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Many new and highly variable data are currently being produced by the many participants

in farmed animal productions systems. These data hold the promise of new information

with potential value for animal health surveillance. The current analytical paradigm for

dealing with these new data is to implement syndromic surveillance systems, which

focus mainly on univariate event detection methods applied to individual time series,

with the goal of identifying epidemics in the population. This approach is relatively

limited in the scope and not well-suited for extracting much of the additional information

that is contained within these data. These approaches have value and should not

be abandoned. However, an additional, new analytical paradigm will be needed if

surveillance and disease control agencies wish to extract additional information from

these data. We propose a more holistic analytical approach borrowed from complex

system science that considers animal disease to be a product of the complex interactions

between the many individuals, organizations and other factors that are involved in,

or influence food production systems. We will discuss the characteristics of farmed

animal food production systems that make them complex adaptive systems and propose

practical applications of methods borrowed from complex system science to help animal

health surveillance practitioners extract additional information from these new data.

Keywords: animal health surveillance, animal disease surveillance, complex adaptive system, complex systems,

systems science, food animal production, food animal systems, food animal value chains

INTRODUCTION

Producing food from farmed animals is a large and very complex process that occurs in integrated
networks made up of many individual animal producers, supporting businesses (veterinarians, feed
suppliers, animal haulers, animal marketers etc.), and processors (slaughter plants) (1–4). Farmed
animal food has many names including Agri-Food systems, food animal value chains, food supply
chains, livestock production systems, and others. For simplicity we will call them Food Animal
Systems (FAS).

Many of the individuals and businesses participating in FAS currently collect and store large
quantities of data. The purpose of these data are to manage the many individual activities that
contribute to food production, and these data are often stored in different databases that are
controlled by many different individuals and organizations participating in the FAS. The list
of individual data types is long and includes, but is not limited to: farms (unique farm ID,
location, production types, production capacities, population sizes, production practices, nutrition,
biosecurity etc.), production performance (feed consumption, milk production, weight gain etc.),
reproductive performance (conception rates, days to estrus, birth rates etc.), disease prevention
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(vaccinations, anti-parasite treatments, preventative
antimicrobial treatments, etc.), clinical disease (farmer reported
disease symptoms, abortions, deaths etc., veterinarian reported
clinical signs, postmortem findings, field diagnoses, herd level
morbidity, etc., diagnostic pathology laboratory data including
patho-anatomical and etiological diagnoses, diagnostic test
results etc.), disease treatments (antimicrobial and other
pharmaceutical prescription data, etc.), animal movements (date,
time, number and production type of animals moved, origin
and destination, identity of the truck moving the animals, etc.),
animal carcasses (date, time of slaughter, carcass characteristics,
lesions and other reasons for partial or complete carcass
condemnation, etc.), and others (5–10). These data are produced
continuously, many are geo-located, and many are time stamped
allowing them to be analyzed as time series. These data are
also highly variable because they are entered by many different
people into many different software platforms, with no common
data entry standards. Because of the large volume, high rate
of production and large variability of these data, they could
be called Big Data. If lessons are to be learned from Big Data
analyses in other fields, these data, if combined and analyzed
together, hold an opportunity for creating new information (11).

Animal health surveillance organizations are beginning to
centrally collect and analyze some of these data to enhance
animal health surveillance (AHS) (5). Analyzing large volumes
of highly variable data is a challenge for AHS practitioners, as
the methods currently used in AHS are not adapted to large
quantities of highly variable data. AHS organizations tend to
be relatively narrow in their scope of activities, often focusing
surveillance activities (specifically data collection and analyses)
on creating information needed to deal with single disease
issues (12). A similar approach is being used to deal with these
new data (5). Current analytical approaches for dealing with
these new data focus primarily on syndromic surveillance(SS),
a method which aims to detect disease epidemics by identifying
unusual events in time series (5, 6). Most SS used in
AHS are univariate in that they monitor single time series
(5). Multivariate monitoring methods are being explored for
dealing with multiple time series (13, 14). However, these
approaches are also relatively narrow in scope as they focus
mainly on identifying unusual events in the data, and ignore
much of the other information that could be extracted from
these data.

We suggest that a new analytical paradigm should be adopted
for dealing with these new and highly variable data. Since
animal derived food is produced in large complex systems, a
broader, more holistic analytical approach could produce new
information with additional benefits not only for early epidemic
detection, but also for producing evidence of disease freedom and
enhancing our understanding of the processes leading to disease
occurrence. The complexity of FAS makes them analytically
challenging, however systems with similar characteristics are
very common and researchers have developed analytical and
modeling methods adapted to these systems.

