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Abstract

We present a novel method and analysis to train gener-

ative adversarial networks (GAN) in a stable manner. As

shown in recent analysis, training is often undermined by

the probability distribution of the data being zero on neigh-

borhoods of the data space. We notice that the distribu-

tions of real and generated data should match even when

they undergo the same filtering. Therefore, to address the

limited support problem we propose to train GANs by us-

ing different filtered versions of the real and generated data

distributions. In this way, filtering does not prevent the ex-

act matching of the data distribution, while helping training

by extending the support of both distributions. As filtering

we consider adding samples from an arbitrary distribution

to the data, which corresponds to a convolution of the data

distribution with the arbitrary one. We also propose to learn

the generation of these samples so as to challenge the dis-

criminator in the adversarial training. We show that our

approach results in a stable and well-behaved training of

even the original minimax GAN formulation. Moreover, our

technique can be incorporated in most modern GAN formu-

lations and leads to a consistent improvement on several

common datasets.

1. Introduction

Since the seminal work of [6], generative adversarial net-

works (GAN) have been widely used and analyzed due to

the quality of the samples that they produce, in particular

when applied to the space of natural images. Unfortunately,

GANs still prove difficult to train. In fact, a vanilla imple-

mentation does not converge to a high-quality sample gen-

erator and heuristics used to improve the generator often ex-

hibit an unstable behavior. This has led to a substantial work

to better understand GANs (see, for instance, [23, 19, 1]). In

particular, [1] points out how the unstable training of GANs

is due to the (limited and low-dimensional) support of the

data and model distributions. In the original GAN formu-

lation, the generator is trained against a discriminator in a

minimax optimization problem. The discriminator learns
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Figure 1: (a) When the probability density functions of the

real pd and generated data pg do not overlap, then the dis-

criminator can easily distinguish samples. The gradient of

the discriminator with respect to its input is zero in these

regions and this prevents any further improvement of the

generator. (b) Adding samples from an arbitrary pǫ to those

of the real and the generated data results in the filtered ver-

sions pd ∗ pǫ and pg ∗ pǫ. Because the supports of the fil-

tered distributions overlap, the gradient of the discriminator

is not zero and the generator can improve. However, the

high-frequency content of the original distributions is miss-

ing. (c) By varying pǫ, the generator can learn to match the

data distribution accurately thanks to the extended supports.

to distinguish real from fake samples, while the generator

learns to generate fake samples that can fool the discrimi-

nator. When the support of the data and model distributions

is disjoint, the generator stops improving as soon as the dis-

criminator achieves perfect classification, because this pre-

vents the propagation of useful information to the generator

through gradient descent (see Fig. 1a).

The recent work by [1] proposes to extend the support

of the distributions by adding noise to both generated and

real images before they are fed as input to the discrimi-

nator. This procedure results in a smoothing of both data
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and model probability distributions, which indeed increases

their support extent (see Fig. 1b). For simplicity, let us

assume that the probability density function of the data is

well defined and let us denote it with pd. Then, samples

x̃ = x+ ǫ, obtained by adding noise ǫ ∼ pǫ to the data sam-

ples x ∼ pd, are also instances of the probability density

function pd,ǫ = pǫ ∗ pd, where ∗ denotes the convolution

operator. The support of pd,ǫ is the Minkowski sum of the

supports of pǫ and pd and thus larger than the support of

pd. Similarly, adding noise to the samples from the gen-

erator probability density pg leads to the smoothed proba-

bility density pg,ǫ = pǫ ∗ pg . Adding noise is a quite well-

known technique that has been used in maximum likelihood

methods, but is considered undesirable as it yields approx-

imate generative models that produce low-quality blurry

samples. Indeed, most formulations with additive noise boil

down to finding the model distribution pg that best solves

pd,ǫ = pg,ǫ. However, this usually results in a low qual-

ity estimate pg because pd ∗ pǫ has lost the high frequency

content of pd. An immediate solution is to use a form of

noise annealing, where the noise variance is initially high

and is then reduced gradually during the iterations so that

the original distributions, rather than the smooth ones, are

eventually matched. This results in an improved training,

but as the noise variance approaches zero, the optimization

problem converges to the original formulation and the algo-

rithm may be subject to the usual unstable behavior.

