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Abstract

We introduce a framework to learn object segmentation from a collection of images
without any manual annotation. We build on the observation that the location of
object segments can be perturbed locally relative to a given background without
affecting the realism of a scene. First, we train a generative model of a layered scene.
The layered representation consists of a background image, a foreground image and
the mask of the foreground. A composite image is then obtained by overlaying the
masked foreground image onto the background. The generative model is trained in
an adversarial fashion against a discriminator, which forces the generative model to
produce realistic composite images. To force the generator to learn a representation
where the foreground layer corresponds to an object, we perturb the output of
the generative model by introducing a random shift of both the foreground image
and mask relative to the background. Because the generator is unaware of the
shift before computing its output, it must produce layered representations that are
realistic for any such random perturbation. Second, we learn to segment an image
by defining an autoencoder consisting of an encoder, which we train, and the pre-
trained generator as the decoder, which we fix. The encoder maps an image to the
input of the generator, which then outputs a composite image matching the original
input image. Because the generator outputs an explicit layered representation of
the scene, the encoder learns to detect and segment objects. We demonstrate this
framework on real images of several object categories.

1 Introduction

The problem of extracting a useful interpretation from an image may be simplified by image seg-
mentation, i.e., by partitioning such image into regions associated to separate objects. One of the
challenges in image segmentation is the difficulty of formulating a precise definition of the “correct
image partition”. This has been addressed by using manual annotation indicating the pixels associated
to a set of object categories (by using bounding boxes or landmarks or detailed object segmentations).
However, manual annotation is costly and time-consuming and not easily scalable in some image
domains due to lack of expertise and data privacy (e.g., in medicine). This raises the question of
whether it is possible to obtain object segmentation directly from collections of real images without
any manual annotation. In this paper we show that this is indeed possible and demonstrate it on
several datasets of real images. Our approach is to first identify a powerful and general principle to
define what an object segment is, and then to devise a model and training scheme to learn through
that principle.

With reference to Fig. 1, we propose to build a generative model that outputs a background image, a
foreground object and a foreground mask. This model is trained in an adversarial manner against a
discriminator. The discriminator aims to distinguish the composite image, obtained by overlaying the
output triplet of the generator, from real images. This training alone provides no incentive for the
generator to produce triplets with correct object segmentations. In fact, a trivial solution is to have
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Figure 1: Illustration of the proposed architecture to learn to generate realistic layered scene represen-
tations through G (blue path) and to learn to map images to a layered representation through E (and
G), i.e., to segment objects (green path). The layered representation consists of three components: 1)
a background image B, 2) a foreground image F and 3) a(n alpha matte) mask image m. A crucial
component of our model is the generation of random shifts p of the foreground object (in particular,
such that they are independent of the input vector z to G) during the training of the generator. The
generator is trained adversarially against a discriminator D. Once the generator G is trained, the
encoder E can be trained to extract z, which encodes the layered representation.

Background Foreground Mask Composite Composite + shift

Figure 2: First row: Trivial solution, where the background and the foreground are identical and
any mask produces a valid composite scene. However, a random foreground shift reveals the invalid
segmentation. Second row: Trivial solution, where the whole scene is generated in the background
and the mask is always empty. Last row: The scene after a random shift is valid only when the
background generation and the object segmentation are valid and the mask is not empty.

the same realistic image for the foreground and background and a random mask (see Fig. 2, first row).
To address this failure, our framework introduces the concept of learning through the perturbation of
the model output. According to our object segment definition, we could introduce a small random
shift between the foreground and background outputs and still obtain a realistic composite image. If
this perturbation is unknown to the generator before producing its triplet, then it is forced to output
realistic object segments (see Fig. 2, last row). As a separate step to retrieve the segmentation of an
image, we propose to train an encoder network. The encoder is paired with the generator so as to
form an autoencoder. The encoder maps an image to a feature vector, which is fed as input to the
generator, so that it outputs a triplet that can be used to rebuild the input image. The combination of
both of these steps allows us to train the encoder to detect and to segment objects in images without
any manual annotation (see the green path in Fig. 1).

Contributions. We introduce a fully unsupervised learning approach to segment objects. Unlike in
prior work, we do not make use of object detectors, classifiers, bounding boxes, landmarks or pre-
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trained networks. To our knowledge, this is the first such solution. Moreover, the proposed method is
quite general as we demonstrate it on several object categories qualitatively, and quantitatively on
the LSUN Car dataset (Yu et al. [2015]) with Mask R-CNN (He et al. [2017]) used as ground truth
as well as CUB-200 dataset with provided annotations. Although we evaluate our approach on a
dataset with a single object category at a time, our framework can potentially work on mixed object
collections (see Fig. 6). We use single object category datasets because of current GAN limitations.

