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Abstract. Significant progress has been made in providing guidelines and recommendations for assessing the
ecological niche, stage of invasion, and probability of invasive alien plant species (IAPS) potential distribution in
space and time. We followed these recommendations by developing and comparing ordination and species dis-
tribution models (SDMs) of two important woody IAPS in Eastern Africa, Prosopis juliflora and Lantana camara,
and interpreting the results to inform IAPS management. The two species differ in their invasion history in East-
ern Africa; while L. camara was widely introduced there in the 19th century, P. juliflora was only planted at
selected locations in the 1970s and 1980s. For the SDMs, machine learning algorithms were used to generate one
ensemble model each for P. juliflora and L. camara. For ordination, we used bioclimatic variables, performed a
principal component analysis, and compared the native and global niches of the species with the Eastern African
niche. Niches varied substantially depending on the percentage of marginal climates excluded from the models.
Additional analysis of the local niches surrounding the original P. juliflora plantations showed that they are com-
plementary, which may have led to an overestimation of regional niche filling. While niche expansion was absent
or small depending on the percentage of marginal climates excluded, analysis of the stages of invasion suggested
that P. juliflora may have started to adapt to novel climatic conditions and that L. camara is approaching a
pseudo-stable equilibrium in Eastern Africa. The SDMs showed that large areas in Eastern Africa that have not
yet been invaded by P. juliflora are suitable or will become suitable with climate change. For L. camara, the global
SDM predicted a considerably larger suitable area than the Eastern African one, raising uncertainty about the
areas to be included in a regional management strategy. Thus, combining ordination and SDMs and integrating
a geographic component into ordination is useful in assessing IAPS invasion stages and potential niche shifts,
and the results help inform IAPS policy and management. The combined approach can also serve to guide
experimental studies addressing divergences between results generated with the different approaches.
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INTRODUCTION

Invasive alien plant species (IAPS) are consid-
ered to have serious impacts on ecosystem func-
tioning, the supply of ecosystem services, and
human well-being (Vil�a et al. 2011, Simberloff
et al. 2013, Vil�a and Hulme 2017). In response to
the threat they pose, a number of international
agreements have been developed that urge mem-
ber states to prevent the introduction and spread
of IAPS (Shine et al. 2000). Once an IAPS has
established itself widely in its introduced range,
complete eradication is no longer feasible (Parkes
and Panetta 2009). Rather, it should be managed
according to a spatially explicit management
strategy that sets different control objectives for
areas with different invasion levels (Grice et al.
2011, Terblanche et al. 2016, Shackleton et al.
2017b). Developing such a strategy requires a
holistic understanding of a species’ stage of inva-
sion and the invasion process, including factors
affecting its local abundance, spread, and impact.
Furthermore, to develop a spatially explicit man-
agement strategy, it is essential to assess (1) the
current and projected future geographic distribu-
tion and abundance of the target IAPS, and (2) its
ecological niche in the invaded range in compar-
ison with the global or native niche under cur-
rent and projected climates.

A range of modeling approaches have been
developed to compare IAPS’ ecological niches
and understand their current stages of invasion,
as well as to project species’ potential distribu-
tion in space and/or time (Guisan and Thuiller
2005, Elith and Leathwick 2009). They can be
grouped into two modeling types: mechanistic
models and statistical, correlative models (Kear-
ney and Porter 2009). Mechanistic models incor-
porate functional traits of species and thus
require collection and validation of a large
amount of physiological data, whereas statistical,
correlative models rely on a set of geographic
species occurrence and preexisting environmen-
tal data. Within statistical, correlative modeling,
two techniques can be differentiated: ordination,
which is based on direct observations, and spe-
cies distribution modeling (also known as

ecological niche modeling), which is based on
predictions. They both rely on the ecological
niche concept and may be considered comple-
mentary. While ordination provides insights into
changes in macroclimate niches, species distribu-
tion model (SDM) predictions in geographic
space identify regions that might be at risk of
being invaded (Guisan et al. 2014). Both
approaches use observed occurrences and relate
biotic and abiotic conditions to the probability of
a species being present at a specific location.
Usually it is assumed that the species’ ecological
niche is stable in space and time and that the spe-
cies has filled it and is in quasi-equilibrium with
its regional environment. In the case of IAPS,
both assumptions are often wrong (Gallien et al.
2012). In fact, the realized regional niches of an
IAPS may differ significantly between its native
and invaded ranges (Guisan et al. 2014). Three
different situations of niche occupation may
occur in the invaded range: The invasive species
occupies (1) a part of its global niche (e.g., due to
local biotic limitations) that is similar to the real-
ized niche in its native range; (2) a part of its glo-
bal niche that is different from the realized niche
in its native range; or (3) areas both inside and
outside its global niche, as a result of rapid
genetic adaptation to the novel environmental
conditions in the invaded range (Gallien et al.
2010, 2014).
A large number of woody plant species world-

wide were deliberately introduced to areas out-
side their native range during the 19th and 20th
centuries, mainly for amenity, forestry, or agricul-
tural purposes (Binggeli 1996). To date, woody
IAPS are overproportionally represented among
the alien plant species causing impacts on resi-
dent communities (Py�sek et al. 2012), posing sig-
nificant threats to the provisioning of ecosystem
services and rural livelihoods (Pejchar and
Mooney 2009, Vil�a and Hulme 2017). Among the
most frequently mentioned IAPS causing severe
environmental and socioeconomic problems in
Africa and elsewhere are Prosopis spp.—particu-
larly Prosopis juliflora (Sw.) DC.—and Lantana
camara L. (Henderson 2007, Boy and Witt 2013).
Both species can alter ecosystem processes and
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are hence considered ecosystem engineers
(Richardson and Van Wilgen 2004). In Eastern
Africa, they affect open and semi-open ecosys-
tems such as grasslands and savannahs and
cause significant problems in cropping systems
(Witt and Luke 2017). While both P. juliflora and
L. camara are among the world’s 100 worst inva-
sive species (Lowe et al. 2000), they differ consid-
erably in their ecological niches and their
invasion histories, and hence also in their current
distribution. L. camara was widely introduced to
Eastern Africa already in the first half of the 19th
century. In contrast, P. juliflora was planted at
selected locations in Eastern Africa only in the
1970s, and most of the original plantations are
still present. The two species’ different invasion
histories may have potentially significant impli-
cations regarding their current realized ecologi-
cal niches, evidence of niche shifts in the invaded
range, and the risk of future invasion of new geo-
graphic areas in Eastern Africa.

The purpose of this study was to perform a
comprehensive assessment of the specific regio-
nal niches, suitable habitats, and potential spread
of P. juliflora and L. camara in Ethiopia, Kenya,
and Tanzania that can serve as a baseline for the
formulation of recommendations with regard to
prevention measures to support effective regio-
nal and national IAPS management strategies in
Eastern Africa. We applied the frameworks and
followed the guidance of Guisan et al. (2014) and
Gallien et al. (2012), combining ordination and
SDM, which has been rarely done so far (Guisan
et al. 2014). This enabled us to compare the two
species’ global, native, and Eastern African
niches, assess their current stages of invasion,
and reveal their invasion pattern. In addition, we
assessed the two species’ potential future geo-
graphic distributions in Eastern Africa under a
changing climate. Based on our findings, we give
recommendations for effective management of
the two IAPS in Eastern Africa, with a view to
preventing further spreading of the species and
reducing their negative impacts on Eastern Afri-
can countries’ ecosystems and economies.

MATERIALS AND METHODS

Target species
This study focuses on two woody IAPS in

Ethiopia, Kenya, and Tanzania: P. juliflora (Sw.)