In this work, we design a novel adversarial training pro-

cedure that is stable and yields accurate results. We show

that under some general assumptions it is possible to mod-

ify both the data and generated probability densities with

additional noise without affecting the optimality conditions

of the original noise-free formulation. As an alternative to

the original formulation, with z ∼ N (0, Id) and x ∼ pd,

min
G

max
D

Ex[logD(x)] + Ez[log(1−D(G(z)))], (1)

where D denotes the discriminator, we propose to train a

generative model G by solving instead the following opti-

mization

min
G

max
D

∑

pǫ∈S

Eǫ∼pǫ
[Ex∼pd

[logD(x+ ǫ)]] + (2)

Eǫ∼pǫ

[

Ez∼N (0,Id)[log(1−D(G(z) + ǫ))]
]

,

where we introduced a set S of probability density func-

tions. If we solve the innermost optimization problem in

Problem (2), then we obtain the optimal discriminator

D(x) =

∑

pǫ∈S pd,ǫ(x)
∑

pǫ∈S pd,ǫ(x) + pg,ǫ(x)
, (3)

where we have defined pg as the probability density of

G(z), where z ∼ N (0, Id). If we substitute this in the

Discriminator D

Generator G

Generator N ε
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Figure 2: Simplified scheme of the proposed GAN training.

We also show a noise generator N that is explained in detail

in Section 3.1. The discriminator D needs to distinguish

both noise-free and noisy real samples from fake ones.

problem above and simplify we have

min
G

JSD
(

1
|S|

∑

pǫ∈S pd,ǫ,
1
|S|

∑

pǫ∈S pg,ǫ

)

, (4)

where JSD is the Jensen-Shannon divergence. We show

that, under suitable assumptions, the optimal solution of

Problem (4) is unique and pg = pd. Moreover, since
1/|S|

∑

pǫ∈S pd,ǫ enjoys a larger support than pd, the opti-

mization via iterative methods based on gradient descent is

more likely to achieve the global minimum, regardless of

the support of pd. Thus, our formulation enjoys the follow-

ing properties: 1) It defines a fitting of probability densities

that is not affected by their support; 2) It guarantees the ex-

act matching of the data probability density function; 3) It

can be easily applied to other GAN formulations. A sim-

plified scheme of the proposed approach is shown in Fig. 2.

In the next sections we introduce our analysis in detail

and then devise a computationally feasible approximation

of the problem formulation (2). Our method is evaluated

quantitatively on CIFAR-10 [12], STL-10 [5], and CelebA

[15], and qualitatively on ImageNet [20] and LSUN bed-

rooms [24].

2. Related Work

The inherent instability of GAN training was first ad-

dressed through a set of techniques and heuristics [22] and

careful architectural design choices and hyper-parameter

tuning [18]. [22] proposes the use of one-sided label

smoothing and the injection of Gaussian noise into the lay-

ers of the discriminator. A theoretical analysis of the un-

stable training and the vanishing gradients phenomena was

introduced by Arjovsky et al. [1]. They argue that the main

source of instability stems from the fact that the real and

the generated distributions have disjoint supports or lie on

low-dimensional manifolds. In the case of an optimal dis-

criminator this will result in zero gradients that then stop the
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training of the generator. More importantly, they also pro-

vide a way to avoid such difficulties by introducing noise

and considering “softer” metrics such as the Wasserstein

distance. [23] makes similar observations and also pro-

posed the use of “instance noise” which is gradually re-

duced during training as a way to overcome these issues.

Another recent work stabilizes GAN training in a similar

way by transforming examples before feeding them to the

discriminator [21]. The amount of transformation is then

gradually reduced during training. They only transform the

real examples, in contrast to [23], [1] and our work. [2]

builds on the work of [1] and introduces the Wasserstein

GAN (WGAN). The WGAN optimizes an integral prob-

ability metric that is the dual to the Wasserstein distance.

