effects of different practices related
to the three pillars of CA onmaize yields under ENSO-driven rainfall variability inKenya andMalawi.
Reduced tillage practices increased yields per hectare by 250 kg on average inMalawi under below-
average rainfall conditions and by 700 kg inKenya under above-average rainfall, but did not have any
significant effect on yields under below-average rainfall conditions inKenya. Ground cover had a
positive impact on yields inMalawi (dry conditions) but not inKenya (both dry andwet conditions),
wheremixed crop and livestock systems limited this practice. Crop diversification had positive
impacts inKenya (both dry andwet conditions), wheremaize-legume crop rotation is practiced, but
not inMalawi where landholdings are too small to allow rotation. Ourfindings suggest that isolated
CA techniques can have positive effects on yields even after only a few years of practice under variable
rainfall conditions. This strengthens empirical evidence supporting the value of CA in resilience
building of agricultural systems, and suggests that both full and partial adoption of CApractices
should be supported in areas where climate change is leading tomore variable rainfall conditions.

1. Introduction

The 2015/16 El Niño event was one of the strongest on
record (Jacox et al 2016) with global impacts including
droughts,flooding and extremeweather events. This had
catastrophic impacts on agricultural production and
subsequently food security. Countries in the Horn of
Africa, East and southern Africa experienced widespread
crop failures, predominantly affecting smallholder farm-
ers leading to a significant humanitarian response to
prevent famine (Feeny and Chagutah 2016). Although

uncertainty surrounds the future impact of climate
change on the frequency and intensity of El Niño events
(Collins et al 2010), climate change is predicted to cause
similar conditions on amore frequent basis (Rosenzweig
et al 2001, Niang et al 2014). Therefore, understanding
the impact of such weather conditions on smallholder
farmers anddesigning resilience solutions is crucial.

One solution developed to combat erratic rainfall is
Conservation Agriculture (CA), the combination of three
soil management practices: minimal soil disturbance
through reduced tillage, permanent organic soil cover
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through cover crops or mulching, and intercropping or
crop rotation (FAO 2008). CA is expected to provide
environmental benefits through reduced soil erosion,
enhanced soil moisture retention, soil carbon sequestra-
tion and improved soil fertility through the accumulation
of biomass, thereby stabilizing crop yields through peri-
ods of enhanced climate variability (Pretty and Bharucha
2014). From a livelihoods perspective, the increased
productivity and resilience to climate variability is expec-
ted to positively impact household food security and
capacity to reinvest in future agricultural production
(Rusinamhodzi et al2011).

Todate, evidenceof thebenefits ofCA ismainly avail-
able from a series of controlled experimental studies on
farms and within agricultural research stations. These
suggest that CA increases maize yield in 80% of cases
(Thierfelder et al 2015) and can increase resilience to cli-
mate stress (Steward et al 2018). However, there are often
important caveats, for example ameta-analysis found that
while maize yields increased with CA, the benefits were
often only visible after 20 years of practice and depended
on high inputs of nitrogen fertiliser (Rusinamhodzi et al
2011). More recent reviews, however, found no effect of
the time sinceCA implementationonyields (Steward et al
2018). Doubts remain over possible negative impacts of
CA techniques on yields and resilience under certain con-
ditions (Giller et al2009). For example, reduced tillage can
improve the retention of soil moisture in sandy soils, but
might reduce porosity and increase compaction in clay
soils. Reduced tillage may also lead to higher weed bur-
dens, particularly undermonocrops (Nichols et al2015).

This study contributes to CA literature by: (1) asses-
sing CA performance under variable climate conditions,
(2) focusing on actual farm plots and (3) evaluating the
performance of other agricultural practices underaken
by farmers that are not the CA pillars. Few studies have
focused on yields from farmers’ fields that are not under
experimental controls. CA is extensively promoted
across sub-SaharanAfrica (Kimaro et al 2016)where het-
erogeneous farming systems and temporal variability

add further complexity (Giller et al 2015)which can sub-
stantially affect CA performance (Rosenstock et al 2014).
In field conditions, CA takes place along multiple, com-
plementary agricultural practices that influence yields
beyond the individual or combined effects of CA sub-
practices (Vanlauwe et al2014).