DC. and L. camara L. The evergreen P. juliflora,
which belongs to the Mimosaceae family and is
native to Central and South America (Pasiecznik
et al. 2001), is a nitrogen-fixing and salt- as well
as drought-tolerant leguminous shrub or tree
with an extensive and deep root system. It pro-
duces palatable pods and can form dense,
impenetrable thorn forests (Robinson et al. 2010).
The first introductions of P. juliflora and other
South American representatives of the genus Pro-
sopis to Eastern Africa took place during the
1970s and 1980s. In Ethiopia, P. juliflora was first
introduced and planted in the late 1970s in a
nursery in West Hararghe; in the early 1980s, the
trees were transferred to the Afdem and Afar
regions (Kebede and Coppock 2015). In Kenya,
P. juliflora was planted widely as part of dryland
reforestation programs in the 1980s, for example,
in Bura on Tana River and in Baringo and Tur-
kana counties (Harris et al. 2006). The aims were
to prevent desertification, produce fuelwood to
relieve the high pressure on native tree species,
and provide an alternative source of livestock
feed (Kariuki 1993, Lenachuru 2003). Difficulties
arose soon after, in the early 1990s, when the tree
began to invade cropland, grassland, riverbanks,
and roadsides, thereby causing significant
environmental problems and costs (Shackleton
et al. 2014, Shiferaw et al. 2019). Today,
P. juliflora is a declared noxious weed in several
African countries, notably Kenya, Ethiopia,
and Sudan (CABI 2015). In Ethiopia, it has
invaded such large areas of former grazing land
that this has led to conflicts among pastoralist
groups (Kebede and Coppock 2015). While most
invasive Prosopis trees in South Africa are hybrids
(Mazibuko 2012), recent genetic studies corrobo-
rate earlier findings that almost all invasive Pro-
sopis trees in Eastern Africa are indeed P. juliflora
(M. L. Castillo 2018, public communications).
Lantana camara is a highly variable species

belonging to the Verbenaceae family. Hundreds
of cultivars and hybrids exist (Howard 1969). It
is a multi-stemmed, medium-sized woody shrub
which is native to Central and South America
(Sundaram and Hiremath 2012). The species is
poorly investigated in its native range, the extent
of which is unclear. L. camara is able to invade
most habitats from sea level to about 1800 m,
except arid areas (Thomas and Ellison 2000). It is
likely that its invasion history and its adaptive
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evolution—due to its ability to hybridize—favor
niche shifts (Sanders 2006). L. camara was intro-
duced to Eastern Africa in the 19th century as an
ornamental plant (Day et al. 2003, Sharma et al.
2005). It invades cropland and grassland, thereby
reducing accessibility (Van Wilgen et al. 2008)
and fodder production (Kohli et al. 2006). It has
been shown to have negative impacts on biodi-
versity and native tree regeneration (Gooden
et al. 2009). It increases the risk of fire, is poi-
sonous to livestock if eaten in large amounts
(Sharma et al. 1988), and acts a host for diseases
and pests (CABI 2015).

Species data
To model the native and the global niches, we

used data from the Global Biodiversity Informa-
tion Facility (GBIF). We considered species occur-
rence (i.e., presence) data from the species’ native
ranges (Mexico, Central America) and from
regions in the world where they have established
themselves or become invasive (e.g., in Asia,
Australia, South America, India, and Southern
and Western Africa, and on the Arabian Penin-
sula), excluding points from Eastern Africa
(which represents the regional niche we analyzed
in this study). We used only points whose geolo-
cation was indicated to at least three decimal
places (in geographic coordinates and decimal
degrees), which corresponds to about 11 km.
This resulted in 1891 presence points for
P. juliflora and 16,041 presence points for L. ca-
mara for the global niche (see Appendix S1:
Figs. S1–S4 for their geographic locations and
details on the number of presence points used for
the native niche).

The taxonomic status of both species bears
some level of uncertainty. The genetic diversity
of the weedy types of L. camara is considered
high, due to horticultural improvement which
included crossing with other Lantana species
(Day and Zalucki 2009). P. juliflora can also
hybridize with other Prosopis species (Pasiecznik
et al. 2001), although recent molecular studies
revealed that genotypes invasive in Eastern
Africa almost always belong to P. juliflora (M.
L. Castillo et al., unpublished manuscript). While
selecting presence points for the two species, we
took care to include points for the native niche
only from areas where the two species are indeed
considered native (Pasiecznik et al. 2001, Day

and Zalucki 2009). For the global model, how-
ever, we cannot rule out that our presence points
have a higher taxonomic variability, which may
have led to a certain overestimation of the global
niche—and, as a result, to an underestimation of
regional niche expansion. We account for poten-
tial taxonomic variability by excluding 5% of
marginal climates when calculating the different
niches for each species.
We generated two sets of pseudo-absence

points by means of random sampling within a
100-km buffer area around all species occurrence
data points. Randomly generated absence points
located <10 km from a presence point were
removed. This resulted in two sets of approxi-
mately 1300 pseudo-absence points each for
P. juliflora and two sets of approximately 1150
pseudo-absence points each for L. camara.
To model the Eastern African niches, we used

data collected during several ground surveys
between 2008 and 2017 (Ng et al. 2016, 2017,
Shackleton et al. 2017a, Witt et al. 2018, Shiferaw
et al. 2019). Occurrence data points were spa-
tially rarefied using a 5 km distance in order to
reduce spatial autocorrelation and obtain a more
unbiased sample. The data set for P. juliflora con-
tained 892 points, and that for L. camara con-
tained 858 points. Again, we generated two
random sets of pseudo-absence points for each
plant species. Points closer than 10 km to another
point were removed. This resulted in two
pseudo-absence data sets of about 850 data
points each for P. juliflora and two pseudo-ab-
sence data sets of about 730 and 826 data points,
respectively, for L. camara. These four pseudo-ab-
sence data sets were further improved using the
global niche modeling outputs. To reduce the
influence of false absences, we removed points
that were located within areas where more than
one of the global distribution models suggested a
presence of the respective species (Barbet-Massin
et al. 2012). All species data used in this study
can be found in Data S1.

Spatial data
To model the global and native niches, we

used the 19 available bioclimatic variables of
WorldClim (version 2) at a spatial resolution of
30 s (Fick and Hijmans 2017). We reduced the
number of variables by only selecting those with
the lowest correlation averages and the most
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counts of pairwise variable correlation values
<0.6 for each of our species. This led to the selec-
tion of three to four precipitation-related vari-
ables and three to four temperature-related ones
for each species, resulting in two sets of seven
and eight bioclimatic variables, respectively, for
P. juliflora and L. camara (Table 1). We did not
include any other variables in our global models;
as all data sets have a spatial resolution of 250 m,
including all of them would have exceeded the
computational capacity of our facilities.

To model the regional niches in Eastern Africa,
we again reduced the number of bioclimatic vari-
ables, this time using the Eastern Africa presence
points. In order to obtain a refined model for our
study area, we added seven non-climatic vari-
ables that had previously been shown to influ-
ence the distribution of invasive species (Elith
et al. 2011, Mbaabu et al. 2019, Shiferaw et al.
2019). We additionally included two MODIS 16-
day NDVI products with a 250 m spatial

resolution (Didan 2015) that had the highest
model importance when running preliminary
variable importance tests using only MODIS 16-
day NDVI products captured in 2014. The year
2014 was slightly too warm in Eastern Africa but
an average year in terms of rainfall (WMO 2015).
Additionally, we chose two topographic vari-
ables, slope and elevation derived from SRTM
version 4.1 (Jarvis et al. 2008), as well as two sur-
face water related variables, distance to rivers
and distance to waterbodies, which we generated
ourselves, and one anthropogenic variable, the
Global Human Footprint Index (GHI) data set
(WCS and CIESIN 2005). The spatial resolution
of the data sets provided in raster format varied
between 90 m (topographic data sets), 250 m
(the MODIS NDVIs), and 1000 m (bioclimatic
variables and GHI). We resampled them to a
common spatial resolution of 250 m.
To model the distribution of the two invasive

species considering future climate scenarios we

Table 1. Overview of variables used in the Global/Native SDM (regular) and Regional SDM (bold) as well as the
niche comparison (bold).