This formulation requires the discriminator to be Lipschitz-

continuous, which is realized through weight-clipping. [7]

presents a better way to enforce the Lipschitz constraint via

a gradient penalty over interpolations between real and gen-

erated data (WGAN-GP). [19] introduces a stabilizing reg-

ularizer based on a gradient norm penalty similar to that by

[7]. Its formulation however is in terms of f-divergences

and is derived via an analytic approximation of adversarial

training with additive Gaussian noise on the datapoints. An-

other recent GAN regularization technique that bounds the

Lipschitz constant of the discriminator is the spectral nor-

malization introduced by [17]. This method demonstrates

state-of-the-art in terms of robustness in adversarial train-

ing. Several alternative loss functions and GAN models

have been proposed over the years, claiming superior sta-

bility and sample quality over the original GAN (e.g., [16],

[25], [3], [2], [25], [11]). Adversarial noise generation has

previously been used in the context of classification to im-

prove the robustness against adversarial perturbations [13].

3. Matching Filtered Distributions

We are interested in finding a formulation that yields as

optimal generator G a sampler of the data probability den-

sity function (pdf) pd, which we assume is well defined.

The main difficulty in dealing with pd is that it may be zero

on some neighborhood in the data space. An iterative op-

timization of Problem (1) based on gradient descent may

yield a degenerate solution, i.e., such that the model pdf

pg only partially overlaps with pd (a scenario called mode

collapse). It has been noticed that adding samples of an ar-

bitrary distribution to both real and fake data samples dur-

ing training helps reduce this issue. In fact, adding samples

ǫ ∼ pǫ corresponds to blurring the original pdfs pd and pg ,

an operation that is known to increase their support and thus

their likelihood to overlap. This increased overlap means

that iterative methods can exploit useful gradient directions

at more locations and are then more likely to converge to

the global solution. By building on this observation, we

propose to solve instead Problem (2) and look for a way to

increase the support of the data pdf pd without losing the

optimality conditions of the original formulation of Prob-

lem (1).

Our result below proves that this is the case for some

choices of the additive noise. We consider images of m×n
pixels and with values in a compact domain Ω ⊂ R

m×n,

since image intensities are bounded from above and below.

Then, also the support of the pdf pd is bounded and con-

tained in Ω. This implies that pd is also L2(Ω).

Theorem 1. Let us choose S such that Problem (4) can be

written as

min
pg

JSD

(

1

2
(pd + pd ∗ pǫ),

1

2
(pg + pg ∗ pǫ)

)

, (5)

where pǫ is a zero-mean Gaussian function with a positive

definite covariance Σ. Let us also assume that the domain

of pg is restricted to Ω (and thus pg ∈ L2(Ω)). Then, the

global optimum of Problem (5) is pg(x) = pd(x), ∀x ∈ Ω.

Proof. The global minimum of the Jensens-Shannon diver-

gence is achieved if and only if

pd + pd ∗ pǫ = pg + pg ∗ pǫ. (6)

Let pg = pd + ∆. Then, we have
∫

|∆(x)|2dx < ∞. By

substituting pg in eq. (6) we obtain ∆ ∗ pǫ = −∆. Since ∆
and pǫ are in L2(Ω), we can take the Fourier transform of

both sides, compute their absolute value and obtain

∣

∣

∣
∆̂(ω)

∣

∣

∣
|p̂ǫ(ω)| =

∣

∣

∣
∆̂(ω)

∣

∣

∣
, ∀ω ∈ Ω̂. (7)

Because pg and pd integrate to 1,
∫

∆(x)dx = 0 and

∆̂(0) = 0. Suppose ∃ω 6= 0 such that ∆̂(ω) 6= 0. Since

pǫ is Gaussian, |p̂ǫ(ω)| =
∣

∣

∣
e−

1

2
ω⊤Σ−1ω

∣

∣

∣
< 1, which contra-

dicts the optimality condition (7). Thus, ∆(x) = 0, ∀x ∈ Ω
and we can conclude that pg(x) = pd(x), ∀x ∈ Ω.

3.1. Formulation

Based on the above theorem we consider two cases:

1. Gaussian noise with a fixed/learned standard devia-

tion σ: pǫ(ǫ) = N (ǫ; 0, σId);

2. Learned noise from a noise generator network N with

parameters σ: pǫ(ǫ) such that ǫ = N(w, σ), with w ∼
N (0, Id).