The variable rainfall conditions experienced during
the 2015/16 El Niño in East and Southern Africa pro-
vided the opportunity to simultaneously examine the
performance of CA in both high and low rainfall condi-
tions. In this paper we assess maize grain yields in small-
holder farming contexts in Kenya, where the 2015/2016
event led to above-average rainfall, and inMalawi, where
farmers experienced low rainfall and prolonged dryspells
(Tozier de la Poterie et al 2018). Our study aimed to
determine: (1) whether maize yields under CA perform
better than those under conventional tillage strategies in
both high and low rainfall conditions, (2) if particular
aspects of CA cultivation (minimal tillage, soil cover,
intercropping) and related practices influence maize
yields and (3)how the interactions of these practices with
other agricultural techniques influencemaize yields.

2.Methods

2.1. Study areas
In Kenya, rainfall is bimodal, with one rainfall episode
from March to May (MAM) and another from
October to December (OND). The Kenyan study took
place in Makueni County, in the semi-arid zone of
south-east Kenya (figure 1(a)). Mean annual rainfall is
644 mm, with 50%–60% of the total annual rainfall
occurring during OND, the main growing season
(Gichuki 2000). Rural areas are inhabited by agro-
pastoralists who depend on rain-fed agriculture and
livestock keeping. Farming households rely on crop
farming for about 65% of their income, with maize
(Zea mays) being the main cultivated crop (Ifejika
Speranza et al 2008). Farmers were trained from 2008
to 2009 in CA-related techniques through outreach

Figure 1. Location of study areas inKenya (A) andMalawi (B).
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programmes by theCenter for Training and Integrated
Research in Arid and Semi-arid Lands Development
(CETRAD), with an adoption rate of 10%. Most
farmers have at least 2–3 years practice of CA and some
have up to 12 years.

Malawi has a sub-tropical climate with a unimodal
rainfall regime (Mutegi et al 2015) and one growing sea-
son from November to April. Subsistence farming is the
main livelihood, supporting over 80% of the population
(Zant 2018). Research took place in the Balaka and
Machinga Districts in southern Malawi (figure 1(b)).
Meanannual rainfall is 831mm (NtajaMeterological Sta-
tion, 1970–2016). These districts were purposively selec-
ted due to them having experienced some, but not total,
maize crop loss during the 2015/16 season. Maize is the
main food crop cultivated in both districts. InMachinga,
CA has been practised for three years, having been pro-
moted through theNGOTotal LandCare, with an adop-
tion rate of 1.5%.CAwas introduced inBalaka in 2007by
theFAOandhas beenpromotedby various organisations
since then, leading to anadoption rate of 5.5%.

2.2. The 2015/16 ElNiño
The 2015/16 El Niño heavily affectedMalawi with low
rainfall, erratic timing and prolonged dry spells. This
led to widespread crop failure, rendering 6.7 million
people food insecure (Botha et al 2018). In Kenya, the
impacts of El Niño were less severe, with above-
average rainfall in OND 2015 leading to improved
harvests (FEWS NET KENYA 2016). However, flood-
ing occurred in the west of the country and increased
rainfall during this time was associated with an
increase in cholera cases (Moore et al 2017).

To characterize rainfall in the Kenyan study area,
we compiled daily rainfall estimates from the TARCAT
(TAMSAT African Rainfall Climatology and Time
Series) dataset based on Meteosat images (Maidment
et al 2014, Tarnavsky et al 2014). For Malawi, we used
meteorological data from the rainfall station at Ntaja,
MachingaDistrict (figure 1(b)).

2.3.Data collection
Data collection took place from June toAugust 2016 in
both countries. Households were surveyed using
questionnaires (Kenya n=134;Malawi n=201) that
collected both quantitative and qualitative data on
crop production, including yields, cultivation meth-
ods and the use of agricultural inputs. Given the low
numbers of CA farmers, a random stratified sampling
frameworkwas developed.