Variables Abbreviation

Species

Prosopis juliflora Lantana camara

Global/Native Regional Global/Native Regional

Annual mean diurnal temperature range bio2 X X X (X)
Isothermality bio3 X X
Temperature seasonality bio4 (X)
Maximum temperature of warmest month bio5 X
Temperature annual range bio7 X X X (X)
Mean temperature of wettest quarter bio8 X X
Mean temperature of driest quarter bio9 X
Mean temperature of warmest quarter bio10 X X
Annual precipitation bio12 X X
Precipitation of driest month bio14 X X
Precipitation seasonality bio15 X
Precipitation of wettest quarter bio16 (X)
Precipitation of driest quarter bio17 X
Precipitation of warmest quarter bio18 X X X X
Precipitation of coldest quarter bio19 X X X
Slope Not used X Not used
Elevation Not used X Not used X
Distance to waterways Not used X Not used
Distance to waterbodies Not used X Not used X
Human Footprint Index Not used X Not used X
MODIS NDVI (17 January 2014) Not used Not used X
MODIS NDVI (23 April 2014) Not used X Not used
MODIS NDVI (13 August 2014) Not used Not used X
MODIS NDVI (29 August 2014) Not used X Not used

Notes: SDM, species distribution model. Variables with an X in brackets were removed during fine-tuning of the models; this
was only necessary for regional SDM of L. camara.
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used projections of the bioclimatic variables for
2050 (average for 2041–2060). We used data from
the Coupled Model Intercomparison Project,
Phase 5 (CMIP5) at 30 s spatial resolution and
chose the representative concentration pathways
(RCPs; van Vuuren et al. 2011) 45 and 85 using
the global climate model developed at the Max
Planck Institute for Meteorology, also known
under the abbreviation MPI-ESM-LR (Stevens
et al. 2013). This model has shown to perform
acceptably well compared to other scenario mod-
els for Eastern Africa and the Horn of Africa
(McSweeney et al. 2015, Klein et al. 2016). The
chosen model predicts a warmer and drier cli-
mate for the study area, with increasing tempera-
ture seasonality and decreasing rainfall
seasonality. Hereafter, we abbreviate the two
future climate scenarios considered in this study
as mp45 and mp85. The mp45 scenario is more
moderate and the mp85 scenario extreme.

Modeling approach
We chose four different algorithms for the

SDM: (1) random forest regression (RF), (2) sup-
port vector machine, (3) boosted regression trees
in combination with gbm.step for the fine-tuning
of the algorithm (BRT), and (4) maximum
entropy (Maxent). We evaluated the models
using k-fold cross-validation and focused on the
performance parameters area under the curve
(AUC; Swets 1988) and true skill statistics (TSS;
Allouche et al. 2006). We only considered models
achieving a TSS value of at least 0.5 and an AUC
of at least 0.8 for further analysis. This selection
is based on previous studies having either a simi-
lar objective or recommending thresholds for
these two performance parameters (Ara�ujo et al.
2005, Gallien et al. 2012). The four different algo-
rithms in combination with the two pseudo-ab-
sence data sets resulted in eight different models
(i.e., continuous probabilities) for each species for
the global, the native, and the regional niches.
For the calculation of optimum thresholds for
each model, we used the optim.thresh function
available in the R package SDMTools (version
1.1-221; Van Der Wal et al. 2019). We considered
the optimum threshold to be the value, or range
of values, that maximizes the sum of sensitivity
and specificity. The models that fulfilled our
accuracy performance requirements were then
used to generate an ensemble model for each

species and scale. The ensembles were generated
by calculating mean probabilities and mean opti-
mum thresholds. We considered this methodol-
ogy suitable because there was little variation
between the qualifying models and thresholds
(Marmion et al. 2009, Stohlgren et al. 2010). In
the global model prediction using future climate
scenarios, we did not permit clamping as we
aimed at obtaining conservative model predic-
tions (Guisan et al. 2014). All model calculations
were implemented in R (see also Data S1).
Details on the used packages can be found in
Appendix S1: Table S1.

Niche comparison and dynamics
To compare the ecological (climatic, to be pre-

cise) niches of L. camara and P. juliflora in their
global, native, and Eastern African invaded
ranges, we followed the methodology proposed
in Broennimann et al. (2012). For each species,
we performed a principal component analysis
(PCA) using the eight most influential and
diverse species-specific bioclimatic variables
identified during bioclimatic variable reduction,
combined with the species occurrence data and
the reduced final selection of species pseudo-ab-
sence data. Principal component analysis dis-
criminates between the ecological niches of the
chosen presence data and pseudo-absences and
has been shown to accurately identify niche over-
laps as well as niche differences and shifts
(Broennimann et al. 2012, Goncalves et al. 2014).
The two first principal components explained
64.55% and 59.94% of the environmental vari-
ance in the data for L. camara and P. juliflora,
respectively. Following the PCA, again for each
species, we divided the relevant environmental
space into a grid of 500 9 500 cells and con-
verted the occurrence points into occurrence den-
sities using a kernel smoothing function. The
pseudo-absence data were then used to estimate
the density of available environments in each cell
of environmental space. Based on the two densi-
ties, we estimated an occupancy index, thus
enabling unbiased comparison of species occur-
rence densities. The occupancy index was plotted
on the environmental space to delimit the ecolog-
ical niches occupied by the two investigated spe-
cies in their respective global and invaded
ranges. We considered the entire ecological
niches in both ranges and included 95% of the
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global and Eastern African niche occurrences,
excluding marginal climates in the two data sets
to account for data inaccuracies. Additionally, we
calculated the principal components of the first
introduction sites of P. juliflora in Kenya and
Ethiopia to understand where they are posi-
tioned in the Eastern African niche and whether
they overlap or rather complement each other.
This was not possible for L. camara, as it was
introduced to Eastern Africa much earlier, with
single plants imported as ornamental plants, and
there is no detailed information on distinct intro-
duction sites.

We used Schoener’s D to compare niche over-
laps between climatic spaces. Schoener’s D
ranges from 0 to 1, with 1 representing two iden-
tical niches (Schoener 1970). In order to test
whether the Eastern African niche of invasive
P. juliflora changed relative to its global niche, we
tested them for equivalence and similarity (War-
ren et al. 2008). In the equivalence test, all occur-
rences (global and regional) are partitioned
randomly, using 1000 replicates, extracting two
new occurrence samples of the same size as the
original occurrence data set and calculating D.
The null distribution of the simulated D is then
compared to the original observed D in a one-
sided similarity test. The null hypothesis is
rejected if P < 0.05 (i.e., niches are not identical).
In the similarity test, the global niche is com-
pared with a random selection, again using 1000
replicates, of occurrences drawn from the back-
ground of the Eastern African invaded range.
The null distribution of the simulated D is then
again compared to the original observed D. The
null hypothesis is rejected if P < 0.05 (i.e., niches
are more similar than random).