Complex System Science (CSS) is a broad term used to refer
to the study of complex natural and manmade systems, such
as animal-based food production systems. Other terms used

for studying complex systems include Complexity Science and
System Science.

In public health, CSS methods have been used to gain a
greater understanding of the systems that influence population
health with the aim of improving decision making in health
policy by identifying intervention points having positive health
outcomes with minimal unintended consequences (15). Recent
examples where CSS have been applied in public health settings
include: a framework to understand, communicate and develop
action strategies for cardiovascular disease and diabetes (16),
understanding infectious disease epidemic dynamics in order to
make policy decisions relating to vaccination programs, epidemic
responses and other infectious disease control programs (17),
understanding nursing as a complex adaptive system (18),
gaining a better understanding of, and promotion of oral health
equity (19), understanding determinants of inequities in healthy
eating (20), and improving alcohol misuse policy (21). For
reviews, see Rusoja et al. (22), Chughtai and Blanchet (23), Carey
et al. (15), and Luke and Stamatakis (24).

In veterinary public health (VPH), CSS methods have been
applied to FAS in order to better understand the effects of
disease and other factors on these systems with the goal of
developing more effective disease control, food security and
food safety policies with minimal unintended consequences
(25). Examples from VPH include: modeling of the beef supply
chain in Botswana to estimate the effects of various policies
on different actors in the supply chain (26), modeling the
small holder pig producer network in Vietnam to evaluate the
impact of animal health and food safety issues on different
actors in the supply chain (25), modeling the dairy supply
chain in Nicaragua to estimate the multidimensional impacts of
policies and interventions on value chain actors (27), modeling
the beef supply chain in Zambia to estimate the influence of
socioeconomic, cultural and economic factors on East Coast
Fever in order to identify targets formore effective disease control
policy (28), and modeling of small holder pig value chains in
Uganda to conduct an ex-ante assessment of the impact on value
chain actors of biosecurity interventions aimed at controlling
African Swine Fever (29). For a review of CSS modeling in
veterinary public health, see Rich et al. (25) and Lanzas and
Chen (30).

In spite of the aforementioned benefits of CSS in public health
and veterinary public health, and publications calling for the
use of CSS in public health (31) and animal health surveillance
and disease control (25, 32), to the best of our knowledge these
methods have not been used to deal with the complex FAS
data that AHS practitioners are currently struggling with. In this
manuscript, we will briefly introduce complex adaptive systems
(CAS) and CSS, discuss characteristics of FAS that make them
CAS, and provide examples of howCSSmethods could be used to
help deal with the large data volume becoming available in AHS.

COMPLEX ADAPTIVE SYSTEMS (CAS)

Complex Adaptive Systems are ubiquitous in our world (33, 34).
The term has been applied to many natural (cells, animals,
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plants, ecosystems, weather) and man-made (cities, economies,
factories) systems (35). The characteristics of CAS make them by
nature not simple, easy to understand, or even easy to study (36).
There is no concise definition of a CAS (36). For the purposes
of this manuscript we will define a CAS in simple terms, as a
loosely bounded group of different types of independent dynamic
agents (also called entities, components, agents, elements, units,
and other terms) and the interactions they have with each other
and the environment in which they are located. There can be
many different types of agents within a single CAS. Agents vary
greatly in size and complexity; some are tangible (material) and
some are intangible such as market prices, laws, beliefs and
cultural habits. They can be small, for example an atom or
molecule, or large, for example a large weather system such as a
hurricane, and can include almost everything in between the two
extremes. Many of the agents within a CAS are themselves CAS.
There can be many different types of interactions between agents
within a single CAS, including many different types of predation,
parasitism, commensalism, cooperation, communication and
others. Adaptive refers to the dynamic nature of CAS. They are
not stationary; they change constantly because of the interactions
between entities and the interactions between entities and the
environment. In addition new often unpredicted properties, such
as new organizational structures or new dynamics may emerge.
These characteristics have important consequences for studying
CAS. Research approaches that estimate causal associations by
capturing empirical data on a few potential causal factors at
one point in time may not sufficiently estimate the dynamic
interactions that occur between the many agents in a CAS. For
a general description of the properties of CAS, see Kwapien and
Drozdz (37) and Bar-Yam (34).

PROPERTIES OF FOOD ANIMAL SYSTEMS
THAT MAKE THEM COMPLEX
ADAPTIVE SYSTEMS

Food animal systems have many properties that characterize
them as CAS (1, 38). We will consider a small list, including only
characteristics that are relevant to the purpose of this discussion,
as a complete description is beyond the scope of this manuscript.

