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Abstract. Molecular fossils, like bacterial branched glycerol
dialkyl glycerol tetraethers (brGDGTs), and the stable iso-
topic composition of biomarkers, such as δ2H of leaf wax-
derived n-alkanes (δ2Hn-alkane) or δ18O of hemicellulose-
derived sugars (δ18Osugar), are increasingly used for the re-
construction of past climate and environmental conditions.
Plant-derived δ2Hn-alkane and δ18Osugar values record the iso-
topic composition of plant source water (δ2Hsource-water and
δ18Osource-water), which usually reflects mean annual precipi-
tation (δ2Hprecipiation and δ18Oprecipiation), modulated by evap-
otranspirative leaf water enrichment and biosynthetic frac-
tionation (εbio). Accuracy and precision of respective prox-
ies should be ideally evaluated at a regional scale. For this
study, we analysed topsoils below coniferous and decidu-
ous forests as well as grassland soils along a central Euro-
pean transect in order to investigate the variability and ro-
bustness of various proxies and to identify effects related to
vegetation. Soil pH values derived from brGDGTs correlate
reasonably well with measured soil pH values but are sys-
tematically overestimated (1pH= 0.6± 0.6). The branched
vs. isoprenoid tetraether index (BIT) can give some indi-
cation whether the pH reconstruction is reliable. Tempera-
tures derived from brGDGTs overestimate mean annual air
temperatures slightly (1TMA = 0.5 ◦C± 2.4). Apparent iso-
topic fractionation (εn-alkane/precipitation and εsugar/precipitation)

is lower for grassland sites than for forest sites due to signal
damping; i.e. grass biomarkers do not record the full evap-
otranspirative leaf water enrichment. Coupling δ2Hn-alkane
with δ18Osugar allows us to reconstruct the stable iso-
topic composition of the source water more accurately than
without the coupled approach (1δ2H=∼−21 ‰± 22 ‰
and 1δ18O=∼−2.9 ‰± 2.8 ‰). Similarly, relative hu-
midity during daytime and the vegetation period (RHMDV)
can be reconstructed using the coupled isotope approach
(1RHMDV =∼−17± 12). Especially for coniferous sites,
reconstructed RHMDV values as well as source water iso-
tope composition underestimate the measured values. This
can likely be explained by understorey grass vegetation at
the coniferous sites contributing significantly to the n-alkane
pool but only marginally to the sugar pool in the topsoils.
Vegetation-dependent variable signal damping and εbio (re-
garding 2H between n-alkanes and leaf water) along our
European transect are difficult to quantify but likely con-
tribute to the observed underestimation in the source wa-
ter isotope composition and RH reconstructions. Microcli-
mate variability could cause the rather large uncertainties.
Vegetation-related effects do, by contrast, not affect the
brGDGT-derived reconstructions. Overall, GDGTs and the
coupled δ2Hn-alkane–δ18Osugar approach have great potential
for more quantitative paleoclimate reconstructions.
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1 Introduction

Information about the variability and consequences of past
climate changes is a prerequisite for precise predictions re-
garding the present climate change. Molecular fossils, so-
called biomarkers, have great potential to enhance our un-
derstanding about variations in past climate and environ-
mental changes. Lipid biomarkers in particular are increas-
ingly used for paleoclimate and environmental reconstruc-
tions (e.g. Brincat et al., 2000; Eglinton and Eglinton, 2008;
Rach et al., 2014; Romero-Viana et al., 2012; Schreuder et
al., 2016). However strengths and limitations of respective
proxies need to be known (Dang et al., 2016). For this, cali-
brations using modern reference samples are essential.

One famous and widely applied lipid biomarker group
are terrestrial branched glycerol dialkyl glycerol tetraethers
(brGDGTs). They are synthesised in the cell membranes of
anaerobe heterotrophic soil bacteria (Oppermann et al., 2010;
Weijers et al., 2010) and have great potential for the recon-
struction of past environmental conditions (e.g. Coffinet et
al., 2017; Schreuder et al., 2016; R. Zech et al., 2012), al-
though some uncertainties exist. Calibration studies suggest
that the relative abundance of the individual brGDGTs varies
with mean annual air temperature (TMA) and soil pH (Peterse
et al., 2012; Weijers et al., 2007), at least across large, global
climate gradients or along pronounced altitudinal gradients
(Wang et al., 2017). However, in arid regions the production
of brGDGT is limited, while isoprenoidal GDGTs (iGDGTs)
produced by archaea provide the dominant part of the overall
soil GDGT pool (Anderson et al., 2014; Dang et al., 2016;
Dirghangi et al., 2013; Wang et al., 2013; Xie et al., 2012).
The ratio of brGDGTs vs. isoprenoid GDGTs (BIT) can be
used as an indication of whether a reconstruction of TMA
and pH will be reliable. Moreover, Mueller-Niggemann et
al. (2016) revealed an influence of the vegetation cover on the
brGDGT producing soil microbes. From field experiments, it
is known that vegetation type and mulching practice strongly
effect soil temperature and moisture (Awe et al., 2015; Liu
et al., 2014). Thus, multiple factors can be expected to influ-
ence soil microbial communities and GDGT production. So
far, little is known about the variability of GDGT proxies on
a regional scale, and a calibration study with a small climate
gradient but with different vegetation types might be useful.

Concerning paleohydrology proxies, compound-specific
stable hydrogen isotopes of leaf wax biomarkers, such as
long-chain n-alkanes (δ2Hn-alkanes), record the isotopic sig-
nal of precipitation and therefore past climate and environ-
mental conditions (Sachse et al., 2004, 2006). However, var-
ious influencing factors are known, e.g. the moisture source
to leaf waxes (Pedentchouk and Zhou, 2018 and Sachse et
al., 2012, for review). Next is the evapotranspiration of leaf
water (Feakins and Sessions, 2010; Kahmen et al., 2013;
Zech et al., 2015), which is strongly driven by relative air
humidity (RH; e.g. Cernusak et al., 2016 for review). In ad-
dition, a strong precipitation signal is known to be incorpo-

rated into long-chain leaf waxes (Hou et al., 2008; Rao et al.,
2009; Sachse et al., 2004). In paleoclimate studies, it is of-
ten not feasible to disentangle between the evapotranspirative
enrichment and the precipitation signal. Zech et al. (2013)
proposed coupling δ2Hn-alkane results with oxygen stable iso-
topes of hemicellulose-derived sugars (δ18Osugar). Assum-
ing constant biosynthetic fractionation (εbio) for the different
compound classes (n-alkanes and hemicellulose sugars), this
coupling enables the reconstruction of the isotopic compo-
sition of leaf water, RH, δ2H and δ18O of plant source wa-
ter (≈ δ2H and δ18O of precipitation; Tuthorn et al., 2015).
So far, a detailed evaluation of this approach on the Euro-
pean scale, as well as related effects concerning vegetation
changes, is missing.