In Malawi, agricultural extension support is
administered through geographical divisions termed
extension planning areas (EPAs), which are divided
into administrative areas known as sections, con-
taining several villages. Interviews with government
extension staff at district, EPA and section level iden-
tified two sections in both Balaka and Machinga
where an Agricultural Extension Development

Officer (AEDO) was present and where CA took
place. Within each section discussions with focus
groups, village leaders and the AEDO enabled lists of
CA farmers to be produced from which participants
were randomly selected. Based on registered num-
bers we conducted questionnaires with at least 25 CA
farmers in each section, representing 50% of regis-
tered farmers across the two sections. Non-CA farm-
ers were selected randomly from village household
lists. In Kenya, farmers were randomly selected from
a list of CA farmers provided by the CETRAD agri-
cultural support programme. Non-CA farmers were
randomly selected.

In both countries, focus group discussions were
conducted with groups of CA and non-CA farmers.
These were used to inform the development of the
household questionnaire, the experience of the 2015/
16 season and the practice of farming using an illu-
strated list of CA and related practices.

In Malawi, households tend to farm several small
plots of land, which are not grouped together. On aver-
age both CA and non-CA farmers had 2.33 plots of land
(max=7, min=1) which have an average size of
0.4±0.27 ha (min=0.002 ha,max=2.02 ha). Differ-
ent crops are grown in different plots, and different culti-
vation techniques were practiced on different plots,
giving a total of 346plots.

In Kenya, farmers tend to plant maize on a single
contiguous plot every year in rotation with cowpeas
(Vigna unguiculata), pigeon peas (Cajanus cajan) and
green grams (Vigna radiata). These legumes are invari-
ably planted through traditional ploughing methods.
For maize, farmers usually applied reduced tillage and
ploughing to different sub-sections of the plots. In this
case, we made a general estimate of the areas under
these practices (see supplementary material 1 available
online at stacks.iop.org/ERL/14/115007/mmedia).
As part of CETRAD extension programmes, farmers
were used to monitor their harvests and could provide
data for the 2014 and 2015 OND growing seasons, but
only for the total of the contiguous maize plot. Of the
sampled households, 103 had valid data on maize
yields. Farmers almost exclusively practiced CA for
maize cultivation. They had access to an average of 5
plots of land (max=12, min=1), with an average
size of 3.6±3.3 ha (max=20 ha,min=0.4 ha).

2.4.Data analysis
We tested the effects of two groups of predictors: (1)
the interacting CA pillars; and (2) other related
practices, on maize yields for 2015 in Malawi and for
2014 and 2015 in Kenya. CA pillars and other practices
were aggregated from the primary list of practices in
the survey (table 1). As many farmers failed to harvest
anything, leading to zero-inflated data, we used a two-
step modelling approach in the R statistical pro-
gramme (R Core Team 2016) using the lme4 package
(Bates et al 2015): (1) generalised linear mixed-effects
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models (GLMM)with a binomal error structure to test
whether maize yields met a miniumum threshold
based on the requirements of an average household
and farm size; and (2) linear mixed-effects models
(LMM) of log(yield) excluding zeros to test the effect
of different practices on yields.

GLMMwere used to test whether practices alter the
chance of a farming household meeting their maize
requirements for food security. Thresholds were calcu-
lated as a function of average farm and household size,
per person calorific requirement, post harvest loss, mil-
ling efficiency andplatewastage (supplementarymaterial
2). Maize yields thresholds were estimated at 834 kg
maize/ha forKenya, and840 kgmaize/ha forMalawi.

In GLMM, the difference of odds ratios (OR)
between treatment and control indicates the effect of
practices on the likelihood of meeting the yield

threshold. OR is equal to the exponent of the sum of
the intercept and the practice B-coefficient of the
GLMM. An increase in OR for the practice when com-
pared to the control means that the practice increases
the likelihood of meeting the yield threshold, and a
decreasemeans the opposite.

To control for spatial-autocorrelation, farmers
nested within villages were included as a random effect
in all models. For the Kenya case, farm coordinates
were available and Moran’s test confirmed that the
random-effect of village successfully controlled for
spatial auto-correlation. Model performance was
assessed through the conditional pseudo R-squared
coefficients (R2c) for both fixed and random effects,
and the marginal pseudo R-squared (R2m) for fixed
effects only, using r.squaredGLMM function in R
(Nakagawa and Schielzeth 2013). GLMM model

Table 1.Number of households usingCA related and other agricultural practices.