We calculated niche overlap of the ecological
niches excluding 5% marginal data to account
for inaccuracies in the data (e.g., taxonomic
variability). Moreover, we calculated the pro-
portions of the total niche space (in the global,
respectively native, and the Eastern African
invaded ranges) that occurred in both ranges
(stability), were occupied only by the global
(resp. native) niche (unfilling), and were occu-
pied only by the invasive niche (expansion;
Petitpierre et al. 2012, Guisan et al. 2014). This
study’s focus was on the comparison of the glo-
bal with the Eastern African niche. However,
we additionally calculated the comparison

between the native and the Eastern African
niche for the current climate to understand the
contribution of climates from other invaded
areas and whether they differ from the Eastern
African climates. The results of the native–East-
ern African niche comparison can be found in
Appendix S1: Fig. S5. All calculations were
done using functions available in the ecospat R
package (version 2.1.1; Cola et al. 2017).
To assess the stage of invasion, we compared

the probabilities calculated by the regional and
the global ensemble models, which represent the
realized regional and global niches, respectively.
This enabled us to derive the current stage of
invasion for the two species (Gallien et al. 2012).
Four situations, represented by four quadrants,
can be compared if the regional model
probabilities are plotted against the global model
probabilities. Gallien et al. (2012) proposed that
the four quadrants represent four stages of
invasion: Regional species presence points in
areas where the regional and the global niche
overlap (top right quadrant) suggest that the
regional population is stabilizing. Presence points
that are in the Eastern African niche but outside
the global niche (top left quadrant) suggest that
the regional population might be undergoing a
relatively rapid local adaptation process. Pres-
ence points that are in the global niche but out-
side the Eastern African niche (bottom right
quadrant) suggest that the geographic areas
where they occur might still be colonized. Finally,
presence points outside both the regional and the
global niche may be considered as populations
that were introduced to an unsuitable habitat and
are unlikely to stabilize or increase.

RESULTS

Model performance and variable selection
In our attempts to model the global niche of

P. juliflora, the defined performance requirements
were met by the two BRT models and one of the
RF models, with TSS ranging between 0.50 and
0.61 and AUC between 0.87 and 0.97. For L. ca-
mara, only the RF models met the performance
requirements, with TSS ranging between 0.57
and 0.59 and AUC between 0.94 and 0.95. These
respective models were used to generate one
ensemble global niche model each for P. juliflora
and L. camara.

 ❖ www.esajournals.org 7 February 2020 ❖ Volume 11(2) ❖ Article e02987

METHODS, TOOLS, AND TECHNOLOGIES ECKERT ET AL.



Among the Eastern African niche models for
P. juliflora, the two BRT models and one of the
RF models met our performance requirements,
with TSS ranging between 0.50 and 0.51 and
AUC = 0.99 for all three models. For the Eastern
African niche of L. camara, the requirements were
met by the two BRT models and the two RF
models, with TSS ranging between 0.57 and 0.66
and AUC between 0.98 and 0.99. These respec-
tive models were used to generate ensemble
Eastern African niche models for the two species.
For P. juliflora, we achieved the best modeling
results using 15 variables, and for L. camara, we
achieved the best results using a set of 9 variables
(see also Table 1).

In the case of P. juliflora, bio9, bio19, distance
to waterbodies, NDVI of mid-April (end of dry
season in all three countries), and the Human
Footprint Index contributed most to the regional
model. In the case of L. camara, bio12, bio5, the
Human Footprint Index, and NDVI of mid-
August (dry season in Kenya and Tanzania, wet
season in Ethiopia) contributed most to the regio-
nal model.

Niche analysis considering current and future
climates

The global and Eastern African niches of both
species overlap to a large extent. However, we
found a slight expansion into new environments
for both species when a certain percentage of
marginal climates (at least 10% for P. juliflora and
at least 5% for L. camara) are excluded. Fig. 1a, b
shows the niche overlap when 95% of data are
considered. Niche unfilling ranges between 46%
(considering 100% of the data) and 68% (consid-
ering 85% of the data) for P. juliflora and between
64% and 86% (analogous settings) for L. camara
(see also Table 2). Niche expansion is low or zero
for both species, ranging up to 3.3% for P. juliflora
and 2.5% for L. camara. For both species, the simi-
larity and equivalency tests are not significant if
95% of the data are considered. The global and
Eastern African niches are thus not more similar
than randomly expected (P. juliflora: P = 0.447,
Schoener’s D = 0.1866; L. camara: P = 0.091,
Schoener’s D = 0.124), nd they are not identical
(P. juliflora: P = 1; L. camara: P = 1).

The Eastern African niche centroid of
P. juliflora moved toward lower precipitation of
driest, warmest, and coldest quarter (bio17,

bio18, bio19) but toward higher precipitation sea-
sonality (coefficient of variation; bio15; Fig. 1c).
The Eastern African niche centroid of L. camara
moved toward a higher mean diurnal tempera-
ture range (bio2) and higher maximum tempera-
tures of the warmest month (bio5), as well as
toward lower precipitation values of the driest
month (bio14).
Comparison between the native range and

Eastern African occurrences (excluding 5% of
marginal climates) produces similar results for
P. juliflora. The two niches overlap by 23%. No
niche expansion is observed, although the niche
boundaries are close. Niche unfilling is 59%. For
L. camara, the overlap is 31%, with a niche unfill-
ing of 57%. The results suggest that the niche
expanded by 3% toward lower precipitation val-
ues and a higher annual temperature range (see
Appendix S1: Fig. S5).
Schoener’s D and niche unfilling change for

both species if we use climate data from two
future climate scenarios. We used a more moder-
ate scenario (mp45) and a more extreme one
(mp85; see Spatial data for details). Schoener’s D
increases under both, whereas niche unfilling
decreases. If we again consider only 95% of the
data, excluding marginal climates, we obtain
Schoener’s D values of 0.43 (mp45) and 0.47
(mp85) for P. juliflora and 0.27 (mp45) and 0.28
(mp85) for L. camara. An expansion into new
environments can be observed for both species
and both scenarios. In the case of P. juliflora,
under the more moderate climate scenario it
ranges between 9% (if 90% of the data are consid-
ered) and 15% (85% of data considered), while
under the extreme climate scenario it ranges
between 1.5% (95% of data considered) and 15%
(85% of data considered). For L. camara, the more
moderate climate scenario suggests niche expan-
sion between 1% (90% of data considered) and
6% (85% of data considered), while the extreme
scenario suggests a niche expansion of 3% only if
no more than 85% of the data are considered (see
also Table 3).
The niche unfilling for the moderate climate

scenario ranges between 17% (if 100% of the
data are considered) and 34% (85% of data
considered) for P. juliflora and between 33% and
71% for L. camara (analogous settings).
The extreme climate scenario leads to niche
unfilling ranging between 14% (100% of data
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considered) and 42% (85% of data considered)
for P. juliflora and between 35% and 69% for
L. camara (analogous settings; Fig. 2; see also
Table 3).

Stage of invasion
To complement the niche analysis considering

not only global climate data but also additional
environmental data for the regional model, we

Fig. 1. Niche dynamics of Prosopis juliflora (a) and Lantana camara (b), comparing global with invaded Eastern
African niches under current climate (considering 95% of the data for each niche). Unfilled areas are shown in
green, stable areas in blue, and expansion areas in red. Solid and dashed lines represent the results using 100%
and 90%, respectively, of the available occurrence and pseudo-absence data to delineate the global niche (green
lines) and the Eastern African niche (red lines). The red solid arrow indicates the difference between the global
and the Eastern African niche centroid. The red dashed arrow indicates the difference between the global and the
Eastern African environmental (background) extent. The position of the first introduction sites of P. juliflora in
Eastern Africa in the ecological niches is indicated by the white circle (Baringo, Kenya), diamond (Bura, Kenya),
and triangle (Afar, Ethiopia). The principal component analysis correlation circle plots for P. juliflora (c) and L. ca-
mara (d) show the contribution of each bioclimatic variable in the niche space to the first and second principal
components. The abbreviations of the bioclimatic variables are explained in Table 1.
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compared our developed regional and global
model predictions in a scatterplot. This enabled
us to see how well the regional presence points
match the realized Eastern African niche and,
more interestingly, how well they match the glo-
bal niche—which we modeled based on global
presences but excluding presences in the greater
study region. The four quadrants in the
scatterplot represent four distinct situations:
stabilization, adaptation, colonization, and isola-
tion (Fig. 3). Looking at the distribution of
P. juliflora (yellow) and L. camara (blue) presence
points, we can make the following observations:
For both species, the majority of presence points
are found in the top right quadrant, indicating
that they match both niches well and are
stabilizing. However, some of the P. juliflora and
L. camara presence points are found in the top
left and bottom right quadrants, indicating
that while both species are still filling the
modeled global niche in Eastern Africa, they are

also adapting to new regional conditions.
This is more the case for P. juliflora (global model
median = 0.7511; regional model median =
0.9899) than for L. camara (global model
median = 0.8391; regional model
median = 0.9987), indicating that L. camara is
closer to reaching a quasi-equilibrium, whereas
P. juliflora is still filling, but at the same time also
expanding its Eastern African niche.