The list of independent agents in FAS is long and
includes, but is not limited to: animals, farms, farmers, animal
product processors (meat, milk, egg, and other products),
animal and animal product transporters, traders, feed suppliers
and the microbial organisms (viruses, bacteria, protozoa
etc.) that inhabit animals, people and their environments,
market prices, legal frameworks, production standards, social
conventions, traditions and many more. These agents are
organized into hierarchies with the highest level being the
whole FAS. The overall system is composed of individual
interconnected production systems made up of individual farms,
feed supply companies, veterinarians, and animal transport
companies. Individual farms are made up of farmed and non-
farmed species (livestock, pets, rodents, wild animals, insects,
plants, pathogenic and non-pathogenic microbes), farmers
and their families, and the environment in which they are

situated. Animals are made up of smaller subunits (organs
and organ systems), which in turn are made of smaller
subunits (individual cells), and these are composed of yet
smaller sub-units (cell organelles and metabolic pathways) and
so on.

Within FAS there are many different interactions constantly
occurring between different agents, between agents and
the environment, and between agents and other external
organizations (for example legislation or the influence of
international markets on local markets). Examples include
interactions within individual farms (between animals, people,
microbial organisms, and the environment) and between
farms (movements of animals, people, feed, veterinarians and
others between farms). Interactions can result in feedback
loops within the FAS. For example, in free market economies,
increased production can negatively affect the market price of
animals, which in turn can modify farmer behavior to decrease
production, which in turn can affect the market price and so
on. Some of these interactions have been well-described and
extensively modeled for understanding the transmission of
disease in populations of animals and across networks of farms
(30, 39, 40).

One of the most important characteristics of FAS, and
CAS in general is their dynamic nature. The flow of animals,
animal products, other materials and information though FAS
combined with the many interactions occurring in FAS means
that FAS are constantly changing. The dynamic nature of FAS
has consequences for designing epidemiological studies of these
systems. For example, the results of cross sectional studies of
FAS may quickly become invalid because the FAS may change
significantly after the study has been completed. Much of the
data collected from FAS is collected on a continuous basis and
can be converted into time series. Study designs and analytical
methods used to study FAS should be adapted to time series and
the analyses should updated on a regular, frequent basis.

Complex adaptive systems do not have clearly defined,
stationary boundaries. Rather they are open in the sense that
CAS do not function independent of outside influences, rather
they receive outside inputs (material, information, and other
types) at different hierarchical levels of the system. Weather
for example can have a direct effect at the animal level (for
example cold wet weather is associated with an increased risk of
neonatal diarrhea in newborn calves). It can also have indirect
effects. Dry growing conditions can drastically reduce feed crop
yields resulting in increased prices for certain feeds, making
them uneconomical for farmers to purchase, forcing farmers to
search for alternative often lower quality feeds that can affect
farmed animal nutrition across the complete production system.
Other external inputs include legislation aimed at regulating
farmed animal production and market prices for animals and
animal products that can influence the resources that farmers
have available for nutritional and other management inputs that
can affect animal health and production. The indeterminate and
constantly changing nature of the boundaries of CAS create
some challenges for studying them, especially for developing
CAS models. Setting limits to a FAS boundary in order to
model a FAS is an arbitrary process, and where the limits
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are set will affect our understanding of the CAS. For example
if disease control legislation is included in a model or not
will have an effect on the performance of the model and any
understanding of the behavior of the FAS derived from studying
the model.

There is legislation in many jurisdictions aimed at
regulating or influencing some of the behaviors of FAS.
However, FAS are not planned, rather they are self-
organized. The characteristics and current form of a FAS
is the result of a large number of external and internal
factors that have favored the initial formation of the system
and then influenced it over time. Depending on the FAS,
these could include the characteristics and availability of
agricultural land, availability of other needed resources (for
example water, fertilizer, seed for forage and feed crops),
favorable climatic conditions, livestock species adapted
to the region and production systems, adequate human
resources, markets for the products of the system, commodity
prices that can support profitable production, and the list
can go on.

Finally, these systems have emergent properties that are
difficult to explain by understanding the properties of the
individual agents in the system. In other words, a reductionist
approach where a system is broken into individual component
parts (animals, farms, pathogens) that are individually studied
may not provide sufficient information to understand and predict
the behavior or properties of the system as a whole. This is
because a reductionist approach is limited in that it largely
ignores the interactions occurring between components in the
system (38). Disease epidemics have been reported to be an
emergent property of FAS, and the problem of preventing
them, understanding the conditions that promote them and
predicting them is considered a CSS problem (30). This is
strong motivation for broadening the scope of AHS activities
beyond a single disease focus. A more holistic approach that
considers disease to be a product of the FAS as whole may
be a more productive approach, resulting in the creation
of surveillance information that has more value for disease
control (32).