Kenya Malawi

nho households % nho households %

CApillar components

Reduced tillagea and zero tillage) 49 47.6 69 24.9

Ground cover 20 19.4 95 34.3

–Mulching only 3 2.9 71 25.6

–Cover crop only 15 14.6 4 1.4

–Mulching and cover crop 2 1.9 20 7.2

Crop diversification 68 66.0 226 81.6

–Intercropping only 2 1.9 162 58.5

–Crop rotation only 61 59.2 21 7.6

–Intercropping and crop rotation 5 4.9 43 15.5

Combinations of CApillars

Reduced tillage only 18 17.5 1 0.4

Ground cover only 3 2.9 9 3.2

Crop diversification only 30 29.1 146 52.7

Reduced tillage and ground cover only 0 0.0 9 3.2

Reduced tillage and crop diversification only 21 20.4 3 1.1

Ground cover and crop diversification only 7 6.8 21 7.6

All three pillars used 10 9.7 56 20.2

NoCApillar used 14 13.6 32 11.6

Other practices

Herbicide use 11 10.7 39 14.1

Composting 93 90.3 152 54.9

Fertilizer use 16 15.5 208 75.1

Drought tolerant varieties 32 31.1 53 19.1

Cutoff drains 62 60.2 28 10.1

Planting basins (Zai pits) 31 30.1 33 11.9

Terracing 47 45.6 — —

Early planting 41 39.8 166 59.9

Pesticide use 41 39.8 — —

Ridges (box or contour ridges) 54 52.4 116 41.9

Water harvest 25 24.3 — —

Weeding (hand, hoe or oxen) — — 252 91.0

Agroforestry (incl. alley cropping) — — 97 35.0

Hybrid seeds — — 208 75.1

Banking — — 80 28.9

a Includes ‘hand ripping’, ‘oxen ripping’, ‘hand subsoiling’ and ‘zero tillage’ practices.
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powerwas also assessed through the percentage of cor-
rectly predicted observations in the original data.

In models exploring the performance of CA pillars,
we also tested if the inclusion of random-effects for
other commonly practiced techniques improved model
performance. For Kenya, none of these practices
improved model performance. For Malawi, hoe-weed-
ing and banking (where ridges are reinforced when the
crops are growing) were retained as random-effects in
CA models. All models were averaged using 95% con-
fidence set andBayesian information criterion (BIC).

3. Results

3.1. Kenya
3.1.1. Rainfall
In Kenya, the Makueni area received 172mm of rainfall
between October and December 2014, and 386mm
between October and December 2015. These numbers
could be underestimations, given the limitations of
TAMSAT data in capturing non-convective rains
(Seyama et al 2019). In both seasons the onset of rainfall,
defined as a period of at least five consecutive days with a
total of at least 20mm of rainfall (Ifejika Speranza et al
2008), occurred, later than theusual periodwhen farmers
expect the rains (16th–25th October). In OND 2014
(figure 2(upper)), rainfall was very erratic, with less than
20mm recorded during the 10 days following onset,

which indicates a failed start (Ifejika Speranza et al 2008).
Furthermore, the rains stopped completely after 3rd
December with the next rainfall recorded on 20th
January 2015, representing a dry spell longer than 30 d.
InOND2015, regular rains followed onset, which can be
considered a successful start. A dry spell occurred in early
Decemberbut didnot exceed10d (figure 2(middle)).

3.1.2. Practices
Table 1 shows the number and proportion of farmers
using different combinations of CA pillars and other
land management practices. Crop diversification is
mainly performed through crop rotation. Due to
scarce adoption of mulching and the use of cover
crops, we have little data on ground cover only or
ground cover combined with reduced tillage. No
practices were auto-correlated except contour ridges
and terracing, which are mutually exclusive and had
an 85%negative correlation.

3.1.3.Maize yields
In 2014, 24 of 103 (23.3%) farmers met the threshold
maize requirement and 20 farmers obtained no yield.
In 2015, 46/103 (44.7%) farmers met the threshold
and only one farmer obtained no yield. When exclud-
ing failed harvests, mean yield was 660.18±765.33
(SD) kg ha−1 (n=83) in 2014 and 1029.93±
1136.00 kg ha−1 (n=102) in 2015.