In both configurations we can learn the parameter(s) σ. We

do so by minimizing the cost function after the maximiza-

tion with respect to the discriminator. The minimization

encourages large noise since this would make pd,ǫ(ω) more

similar to pg,ǫ(ω) regardless of pd and pg . This would not be

very useful to gradient descent. Therefore, to limit the noise
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Algorithm 1: Distribution Filtering GAN (DFGAN)

Input: Training set D ∼ pd, number of discriminator

updates ndisc, number of training iterations N ,

batch-size m, learning rate α, noise penalty λ

Output: Generator parameters θ

Initialize generator parameters θ, discriminator

parameters φ and noise-generator parameters ω ;

for 1 . . . N do

for 1 . . . ndisc do
Sample {x1, . . . , xm} ∼ pd, {x̃1, . . . , x̃m} ∼ pg

and {ǫ1, . . . , ǫm} ∼ pǫ ;

Lr
D =

∑m

i=1
ln(D(xi)) + ln(D(xi + ǫi));

L
f
D =

∑m

i=1
ln(1−D(x̃i))+ln(1−D(x̃i+ǫi));

Lǫ =
∑m

i=1
|ǫi|

2;

φ← φ+∇φL
r
D(φ, ω) +∇φL

f
D(φ, ω);

ω ← ω−∇ω

(

Lr
D(φ, ω)+L

f
D(φ, ω)+λLǫ(ω)

)

;

end

Sample {x̃1, . . . , x̃m} ∼ pg and {ǫ1, . . . , ǫm} ∼ pǫ ;

L
f
G =

∑m

i=1
ln(D(x̃i)) + ln(D(x̃i + ǫi));

θ ← θ +∇θL
f
G(θ);

end

magnitude we introduce as a regularization term the noise

variance Γ(σ) = σ2 or the Euclidean norm of the noise out-

put image Γ(σ) = Ew∼N (0,Id)|N(w, σ)|2, and multiply it

by a positive scalar λ, which we tune.

The proposed formulations can then be written in a uni-

fied way as:

min
G

min
σ

max
D

λΓ + Ex

[

logD(x) + Eǫ logD(x+ ǫ)
]

+

Ez

[

log[1−D(G(z))] + Eǫ log[1−D(G(z) + ǫ)]
]

.

(8)

3.2. Implementation

Implementing our algorithm only requires a few minor

modifications of the standard GAN framework. We perform

the update for the noise-generator and the discriminator in

the same iteration. Mini-batches for the discriminator are

formed by collecting all the fake and real samples in two

separate batches, i.e., {x1, . . . , xm, x1 + ǫ1, . . . , xm + ǫm}
is the batch with real examples and {x̃1, . . . , x̃m, x̃1 +
ǫ1, . . . , x̃m + ǫm} the fake examples batch. The com-

plete procedure is outlined in Algorithm 1. The noise-

generator architecture is typically the same as the gener-

ator, but with a reduced number of convolutional filters.

Since the inputs to the discriminator are doubled when com-

pared to the standard GAN framework, the DFGAN frame-

work can be 1.5 to 2 times slower. Similar and more

severe performance drops are present in existing variants

(e.g., WGAN-GP). Note that by constructing the batches

as {x1, . . . , xm/2, xm/2+1 + ǫ1, . . . , xm + ǫm} the training

(a) (b)

Figure 3: Illustration of how separate normalization of fake

and real mini-batches discourages mode collapse. In (a)

no normalization is applied and mode collapse is observed.

Since the covered modes are indistinguishable, the genera-

tor receives no signal that encourages better mode coverage.

In (b) separate normalization of the real and fake data is ap-

plied. The mismatch in the batch statistics (mean and stan-

dard deviation) can now be detected by the discriminator,

forcing the generator to improve.

time is instead comparable to the standard framework, but

it is much more stable and yields an accurate generator. For

a comparison of the runtimes, see Fig. 4.

3.3. Batch­Normalization and Mode Collapse

The current best practice is to apply batch normalization

to the discriminator separately on the real and fake mini-

batches [4]. Indeed, this showed much better results when

compared to feeding mini-batches with a 50/50 mix of real

and fake examples in our experiments. The reason for this

is that batch normalization implicitly takes into account the

distribution of examples in each mini-batch. To see this,

consider the example in Fig. 3. In the case of no sepa-

rate normalization of fake and real batches we can observe

mode-collapse. The modes covered by the generator are in-

distinguishable for the discriminator, which observes each

example independently. There is no signal to the genera-

tor that leads to better mode coverage in this case. Since

the first two moments of the fake and real batch distribution

are clearly not matching, a separate normalization will help

the discriminator distinguish between real and fake exam-

ples and therefore encourage better mode coverage by the

generator.