Current potential suitable habitats
The area that the models predict to be current

suitable habitat for P. juliflora is much smaller
than that predicted to be suitable for L. camara
(Figs. 4, 5, Table 4). The globally modeled suit-
able habitat for P. juliflora mostly overlaps with
the regional model; only in Tanzania does the
global model consider an additional 15% of the
country’s territory to be suitable compared to the
regional model. The regional model for
P. juliflora predicts larger suitable habitats than
the global model, considering an additional
15.25% of Ethiopia, 16.72% of Kenya, and 19.78%
of Tanzania to be suitable. The Ethiopian and
Kenyan lowlands and the semiarid-to-arid
regions in the Kenyan highlands are largely con-
sidered suitable habitat for P. juliflora by both the
regional and the global ensemble models. These
regions are known to be heavily affected by
P. juliflora invasion. In Tanzania, the species has
been identified only recently, mostly in the north
of the country. The output of both the global and

Table 2. Summary of niche dynamics results from the presented niche comparisons considering current climate
conditions.

Species Percent occurrence data considered Stability Unfilling Expansion

Global vs. Eastern African niche, current climate
(considering 85–100% of occurrence data)
Prosopis juliflora 85% 0.966 0.681 0.033

90% 0.989 0.634 0.011
95% 1.000 0.586 0.000
100% 1.000 0.465 0.000

Lantana camara 85% 0.975 0.859 0.025
90% 0.974 0.840 0.026
95% 0.995 0.786 0.005
100% 1.000 0.638 0.000

Native vs. Eastern African niche, current climate
(considering only 95% of occurrence data)
P. juliflora 95% 1.000 0.585 0.000
L. camara 95% 0.963 0.565 0.037

Table 3. Global vs. Eastern African niche, future cli-
mate scenarios mp45 and mp85, considering 95% of
occurrence data.

Species
Climate
scenario Stability Unfilling Expansion

Prosopis juliflora mp45 0.991 0.197 0.009
mp85 0.984 0.194 0.016

Lantana camara mp45 1.000 0.514 0.000
mp85 1.000 0.477 0.000
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the regional model suggests that a large part of
Tanzania may be suitable habitat for P. juliflora,
thus indicating that the plant constitutes a poten-
tial threat to the country.

For L. camara, the suitable area predicted by
the regional model largely falls within that pre-
dicted by the global model (Fig. 5). However,
the global model considers a much larger area
suitable than the regional model does, with
51.34% of the total area of Ethiopia, Kenya, and
Tanzania overlapping and another 40.66% con-
sidered suitable only by the global model
(Table 4). In Ethiopia, the lowland areas are con-
sidered unsuitable by the more refined regional
model. The same can be observed in Kenya,
where 34.93% of the country is considered suit-
able by both models, while the global model
considers an additional 62.62%—mostly the
semiarid-to-very arid areas of Turkana County
and the lowlands—suitable. Similar patterns
also occur in South Sudan and Somalia. In Tan-
zania, the two models match well, with 72.93%
of the country’s total area considered suitable
habitat for L. camara by both models; an addi-
tional 14.88% is considered suitable only by the
global model and 6.41% only by the more
refined regional model.

Future potential suitable habitats
The ensemble models predict range changes

for both P. juliflora and L. camara when using the
two selected future climate scenarios rather than
current climate data (Figs. 6–9). The changes in
suitable habitat for P. juliflora under future cli-
mate scenarios are substantial. The models pre-
dict Tanzania to be most heavily affected by an
increase in suitable habitat (mp45, 18.64%; mp85,
12.19%). A decrease can be expected above all in
Tanzania (mp45, 7.18%; mp85, 9.84%), followed
by Ethiopia (mp45, 5.36%; mp85, 6.46) and
Kenya (mp45, 5.09%; mp85, 7.52%).

Expected changes in suitable habitat for L. ca-
mara are smaller. Among our three study coun-
tries, Tanzania appears to be most heavily
affected by an increase (mp45, 3.04%; mp85,
3.92%). Notable suitable habitats were also mod-
eled for the neighboring countries of Somalia
and South Sudan. A decrease in habitats may be
expected above all in Tanzania (mp45, 10.16%;
mp85, 10.25%) and Ethiopia (mp45, 5.00%;
mp85, 4.03%).

DISCUSSION

The comparative assessment of the ecological
niches, stages of invasion, and potential distribu-
tion of P. juliflora and L. camara in Eastern Africa
revealed patterns that are consistent across the
modeling approaches taken and match the differ-
ent invasion histories. Our results indicate that
P. juliflora invasion in Eastern Africa is still at an
early stage and that it is likely to expand its cur-
rent geographic range significantly if left uncon-
trolled. L. camara, by contrast, appears to be
approaching a pseudo-stable equilibrium in East-
ern Africa. However, the different approaches
also produced conflicting results. For example,
while the inclusion of marginal climates in the
ecological niche analysis suggests niche conser-
vatism for P. juliflora, analysis of the stage of
invasion hints at a rapid adaptation of this spe-
cies to novel environmental conditions. Further,
it is worth noting that the global geographic
model predicts a much larger area to be suitable
for L. camara than the Eastern African model.

Niche analyses and stages of invasion
Invasive species may respond to new environ-

ments in various ways, for example, with niche
conservatism, with niche expansion along multi-
ple or very specific climatic or other environmen-
tal variables, or by shifting into a new niche
completely different from the native one (Petit-
pierre et al. 2012, Guisan et al. 2014). In the case
of P. juliflora, differences between the global and
Eastern African niches can mostly be attributed
to unfilling of the global niche. If more than 5%
of extreme climates are removed from both
niches, a very small amount of the Eastern Afri-
can niche exceeds the global one. This suggests,
first, that P. juliflora has not yet reached an equi-
librium in Eastern Africa, and second, that some
individuals might eventually succeed in adapt-
ing to more marginal or even new climatic condi-
tions. The local niches of the three locations
where P. juliflora was first introduced comple-
ment each other and coincide in environmental
space with the highest Eastern African niche den-
sities found for P. juliflora today. The three loca-
tions where plantations were originally
established differ in both geographic and envi-
ronmental space, and the Eastern African niche
is expanding outward in environmental space
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Fig. 2. Niche dynamics of Prosopis juliflora (a, c) and Lantana camara (b, d) comparing global with invaded East-
ern African niches under two future climate scenarios (considering 95% of the occurrence data for each niche).
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from each of the three locations (Fig. 1a). Hence,
the results of our comparison of global with East-
ern African niches might be misinterpreted in
terms of an overestimation of actual niche filling
in each individual country if niche dynamic plots
are not linked to geographic space. This may par-
ticularly be the case where invasive species were
deliberately introduced and planted at specific
locations, as was the case for numerous exotic
woody plant species (Richardson et al. 2014). To
link ecological and geographic information, we
therefore suggest taking a nested approach by
plotting local ecological niches separately and