We analysed topsoil samples under coniferous, deciduous
and grassland vegetation along a central European transect
in order to estimate the variability of the biomarker proxies.
More specifically, we aim to test whether

i. the vegetation type has an influence on the brGDGT
proxies, the δ2Hn-alkane and the δ18Osugar stable iso-
topic composition, and the reconstructed δ2Hsource-water,
δ18Osource-water and RH;

ii. the published brGDGT proxies used for reconstruct-
ing mean annual temperature and soil pH are sensitive
enough to reflect the medium changes in temperature
and soil pH along our transect;

iii. the coupled δ2Hn-alkane–δ18Osugar approach enables a
δ2H and δ18O of precipitation and RH reconstruction
along the transect.

2 Material and methods

2.1 Geographical setting and sampling

In November 2012, we collected 29 topsoil samples (0–5 cm
depth) from 16 locations along a transect from southern Ger-
many to southern Sweden (Fig. 1a). We distinguished be-
tween sites with coniferous forest (con, n= 9), deciduous
forest (dec, n= 14) and grassland (grass, n= 6) vegetation
cover (for more details see Schäfer et al., 2016, and Table S1
in the Supplement).

2.2 Database of instrumental climate variables and
isotope composition of precipitation

Climate data were derived from close-by weather obser-
vation stations operated by regional institutions (Deutscher
Wetterdienst (DWD) for Germany, Danmarks Meteorolo-
giske Institut (DMI) for Denmark and the Sveriges Meteo-
rologiska och Hydrologiska Institute (SMHI) for Sweden).
The DWD provides hourly data for each station (DWD Cli-
mate Data Center, 2018b), enabling not only the calculation
of TMA, but also of the mean annual relative air humidity
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(RHMA), mean temperature and relative air humidity during
the vegetation period (TMV and RHMV), and daytime tem-
perature and relative humidity averages over the vegetation
period (TMDV and RHMDV). In addition, annual precipitation
observations were used to derive the mean annual precip-
itation amount (PMA; DWD Climate Data Center, 2018a).
From the DMI, the respective climate variables were derived
from published technical reports (Cappelen, 2002; Frich et
al., 1997; Laursen et al., 1999). The SMHI provides open
data from which we derived the climate variables for the
Swedish sites (Swedish Meteorological and Hydrological In-
stitute, 2018). For more details about the climate database
used for calculations and comparisons, the reader is referred
to Table S2.

For comprising German precipitation (δ2H and δ18O)
along the transect, we realised a regionalisation (called
δ2HGIPR and δ18OGIPR) using online available data from
34 German GNIP stations, four Austrian ANIP stations
and the Groningen GNIP station (van Geldern et al., 2014;
IAEA/WMO, 2018; Stumpp et al., 2014; Umweltbundesamt
GmbH, 2018), following the approach of Schlotter (2007).
However, instead of the multivariate regression procedure ap-
plied by Schlotter (2007), we used a random forest approach
(Hothorn et al., 2006; Strobl et al., 2007, 2008) to describe
the relationship of squared latitude, latitude, longitude and al-
titude vs. long-term weighted means of precipitation δ2H and
δ18O and realised the prediction for each site (see the Sup-
plement for more information). For the Danish and Swedish
sites, such a procedure was not possible. Hence, the annual
precipitation δ2H and δ18O values were derived from the
Online Isotopes in Precipitation Calculator (OIPC, version
3.1), therefore called δ2HOIPC and δ18OOIPC (Bowen, 2018;
Bowen and Revenaugh, 2003; IAEA/WMO, 2015). The fi-
nal used δ2HGIPR,OIPC and δ18OGIPR,OIPC data are given in
Table S1.

The TMA along the transect ranges from 5.3 to 10.6 ◦C,
and PMA ranges from 554 to 1769 mm (Fig. 1b). Precipita-
tion δ2H and δ18O shows moderate changes along the tran-
sect, δ2HGIPR,OIPC varies between −52 ‰ and −79 ‰, and
δ18OGIPR,OIPC ranges from −7.4 ‰ to −10.9 ‰ (Fig. 1c).

Correlations between δ18OGIPR,OIPC and PMA, altitude of
the locations, and TMA are given in the Supplement (Figs. S1
to S3), along with a δ2HGIPR,OIPC vs. δ18OGIPR,OIPC scatter
plot (Fig. S4).

2.3 Soil extractions and analysis

2.3.1 GDGTs and pH

A detailed description of sample preparation for lipid anal-
ysis can be found in Schäfer et al. (2016). Briefly, 1–
6 g of freeze-dried and ground soil sample was microwave
extracted with 15 mL dichloromethane (DCM) /methanol
(MeOH) 9 : 1 (v : v) at 100 ◦C for 1 h. Extracts were sepa-
rated over aminopropyl silica gel (Supelco, 45 µm) pipette

columns. The nonpolar fraction (including n-alkanes) was
eluted with hexane and further purified over AgNO3-coated
silica pipette columns (Supelco, 60–200 mesh) and zeo-
lite (GHGeochem Ltd.). The GDGT-containing fraction was
eluted with DCM : MeOH 1 : 1 (v : v), redissolved in hex-
ane / isopropanol 99 : 1 (v : v) and transferred over 0.45 µm
PTFE filters into 300 µL inserts. For quantification, a known
amount of a C46 diol standard was added after transfer. The
samples were analysed at ETH Zurich using an Agilent 1260
Infinity series HPLC–atmospheric chemical pressure ioni-
sation mass spectrometer (HPLC-APCI-MS) equipped with
a Grace Prevail Cyano column (150 mm× 2.1 mm; 3 µm).
The GDGTs were eluted isocratically with 90 % A and 10 %
B for 5 min and then with a linear gradient to 18 % B for
34 min at 0.2 mL min−1, where A is hexane and B is hex-
ane / isopropanol (9 : 1, v : v). Injection volume was 10 µL
and single ion monitoring of [M+H]+ was used to detect
GDGTs.