2 Prior Work

Object segmentation is a problem that has been addressed quite successfully via supervised learning
given a large dataset of manually annotated images. Mask R-CNN by He et al. [2017] is an example
of recent state of the art work that simultaneously detects and segments objects in an image, and can
be applied to the segmentation of a wide variety of categories, as shown by Hu et al. [2018]. Since
the cost of manually extracting the segmentations in large datasets is very high, a growing effort is
devoted to developing methods that minimize the amount of required manual annotation.

In the recent years, several unsupervised and weakly supervised learning methods for segmentation
based on deep learning have been proposed (see, for instance, Khoreva et al. [2017], Ji et al. [2018],
Hu et al. [2018], Kanezaki [2018], Ostyakov et al. [2018], Remez et al. [2018], Xu et al. [2017], Lutz
et al. [2018], Rother et al. [2004], Gupta and Raman [2016], Kim and Park [2015]). These methods
require some weak supervision, for example, in the form of initialization, proposals, bounding boxes,
or pre-trained boundary detectors.

To avoid manual annotation, one can cast the task of interest in the unsupervised learning framework
(see Ghahramani [2004], Barlow [1989]). Early fully unsupervised methods for segmentation relied
on a form of clustering of color, brightness, local texture or some feature encoding. For instance, the
superpixel clustering method of Achanta et al. [2012] and the mean-shift method of Comaniciu and
Meer [2002] are some of the first segmentation approaches based on prescribed low-level statistics.
Unsupervised segmentation can be also formulated as a pixel-wise image partitioning task. Ji et al.
[2018] define the task as a classification problem with a known number of segment types, such
that the mutual information between the predicted partitions of transformed versions of the same
image is maximized. The partitioning task is solved by an autoencoding architecture as done by Xia
and Kulis [2017]. Rather than using mutual information they constrain the encoding of an image
to minimize a normalized cut and some spatial smoothness constraints. This method relies on the
distributed representation learned through neural networks. Kanezaki [2018] introduces a method for
image segmentation without supervision that relies on three general constraints. The constraints are,
however, too generic and thus they cannot always guarantee to yield the correct object segmentation.
Several methods for unsupervised scene decomposition were proposed, including Eslami et al. [2016]
and Burgess et al. [2019] that use spatial attention and Greff et al. [2016, 2017, 2019] that model
images as spatial mixture model to perform unsupervised segmentation. However, these approaches
were only shown to work on simpler synthetic or controlled datasets. Other works focus solely on
layered image generation. van Steenkiste et al. [2018] propose a GAN that generates a background
and individual objects by modeling their relational structure with attention, however the method is
shown to work only on simpler datasets. Kwak and Zhang [2016] generates parts of an image with
a GAN and RNN and apply restrictions on alpha channels to avoid degenerate solutions, but their
blending procedure does not encourage resulting composite images to necessarily contain the exact
generated parts. Yang et al. [2017] uses GAN and LSTM to generate a background, a foreground
with a mask and a transformation matrix to learn where to place the objects with a spatial transformer.
In contrast, in our approach the generator is not aware of the transformations applied to the object.