assessing how well they match the regional eco-
logical niche. We provide two examples of local
niches for Ethiopia, where the highest levels of
P. juliflora invasion are found in Afar, a semiarid-
to-arid region in the Ethiopian lowlands. Thus,
for Afar we would have expected a higher rate of
niche filling as compared to the one we actually
found (stability 1.000, unfilling 0.834, expansion
0.000; Fig. 10a). In contrast, for P. juliflora occur-
rences in the country’s very climatically diverse
highlands, we would have expected a lower rate
of niche filling compared to what we found (sta-
bility, 0.989; unfilling, 0.146; expansion, 0.011;
Fig. 10b). In this example from the Ethiopian
highlands, we even observed a slight niche
expansion.
The PCA correlation circle plots suggest that

compared to the global niche, the Eastern African
niche centroid has moved toward lower precipi-
tation values (bio17, bio18, bio19) but higher pre-
cipitation seasonality (bio15). With expected
climatic changes, the Eastern African niche is
likely to expand toward a higher mean diurnal
temperature range (bio2), higher precipitation
seasonality (bio15), and higher precipitation val-
ues during the warmest and coldest quarters.
The results were not significantly affected

when we compared the Eastern African niche
with the native instead of the global niche. How-
ever, the Eastern African niche is closer to
expanding the native niche than the global one,
suggesting that the global niche contains climates
not present in the native niche and thus might
represent a closer approximation of the elusive
fundamental niche (Broennimann et al. 2007,
Beaumont et al. 2009). Oliveira et al. (2018) per-
formed a similar study comparing the native

Fig. 3. Scatterplot and histograms of observed pres-
ence points of Prosopis juliflora (blue) and Lantana
camara (yellow), comparing the probabilities predicted
by the regional and the global ensemble models.

Unfilled areas are shown in green, stable areas in blue, and expansion areas in red. Solid and dashed lines repre-
sent the results using 100% and 90%, respectively, of the available occurrence and pseudo-absence data to delin-
eate the global niche (green lines) and the Eastern African niche (red lines). The red solid arrow indicates the
difference between the global and the Eastern African niche centroid. The red dashed arrow indicates the differ-
ence between the global and the Eastern African environmental (background) extent. The position of the first
introduction sites of P. juliflora in Eastern Africa in the ecological niches is indicated by the white circle (Baringo,
Kenya), diamond (Bura, Kenya), and triangle (Afar, Ethiopia). The principal component analysis correlation circle
plots for P. juliflora (e) and L. camara (f) show the contribution of each bioclimatic variable in the niche space to
the first and second principal components. The abbreviations of the bioclimatic variables are explained in
Table 1.

(Fig. 2. Continued)
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Fig. 4. Geographic representation of the modeled global (dark cyan) and regional (magenta) niches, as well as
the overlapping areas of the two modeled niches (cyan) for Prosopis juliflora. Presence points of the two species
are shown as colored dots, with colors indicating in which niche(s) they occur.
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Fig. 5. Geographic representation of the modeled global (dark cyan) and regional (magenta) niches, as well as
the overlapping areas of the two modeled niches (cyan) for Lantana camara. Presence points of the two species are
shown as colored dots, with colors indicating in which niche(s) they occur.
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range of P. juliflora with an area in Brazil where
the species is invasive. They found climatic niche
conservatism with an unfilling rate of 40% and
no observed expansion. Unfortunately, they pro-
vide no information regarding the percentage of
marginal climates excluded or the contribution
of each bioclimatic variable they used (i.e., PCA
correlation circle plots).

Differences in the ecological niches of L. ca-
mara can mostly be attributed to unfilling of the
global niche by the Eastern African niche. The
Eastern African niche exceeds the global one
when more than 5% of marginal climates are
excluded. This indicates a shift toward new cli-
matic conditions. Like for P. juliflora, this sug-
gests that some L. camara individuals might
eventually succeed in adapting to new climatic
conditions. The PCA correlation circle plots for
L. camara indicate that the Eastern African niche
has shifted toward warmer and drier climates
compared to the global niche, with a small part
exceeding the global niche. A similar shift in
climates was observed for invasive L. camara in
India (Goncalves et al. 2014), whereas the same
study predicted no shift in Africa and Aus-
tralia. This may be because it used African
occurrence points mostly from Southern Africa
and Madagascar, whereas we used occurrence
points from Ethiopia, Kenya, and Tanzania.
Looking at future climate scenarios, our models
suggest a small expansion of the Eastern Afri-
can niche of L. camara only when at least 10%
of marginal climates are excluded; this is cou-
pled with a shift of the niche toward higher
annual and mean diurnal temperature ranges
and higher precipitation during the warmest
quarter.

The Eastern African niche of L. camara showed
a similar expansion when compared to the native
and the global niches. Compared to the native
niche, the Eastern African niche clearly shifted
toward a higher temperature annual range, mean
diurnal range, and seasonality, but toward lower
precipitation values. This is surprising, as com-
parison with the global niche and also the results
obtained by Goncalves et al. (2014) indicate a
shift toward higher precipitation values. This
might again indicate that the global niche con-
tains climates not present in the native niche
(Broennimann et al. 2007, Beaumont et al. 2009).
Gallien et al. (2012) proposed that comparison

of the probabilities calculated by the regional
and the global ensemble models helps in assess-
ing the stage of invasion of alien species as well
as their risk of spreading in the near future and
that this approach is applicable to a large num-
ber of species and thus useful for biological inva-
sion management planning. In our study, the
additional comparison of the global with the
regional ensemble model probabilities partially
confirms the findings of the PCA-based niche
analyses. The probabilities at both species’ pres-
ence points are mostly positioned in the top right
quadrant, meaning that they are similarly high.
However, some probabilities are located in the
top left and bottom right quadrants, indicating
ongoing colonization and adaptation. This is
more the case for P. juliflora than for L. camara,
suggesting that the risk of expansion is higher
for P. juliflora than for L. camara. The PCA-based
niche analyses only indicated expansion when
marginal climates (at least 10% for P. juliflora and
at least 5% for L. camara) were excluded. Trans-
plant experiments in Kenya revealed that

Table 4. Area (km2 and percentage shares) of each individual country considered suitable habitat by none, the
global, the regional, or both models.

Species Category

Ethiopia Kenya Tanzania

Area (km2) Area (%) Area (km2) Area (%) Area (km2) Area (%)

Lantana camara None 85,643.35 7.57 13,975.93 2.38 54,733.46 5.78
Only regional 4950.62 0.44 392.23 0.07 60,660.92 6.41
Only global 460,176.45 40.66 367,193.54 62.62 140,895.58 14.88

Both 581,118.70 51.34 204,856.25 34.93 690,489.69 72.93
Prosopis juliflora None 611,867.77 54.06 116,909.30 19.94 319,345.13 33.73

Only regional 172,659.09 15.25 98,070.29 16.72 187,315.84 19.78
Only global 24,772.93 2.19 12,163.59 2.07 144,292.12 15.24

Both 322,599.36 28.50 359,280.02 61.27 295,843.23 31.25
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Fig. 6. Comparison of species habitat models using current climate data and future climate scenario data
(mp45) for Prosopis juliflora. Overlapping areas are shown in cyan, future habitat gains in pink, and future habitat
losses in orange.
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Fig. 7. Comparison of species habitat models using current climate data and future climate scenario data
(mp85) for Prosopis juliflora. Overlapping areas are shown in cyan, future habitat gains in pink, and future habitat
losses in orange.
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Fig. 8. Comparison of species habitat models using current climate data and future climate scenario data
(mp45) for Lantana camara. Overlapping areas are shown in cyan, future habitat gains in pink, and future habitat
losses in orange.
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Fig. 9. Comparison of species habitat models using current climate data and future climate scenario data
(mp85) for Lantana camara. Overlapping areas are shown in cyan, future habitat gains in pink, and future habitat
losses in orange.
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P. juliflora genotypes from the invasion front dif-
fered from those originally introduced in various
fitness-related traits, suggesting that P. juliflora
may indeed be undergoing rapid post-introduc-
tion evolution (M. L. Castillo et al., unpublished
manuscript). Further experimental evidence is
needed to elucidate whether invasive P. juliflora
genotypes in Eastern Africa are already capable
of colonizing areas where environmental condi-
tions are less suitable for genotypes from other
parts of the global range. Another reason why
our results point to more ongoing colonization
and adaptation processes for P. juliflora than for
L. camara may be that the global occurrence data
set of L. camara encompasses a larger range of
environmental conditions than that of P. juliflora.