Figure 2.Estimated rainfall duringmaize growing seasons in the study areas. Blue arrows represent the usual period of onset of rains;
red arrows represent dry spells longer than five days.

5

Environ. Res. Lett. 14 (2019) 115007



3.1.4. Effect of practices onmaize yields
Table 2 summarizes the ORs, respectively the estimate
values exponents of significant predictors for yield
thresholds and yield amounts in 2014 and 2015 (for
the fullmodel results, see supplementarymaterial 3).

In 2014, control farmers had anOR of 0.22, mean-
ing that the chances ofmeeting the threshold is 5 times
less without the use of CA practices. Adding crop

diversification, in this case mainly rotation, increases
the OR to 0.63, meaning that although the chances of
meeting the threshold were still lower than 50% (OR
lower than 1), they increased with this practice. There
is no evidence that other CA component practices or
their interactions had an effect. Other practices such as
herbicide use and fertilizer use both increased the OR
ofmeeting the yield threshold from 0.34 to 2.41 and to

Table 2.Effect of practices onmaize yield thresholds and yield amounts.

Model Generalised linearmixed-effectsmodels (GLMM) Linearmixedmodels (LMM)
Dependent variable Maize yield thresholds reached (yes/no) Maize grain yields (kg ha−1)
Function used glmer lmer

Kenya case—2014 n=103 n=83
InteractingCA

pillars

Significant predictors (p<0.05): Significant predictors (p<0.05):

Control: odds ratioOR=0.22 (standard errormargin SEM

0.12–0.40)
Control: 311.50 (SEM249–390) kg ha−1

Crop diversification:OR=0.63 (SEM0.38–1.03) R2m=6.4%; R2c=18.8%
R2m=98.7%, R2c=98.8%
Overallmodel power: 67.8%

Other practices Significant predictors (p<0.05): Significant predictors (p<0.05):
Herbicide use: OR=2.42 (SEM0.99–5.88) Control: 457.50 (SEM255–821) kg ha−1

Fertilizer+Diversification+Herbicide: OR=29.79 (SEM
3.01–294.87)

Composting: 180.34 (SEM113–286) kg ha−1

Control: OR=0.34 (SEM0.13–0.90) Borderline significant predictors (p<0.1):
Borderline significant predictors (p<0.1): Herbicide use: 837.61 (SEM610–1149) kg ha−1

Crop diversification:OR=0.87 (SEM0.51–1.48)
Fertilizer: OR=1.67 (SEM0.71–3.96) R2m=15.4%, R2c=32.0%
R2m=35.1%, R2c=64.6%
Overallmodel power: 54.3%

Kenya case—2015 n=103 n=102

InteractingCA

pillars

No significant predictors Significant predictors (p<0.05):

R2m=98.3%, R2c=99.1% Control: 561.85 (SEM465–678) kg ha−1

Crop diversification: 745.53 (SEM628–885)
kg ha−1

Overallmodel power: 85.4% Reduced tillage: 1273.52 (SEM860–1885)
kg ha−1

R2m=8.3%, R2c=46.9%
Other practices Significant predictors (p<0.05): Significant predictors (p<0,05):

Zai pits: OR=421.75 (SEM35.57–5001.26) Control: 599.73 (SEM447–805) kg ha−1

R2m=23.4%, R2c=59.7% Reduced tillage: 1343.10 (SEM (898–2008)
kg ha−1)

Overallmodel power: 83.5% R2m=12.8%, R2c=41.1%

Malawi case—

2015/16

n=327 n=277

InteractingCA

pillars

Significant predictors (p<0.05): Significant predictors (p<0.05):

Control: OR=0.124 (SEM0.075–0.201) Control: 247.35 (SEM197–310) kg ha−1

Ground cover: OR=0.475 (SEM0.316–0.712) Reduced tillage: 505.12 (SEM413–618) kg ha−1

R2m=33.2%, R2c=52.1% Ground cover: 432.18 (SEM350–533) kg ha−1

Overallmodel power: 83.6% R2m=15.4%, R2c=47.8%
Other practices Significant predictors (p<0.05): Significant predictors (p<0.05):