The pH of the samples was measured in the laboratory
of the Soil Biogeochemistry group, Institute of Agronomy
and Nutritional Sciences, Martin Luther University Halle-
Wittenberg, using a pH meter in a 1 : 3 soil : water (w/v) mix-
ture.

2.3.2 δ2H n-alkane

The hydrogen isotopic composition of the highest concen-
trated n-alkanes (n-C25, n-C27, n-C29, n-C31 and n-C33) was
determined using a TRACE GC Ultra gas chromatography
connected to a Delta V Plus isotope ratio mass spectrom-
eter via a 2H pyrolysis reactor kept at 1420 ◦C (GC-2H-Py-
IRMS; Thermo Scientific, Bremen, Germany) at ETH Zurich
(Christoph et al., 2019). For more details about n-alkane
quantification the reader is refereed to Schäfer et al. (2016).
The compound-specific 2H/1H ratios were calibrated against
an external standard with C15–C35 homologues. External
standard mixtures (A4 mix from Arndt Schimmelmann, Uni-
versity of Indiana) were run between the samples for mul-
tipoint linear normalisation. The H+3 factor was determined
on each measurement day and was constant throughout the
periods of the sample batches. Samples were analysed in du-
plicates, and results typically agreed within 4 % (average dif-
ference= 1.4 %). All δ2H values are expressed relative to the
Vienna Standard Mean Ocean Water (V-SMOW).

2.3.3 δ18Osugar

Hemicellulose sugars were extracted and purified using a
slightly modified standard procedure (Amelung et al., 1996;
Guggenberger et al., 1994; Zech and Glaser, 2009). Briefly,
myo-inositol was added to the samples prior to extraction as
the first internal standard. The sugars were released hydrolyt-
ically using 4 M trifluoroacetic acid for 4 h at 105 ◦C, cleaned
over glass fibre filters and further purified using XAD and
Dowex columns. Before derivatisation with methylboronic
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Figure 1. (a) Sample locations (red dots, map source: US National Park Service), (b) variations of mean annual air temperature (TMA, red
dots and line) and mean annual precipitation (PMA, blue bars) derived from close-by climate station data, and (c) hydrogen and oxygen
stable isotope composition of precipitation (δ2HGIPR,OIPC and δ18OGIPR,OIPC, respectively) as derived for the sampled transect locations
(see Sect. 2.2 GIPR δ2H and δ18O generation procedure). The reader is referred to Sect. 2.2 (and Tables S1 and S2) for database and reference
information of data plotted in (b) and (c).

acid (Knapp, 1979), the samples were frozen and freeze-
dried, and 3-O-methylglucose in dry pyridine was added
as the second internal standard. Compound-specific hemi-
cellulose sugar 18O measurements were performed in the
laboratory of the Soil Biogeochemistry group, Institute of
Agronomy and Nutritional Sciences, Martin Luther Univer-
sity Halle-Wittenberg, using GC-18O-Py-IRMS (all devices
from Thermo Fisher Scientific, Bremen, Germany). Standard
deviations of the triplicate measurements were 1.4 ‰ (over
29 investigated samples) for arabinose and xylose. We fo-
cus on these two hemicellulose-derived neutral sugars ara-
binose and xylose as they strongly predominate over fucose
in terrestrial plants, soils and sediments (Hepp et al., 2016,
and references therein). Rhamnose concentrations were too
low to obtain reliable δ18O results. All δ18O values are ex-
pressed relative to the Vienna Standard Mean Ocean Water
(V-SMOW).

2.4 Theory and calculations

2.4.1 Calculations used for the GDGT-based
reconstructions

The branched and isoprenoid tetraether (BIT) index is calcu-
lated according to Hopmans et al. (2004); for structures see
Fig. S5:

BIT=
Ia+ IIa+ IIIa

Ia+ IIa+ IIIa+ crenarchaeol
. (1)

The cyclopentane moiety number of brGDGTs correlates
negatively with soil pH (Weijers et al., 2007), which led
to the development of the ratio of cyclisation of branched
tetraethers (CBT). CBT and the CBT-based pH (pHCBT)
were calculated according to Peterse et al. (2012):

CBT= log
Ib+ IIb
Ia+ IIa

, (2)

pHCBT = 7.9− 1.97×CBT. (3)

The number of methyl groups in brGDGTs correlates neg-
atively with TMA and soil pH (Peterse et al., 2012; Weijers
et al., 2007). Thus, the ratio of the methylation of branched
tetraethers (MBT) and the CBT ratio can be used to re-
construct TMA. We use the equation given by Peterse et
al. (2012):

MBT′ =
Ia+ Ib+ Ic

Ia+ Ib+ Ic+ IIa+ IIb+ IIc+ IIIa
, (4)

TMA = 0.81− 5.67×CBT+ 31.0×MBT′. (5)

Biogeosciences, 17, 741–756, 2020 www.biogeosciences.net/17/741/2020/
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2.4.2 Calculations and concepts used for the coupled
δ2H–δ18O approach

The apparent fractionation is calculated according to Cer-
nusak et al. (2016):

εn-alkane/precipitation =

(
δ2Hn-alkane− δ

2HGIPR,OIPC

1+ δ2HGIPR,OIPC/1000

)
, (6)

εsugar/precipitation =

(
δ18Osugar− δ

18OGIPR,OIPC

1+ δ18OGIPR,OIPC/1000

)
. (7)

The isotopic composition of leaf water (δ2Hleaf-water and
δ18Oleaf-water) can be calculated using εbio for δ2Hn-alkane
(−160 ‰; Sachse et al., 2012; Sessions et al., 1999) and
δ18Osugar (+27 ‰; Cernusak et al., 2003; Schmidt et al.,
2001):

δ2Hleaf-water =

(
1000+ δ2Hn-alkane

1000+ εbio(n-alkane)

)
× 103

− 1000, (8)

δ18Oleaf-water =

(
1000+ δ18Osugar

1000+ εbio(sugar)

)
× 103

− 1000. (9)