Data accuracy considerations
The accuracy of climate variables is lower in

Eastern Africa than in Northern America or Eur-
ope, as the network of meteorological stations is
much coarser. Moreover, the stations are fre-
quently out of order, resulting in incomplete cli-
mate data time series. This reduces the accuracy
of spatially interpolated bioclimatic data sets.
The same applies to spatial data under climate
change scenarios (McSweeney et al. 2015, Klein
et al. 2016). We tried to counteract these data
inaccuracies by refining the regional model,
using additional environmental variables and
removing pseudo-absences outside the suitable
habitats modeled by the global ensemble models.

Fig. 10. Nested approach comparing (a) the local
environmental niche of Prosopis juliflora in Afar with

the Ethiopian climate and (b) the environmental niche
of all other P. juliflora occurrences in Ethiopia with the
Ethiopian climate. (c) P. juliflora occurrences used in
(a) are shown in blue, and those used in (b) are shown
in red. Unfilled areas are shown in green, overlap
areas in blue, and expansion areas in red. Solid and
dashed lines represent the results using 100% and
90%, respectively, of the available occurrence and
pseudo-absence data to delineate the Ethiopian
“niche” (green lines) and the “local” Afar niche (red
lines). The red solid arrow indicates the difference
between the national and the local niche centroid. The
red dashed arrow indicates the difference between the
national and the local environmental (background)
extent.

(Fig. 10. Continued)
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Thanks to a long history of doing research in
the study region, we obtained a comparably
large set of L. camara and P. juliflora occurrence
data containing data points from most regions in
Ethiopia, Kenya, and Tanzania where L. camara
and P. juliflora are currently present. However,
some data gaps exist in areas that are inaccessible
or areas experiencing terrorism or social con-
flicts. Furthermore, we expect that our data set
might contain a spatial sampling bias because
the majority of the data points were collected by
car and, accordingly, many points were collected
along travel routes. We attempted to account for
this during data preprocessing. At the same time,
it should be noted—and this applies particularly
for P. juliflora—that travel routes (used by
humans or animals) act as important dispersal
pathways in addition to rivers.

Current and future potential suitable habitats in
geographic space

In the SDM of both species, only the two
machine learning algorithms BRT and RF
achieved TSS >0.5, some of them reaching TSS
>0.6. This corresponds to performance results
obtained by other studies comparing different
SDM algorithms (Ara�ujo et al. 2005, Elith and
Graham 2009, Mainali et al. 2015). While for
L. camara, a set of 15 variables resulted in the
highest TSS, a smaller set of 9 variables resulted
in the highest TSS for P. juliflora. In this study, we
did not consider AUCDiff, an indicator that
accounts for overfitting (Warren and Seifert
2011). However, we are confident that choosing
the models based on the performance of TSS and
AUC defining respective minimum thresholds
provided us with the accurate models. By visual-
izing the modeled global niche geographically in
comparison with the realized Eastern African
niche, we see that mostly the semiarid-to-arid
regions of Ethiopia and Kenya are currently
affected, or at a high risk of being invaded, by
P. juliflora. Recently P. juliflora has started to
invade the north of Tanzania. Both the global
and particularly the regional model suggest that
large parts of Tanzania are suitable habitat for
P. juliflora and are therefore at a high risk of
being invaded. Although none of our models
contain occurrence points from southern Soma-
lia, both models suggest that much of Somalia is
a highly suitable region for P. juliflora. The

regional model additionally identifies large suit-
able areas in Sudan and South Sudan. However,
it is important to note that modeling outputs for
these three countries are less accurate due to
missing presence data in our models.
Predictions for the future under changing cli-

mates suggest gains as well as losses of areas suit-
able for P. juliflora in the study countries as well as
in neighboring regions. While the more extreme
scenario (mp85) leads to greater areas at risk in
Sudan and South Sudan compared to the more
moderate scenario (mp45), it leads to smaller
areas at risk in Tanzania. In Ethiopia and Kenya,
gains and losses in suitable habitat are about the
same and occur mostly along the borders of the
areas predicted as currently suitable. To our
knowledge, no other study so far has looked into
how climate change will affect the habitat of
P. juliflora at the global or regional scales. Accord-
ingly, an evaluation of these findings is difficult.
In the case of L. camara, the Ethiopian and

Kenyan highlands as well as northern and cen-
tral Tanzania currently have the highest risk of
being affected by L. camara invasion. This corre-
sponds to findings from a global study by Qin
et al. (2016) in which they predicted an expan-
sion of L. camara further inland in Eastern Africa,
particularly under the RCP85 emission scenario.
The global model suggests that virtually all of
Ethiopia and Kenya and most of Tanzania has
suitable climates for L. camara, which likewise
corresponds to the findings of Qin et al. (2016).
However, this is not confirmed by the regional
model, which we consider to be more accurate,
as it uses local occurrence points and additional
variables reflecting the preferred environmental
conditions of the two species. Nonetheless, we
would like to highlight areas in west central Tan-
zania where the Eastern African niche exceeds
the global one and which might therefore have a
higher risk of L. camara presence or invasion in
the near future. This, too, is in line with findings
reported by Qin et al. (2016). Our results further
suggest that Zambia is at a high risk of being
affected by L. camara in the future, although,
again, we did not consider any occurrence data
from Zambia and hence this finding might be
less reliable. Considering future climatic changes,
we observe small areas here and there where the
risk of L. camara invasion increases or decreases.
This corresponds to earlier findings reported by
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Taylor et al. (2012), who characterized the likely
future distribution of L. camara as patchy and
determined by the existence of favorable micro-
habitats. Areas of increasing risk are mostly
located in Tanzania, Somalia, and South Sudan,
while areas of decreasing risk occur also in Tan-
zania, in Zambia, and in areas bordering the
Ethiopian highlands.

Implications for effective invasive alien plant
management

Both P. juliflora and L. camara have become
widely established in Eastern Africa, necessitat-
ing a spatially explicit management strategy that
ensures concerted communication and manage-
ment across national and subnational borders
and sets different control objectives for areas
with different invasion levels (Grice et al. 2011,
Terblanche et al. 2016, Shackleton et al. 2017b).
By combining different approaches to assess the
two species’ ecological niches and stages of inva-
sion and the probability of their potential distri-
bution in space and time, our study generated a
number of results with direct implications for
management (Table 4).