Considering the large number of participants and the complex
nature of FAS, it should not be surprising that once computer
technologies became widely adopted within FAS that large
volumes of highly variable and complicated data would be created
by FAS participants. It should also be no surprise that analytical
approaches for understanding FAS and extracting information
from these complex data will require specialized analytical
approaches and methods fit for the task.

CHALLENGE FOR ANIMAL
HEALTH SURVEILLANCE

The purpose of AHS is to produce information to aid in decision
making in animal disease control (41). In general, the target
of AHS information producing activities is relatively narrow,
limited to diseased animals, non-specific data produced by
diseased animals, or metrics of human behavior changes in

response to diseased animals (12). The most common activities
used in AHS focus on finding and counting diseased animals, or
proving the absence of diseased animals in a population (41).

Risk-based surveillance focuses surveillance activities on
specific subpopulations or geographical regions with the highest
risk of disease occurrence. It is a somewhat broader approach,
as it incorporates a variety of information about different factors
associated with disease occurrence (42). However, the methods
used for risk-based surveillance are not adapted to time series
analyses and therefore are not suitable for understanding the
dynamic nature of FAS.

Syndromic surveillance focuses mainly on monitoring time
series of metrics (milk production data, abortions, deaths,
veterinary visits to farms, lesions seen at slaughter in previously
diseased animals and many others) associated with disease
occurrence in animals. The purpose of SS is to identify changes
(or signals) in these time series such as statistically unusual
or extreme increases or decreases in time series values that
could be early indicators of recently started epidemics (6).
Currently, SS approaches used in AHS are mostly univariate
in nature, focusing on identifying abnormal signals in single
times series. Multi-variable approaches aimed at identifying
abnormal signals in multiple time series are being explored,
but are not widely implemented at this time (5). Multi-variable
SS uses more of the data produced by FAS, however, the
information produced is limited only to identifying signals
in the data that could be produced by disease epidemics.
Furthermore, multi-variable SS is not being used to understand
the complex, dynamic nature of FAS or how FAS as a whole
produce disease.

Epidemiologists who are well aware of the complex
multifactorial nature of disease causality in populations
have not widely adopted CSS in their work. Epidemiological
causality studies are generally interested in reducing large
numbers of potential causal factors to a small number of the
most important, proximal-in-time determinants of disease
(43). Even though some of these studies aim to identify causal
associations that exist over time (for example in longitudinal
studies), methods aimed at understanding the dynamic nature of
the interactions between causal and other factors in FAS and how
these interactions result in disease occurrence are not widely
used by epidemiologists (43).

The challenge for AHS practitioners is to view these new data
as a new opportunity. These data have the potential to provide
a more complete understanding of the processes that result in
disease production, which is of central importance for disease
surveillance. The large volume of data that is being produced by
FAS has not been previously available, and it is understandable
that AHS practitioners have not yet built a tool kit fit for dealing
with these data. It is clear that if the epidemiologists working
in AHS are going to exploit these data to improve surveillance,
they will need to enhance their current analytical tool kit, and
this will requires looking beyond the current approaches used in
surveillance. In this manuscript, we will limit the discussion to
CSS methods with potential utility in AHS including: (1) models
that are used to better understand disease and the data produced
from FAS and (2) methods for identifying impending or ongoing
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change in the behavior of a CAS that could be caused by or
associated with an increase in disease in a FAS.

MODELING FOOD ANIMAL SYSTEMS
USING COMPLEX SYSTEM
SCIENCE METHODS

The ubiquity of CAS has attracted many researchers from
different disciplines who have applied their own approaches
to understanding CAS (18, 44). Out of these efforts, CSS has
emerged as the broad interdisciplinary field that aims to study,
describe and understand CAS (24). One of the interesting
findings of CSS is that even though there are a seemingly
unending variety of CAS in the world, many or all of them
share some basic characteristics (18). One of the goals of CSS is
to discover basic principles or laws that underlie the formation
and behavior of CAS (45). From a practical point of view, these
commonalities suggest that the methods and approaches that
have been successful in studying one type of CAS may have
potential application for studying others.