Zech et al. (2013) introduced the conceptual model for the
coupled δ2Hn-alkane–δ18Osugar approach in detail. Briefly, the
coupled approach is based on the following assumptions (il-
lustrated in Fig. 8). (i) The isotopic composition of precip-
itation, which is set to be equal to the plant source water,
typically plots along the global meteoric water line (GMWL;
δ2H= 8×δ18O+10) in a δ18O vs. δ2H space (Craig, 1961).
(ii) Source water uptake by plants does not lead to any frac-
tionation (e.g. Dawson et al., 2002), and significant evapo-
ration of soil water can be excluded. (iii) Evapotranspiration
leads to enrichment of the remaining leaf water along the lo-
cal evaporation line (LEL; Allison et al., 1985; Bariac et al.,
1994; Walker and Brunel, 1990), compared to the source wa-
ter taken up by the plant. (iv) The biosynthetic fractionation
is assumed to be constant. In addition, isotopic equilibrium
between plant source water (∼weighted mean annual precip-
itation) and the local atmospheric water vapour is assumed.
Further assumption concerns the isotope steady state in the
evaporating leaf water reservoir. The coupled approach al-
lows for reconstruction of the isotopic composition of plant
source water (δ2Hsource-water and δ18Osource-water) from the re-
constructed leaf water, by calculating the intercepts of the
LELs with the GMWL (Zech et al., 2013). The slope of the
LEL (SLEL) can be assessed by the following equation (Gat,
1971):

SLEL =
ε∗2 +C

2
k

ε∗18+C
18
k
, (10)

where ε∗ represents equilibrium isotope fractionation fac-
tors and Ck represents kinetic fractionation factors. The
latter equals 25.1 ‰ and 28.5 ‰ for C2

k and C18
k , respec-

tively (Merlivat, 1978). The equilibrium fractionation fac-
tors can be derived from empirical equations (Horita and

Wesolowski, 1994) by using TMDV values. For two Danish
sites TMDV values are not available; instead TMV is used here
(Sect. 2.2 and Table S2).

In a δ18O–δ2H diagram, the distance of the leaf water
from the GMWL defines the deuterium excess of leaf water
(dleaf-water = δ

2Hleaf-water−8×δ18Oleaf-water, according Dans-
gaard (1964); Fig. 8). To convert dleaf-water into mean RH dur-
ing daytime and the vegetation period (RHMDV), a simplified
Craig–Gordon model can be applied (Zech et al., 2013):

RH= 1−
1d

ε∗2 − 8× ε∗18+C
2
k − 8×C18

k
, (11)

where 1d is the difference in dleaf-water and the deuterium
excess of source water (dsource-water).

2.5 Statistics

In the statistical analysis we checked sample distributions for
normality (Shapiro and Wilk, 1965) and for equal variance
(Levene, 1960). If normality and equal variances are given,
we perform an analysis of variance (ANOVA). If that is not
the case, we conduct the non-parametric Kruskal–Wallis test.
ANOVA or Kruskal–Wallis are used to find significant differ-
ences (a = 0.05) between the vegetation types (deciduous,
conifer and grass).

In order to describe the relation along a 1 : 1 line, the
coefficient of correlation (R2) was calculated as R2

= 1−∑
(modeled−measured)2/

∑
(measured−measured mean)2.

The small r2 is taken as coefficient of correlation
of a linear regression between a dependent (y) and
explanatory variable(s). The root-mean-square er-
ror (RMSE) of the relationships was calculated as

RMSE=
√(

1
n
·
∑
(modeled−measured)2

)
. All data

plotting and statistical analysis was realised in R (version
3.2.2; R Core Team, 2015).

3 Results and discussion

3.1 GDGT concentrations

GDGT Ia has the highest concentration under all vegetation
types, followed by GDGT IIa and GDGT IIIa (Fig. 2). GDGT
Ib, IIb and Ic occur in minor amounts and GDGT IIc and
IIIb only in trace amounts. GDGT IIIc was below the detec-
tion limit in most of the samples (Table S3). Although other
studies document an influence of the vegetation cover on soil
temperature and soil water content, which control the micro-
bial community composition in soils (Awe et al., 2015; Liu
et al., 2014; Mueller-Niggemann et al., 2016), we find no sta-
tistically different pattern of the individual brGDGTs.

Total concentrations of brGDGTs range from 0.32 to
9.17 µg g−1 dry weight and tend to be highest for the conif-
erous samples and lowest for the grasses (Fig. 3a, Table S3).

www.biogeosciences.net/17/741/2020/ Biogeosciences, 17, 741–756, 2020
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Figure 2. Mean concentrations of individual brGDGTs as percent-
age of all brGDGTs for the three investigated types. Abbrevia-
tions: con: coniferous forest sites (n= 9); dec: deciduous forest
sites (n= 14); grass: grassland sites (n= 6).

Bulk brGDGT concentrations lie within the range of other
studies examining soils of mid-latitude regions (Huguet et
al., 2010a, b; Weijers et al., 2011). Similar concentrations in
coniferous and deciduous samples imply that brGDGT pro-
duction does not strongly vary in soils below different for-
est types. The grass samples show lower brGDGT concen-
trations compared to the forest samples, but this is prob-
ably mainly due to ploughing of the grass sites in former
times and hence admixing of mineral subsoil material. The
differences in brGDGT concentrations are not significant
(p value= 0.06).

3.2 BIT index

Most of the samples have a BIT index higher than 0.9 (Fig. 3b
and Table S3). The BIT values are typical for soils in humid
and temperate climate regions (Weijers et al., 2006). How-
ever, outliers exist. The most likely source of iGDGTs in soils
are Thaumarchaeota, i.e. aerobe ammonia oxidising archaea
producing Crenarchaeol and its regioisomer (Schouten et al.,
2013 and references therein), when the precipitation amount
drops below 700–800 mm (Dang et al., 2016; Dirghangi et
al., 2013). The PMA data of our sampling sites mostly show
precipitation > 550 mm (Fig. 1b), but one has to be aware
that these data are based on the climate station closest to the
respective sampling locations and that microclimate effects,
such as sunlight exposure, canopy cover or exposition, might
have a pronounced influence on the brGDGT vs. iGDGT dis-
tribution. Mueller-Niggemann et al. (2016) found higher BIT
indices in upland soils compared to paddy soils and stated
that the management type also influences BIT values in soils.
Along our transect, grass sites tend to have slightly lower BIT
values than forest sites, probably due to the absence of a litter
layer and hence no isolation mechanism preventing evapora-
tion of soil water. Differences between vegetation types are
not significant (p value= 0.32).