The work that most closely relates to ours is by Remez et al. [2018]. In this paper the authors build on
the idea that realistic segmentation masks would allow the copy-pasting of a segment from one region
of an image to another. This remarkable principle can be used to define what an object is. More
in general, one could say that pixels belonging to the same object should be more correlated than
pixels across objects (including the background as an object). The weak correlation between object
and background is what allows introducing a shift without compromising the realism of the scene.
However, the weak object-background correlation means also that not all shifts yield plausible scenes.
This is why Remez et al. [2018] study the object placement and introduce some randomized heuristics
as approximate solutions. In contrast, in our work we avoid heuristics by noticing that small shifts
are almost always valid. The price to pay is that background inpainting is required. That is why we
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introduce a generative model that learns to output a background and a foreground image in addition
to the segmentation mask. One important aspect in the design of unsupervised learning methods is
to avoid degenerate solutions. Remez et al. [2018] build a compositional image generator as done
by Ostyakov et al. [2018] and then train a segmenter adversarially to a discriminator that classifies
images as realistic or not. A degenerate solution for the segmenter is to avoid any segmentation, as
the background looks already realistic. The authors describe two ways to avoid this scenario: One
is that the dataset of real images contains objects of interest and therefore an empty background
would be easily detected by the discriminator. The second is that a classification loss (pre-trained
on object identities) would ensure that an object is present in the composite scene. This approach
assumes some knowledge about objects (e.g., where they are) and works well on relatively small
images (28× 28 pixels). In contrast, our approach does not require such assumptions and we show
its performance on (relatively) high resolution images. In our approach we require that the mask has
a minimum number of non zero pixels, i.e., we learn to generate segments with a minimum size (this
avoids the degeneracy illustrated in the second row of Fig. 2). This is not a restriction, because we
are not making assumptions on single images, but, rather, on the distribution of the image dataset.
Then, we establish the correspondence between images and segments in a second step where we train
an encoder network. The encoder learns to map images to a suitable noise vector for the pre-trained
generator, such that it outputs background, foreground and mask that autoencode the input image
after composition (see Fig. 1). The design of such generative models is only possible today thanks to
the progress driven by the latest generative adversarial networks of Karras et al. [2018b], which we
exploit in this work.

3 Learning to Segment without Supervision

Our approach is based on two main building blocks: A generator G and an encoder E (see Fig. 1
for an illustration of the proposed method). The generator is trained against a discriminator in an
adversarial manner with the latest high-quality StyleGAN (generative adversarial network) by Karras
et al. [2018b,a]. G learns to generate composite scene samples to the extent that the discriminator
cannot distinguish them from real images. There are several important aspects that we would like to
highlight. Firstly, the training requires no correspondence between the real images and the generated
scenes. It allows us to impose constraints on the average type of generated scenes we are interested
in, rather than a per-sample constraint. For example, we expect the average scene to have an object
with a support of at least 15% − 25% of the image domain, a condition that may not hold in each
sample. Secondly, during training we introduce a random shift unknown to the generator. Thus, the
generator must output a background and a foreground that can be combined with arbitrary small
relative shifts and still fool the discriminator into believing that the composite image is realistic. This
is an implicit way to define what an object is, that avoids manual labelling altogether. The second
building block in our approach is an encoder E that learns to segment images. The encoder followed
by the generator and the image composition form an autoencoder. The encoder E maps a single
image x to a feature vector z that, once fed through the generator, yields its background B (with
inpainting), its foreground object F, and its foreground object mask m. The correspondence between
images and their object segmentation is thus obtained through the training of the encoder. In the
following sections, we explain our approach more in detail.

3.1 A Generative Model of Layered Scenes

Consider an N ×M discrete image domain Ω ⊂ Z2. In our notation, we consider only grayscale
images for simplicity, but in the implementation we work with color images. We define the repre-
sentation of a scene as a layered composition of 2 elements: a background image B : Ω 7→ R and a
foreground image F : Ω 7→ R. Although the foreground is defined everywhere, it is masked with
an alpha matte m : Ω 7→ [0, 1] in the image composition. The composite image x̄ : Ω 7→ R is then
defined at each pixel p ∈ Ω as

x̄[p] = (1−m[p])B[p] + m[p]F[p]. (1)

We define a generator G : Rk 7→ RN×M through a convolutional neural network (as described
in Karras et al. [2018b]) such that, given a k-dimensional input vector z ∼ N (0, Id), it outputs
three components G(z) = [GB(z),GF(z),Gm(z)], where GB(z) = B, GF(z) = F and Gm(z) = m.
The generator is then trained in an adversarial manner against a discriminator neural network
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Figure 3: Generated 128 × 128 pixels backgrounds, foregrounds, masks, foregrounds with mask
applied and composite images for 4 different image categories. Last two columns in each category
show generator failures, e.g., an object in the background or an unrealistic foreground.

D : RM×N 7→ R. Our implementation is based on StyleGAN, which, in turn, is based on the
Progressive GAN of Karras et al. [2018a], a formulation using the Sliced Wasserstein Distance.