Banking: OR=0.054 (SEM0.032–0.089) Control: 244.70 (SEM216–278) kg ha−1

Ground cover: OR=0.551 (SEM0.399–0.762) Banking: 152.85 (SEM133–176) kg ha−1

Control: OR=0.190 (SEM0.13–0.277) Fertiliser: 325.74 (SEM285–372) kg ha−1

R2m=19.3%, R2c=44.3% Reduced tillage: 391.22 (SEM326–470) kg ha−1

Overallmodel power: 86.2% GroundCover: 350.73 (SEM296–415) kg ha−1

R2m=13.8%, R2c=54.5%
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1.67, respectively. A combination of crop diversifica-
tion, fertilizer and herbicide use increased the OR
to 29.79.

Regarding yield amounts, CA pillars had no detect-
able effect on yields, but non-results should be inter-
preted with caution as data were lacking for some
interactions and yield values were aggregated across CA
and non-CA practices within the Kenyamaize plots. The
use of herbicides increased yields from 457.49 kg ha−1

(control value) to 837.61 kg ha−1 (+83.09%) but com-
posting reduced yields to 180.34 kg ha−1 (−60.58%).

In 2015, the use of planting basins (zai pits) drasti-
cally increased the OR of meeting the yield threshold
to 421.75 compared to 1.67 in the control.

For yield amounts, there was also no evidence for
interactions between CA practices. Taken alone,
reduced tillage increased yields from 561.85 to
1273.52 kg ha−1 (+126.67%). Diversification also
increased yields from 561.85 to 745.53 kg ha−1. Add-
ing other practices did not improve the model and the
effect of reduced tillage remained significant with a
yield increase of 123.95% from 599.73 kg ha−1 (con-
trol) to 1343.10 kg ha−1.

3.2.Malawi case
3.2.1. Rainfall
Meteorological data from the Ntaja rainfall station
indicate that in 2015 there were single day rainfall
events on 1st October (30.1 mm), 3rd November
(27.6 mm), and 29th November (11.8 mm). Dry con-
ditions continued until the 18th–25th December
(61.5 mm) and returned until 12th–18th January 2016
when 165 mmof rain fell. Farmers reported replanting
three times during this period due to false onsets. It
was not until mid-January that the onset of more
consistent rainfall came (figure 2(bottom)).

3.2.2. Practices
Crop diversification occurs mainly through intercrop-
ping and ground cover through mulching (table 1).
Due to large adoption of ground cover, there are little
data on reduced tillage only and reduced tillage in
combination with crop diversification. There were
positive correlations higher than 50% between hand
ploughing and hoe weeding, hand weeding and
mulching, mulching and zero tillage, whereas there
were negative correlations between hoe weeding and
zero tillage, hand ploughing and mulching, hand
ploughing and zero tillage.

3.2.3.Maize yields
Of the 346 farmed plots, 19 were removed from analysis
due to insufficient data. Of the remaining 327 plots, 50
had complete harvest failure in 2015/16. In plots where
harvest was attained (277 plots), 54 (19.5%) met the
threshold for maize yield. When excluding failed
harvests, mean yield was 463.81±560.74 (SD) kg/ha.
Themedianyieldwas 247.1 kg ha−1.

3.2.4. Effect of practices onmaize yields
For 2015/16, the OR was 0.12 for meeting the maize
yield threshold for control farmers (table 2). Adding
ground cover increased the OR to 0.475. Considering
additional practices shows that banking reduces the
OR to 0.054 while ground cover still increases the OR
of meeting the yield threshold to 0.551 compared to
0.19 in the control.

Regarding yield amounts, reduced tillage increased
yield from 247 kg ha−1 (control) to 505 kg ha−1

(+111.2%) and ground cover increased yield to
432 kg ha−1 (+70.2%).

Adding other practices to assess their yield effect
showed that fertilizer use increased yield from
245 kg ha−1 (control) to 326 kg ha−1 (+33.1%), but
banking reduced yields to 153 kg ha−1 (−37.6%). In this
model, reduced tillage increased yield to 391 kg ha−1

(+59.5%) and ground cover increased yield to
351 kg ha−1 (+43.3%).