3.3 CBT-derived pH

The CBT ratio shows a pronounced variation indepen-
dent of vegetation type with values between 0.03 and 2.16
(Fig. 3c). The coniferous samples tend to be highest, but
the differences between vegetation types are not signifi-
cant (p value= 0.48). The CBT index can be related to pH
in acidic and/or humid soils (e.g. Dirghangi et al., 2013;
Mueller-Niggemann et al., 2016; Peterse et al., 2012; Wei-
jers et al., 2007) but might be an indicator of soil water con-
tent and hence precipitation in more arid and alkaline soils
(e.g. Dang et al., 2016). There is a pronounced correlation be-
tween CBT and soil pH (Fig. 4), which is in good agreement
with other studies from mid-latitude regions where precipita-
tion is relatively high (Anderson et al., 2014, and references
therein). Moreover, the CBT-to-pH relationship in terms of
slope and intersect in our dataset (CBT=−0.47× pH+ 3.5,
r2
= 0.7, p value< 0.0001, n= 29) is comparable to the

correlation described for the global calibration dataset of
Peterse et al. (2012) (CBT=−0.36× pH+ 3.1, r2

= 0.7,
p value< 0.0001, n= 176).

However, there are some outliers in the CBT–pH corre-
lation, which need further examination (see locations grass
L04, dec L10 and dec L12 as marked in Figs. 4 and 5).
The outliers show lower BIT indices (< 0.85, Table S3).
Even though the data from the nearest climate station sug-
gest no abnormal PMA. Local effects such as differences
in the amount of sunlight exposure, nutrient availability for
brGDGT-producing organisms or most likely soil water con-
tent might influence the brGDGT production at these loca-
tions (Anderson et al., 2014; Dang et al., 2016). A lower BIT
index as well as a lower CBT occur when soil water con-
tent decreases (Dang et al., 2016; Sun et al., 2016) or when
aeration is high and less anoxic microhabitats for GDGT-
producing microbes exist (e.g. Dirghangi et al., 2013).

As the CBT and pH are similarly correlated in our dataset
and the global dataset of Peterse et al. (2012), the CBT-
derived pH correlated well with the actual pH (Fig. 5a;
R2
= 0.3). Expressed as 1pH (CBT-derived pH – measured

pH), there is a tendency that the GDGTs result in an overesti-
mation of the real pH for the forest sites (Fig. 5b). However,
a Kruskal–Wallis test shows no statistically significant dif-
ference between the vegetation types, with a p value of 0.13.
The overall 1pH of 0.6± 0.6 shows that the reconstruction
of soil pH using brGDGTs works well along this transect.

3.4 MBT′–CBT-derived TMA reconstructions

The MBT′ shows high variability with values ranging from
0.17 to 0.67 and no statistical differences between vegeta-
tion types (p value= 0.54; Fig. 3d, Table S3). When com-
paring reconstructed (MBT′–CBT-derived) TMA with climate
station TMA, the data plot close to the 1 : 1 line and fit well
into the global dataset of Peterse et al. (2012) (Fig. 6a). The
1TMA values reveal an overall offset of 0.5 ◦C± 2.4, and
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Figure 3. (a) Total concentrations of brGDGTs in microgrammes per gramme of dry weight, as well as (b) BIT, (c) CBT and (d) MBT′.
Abbreviations: con: coniferous forest sites (n= 9); dec: deciduous forest sites (n= 14); grass: grassland sites (n= 6). Box plots show the
median (red line), interquartile range (IQR) with the upper (75 %) and lower (25 %) quartiles, lowest whisker still within 1.5 IQR of the
lower quartile, and highest whisker still within 1.5 IQR of the upper quartile; dots mark outliers.

Figure 4. CBT-to-pH relationship in our dataset in compari-
son to the global calibration dataset from Peterse et al. (2012)
(CBT=−0.36× pH+ 3.1, r2

= 0.7, p value< 0.0001, n= 176,
black line). Abbreviations: con: coniferous forest sites (n= 9); dec:
deciduous forest sites (n= 14); grass: grassland sites (n= 6).

there is no statistical difference between vegetation types
(Fig. 6b). The standard deviation in1TMA of ±2.4 is well in
line with the RMSE of 5.0 for the global calibration dataset
(Peterse et al., 2012).

3.5 Potential impact of the used liquid chromatography
method on pH and TMA reconstructions

The GDGT data presented in this study are not acquired with
the up-to-date method (e.g. compare De Jonge et al., 2014 vs.
R. Zech et al., 2012). De Jonge et al. (2014) presented a new
liquid chromatography method which enables the separation
for the brGDGTs with m/z 1036, 1034, 1032, 1050, 1048
and 1046 into 6-methyl and 5-methyl stereoisomers. The old
method did not allow such a separation (R. Zech et al., 2012);
thus, in the calibration, often the sum of 6 and 5-methylated
brGDGTs was used (see and compare De Jonge et al., 2014,
vs. Peterse et al., 2012). This introduces scatter to the MBT′–
CBT-based TMA reconstructions and can cause a correlation
between pH and MBT′ (for more details see De Jonge et

al., 2014). De Jonge et al. (2014) moreover show that the
6-methyl brGDGTs are ubiquitously abundant in soils from
all over the world, based on reanalysing the dataset of Pe-
terse et al. (2012). However, they also compare reconstructed
TMA values based on MBT′–CBT calibration (Peterse et al.,
2012) and their newly developed TMA calibration and state
that they plot around a 1 : 1 line. They furthermore state that,
especially for arid areas, larger deviations can be expected.
Finally, they conclude that the use of the newly developed
calibrations will improve the TMA and pH reconstructions for
areas with arid climate conditions. Because our study tran-
sect spans from southern Germany to southern Sweden, rep-
resenting temperate and humid climate conditions, we argue
that the usage of the older liquid chromatography method
does not introduce a systematic error in our TMA and pH re-
constructions. Still, a higher variability/scatter could be asso-
ciated with the calibration of Peterse et al. (2012) and there-
fore also present in our TMA and pH reconstructions.

3.6 Apparent fractionation of δ2H and δ18O in the
different vegetation types

δ2H values could be obtained for the n-alkanes C27, C29 and
C31 in all samples and additionally at two locations for n-
C25 and at six other locations for n-C33. The δ2Hn-alkane val-
ues, calculated as the mean of n-C25 to n-C31 δ

2H, range
from −156 ‰ to −216 ‰. Pooled standard deviations show
an overall average of 3.6 ‰. The δ18Osugar values, calculated
as the area-weighted means for arabinose and xylose, range
from +27.7 ‰ to +39.4 ‰. The average weighted mean
standard deviation is 1.4 ‰. The compound-specific isotope
data are summarised along with the calculations in Table S4.