3.2 Learning through Model Perturbation

If we trained the generator with fake images according to eq. 1, and we assumed a perfect training,
the learned model would be a trivial solution, where the background GB(z) and the foreground GF(z)
are identical and realistic images, and the mask Gm(z) is arbitrary (see Fig. 2, first row). In fact,
there is no incentive for the generator to learn anything more complex than that, and, in particular, to
associate foreground objects to the foreground mapping GF(z). Even the constraint that the average
value of the segments Gm(z) should be at least 15%− 25% is not sufficient to make the generator
mapping more meaningful. We use the constraint that foreground objects can be translated by an
arbitrary small shift ∆ ∼ U([−δ, δ]× [−δ, δ]), with δ a given range of local shifts, and would yield
still a realistic composite image. Formally, this can be written by updating eq. 1 as

x̂[p] = (1−m[p + ∆])B[p] + m[p + ∆]F[p + ∆]. (2)
Now, the generator has no incentive to generate identical foreground and background images, as
a random shift would be immediately detected by the discriminator as unrealistic. Vice versa, it
has an incentive to output foreground images and masks that include full objects. If the segments
included some background or missed part of the foreground, a small random shift ∆ would also yield
an unnatural-looking image that the discriminator can easily detect (in particular, at the segment
boundary). Therefore, now the generator has an incentive to output meaningful object segments. To
make sure that the mask is non empty, we impose a hinge loss on the average mask value

Lsize = Ez∼N (0,Id)

[
max {0, η − 1/MN|Gm(z)|1}

]
(3)

with a mask size parameter η > 0 and also use a loss that encourages the binarization of the mask
Lbinary = Ez∼N (0,Id)

[
min {Gm(z), 1−Gm(z)}

]
(4)
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Table 1: Ablation study for the LSUN Car dataset. The mean IoU is computed using Mask R-CNN
generated segmentations as ground truth. The reference mIoU is computed using masks covering the
entire image as segmentation.

64× 64 pixels 128× 128 pixels

Setting mIoU reference
mIoU

detected
cars mIoU reference

mIoU
detected

cars
(a) Default parameters 0.685 0.440 6293 0.533 0.432 7090
(b) No shift δ = 0 0.039 0.428 6738 0.025 0.419 7578
(c) 25% shift δ = 0.25 · size 0.144 0.434 6493 0.094 0.426 7259
(d) Bg contrast jitter = (0.7, 1.3) 0.765 0.454 6089 0.673 0.436 7046
(e) No random crops 0.264 0.374 6339 0.136 0.365 7520
(f) Mask size γ1 = 10.0 0.733 0.443 6245 0.643 0.430 7241
(g) Min. mask size η = 5% 0.693 0.458 6202 0.552 0.430 7256
(h) Single generator 0.550 0.446 6903 0.484 0.435 7544

Table 2: Segmentation results. For the LSUN Car dataset,
segmentations generated with Mask R-CNN for 10,000 images
are used as ground truth; we show the mIoU computed only on
images with detected cars or using empty masks as ground truth
otherwise (all). For CUB-200 real ground truth is available. In
the last row we use the entire area of an image as a mask.

LSUN Car (mIoU) CUB-200

Setting detected all mIoU
Our method 0.540 0.479 0.380

GrabCut 0.559 0.499 0.453

Full mask 0.402 0.357 0.132

Table 3: FID comparison of our pro-
posed GAN and the single output (SO)
GAN.

Setting FID FID
64× 64 128× 128

SO GAN 27.807 21.665

Our GAN 31.409 30.867

Finally, to train the generator we minimize the following loss with respect to GB, GF and Gm

Lgen = −Ex̂∼px̃ [D(x̂)] + γ1Lsize + γ2Lbinary (5)

with γ1, γ2 > 0. To train the discriminator we minimize the following loss with respect to D

Ldisc = Ex̂∼px̃
[D(x̂)]− Ex∼px

[D(x)] + λEx̃∼px̃
[(|∇x̃D(x̃)|2 − 1)2] + εEx∼px

[D(x)2] (6)

where px is the probability density function of real images x, we define x̃ = ζx + (1 − ζ)x̂ with
random ζ ∈ [0, 1], λ > 0 is the gradient penalty strength and ε > 0 prevents the discriminator output
from drifting to large values, following Gulrajani et al. [2017] and Karras et al. [2018a].

3.3 Object Segmentation via Autoencoding Constraints

Once the generator has been trained, we can learn to associate background, foreground and segments
to each image. To do that, we can train an encoder E such that it retrieves, through the generator
G, a composite image that matches the original input. The encoder E : RM×N 7→ Rk maps x to
E(x) ∈ Rk. Let us define xE

.
=

(
1−Gm (E(x))

)
� GB (E(x)) + Gm (E(x))� GF (E(x)). The

loss used to train the encoder E can be written as

Lauto = Ex∼px

∣∣∣xE − x∣∣∣
1

+ Ex∼px

∣∣∣Dfeat(xE)−Dfeat(x)
∣∣∣2
2
, (7)

where the second term is a perceptual loss that uses features from the trained StyleGAN discriminator.