Using batch normalization in this way turns out to be cru-

cial for our method as well. Indeed, when no batch normal-

ization is used in the discriminator, the generator will often

tend to produce noisy examples. This is difficult to detect

by the discriminator, since it judges each example indepen-

dently. To mitigate this issue we apply separate normal-

ization of the noisy real and fake examples before feeding

them to the discriminator. We use this technique for models

without batch normalization (e.g. SNGAN).
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Figure 4: A comparison of wall clock time vs IS for GANs

with and without distribution filtering. The models use

the architecture specified in Table 1 and were trained on

CIFAR-10. The computational overhead introduced by our

method does not negatively affect the speed of convergence.

4. Experiments

We compare and evaluate our model using two common

GAN metrics: the Inception score IS [22] and the Fréchet

Inception distance FID [8]. Throughout this section we use

10K generated and real samples to compute IS and FID.

In order to get a measure of the stability of the training

we report the mean and standard deviation of the last five

checkpoints for both metrics (obtained in the last 10% of

training). More reconstructions, experiments and details are

provided in the supplementary material.

4.1. Ablations

To verify our model we perform ablation experiments

on two common image datasets: CIFAR-10 [12] and STL-

10 [5]. For CIFAR-10 we train on the 50K 32 × 32 RGB

training images and for STL-10 we resize the 100K 96 ×
96 training images to 64 × 64. The network architectures

resemble the DCGAN architectures of [18] and are detailed

in Table 1. All the models are trained for 100K generator

iterations using a mini-batch size of 64. We use the ADAM

optimizer [10] with a learning rate of 10−4 and β1 = 0.5.

Results on the following ablations are reported in Table 2:

(a)-(c) Only noisy samples: In this set of experiments we

only feed noisy examples to the discriminator. In ex-

periment (a) we add Gaussian noise and in (b) we add

learned noise. In both cases the noise level is not

annealed. While this leads to stable training, the re-

sulting samples are of poor quality which is reflected

by high FID and low IS. The generator will tend to

Table 1: Network architectures used for experiments on

CIFAR-10 and STL-10. Images are assumed to be of size

32 × 32 for CIFAR-10 and 64 × 64 for STL-10. We set

M = 512 for CIFAR-10 and M = 1024 for STL-10. Lay-

ers in parentheses are only included for STL-10. The noise-

generator network follows the generator architecture with

the number of channels reduced by a factor of 8. BN indi-

cates the use of batch-normalization [9].

Generator CIFAR-10/(STL-10)

z ∈ R
128 ∼ N (0, I)

fully-conn. BN ReLU 4× 4×M

(deconv 4× 4 str.=2 BN ReLU 512)

deconv 4× 4 str.=2 BN ReLU 256

deconv 4× 4 str.=2 BN ReLU 128

deconv 4× 4 str.=2 BN ReLU 64

deconv 3× 3 str.=1 tanh 3

Discriminator CIFAR-10/(STL-10)

conv 3× 3 str.=1 lReLU 64

conv 4× 4 str.=2 BN lReLU 64

conv 4× 4 str.=2 BN lReLU 128

conv 4× 4 str.=2 BN lReLU 256

conv 4× 4 str.=2 BN lReLU 512

(conv 4× 4 str.=2 BN lReLU 1024)

fully-connected sigmoid 1

also produce noisy samples since there is no incentive

to remove the noise. Annealing the added noise dur-

ing training as proposed by [1] and [23] leads to an

improvement over the standard GAN. This is demon-

strated in experiment (c). The added Gaussian noise

is linearly annealed during the 100K iterations in this

case;

(d)-(i) Both noisy and clean samples: The second set of

experiments consists of variants of our proposed

model. Experiments (d) and (e) use a simple Gaus-

sian noise model; in (e) the standard deviation of the

noise σ is learned. We observe a drastic improvement

in the quality of the generated examples even with this

simple modification. The other experiments show re-

sults of our full model with a separate noise-generator

network. We vary the weight λ of the L2 norm of the

noise in experiments (f)-(h). Ablation (i) uses the al-

ternative mini-batch construction with faster runtime

as described in Section 3.2;

Application to Different GAN Models. We investigate the

possibility of applying our proposed training method to sev-

eral standard GAN models. The network architectures are

the same as proposed in the original works with only the

necessary adjustments to the given image-resolutions of the

datasets (i.e., truncation of the network architectures). The

only exception is SVM-GAN, where we use the architecture

in Table 1. Note that for the GAN with minimax loss (MM-

GAN) and WGAN-GP we use the architecture of DCGAN.