Management of IAPS usually follows a three-
stage hierarchical approach consisting of (1) pre-
vention of establishment in areas where the IAPS
is not yet present, (2) early detection and rapid
response (EDRR) in areas where infestations are
limited and accessible, and (3) control (Witt and
Luke 2017). Prevention measures should primar-
ily target areas that are climatically suitable,
meaning areas that are within the ecological
niche. In line with the young invasion history of
P. juliflora in Eastern Africa, our results indicate
that a regional or national spatially explicit man-
agement strategy for this species should empha-
size prevention alongside EDRR and control.
Our results indicate that large areas in Eastern
Africa that have not yet been invaded by
P. juliflora are suitable under the current climate
or will become suitable under the predicted cli-
mate change scenarios. In an attempt to spatially
delineate different regions in Australia necessi-
tating different approaches to managing the
invasive plant Hymenachne amplexicaulis (Rudge)
Nees, Grice et al. (2011) distinguished between
low- and high-risk prevention zones. Similarly,
areas close to the invasion front in northern Tan-
zania should be declared as high-risk prevention

zones that require several prevention measures.
For example, the spread of Prosopis glandulosa
Torr. into non-infested areas in Western Australia
was controlled by building large fences between
invaded and non-invaded suitable areas, and by
keeping livestock for several days in Prosopis-free
paddocks before moving it into non-invaded
areas (Van Klinken and Campbell 2009). Suitable
areas in the central and southern parts of Tanza-
nia could be considered as low-risk prevention
zones, where it may be sufficient to emphasize
prevention of P. juliflora planting as well as inten-
tional and unintentional long-distance seed dis-
persal. Moreover, since our results suggest that
new areas will become suitable in the context of
climate change and, based on the analysis of the
stage of invasion, P. juliflora may be able to adapt
to novel climatic conditions, the planting of sap-
lings and dispersal of seeds should also be pro-
hibited in areas bordering the current range of
suitable habitats (e.g., southwestern Tanzania
and northern Zambia).
With regard to L. camara, which was intro-

duced to Eastern Africa already in the 19th cen-
tury (Day et al. 2003, Sharma et al. 2005), our
results indicate that this species has already colo-
nized a significant part of its ecological niche in
Eastern Africa and that, therefore, prevention
measures may be less warranted than in the case
of P. juliflora. However, the global (i.e., using glo-
bal occurrences without Eastern African occur-
rences) and Eastern African (i.e., using the
Eastern African occurrences only) ensemble
SDMs for Eastern Africa produced conflicting
modeling outputs: Large areas in the lowlands of
northern Kenya and Ethiopia are within the
modeled global niche but not within the mod-
eled Eastern African niche (Fig. 4). A possible
explanation for these conflicting outputs is that
the global niche, relative to the Eastern African
niche, is based on a larger genetic variation of
L. camara, with a higher variation in phenotypic
traits that affect habitat suitability. Further stud-
ies are needed to accurately interpret these con-
tradictory results and to decide whether regional
or national L. camara management strategies in
Eastern Africa should include prevention mea-
sures in lowland areas; for example, L. camara
saplings could be experimentally transplanted
across the areas that are included in the global
but not in the Eastern African niche, and their
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Table 5. Main findings of this paper and implications for IAPS management.

Findings Management implications

Assessment of ecological niches
The global and Eastern African niches of both
Prosopis juliflora and Lantana camara overlap to a
considerable extent
The current Eastern African niche of P. juliflora
largely contours the conditions in areas where
P. juliflorawas originally introduced

The high level of niche unfilling by P. juliflora at subnational level
indicates that large areas not yet invaded are at risk of being invaded in
the future

Niche unfilling varies considerably for P. juliflora
when different “local” niches are compared

New plantations in suitable areas currently free of P. juliflora should be
prohibited

Distance from waterbodies is an important variable
in the Eastern African distribution model for
P. juliflora

When searching for new P. juliflora infestations, particular emphasis
should be placed on surveying waterbodies

L. camara appears to have colonized a significant
part of its ecological niche in Eastern Africa

Management strategies for L. camara in Eastern Africa should primarily
focus on keeping weed densities low and reducing high weed densities
in the invaded range; prevention and EDRR appear to be less relevant,
since the species is already widely distributed

Climate change is expected to lead to small niche
expansions for both species
Exclusion of marginal climates leads to
considerable increases in percent niche unfilling
for both species, but niche expansion remains low
or zero
Stage of invasion
P. juliflora (1) is still spreading and (2) appears to be
undergoing a relatively rapid local adaptation
process
The likelihood of adaptation to more marginal or
even new climatic conditions is higher for
P. juliflora than for L. camara

Prevention measures for P. juliflora should also be implemented in areas
that are slightly outside the global ecological niche

L. camara appears to be close to reaching a quasi-
equilibrium distribution in Eastern Africa

Management measures for L. camara can be restricted to areas within the
global ecological niche

Current potential suitable habitats
The global and the Eastern African habitat models
for P. juliflora largely overlap, but the Eastern
African model suggests that large areas in western
Kenya and Tanzania also contain suitable habitats

A national P. juliflora strategy should be implemented in Tanzania to halt
the recent invasion from Kenya

P. juliflora is likely to continue to spread in
Tanzania

Awareness of the negative impacts of woody IAPS should be raised
among the general public and other stakeholders in regions that are still
uninvaded but contain suitable habitats for P. juliflora (and to a lesser
extent also L. camara)

The Ethiopian and Kenyan highlands are severely
affected or at high risk of being invaded by
L. camara

National authorities should coordinate IAPS management in border
regions to prevent invasion of new countries or areas

There are large areas in Eastern Africa where the
global and the Eastern African models for
L. camara do not overlap

The significant differences in the geographic representation of suitable
habitats for L. camara between the global and the Eastern African
models entail uncertainty about whether lowland regions in Ethiopia
and Kenya need to be surveyed for new infestations

Future potential suitable habitats
Invasion of P. juliflora in Tanzania is likely to
accentuate under future climates

P. juliflora surveillance programs should include habitats that will
become suitable with climate change (particularly southwestern
Tanzania)

In the context of a changing climate, regions
outside the study region (e.g., Zambia) are at risk
of being invaded by P. juliflora

Planting of P. juliflora and the intentional introduction of seeds
(e.g., by livestock crossing the borders) to northern Zambia
(e.g., from Tanzania) should be prohibited
Early detection of P. juliflora and rapid response near the invasion
front in northern Tanzania should be prioritized

Climate change appears to have little impact on the
availability of suitable habitats for L. camara in the
study region, except for a decrease in suitable
habitats in central Tanzania

Note: EDRR, early detection and rapid response.
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performance measured (Angert and Schemske
2005).

Early detection and rapid response and control
measures will be important additional elements
of regional and national management strategies
against both target weeds. However, spatial tar-
geting of EDRR and control measures requires
detailed maps of the two species’ current distri-
bution, ideally with information on local abun-
dance or cover (Table 5; Frazier and Wang 2011,
Shiferaw et al. 2019).

CONCLUSION

Our study suggests that the combination of
different approaches in niche shift studies of
IAPS can provide significant insight into current
and projected future IAPS invasion processes,
but it can also generate conflicting results or even
suggest an overestimation of niche filling. The
comparative assessment of the ecological niches,
stages of invasion, and potential distribution of
P. juliflora and L. camara in Eastern Africa
revealed patterns that largely reflect the different
invasion histories of the two species. Importantly,
the combination of approaches enabled us to for-
mulate general and specific recommendations
with regard to prevention measures—an impor-
tant component of IAPS management strategies.
To inform the other key components of IAPS
strategies, EDRR and control, niche shift studies
should be combined with other approaches, such
as fractional cover maps of the current distribu-
tion of IAPS (Frazier and Wang 2011).

As emphasized by Guisan et al. (2014), correl-
ative niche shift studies of exotic species may
also guide experimental studies, but a combined
approach has rarely been applied so far (Hill
et al. 2013). Experimental studies addressing the
conflicting results generated by the different
approaches—such as the large differences in the
suitable geographic areas predicted by the global
and the Eastern Africa models for L. camara—
would be particularly useful for further improv-
ing spatially explicit IAPS management strate-
gies at the national or regional level.
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