Apparent fractionation (εn-alkane/precipitation) is on the order
of −120 ‰ to −150 ‰, i.e. a bit less than the biosynthetic
fraction of −160 ‰. This implies that evapotranspirative en-
richment is ∼ 10 ‰ to 40 ‰ (Fig. 7a). εn-alkane/precipitation
is lower for grass sites compared to the forest sites. Dif-
ferences are significant between deciduous and grass sites
(p value= 0.005). This finding supports the results of other
studies (Kahmen et al., 2013; Liu and Yang, 2008; McIner-
ney et al., 2011) and can be named signal damping. Grasses
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Figure 5. (a) Correlation between measured pH and reconstructed soil pH (pHCBT) from our transect data in comparison to the global
calibration dataset from Peterse et al. (2012) (R2

= 0.7, RMSE= 0.75, n= 176). The black line indicates the 1 : 1 relationship. (b) Box plots
of 1pH (refers to pHCBT–pH). Box plots show the median (red line), interquartile range (IQR) with the upper (75 %) and lower (25 %)
quartiles, lowest whisker still within 1.5 IQR of the lower quartile, and highest whisker still within 1.5 IQR of the upper quartile; dots mark
outliers. Abbreviations: con: coniferous forest sites (n= 9); dec: deciduous forest sites (n= 14); grass: grassland sites (n= 6).

Figure 6. (a) Correlation between climate station TMA and reconstructed (MBT′–CBT-derived) TMA. For comparison, the global calibration
dataset from Peterse et al. (2012) is shown. The black line indicates the 1 : 1 relationship. (b) Box plots of 1TMA (refers to reconstructed
TMA−TMA from climate stations) in the different vegetation types from our transect study. Box plots show the median (red line), interquartile
range (IQR) with the upper (75 %) and lower (25 %) quartiles, lowest whisker still within 1.5 IQR of the lower quartile, and highest whisker
still within 1.5 IQR of the upper quartile; dots mark outliers. Abbreviations: con: coniferous forest sites (n= 9); dec: deciduous forest sites
(n= 14); grass: grassland sites (n= 6).

do not only incorporate the evaporatively enriched leaf water
but also unenriched xylem water in the growth and differenti-
ation zone of grasses (Gamarra et al., 2016; Liu et al., 2017).

The grass-derived hemicellulose sugar biomarkers do not
fully record the evapotranspirative enrichment of the leaf
water, either, as indicated by lower apparent fractionation
(εsugar/precipitation) in Fig. 7b. The differences are significant
between forest and grass sites (p value< 0.005). This is in
agreement with a study on cellulose extracted from grass
blades (Helliker and Ehleringer, 2002), and again the signal
damping can be explained with incorporation of enriched leaf
water and non-enriched stem water.

Based on the comparison of evapotranspirative enrichment
between forest and grass sites, the signal damping can be
quantified to be ∼ 31 % for the hemicellulose sugars and
∼ 49 % for the n-alkanes. This is in agreement with other

studies that reported a loss of 22 % of the leaf water en-
richment for hemicellulose sugars (Helliker and Ehleringer,
2002) and 39 % to 62 % loss of the leaf water enrichment for
n-alkanes (Gamarra et al., 2016).

3.7 δ2Hsource-water and δ18Osource-water reconstructions

The δ2H versus δ18O diagram shown in Fig. 8 graph-
ically illustrates the reconstruction of δ2Hleaf-water and
δ18Oleaf-water (coloured dots) from δ2Hn-alkane and δ18Osugar
(crosses), as well as the reconstruction of δ2Hsource-water
and δ18Osource-water (black dots). For reconstructing
δ2Hsource-water and δ18Osource-water, LELs with an average
slope of 2.8± 0.1 (Eq. 10) can be generated through every
leaf water point and the intercepts of these LELs with the
GMWL.
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Figure 7. Apparent fractionation (a) εn-alkane/precipitation and (b) εsugar/precipitation. Biosynthetic fractionation factors according to
Sect. 2.4.2. Box plots show the median (red line), interquartile range (IQR) with the upper (75 %) and lower (25 %) quartiles, lowest whisker
still within 1.5 IQR of the lower quartile, and highest whisker still within 1.5 IQR of the upper quartile; dots mark outliers. Abbreviations:
con: coniferous forest sites (n= 9); dec: deciduous forest sites (n= 11 and 14 for n-alkanes and sugars, respectively); grass: grassland
sites (n= 4 and 6 for n-alkanes and sugars, respectively). The figure conceptually illustrates the effect of biosynthetic fractionation and
evapotranspirative enrichment as well as signal damping.

Figure 8. δ2H vs. δ18O diagram illustrating the coupled
δ2Hn-alkane–δ18Osugar approach: measured δ2Hn-alkane and
δ18Osugar values, reconstructed δ2Hleaf-water and δ18Oleaf-water
(according Eqs. 8 and 9), and reconstructed δ2Hsource-water
and δ18Osource-water in comparison to GIPR and OIPC-based
δ2Hprecipitation and δ18Oprecipitation. Abbreviations: con: conifer-
ous forest sites (n= 9); dec: deciduous forest sites (n= 11); grass:
grassland sites (n= 4).

The reconstructed δ2Hsource-water and δ18Osource-water
results can be compared with the δ2HGIPR,OIPC and
δ18OGIPR,OIPC data (Fig. 9). This comparison reveals that
the coupled δ2Hn-alkane–δ18Osugar approach yields more ac-
curate δ2Hsource-water and δ18Osource-water compared to sin-
gle δ2Hn-alkane approaches. However, the range of the recon-
structed δ2Hsource-water and δ18Osource-water values is clearly