Hyper-parameters are kept at their default values for each

model. The models are evaluated on two common GAN

benchmarks: CIFAR-10 [12] and CelebA [15]. The im-

age resolution is 32 × 32 for CIFAR-10 and 64 × 64 for

CelebA. All models are trained for 100K generator itera-

tions. For the alternative objective function of LSGAN and
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Table 2: We perform ablation experiments on CIFAR-10 and STL-10 to demonstrate the effectiveness of our proposed

algorithm. Experiments (a)-(c) show results where only filtered examples are fed to the discriminator. Experiment (c)

corresponds to previously proposed noise-annealing and results in an improvement over the standard GAN training. Our

approach of feeding both filtered and clean samples to the discriminator shows a clear improvement over the baseline.

Experiment
CIFAR-10 STL-10

FID IS FID IS

Standard GAN 46.1± 0.7 6.12± .09 78.4± 6.7 8.22± .37

(a) Noise only: ǫ ∼ N (0, I) 94.9± 4.9 4.68± .12 107.9± 2.3 6.48± .19
(b) Noise only: ǫ learned 69.0± 3.4 5.05± .14 107.2± 3.4 6.39± .22
(c) Noise only: ǫ ∼ N (0, σI), σ → 0 44.5± 3.2 6.85± .20 75.9± 1.9 8.49± .19

(d) Clean + noise: ǫ ∼ N (0, I) 29.7± 0.6 7.16± .05 66.5± 2.3 8.64± .17
(e) Clean + noise: ǫ ∼ N (0, σI) with learnt σ 28.8± 0.7 7.23± .14 71.3± 1.7 8.30± .12
(f) DFGAN (λ = 0.1) 27.7± 0.8 7.31± .06 63.9 ± 1.7 8.81 ± .07
(g) DFGAN (λ = 1) 26.5 ± 0.6 7.49 ± .04 64.0± 1.4 8.52± .16
(h) DFGAN (λ = 10) 29.8± 0.4 6.55± .08 66.9± 3.2 8.38± .20

(i) DFGAN alt. mini-batch (λ = 1) 28.7± 0.6 7.3± .05 67.8± 3.2 8.30± .11

SVM-GAN we set the loss of the noise generator to be the

negative of the discriminator loss, as is the case in our stan-

dard model. The results are shown in Table 3. We can ob-

serve that applying our training method improves perfor-

mance in most cases and even enables the training with the

original saturation-prone minimax GAN objective, which

is very unstable otherwise. Note also that applying our

method to SNGAN [17] (the current state-of-the-art) leads

to an improvement on both datasets. We also evaluated

SNGAN with and without our method on 64×64 images of

STL-10 (same as in Table 2) where our method boosts the

performance from an FID of 66.3 ± 1.1 to 58.3 ± 1.4. We

show random CelebA reconstructions from models trained

with and without our approach in Fig. 5.

Robustness to Hyperparameters. We test the robust-

ness of DFGANs with respect to various hyperparamters by

training on CIFAR-10 with the settings listed in Table 4.

The network is the same as specified in Table 1. The noise

penalty term is set to λ = 0.1. We compare to a model with-

out our training method (Standard), a model with the gradi-

ent penalty regularization proposed by [19] (GAN+GP) and

a model with spectral normalization (SNGAN). To the best

of our knowledge, these methods are the current state-of-

the-art in terms of GAN stabilization. Fig. 7 shows that our

method is stable and accurate across all settings.

Robustness to Network Architectures. To test the ro-

bustness of DFGANs against non-optimal network archi-

tectures we modified the networks in Table 1 by doubling

the number of layers in both generator and discriminator.

This leads to significantly worse performance in terms of

FID in all cases: 46 to 135 (Standard), 33 to 111 (SNGAN),

28 to 36 (GAN+GP), and 27 to 60 (DFGAN). However,

Table 3: We apply our proposed GAN training to various

previous GAN models trained on CIFAR-10 and CelebA.