In recent years modeling methods have become the most
commonly used approaches for studying CAS. Reasons for this
are the availability of computer technologies to support their use
and the need for new tools specifically designed to deal with the
challenges of CAS (30, 39). The overall purpose of creating and
using dynamic models of CAS is to gain a better understanding
of how the CAS being modeled functions. In veterinary public
health these models are often used to evaluate the costs and
benefits of surveillance, food safety measures, disease control
programs, and other interventions (25, 28, 30). We suggest
using similar processes for building models of FAS, but with the
purpose of strategically and practically dealing with data from
the FAS.

Several modeling platforms have used in public and animal
health including Social Network Models, Agent Based Models,
and Systems Dynamics Models (30, 39, 46).

Social network models, and social network analysis focus
on the interactions (animal movements, contacts between
individuals, animal or animal product trade) between
participants within network (47). They have been used as
stand-alone applications or in combination with System
Dynamics Models(SDM) to identify individuals within networks
that have a high risk of propagating epidemics, and predicting
the potential size of epidemics in order to optimize surveillance
and response to disease introductions (47).

Agent basedmodels simulate the behavior of individual agents
and the interactions between agents based on user defined
properties for each agent and for the system as a whole. They
have several advantages including their ability to:(1) easily model
heterogeneity within and between individuals, (2) model spatial
(geographic location) characteristics, including stochasticity, (3)
they are dynamic, allowing simulation of model progress over
time which is important for exploring the potential effects of
changing parameters on the model performance (30), and (4)
they can accommodate other models such as SDM (48). Agent
Based Models have become favored platforms for modeling large

scale epidemics (30) and have been used to model agri-food
supply chains for understanding the behavior of farmers (49), and
farmer decision making (50).

System Dynamics models are used to model the relationships
between different participants in a CAS by modeling flows, such
as the flow of animals, products, information, pathogens and
other things through the FAS. They can simulate the effect over
time of various internal or external changes on individual CAS
participants and the CAS as a whole (25). For example they
can model the effect of farmer behavioral changes on disease
production, the effect of new regulations, or the effect of market
prices changes on participants in the FAS and the behavior of
the FAS as a whole (51). They have also been used to model
the dynamics of disease epidemics (52, 53) and the effect of
production practices and other risk factors on disease dynamics
in animal production systems (54). Quantitative SDM use
computer simulation to model the dynamic changes that occur
in CAS over time. In animal health quantitative SDM (also called
Susceptible, Infected Recovered or SIR models) have been used
to estimate the effect of various polices, such as disease control,
food safety or supply management on participants in food animal
value chains (25). System Dynamics Models can be qualitative,
such as causal loop diagrams (55), focusing on modeling the
structure of the CAS by identifying the important participants in
the CAS and their relationships. In food animal value chains they
have been used in a participatory fashion where stakeholders are
engaged in defining the model structure, identifying important
value chain participants and the relationships between them
(28, 51, 55).

Each of the modeling platforms has advantages and
disadvantages, and one modeling platform alone may not be
sufficient for a national FAS. Fortunately, it is possible to combine
platforms, and it may be that using multiple modeling platforms
together will be the most useful approach.

A participatory model building process will be critically
important. The benefits of including a range of stakeholders
in the FAS modeling processes (27, 28, 51) and animal health
surveillance (56, 57) have been reported. In our opinion
including a wide range of stakeholders representing many or
all types of FAS participant groups will be especially important
for developing a valid and useful FAS model. Surveillance
practitioners dealing with these data are, in most cases, external
from the FAS, and do not have regular frequent communication
with participants in FAS. In general, they will not likely have
adequate knowledge to create a useful dynamic model of a FAS.
They will not have knowledge about which FAS participants are
most important to include in the model, or the perspective of
many of the participants in the FAS, particularly in terms of
their understanding of the accuracy and value of the data they
create and submit to the surveillance system. Stakeholders from
the FAS can provide this knowledge as well as information about
participant characteristics (for example production practices)
and the characteristics of interactions between participants (for
example communication) that may not be evident in the data
they provide.

Surveillance practitioners charged with dealing with the data
will bring an analysts perspective focused on issues relating
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to data quality such as missing data, data entry errors, data
standards, data definitions and other practical data processing
issues. Communicating these issues to data providers will
emphasize the importance of these issues and may result in
improved data entry and data collection. Representation from
government decision makers who set policy for food safety,
biosecurity and disease control programs, and the personnel
who deliver these programs will be needed. They will provide
clear targets and priorities for information created from the
data, and more effectively communicate the importance of
this information to FAS participants who create the data.
Since surveillance and food animal production are continuous
processes, we expect new data to become available frequently,
and suggest that stakeholders groups should be engaged in
an ongoing process, through regular scheduled meetings. This
will be an opportunity for surveillance practitioners to provide
information updates to the stakeholders, and to build strong
ongoing relationships between government decisions makers,
program delivery personnel, surveillance practitioners, analysts,
and FAS participants.