larger than in δ2HGIPR,OIPC and δ18OGIPR,OIPC values.
δ2H is systematically underestimated by ∼ 21 ‰± 22 ‰
(Fig. 9b) and δ18O by ∼ 2.9 ‰± 2.8 ‰ (Fig. 9d). The
type of vegetation seems to be not particularly relevant
(p value= 0.18 for 1δ2H and p value= 0.34 for 1δ18O).
Nevertheless, the systematic offsets tend to be lowest for
the deciduous sites (1δ2H and 1δ18O are closer to zero
with ∼−5 ‰± 15 ‰ and ∼−1.1 ‰± 2.1 ‰), followed by
grass sites (∼−14 ‰± 20 ‰ and ∼−2.1 ‰± 2.6 ‰). In
comparison, the coniferous sites show the largest offsets
(∼−23 ‰± 26 ‰ for 1δ2H and ∼−3.0 ‰± 3.3 ‰ for
1δ18O). Differences are, however, not statistically signifi-
cant. The systematic offset and the large variability might
have more specific reasons, and we suggest that this is re-
lated to the type of vegetation. Deciduous trees produce lots
of leaf waxes and sugars (e.g. Prietzel et al., 2013; M. Zech
et al., 2012a), and all biomarkers reflect and record the evap-
otranspirative enrichment of the leaf water (e.g. Kahmen et
al., 2013; Tuthorn et al., 2014). By contrast, coniferous trees
produce quite low amounts of n-alkanes (Diefendorf and
Freimuth, 2016; M. Zech et al., 2012a), while sugar concen-
trations are as high as in other vascular plants (e.g. Hepp et
al., 2016; Prietzel et al., 2013). For the coniferous soil sam-
ples this means that the n-alkanes stem most likely from the
understorey whereas the sugars originate from grasses and
coniferous needles. When the understorey is dominated by
grass species, the n-alkane biomarkers do not record the full
leaf water enrichment signal, whereas the sugars from the
needles do. The reconstructed leaf water for the coniferous
sites is therefore too negative concerning δ2H, and recon-
structed δ2Hsource-water and δ18Osource-water values thus also
become too negative (Fig. 8). Concerning the grass sites,
the following explanation can be found. Correcting for sig-
nal damping makes the reconstructed leaf water points more
positive and shifts them in Fig. 8 up and to the right. As the
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Figure 9. Correlation of reconstructed δ2Hsource-water
and δ18Osource-water vs. precipitation δ2HGIPR,OIPC and
δ18OGIPR,OIPC (a, c). Black lines indicate the 1 : 1 rela-
tionship. Differences between reconstructed source water
and precipitation (1δ2H= δ2Hsource-water− δ

2HGIPR,OIPC,
1δ18O= δ18Osource-water−δ

18OGIPR,OIPC) for the three different
vegetation types (b, d). Box plots show the median (red line),
interquartile range (IQR) with upper (75 %) and lower (25 %)
quartiles, lowest whisker still within 1.5 IQR of the lower quartile,
and highest whisker still within 1.5 IQR of the upper quartile.
Abbreviations: con: coniferous forest sites (n= 9); dec: deciduous
forest sites (n= 11); grass: grassland sites (n= 4).

signal damping is stronger for δ2H than for δ18O, the cor-
rected leaf water points would now plot above the uncor-
rected ones. The corrected leaf water points lead to more
positive reconstructed δ2Hsource-water and δ18Osource-water val-
ues for the grass sites. However, Gao et al. (2014) and Liu
et al. (2016) showed that the εbio (regarding 2H between n-
alkanes and leaf water) of monocotyledon plants could be
larger than those of dicotyledonous ones. This would there-
fore also cause a more negative εn-alkane/precipitation for grasses
compared to trees. We observe that the εn-alkane/precipitation
is indeed more negative for the grass sites compared to the
forest sites (Fig. 7 and Sect. 3.6). Therefore, effects of sig-
nal damping vs. variable εbio along with vegetation types
are indistinguishable here. As an outlook for a future study,
we therefore strongly recommend a comparison between the
here measured δ2Hn-alkane values with modelled ones using,
for example, the new available model approach from Ko-
necky et al. (2019), which could provide insights if such veg-
etation effects on εbio of 2H in n-alkanes are describable.

Rooting depths specific to vegetation type could
partly cause the overall high variability in reconstructed
δ2Hsource-water and δ18Osource-water. Deep-rooting species
most likely use the water from deeper soil horizons and/or
shallow groundwater, which is equal to the (weighted) mean

annual precipitation (e.g. Herrmann et al., 1987). Shallow-
rooting plants take up water from upper soil horizons, which
is influenced by seasonal variations in δ2Hprecipiation and
δ18Oprecipiation and by soil water enrichment (Dubbert et al.,
2013). Thus, the overall assumption that the source water of
the plants reflects the local (weighted) mean precipitation
might be not fully valid for all sites. Moreover, a partial
contribution of root-derived rather than leaf-derived sugar
biomarkers in our topsoil samples is very likely. This does,
by contrast, not apply for n-alkanes, which are hardly
produced in roots (M. Zech et al., 2012b, and the discussion
therein).

Moreover, the high variability within the vegetation types
could be caused by variability in εbio of 2H in n-alkanes,
as well as 18O in sugars. There is an ongoing discussion
about the correct εbio for 18O in hemicellulose sugars (Stern-
berg, 2014 vs. Zech et al., 2014), and εbio is probably not
constant over all vegetation types. This translates into errors
concerning leaf water reconstruction and thus reconstructing
δ2Hsource-water and δ18Osource-water values (Eq. 9 and Fig. 8).
Likewise, the εbio values reported in the literature for 2H of n-
alkanes can be off from−160 ‰ by tens of per mille (Feakins
and Sessions, 2010; Tipple et al., 2015; Feakins et al., 2016;
Freimuth et al., 2017). The degree to which hydrogen orig-
inates from NADPH rather than leaf water is important, be-
cause NADPH is more negative (Schmidt et al., 2003). The
wide range in biosynthetic 2H fractionation factors, which
can be even larger, is therefore also related to the carbon and
energy metabolism state of plants (Cormier et al., 2018).

3.8 RH reconstruction

Reconstructed RHMDV ranges from 34 % to 74 %, while
RHMDV values from climate station data range from 61 % to
78 % (Fig. 10a). Biomarker-based values thus systematically
underestimate the station data (1RHMDV =−17 %± 12 %).
However, the offsets are much less for deciduous tree and
grass sites (1RHMDV =−10 %± 12 % and −7 %± 9 %, re-
spectively; Fig. 10b). The offsets for the coniferous sites are
−30 %± 11 % and significantly larger than for the deciduous
and grass sites (p values< 0.05).