4.Discussion

These results demonstrate that several techniques asso-
ciated with CA made a significant difference to maize
yields under both dry and wet rainfall conditions. Under
below average rainfall conditions in Malawi (2015/16),
ground cover increased the chance tomeetminimal yield
thresholds and increased resilience. Reduced tillage
increased yields by250 kg ha−1 onaverage.

Under the above-average rainfall conditions in
Kenya in 2015, we did not observe the negative effect
of reduced tillage techniques on yields found in other
cases (Hussain et al 1999). Instead, reduced tillage led
to an average yield increase of 700 kg ha−1. The obser-
vation that the use of planting basins (‘zai pits’) also
increased the chance to reach yield thresholds suggests
that they can have a protective effect even under
above-average rainfall conditions. This might be due
to the sandy soils that dominate in theMakueni region
(Saiz et al 2016). The rainfall total of 386 mm and the
higher yields in OND 2015 compared with 2014 also
suggest that the El Niño conditions in 2015 were bene-
ficial for maize cultivation and did not correspond to
excessive rainfall.

Despite positive effects of some techniques on
yields, we found no significant effects of the interac-
tions between the three CA pillars in both sites. This
will be due to the relative recent CA adoption in the
area (Rusinamhodzi et al 2011), or it could be linked
with the small number of farmers who adopted full
CA. The observation that some techniques can
increase yields even individually is encouraging for
farmers who struggle to adopt the full CA package. For
example, in Kenya, land availability allows crop rota-
tion involving maize and legumes, which increases the
chance to meet food security thresholds under dry
conditions and increases yields in wetter conditions.
The fact that legumes are planted by ploughing
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hampers middle and long-term effects of reduced til-
lage on maize. The lack of benefits of crop diversifica-
tion in Malawi results from the widespread use of
intercropping rather than crop rotation, due to small
landholdings (Ngwira et al 2012).

Our results highlight the importance of consider-
ing CA practices in interaction with techniques that
are usually not included in the three-pillar framing.
For example, soil fertility management appears cru-
cial, as the beneficial role of fertilizer use in the 2014
Kenya case and the 2015Malawi case shows. Vanlauwe
et al (2014) have suggested including fertilizer use as a
‘fourth principle’ of CA. Our findings also show that,
other technical factors such as weed management play
a key role, as the benefits of herbicide use suggest.

Besides the complex interaction between CA pil-
lars and related techniques, observing CA perfor-
mance on actual farm contexts brings further
challenges. One is the difficulty in finding a diverse
and balanced adoption of different practices to allow
comparison. For example in Kenya, the use of mulch-
ing and cover crops was limited due to the fact that
maize stalks are traditionally used as fodder. Though
cover crops achieved a higher adoption rate, it remains
relatively marginal. In Malawi, mulching was more
widespread and led to benefits. The use of ground
cover is favoured by small landholdings (Grabowski
and Kerr 2014) but discouraged in mixed crop-live-
stock systems (Jaleta et al 2013). Intercropping appears
a solution to solve this trade-off (Ngwira et al 2012)
but is dependent on markets for seed input and sale of
intercropped produce. These considerations show
that multi-scale dynamics, such as local resource and
labour availability, markets and agricultural develop-
ment policies strongly and selectively influence the
adoption of CA pillars and related practices (Corbeels
et al 2014). Although there is intense debate as to whe-
ther the lack of application of all principles can still
be termed CA, it is evident that these practices can be
beneficial in isolation and yield benefits can be
enhanced by their interactions under both below and
above-average rainfall conditions.

5. Conclusion

This study provides empirical evidence from wet and
dry years across sub-Saharan Africa to demonstrate
on-farm benefits of individual CA practices. This
provides important information on how the nature of
CA adoption across different practices in a real-world
farm situation can provide similar yield and climate
resilience benefits to those observed across controlled
field trial studies. We show that adoption of individual
practices can be beneficial in some cases. Greater
adoption of alternative methods of cultivation can
have significant impacts not only on increasing
resilience within rural households but also on improv-
ing soil quality. This illustrates that agricultural

interventions are not ‘one size fits all’ and should adapt
to consider agro-ecological and social conditions,
encouraging flexibility in adoption guidelines. It
remains necessary to examine more carefully the
adoption rates and effects of specific agricultural
techniques related with CA that go beyond reduced
tillage and the standard three-pillar package.
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