IDENTIFYING CHANGES IN FOOD
ANIMAL SYSTEMS

Human societies rely on ecosystem services for many things
including water and food, and are therefore dependent on
the health of ecosystems. Recent losses of species and other
indications of ecosystem failure have prompted researchers
to search for methods aimed at quantifying the health of
ecosystems (58). Modeling approaches, such as those described
in the previous section have been widely used to understand
ecosystems, however sufficient data from ecosystems are often
unavailable to parameterize these models, leading researchers to
look for other methods. This search has focused on identifying
indicators of change in ecosystems that are predictors of major or
catastrophic shifts in the state of ecosystems (59–61). Researchers
have theorized that as CAS change, there are accompanying
changes in the characteristics of time series from the CAS, and
research has focused on identifying metrics to quantify these
changes (59–61). These methods have been applied to other CAS
and some of them could potentially be useful for AHS.

Many of the methods developed for monitoring change in
ecosystem time series are based on the idea that stability in a CAS
is maintained by negative feedback processes, where movement
in some quantity (or feature) away from a stable value is tied
to processes that return the quantity back to a stable level.
Ecosystems are constantly subjected to internal forces, or shocks,
that cause movement (increases or decreases) in these quantities
or features away from stable values. The stability or resilience of
the ecosystem is theorized to relate to the magnitude of change
that occurs in the quantity before it returns to its stable value,
and the length of time that it takes to return (Figures 1, 2). If
shocks are relatively constant, then larger magnitudes of change
and longer periods of time to return to stable states (called critical
slowing down) would be indicators of the weakening of negative
feedback processes, and loss of resilience (59). The practical value

of this paradigm is that it allows for measureable estimation
of the stability of ecosystems. For example increased variance
in ecosystem time series have been shown to be indicators of
reduced ecosystem resilience (Figure 2). A number of time series
metrics including: lag one autocorrelation, skewness, kurtosis,
bimodality, return rate, de-trended fluctuation analysis indicator,
conditional heteroscedasticity, spectral density, and others, have
been proposed for monitoring changes in CAS (58, 59, 62, 63).

In a FAS, for example, disease occurrence is strictly controlled
by feedback processes. At the farm level, any increase in animal
disease is quickly followed by a negative responses from the
farmer, such as antimicrobial or vaccine administration, or
changes in production practices aimed at reducing or eliminating
the disease (Figure 1). Following the ecosystem paradigm,
monitoring time series of FAS disease counts could be used
to estimate changes in disease production processes in a FAS
(Figure 2). The characteristics of disease count time series from
a FAS could be affected by both the characteristics of the shock
(in this case changes in a pathogen or changes in factors that
favor disease production) to the FAS, and the strength of the
negative feedback loop (farmers’ responses to increased disease).
It follows that change in disease count time series metrics could
be due to either: (1) factors that cause an increase in disease
occurrence or (2) factors that weaken the feedback loop aimed
at reducing disease occurrence. For example, if it was known
that farmers had not changed their disease response capacity,
then changes in the characteristics of disease count time series
(for example increased variance or lag 1 autocorrelation) could
be an indication of a change in a pathogen, the introduction of
a new pathogen or changes in risk factors that cause increased
disease production (including changes in farmer behavior such
as reduced biosecurity, reduced preventative vaccination etc.).
The benefit of monitoring these metrics over time is that they
could be non-specific early indicators of reduced capacity of the
FAS to deal with disease and therefore also early indicators of
an impending epidemic in the animal population. Several time
series metrics have been proposed and evaluated for forecasting
disease emergence in simulated data for human diseases (64–
67). To our knowledge these metrics have not yet been used in
animal health, but there is no technical reason limiting their use
in animal health.

Another way to estimate change is CAS is to assess the amount
of complexity that is inherent in the system. In 2002 Costa
introduced the idea of using entropy metrics applied to time
series to estimate the amount of complexity in biological systems
from which the time series was derived (68). The basis for using
these methods is the theory that disease, pathology, and aging
degrade the physiology adaptability and complexity of biological
systems, and that these changes in complexity can be detected as
changes in entropy metrics in time series from these biological
systems (68). For example, differences in multiscale entropy
of RR intervals in electrocardiogram (ECG) times series have
been found between healthy people and people with congestive
heart failure, and in gait time series from young and old people
(69). Other applications of entropy in health include: predicting
septicemia in neonates in intensive care (70), characterizing
Alzheimer’s disease from electroencephalogram (EEG) signals
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FIGURE 1 | Disease in a population of farm animal as a hypothetical example of a negative feedback process with an accompanying time series of disease

occurrence. During times when causal factors for disease increase (red shaded time intervals) there will be a corresponding increase in disease seen in the time series.