The same network architectures and hyperparameters as in

the original works are used (for SVM-GAN we used the

network in Table 1). We observe that our method increases

performance in most cases even with the suggested hyper-

parameter settings. Note that our method also allows suc-

cessful training with the original minimax MMGAN loss as

opposed to the commonly used heuristic (e.g., in DCGAN).

Model
CIFAR-10 CelebA

FID IS FID

MMGAN [6] > 450 ∼ 1 > 350
DCGAN [18] 33.4± 0.5 6.73± .07 25.4± 2.6
WGAN-GP [7] 37.7± 0.4 6.55± .08 15.5± 0.2
LSGAN [16] 38.7± 1.8 6.73± .12 21.4± 1.1
SVM-GAN [14] 43.9± 1.0 6.25± .09 26.5± 1.9
SNGAN ([17] 29.1± 0.4 7.26± .06 13.2± 0.3

MMGAN +DF (λ = 0.1) 33.1± 0.7 6.91± .05 16.6± 1.9
DCGAN + DF (λ = 10) 31.2± 0.3 6.95± .11 14.7± 1.0
LSGAN + DF (λ = 10) 36.7± 1.2 6.63± .17 19.9± 0.4
SVM-GAN + DF (λ = 1) 28.7± 1.1 7.31± .11 12.7± 0.7
SNGAN + DF (λ = 1) 25.9 ± 0.3 7.47 ± .08 10.5 ± 0.4

SNGAN+DF leads to good results with a FID of 27.6.

4.2. Qualitative Results

We trained DFGANs on 128 × 128 images from two

large-scale datasets: ImageNet [20] and LSUN bedrooms

[24]. The network architecture is similar to the one in Ta-

ble 1 with one additional layer in both networks. We trained

the models for 100K iterations on LSUN and 300K iter-
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(a) Original GAN without DF (b) Original GAN with DF

(c) DCGAN without DF (d) DCGAN with DF

Figure 5: Left column: Random reconstructions from models trained on CelebA without distribution filtering (DF). Right

column: Random reconstructions with our proposed method.

Figure 6: Reconstructions from DFGANs trained on 128×128 images from the LSUN bedrooms dataset (top) and ImageNet

(bottom).
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Figure 7: Results of the robustness experiments in Table 4 on CIFAR-10. We compare the standard GAN (1st column), a

GAN with gradient penalty (2nd column), a GAN with spectral normalization (3rd column) and a GAN with our proposed

method (4th column). Results are reported in Fréchet Inception Distance FID (top) and Inception Score IS (bottom).

Table 4: Hyperparameter settings used to evaluate the ro-

bustness of our proposed GAN training method. We vary

the learning rate α, the normalization in G, the optimizer,

the activation functions, the number of discriminator itera-

tions ndisc and the number of training examples ntrain.

Exp. LR α BN in G Opt. ActFn ndisc ntrain

a) 2 · 10−4 FALSE ADAM (l)ReLU 1 50K

b) 2 · 10−4 TRUE ADAM tanh 1 50K

c) 1 · 10−3 TRUE ADAM (l)ReLU 1 50K

d) 1 · 10−2 TRUE SGD (l)ReLU 1 50K

e) 2 · 10−4 TRUE ADAM (l)ReLU 5 50K

f) 2 · 10−4 TRUE ADAM (l)ReLU 1 5K

ations on ImageNet. Random samples of the models are

shown in Fig. 6. In Fig. 8 we show some examples of the

noise that is produced by the noise generator at different

stages during training. These examples resemble the image

patterns that typically appear when the generator diverges.

5. Conclusions

We have introduced a novel method to stabilize genera-

tive adversarial training that results in accurate generative

models. Our method is rather general and can be applied to

other GAN formulations with an average improvement in

generated sample quality and variety, and training stability.

Since GAN training aims at matching probability density

distributions, we add random samples to both generated

Figure 8: Examples of the generated noise (top row) and

corresponding noisy training examples (rows 2 to 4). The

columns correspond to different iterations. The noise varies

over time to continually challenge the discriminator.

and real data to extend the support of the densities and

thus facilitate their matching through gradient descent.

We demonstrate the proposed training method on several

common datasets of real images.
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