3.4 Implementation

Experimentally, we find that current GAN methods are not yet capable of generating high-quality
images from datasets of multiple categories (in a fully unsupervised manner). Thus, we mainly
demonstrate our method on datasets with single categories. Given the current progress, we expect
GANs to soon address this gap, so that our framework can be applied (as is) to learning the seg-
mentation of multiple object categories with a single training dataset. For all experiments all the
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Figure 4: Qualitative results of our approach for settings (a)-(h): generated 64×64 composite images,
masks and outputs of Mask R-CNN.

network architectures and details follow the StyleGAN (Karras et al. [2018b]) if not specified in this
section. We use 2 separate generators, one outputs a 3 color channel background, while the other
one has two outputs: a 3 color channel foreground and a 1 channel mask followed by a sigmoid
activation function. Both generators take the same 512 dimensional Gaussian latent codes as input.
We use mixing with probability 0.9 and feed two latent codes to two parts of the generator split by
a randomly selected crossover point. We start the training with an initial resolution of 8× 8 pixels
and use progressive training to up to 128× 128 pixels. We train with batch sizes 256, 128, 64, 32
and 32 for resolutions 8× 8, 16× 16, 32× 32, 64× 64 and 128× 128 respectively. For each scale
the number of iterations is set to process 1,200,000 real images. The local shift range δ described in
section 3.2 is resolution-dependent and set to δ = 0.125 × resolution. For each resolution of
training StyleGAN we first resize the real image to a square image of size 1.125× resolution
and then take a random crop of size resolution to match the shifts in the generated data. We train
the StyleGAN network on real images x and composite images x̂ (eq. 2) by alternatively minimizing
the discriminator loss (eq. 6) and the generator loss (eq. 5). We set the discriminator loss parameters
to λ = 10 and ε = 0.001. In the generator loss we set γ1 = 2 for the minimum mask size term and
γ2 = 2 for the binarization term. We optimize our GAN with the Adam optimizer (Kingma and Ba
[2015]) and parameters β1 = 0, β2 = 0.99. We use a fixed learning rate of 0.001 for all scales except
for 128× 128 pixels, where we use 0.0015.

4 Experiments

We train our generative model on 4 LSUN object categories (Yu et al. [2015]): car, horse, chair,
bird. For each dataset we use the first 100,000 images. Objects in the datasets show large variability
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Figure 5: Qualitative results of segmentation on LSUN Car and CUB-200 datasets. (a) Examples of
successful segmentations. (b) Examples of failures.

in position, scale and pose. We set the minimum mask size η in eq. 3 to 25%, 20%, 15% and 15%
for car, horse, chair, bird datasets respectively. In Fig. 3 we show some examples of outputs
produced by the generators from random samples in the Gaussian latent space. From the first to
the fifth row in each quadrant: generated background layer, generated foreground layer, generated
foreground mask layer, product between the mask and the foreground layer, and final composite
image. As can be seen, the generator is able to learn very accurate object segmentations and texture.
Also, it can be observed that the background has some residual artifacts in the center. This is due
to the limited shift perturbation range, which does not allow the background layer to receive much
feedback from the loss function during the training. In some cases the exact separation between
object and background is not successful. This can be seen in the last two columns for each dataset.

Ablation study. To validate the design choices in our approach we perform ablation experiments on
the LSUN Car dataset. We introduce the following changes to (a) the default parameters described
in section 3.4, (b) disable the shift by setting the range of random location shift δ = 0, (c) increase
the shift to δ = 0.25× resolution, (d) randomly jitter the background contrast in the range (0.7,
1.3) to further prevent the background from filling parts of objects, (e) directly resize real images
to the desired resolution without random cropping, (f) increase the strength of the mask size loss
Lsize by setting its coefficient γ1 = 10, (g) set the minimum mask size parameter to a smaller value
η = 5%, (h) use a single generator with 3 outputs for background, foreground and mask. To evaluate
the quality of the generated segments, we generate 10,000 images and masks for each setting. We
binarize our masks with a 0.5 threshold. To obtain an approximated mask ground truth on generated
composite images we run Mask R-CNN (He et al. [2017], Massa and Girshick [2018]) pre-trained
on MS-COCO (Lin et al. [2014]) with a ResNet50 Feature Pyramid Network backend. If the car
is detected, we evaluate the mean Intersection over Union (mIoU) with the mask generated by our
models on these images. We run the evaluation on 64×64 and 128×128 pixels resolution, but resize
the 64× 64 images to 128× 128 before feeding them to Mask R-CNN. The quantitative results can
be found in Table 1 and the qualitative results in Fig. 4.