When the farmer responds to the increase in disease (green shaded time intervals) by reducing disease causing factors, disease will goes down.

FIGURE 2 | Decreasing resilience in a CAS may be due to a loss in strength of the negative feedback process. In this example the farmer’s response is initially unable

to reduce the effect of the causal factors for disease, as illustrated by the overlap of the green (farmer response) shaded interval with red shaded interval (time when

causal factors are operating). It takes longer for the farmer’s response to return disease back to an acceptable level. The resultant effect on the disease time series is

an increase in variation in the time series and an increase in the time interval between peaks (observed as a slowing down of the time series).

(71), characterize and differentiate EEG signals in patients with
epilepsy (72), and identifying people at high risk of falling using
postural time series (73).

Entropy metrics have not, to our knowledge been used to
identify changes in the complexity of FAS that could be associated
with changes in health status of the FAS. Even though entropy

metrics have been mostly applied at the individual animal
level, their utility at the FAS level should be explored. Multiple
levels of a FAS from microbiomes, to individual animals, farms,
corporations and the complete FAS are complex systems. They
share similar properties, and entropy metrics could potentially
identify changes in complexity at several levels. Furthermore,
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entropy metrics have been used in other CAS such as financial
time series (74), and a generalized approach has been defined
for detecting shifts in concepts in populations that could be
adapted to time series fromCAS (75). The expected benefit is that
these entropy metrics may provide subtle, but early indications of
changes in the disease status of the animal population in a FAS,
which may be useful for early epidemic detection.

Surveillance practitioners familiar with SS should not find
it difficult to adapt CSS methods in their work. Syndromic
surveillance uses statistical methods to identify extreme changes
in the values of time series from populations to identify epidemics
in the population. The methods discussed in this section are
operationally similar. They aim to identify other types of changes
in time series from CAS in order to identify changes in the CAS.
We encourage AHS practitioners to explore the use of these
methods, as they may perform better than the current event
detection algorithms and Bayesian methods used in SS.

Expected Benefits for AHS
We propose that developing dynamic FAS models will benefit
data analyses by helping to: (1) gain a better understanding of
how disease is produced in the FAS in order to focus analysis on
specific FAS participants and processes and to select time series
that are important for disease surveillance, (2) learn how data
are produced in the FAS to facilitate dealing with data quality
issues and to understand how participant behavior is related to
data quality, and (3) understand the validity and importance of
results of data analysis, (4) provide real-time feedback to the
FAS, facilitating rapid orchestrated responses and adaptation to
changing environments beyond just disease threats to include
economic, climatic, social and other threats.

A participatory process that engages many stakeholders will
have very practical advantages for cleaning, processing and
analyzing data. The data that AHS practitioners have to deal
with are very complex, highly varied, often contain errors (data
entry or data extraction and transmission errors), and have
variable language with no standard definitions. For example,
veterinary practitioner data, which represent only one of the
participant groups in a FAS can contain any of the following:
date, farm ID, farm location, species/sex/production type of
animals, whether the consultation was a farm visit or a phone call,
individual animal clinical examination data, herd examination
data (morbidity, mortality, duration of illness, whether the
problem is acute or chronic, other ongoing conditions in the
farm population), treatment recommendations, pharmaceuticals
dispensed and dispensing instructions, laboratory submissions,
diagnostic laboratory data, and non-clinical data such as
vaccination, nutrition, biosecurity, and other management
recommendations (9, 76, 77). There are often multiple veterinary
practices included in a surveillance system, and they may use
different practice management software that will have different
data collection and transmission formats, making it difficult or
impossible to collate these data into a single database without
information provided by the software providers. Surveillance
analysts will not have sufficient knowledge about these data to
clean, process and analyze these data. Engaging the people who
produce the data will be essential for providing this knowledge.

Providing FAS participants with knowledge from the analysis of
FAS data may also provide incentives for participants to improve
their data.