Too low reconstructed RHMDV values for the coniferous
sites make sense in view of the previously discussed option
that soils contain n-alkanes from the understorey (which is
dominated by grass species), while sugars stem from needles
and grasses. As explained earlier already, the signal damp-
ing leads to too negative reconstructed δ2Hleaf-water (whereas
δ18O is affected less by the signal damping), and too neg-
ative δ2Hleaf-water translates into overestimated d-excess and
underestimated RH values. In Fig. 8, a correction for this re-
quires moving the coniferous leaf water data points upwards
towards more positive δ2H values; thus the distance between
the leaf water and the source water is reduced. It should be
noted that here variable εbio (regarding 2H between n-alkanes
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Figure 10. (a) Comparison of reconstructed (biomarker-based) RHMDV values and climate station RHMDV data. The black line indicates
the 1 : 1 relationship. (b) Differences between reconstructed and climate station RHMDV values (1RHMDV= reconstructed− climate station
RHMDV) for the three different vegetation types along the transect. Abbreviations: con: coniferous forest sites (n= 9); dec: deciduous forest
sites (n= 11); grass: grassland sites (n= 4).

and leaf water) along with vegetation types could also not be
distinguished from signal damping effects.

The underestimation of RH for the deciduous and grass
sites could be partly associated with the use of the GMWL
as a baseline for the coupled δ2Hn-alkane–δ18Osugar ap-
proach. The deuterium excess of local meteoric water lines
(LMWLs) is generally lower than the+10 ‰ of the GMWL,
while the slopes of the LMWLs are comparable to the
GMWL (Stumpp et al., 2014). In addition, if soil water
evaporation occurred before water uptake by the plants,
this would lead to an underestimation of biomarker-based
RHMDV values, too. It can be furthermore assumed that plant
metabolism is highest during times with direct sunshine and
high irradiation, i.e. during noon on sunny days. The relevant
RH could therefore be lower than the climate-station-derived
RHMDV. Indeed, already climate station RHMDV is consider-
ably lower than RHMA and RHMV (Table S1 in the Supple-
ment).

The uncertainty of reconstructed RHMDV values is large
for all three investigated vegetation types, and again these
uncertainties are probably also related to εbio, which is most
likely not constant as assumed for our calculations. More-
over, microclimate variability is underestimated in our ap-
proach. As mentioned in Sects. 2.4.2 and 3.7, in the coupled
approach not only the source water of the plants is equated
with (weighted) mean annual precipitation, but also an iso-
topic equilibrium between the source water and the (local)
atmospheric water vapour is assumed. However, in areas with
distinct seasonality this might be not fully valid. To account
for this lack of equilibrium between precipitation and local
atmospheric water vapour, apparent ε values can be calcu-
lated with data from Jacob and Sonntag (1991). As shown by
Hepp et al. (2019) those values can be used to achieve alter-
native RH reconstructions based on the coupled δ2Hn-alkane–
δ18Osugar approach. Such calculated RHMDV values are on
average 1.5 % more negative than the original values. How-

ever, this difference in RH is far below the analytical uncer-
tainties of the compound-specific biomarker isotope analysis.

Finally, the integration time of the investigated topsoils
has to be discussed. Unfortunately, no 14C dates are avail-
able for the soil samples. However, most likely the organic
matter has been built up over a longer timescale than the
available climate data, which are used for comparison. In
combination with vegetation changes/management changes
throughout that period, this could surely lead to a less tight
relationship of the reconstructions compared to the climate
station data. Root input of arabinose and xylose seems to be
of minor relevance in our topsoil samples. Otherwise, the re-
constructed δ18Osugar values would be too negative, resulting
in RHMDV overestimations, which are not observed.

4 Conclusions

We were able to show the following.

i. The vegetation type does not significantly influence the
brGDGT concentrations and proxies, yet the coniferous
sites tend to have higher brGDGT concentrations, BIT
indices and CBT-MBT′ ratios, while grass sites tend to
be lowest.

ii. CBT faithfully records soil pH with a median 1pH of
0.6± 0.6. The CBT overestimates the real pH in partic-
ular at the forest sites.

iii. CBT–MBT′-derived TMA values reflect the climate-
station-derived TMA values with a median 1TMA of
0.5 ◦C± 2.4, but again slightly too high reconstructions
for the forest sites were observed.

iv. Differences in the apparent fractionation between the
investigated vegetation types can be explained with sig-
nal damping.
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v. The reconstructed δ2Hsource-water and δ18Osource-water re-
flect the δ2HGIPR,OIPC and δ18OGIPR,OIPC with a sys-
tematic offset for δ2H of ∼−21 ‰± 22 ‰ and for
δ18O of ∼−2.9 ‰± 2.8 ‰ (based on overall medians
of1δ2H,1δ18O). This is caused by too negative recon-
structions for coniferous and grass sites. For coniferous
sites, this can be explained with n-alkanes originating
from understorey grasses. As for the grass sites, the sig-
nal damping or variable εbio along with vegetation types
affect δ2H more than δ18O. This leads to too negative re-
constructed δ2Hleaf-water values and thus to too negative
δ2Hsource-water and δ18Osource-water reconstructions.

vi. Reconstructed (biomarker-based) RHMDV values tend
to underestimate climate-station-derived RHMDV values
(1RHMDV =∼−17 %± 12 %). For coniferous sites the
underestimations are strongest, which can be explained
with understorey grasses being the main source of
n-alkanes for the investigated soils under coniferous
forests.

Overall, our study highlights the great potential of brGDGTs
and the coupled δ2Hn-alkane–δ18Osugar approach for more
quantitative paleoclimate reconstructions. Taking into ac-
count effects of different vegetation types improves cor-
relations and reconstructions. This holds particularly true
for the coupled δ2Hn-alkane–δ18Osugar approach, which is af-
fected by signal damping of the grass vegetation or vari-
able εbio (regarding 2H between n-alkanes and leaf water)
along with vegetation types. By contrast, vegetation-related
effects do not strongly influence the brGDGT-derived recon-
structions. Assuming constant εbio is likely a considerable
source of uncertainty and should be further addressed in fu-
ture field and/or modelling studies. Climate chamber exper-
iments are most promising to further evaluate and refine the
coupled δ2Hn-alkane–δ18Osugar approach, because uncertain-
ties related to microclimate variability can be reduced. Field
experiments like ours suffer from the fact that biomarker
pools in the sampled topsoils may have been affected by past
vegetation and climate changes and by the rather small range
covered by the sampled transect. Both make the compari-
son between reconstructions and observations more difficult
compared to large datasets and well-defined conditions.
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