Our ablation shows that the random shifts (see section 3.2) are essential in our approach. When not
used (b) the object segmentation fails and the objects are often in the background. The quality of the
segmentation decreases drastically when the random shift range does not correspond to foreground
object shifts in real images. This is illustrated by the setting (c) with large random shifts and by
the setting (e), where the real images are not randomly cropped. The additional random contrast
jitter of the generated background (d) helps separate the foreground object from the background. A
smaller value of the η parameter to ensure the minimum mask size (g) does not have a big impact
on the results: It helps to avoid the empty masks, but the mask size is mainly determined by the
realism requirement. Using a single generator (h) to produce all outputs makes the background and
the foreground too correlated, which prevents it from learning a good layered representation.
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Figure 6: Generated object segments using a dataset with two object categories: cars and horses.

Quality of generated images. To evaluate the quality of generated composite images, we compute
the Frèchet Inception Distance (FID) (Heusel et al. [2017]) using 10K real and 10K generated images
composite images from our model (d). We compare it with a standard StyleGAN producing the entire
images at once, trained for the same number of iterations. The results are presented in Table 3. The
difference in the FIDs may be explained by the more demanding constraints of our model, which
may hinder the GAN training.

Dataset with more than one object category. Although we run our experiments on datasets
containing objects of one category, we argue that our method should work with multiple object
categories when the GANs improve and are able to produce realistic images on diverse datasets.
To verify this, we train our model on a dataset consisting of 50K images from LSUN Car and 50K
images from LSUN Horse datasets. The qualitative results are presented in Fig. 6. Although the
quality of generated images on such a dataset is lower, our model is still able to generate segmented
scenes.

Segmenting real images. Finally, we train an encoder to find the segmentation of real images,
as described in section 3.3. We use our best generator trained on LSUN Car 64× 64 images with
background contrast jitter (setting (d)) and freeze its weights. We train an encoder that produces
5 · 2 · 2 = 20 latent codes of 512 dimensions: For each of the 5 StyleGAN scales we get 2 separate
codes for AdaIN (adaptive instance normalization) layers in a convolutional block and get separate
codes for 2 generators (background and foreground with mask). For the encoder we use a randomly
initialized ResNet18 network (He et al. [2016]) with a 64× 64 input without average pooling at the
end and add a fully-connected layer with a 512 · 20 = 10240 output size. We feed the codes to the
generator and minimize the autoencoder loss (eq. 7). In the perceptual loss we use our discriminator
to extract 512× 8× 8 spatial features on real and generated images. We evaluate the segmentation on
the first 10,000 images of the LSUN Car dataset. We train separate encoders on chunks of 100 images
as we found that it makes the encoding more stable than training on the entire dataset. We run the
training for 1000 iterations with Adam optimizer, learning rate of 0.0001 and β1 = 0.9, β2 = 0.999.
After training, we encode the images and feed the codes to the generator to obtain the masks. For
the approximated ground truth we run Mask R-CNN on real images and evaluate our segmentation
with mean IoU. We also compute the mIoU using the output of the GrabCut algorithm and a naive
mask covering the entire image. The results are presented in Table 2. The performance of our method
is capped by ambiguities in inverting the generator with an encoder, which is an active topic of
research. We present sample segmentation results in Fig. 5. We notice some failures especially in
the case of small objects. We repeat the same training and evaluation procedure on Caltech-UCSD
Birds-200-2011 dataset (Wah et al. [2011]), for which the segmentation ground truth is available. We
use the parameters that worked best on the LSUN Car dataset for training both the generator and the
encoders.

5 Conclusions

We have introduced a new framework to learn object segmentation without using manual annotation.
The method is based on the principle that valid object segments can be locally shifted relative to
their background and still yield a realistic image. The proposed solution is based on first training
a generative network to learn an image decomposition model for a dataset of images and then on
training an encoder network to assign a specific image decomposition model to each image. It
strongly relies on the accuracy of the generative model, which today can be built with adversarial
techniques. However, it is a quite general framework that can be easily extended. For example, the
current generative model postulates that a scene is composed only of a foreground and a background
object, but a simple increase of output layers would allow describing scenes with multiple objects.
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