Developing a participatory FAS model that includes
participants who are data providers and information users,
and that can model the behavior of data providers will help
to deal with some of the data quality issues present in FAS
data. Issues of data quality due to farmer and veterinarian
behavior, such as non-compliance and time lags, have been
reported (76, 78–80). These issues bring into question the value
of these data for surveillance. Rather than considering these
behaviors a reason for excluding these data from analyses, they
could be dealt with by modeling the effect of FAS participant
behaviors on both the production of disease and the reporting
of data. System Dynamics Models have been used to model
FAS participant behavior for making decisions about resource
allocations for surveillance and disease control (28, 32), but
could also model non-compliance and reporting lags. Adopting
a participatory approach could have additional benefits for
both AHS and disease management control programs. These
include a better understanding of FAS and the processes that
result in increased disease occurrences within FAS. There is
support for this expectation from other fields. Participatory
approaches (called adaptive management) in dynamic policy
development has been reported to make socio-ecological systems
more resilient to system change such as those caused by disease
(81). An example from public health is the use of participatory
approaches to systems thinking to gain a better understanding of
the complex dynamic processes that result in neonatal mortality
in Uganda (82).

Developing dynamic FAS models that facilitate learning about
the processes that result in disease production in FAS will
have many benefits. The data currently generated from FAS
is unprecedented. They contain continuous and simultaneously
collected time series data about many potential exposures (risk
or causal factors), and outcomes (productivity metrics and
disease) from a large number of participants in a FAS. These
data differ from the observational data that is currently used
for estimating causal associations in veterinary epidemiology.
Observational veterinary epidemiological studies for estimating
associations between exposures and outcomes are based on data
collected at one point in time (cross-sectional and case-control
studies), at the beginning and end of a study (longitudinal
cohort studies), or at intervals throughout the study (longitudinal
cohort studies). Having access to simultaneously collected time
series of an unprecedented number of exposure and outcome
variables from a FAS is an opportunity to explore the dynamic
relationships between multiple exposures and outcomes. Time
series of exposures and outcomes will enable the identification
of exposures and outcomes that are associated in time and space
(i.e., that vary at the same time in the same place, or with a
lag between an exposure and outcome). These new data are
a resource that veterinary epidemiologists can use to develop
new methods for estimating associations between exposures and
outcomes and new information about causal associations in FAS.
Considering the large number of exposure and outcome variables
that are available in FAS, we can expect that information about
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new associations will be identified that will be of interest to
FAS participants.

The number of time series that will have to be dealt with
in FAS data is large. Analyzing or modeling large numbers of
time series is relatively new to veterinary epidemiology as there
are only a few methods reported and they deal only with small
numbers of time series (14, 83). Looking outside the field, there
are supervised and unsupervised machine learning methods that
have been proposed for dealing with large numbers of variables in
other fields (84, 85). Since the number of variables are large, we
expect that using unsupervised analytical approaches will identify
spurious (due to chance alone) or nonsensical associations. We
propose using FAS participants and dynamic FAS models to
identify potential exposure and outcome associations that are
considered valid by FAS participants, and that are supported by
the FAS model structure, flows and outputs.

Observational studies are well-known for their bias and
limitations (86, 87). Engaging FAS participants to comment
on the quality (incorrect or inaccurate data entry) of specific
time series and the associations identified, should help to
reduce bias and remove spurious associations from further
analyses or generalization. Identifying valid exposure-outcome
associations will allow surveillance analysts to select specific
exposure and outcome time series on which to focus monitoring
and event detection activities, thereby reducing the number
of time series that need to be monitored for a specific disease.
Having geo-located time series data to monitor both exposure
and outcome variables at the same time in a surveillance
system has to our knowledge not been reported. We expect
these data to be produced well into the future and that data
accumulated over time will create additional opportunities. For

endemic or periodic diseases, associations that are identified
in early years or historical data can be tested for validity in
the data received in subsequent years. Those associations
that are consistent over time may allow the development of
prediction surveillance or pre-disease surveillance based on
the monitoring of those exposure time series that have been
found to be highly associated with occurrence of specific
diseases. Similar prediction approaches are being tested for
Food Safety applications in FAS. Tamplin reported combining
microbial growth prediction models with continuous data
from automated sensors (temperature, humidity, vibration)
into larger predictive models that are currently being
tested for predicting bacterial loads in foods produced in
supply chains (88).

SUMMARY

Surveillance practitioners are being faced with the task of
analyzing large data sets that are becoming available from food
animal production systems. Current epidemiological tool boxes
are not adequate for dealing with these data. We argue that food
animal production systems are complex adaptive systems and
that there are methods that have been developed to study CAS
that could be used to deal with these new food animal production
data. Applying these methods to the design and implementation
of AHS should have significant benefits.
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