
s
o
u
r
c
e
:
 
h
t
t
p
s
:
/
/
d
o
i
.
o
r
g
/
1
0
.
4
8
3
5
0
/
1
4
0
7
1
 
|
 
d
o
w
n
l
o
a
d
e
d
:
 
2
7
.
4
.
2
0
2
4

Fax +41 61 306 12 34
E-Mail karger@karger.ch
www.karger.com

 Review 

 J Vasc Res 2012;49:390–404
  DOI: 10.1159/000338278 

 Intussusceptive Angiogenesis:
A Biologically Relevant Form of 
Angiogenesis

  Ward De Spiegelaere    a     Christophe Casteleyn    b     Wim Van den Broeck    c     

Johanna Plendl    d     Mahtab Bahramsoltani    e     Paul Simoens    c     Valentin Djonov    f     

Pieter Cornillie    c 

   a  
  Department of General Internal Medicine, Infectious Diseases and Psychosomatic Medicine,

Ghent University Hospital,  Ghent ,  b  
  Laboratory of Applied Veterinary Morphology, Department of Veterinary Sciences, 

University of Antwerp, Antwerp,  c  
  Department of Morphology, Faculty of Veterinary Medicine, Ghent University, 

Merelbeke, Belgium;  d  
  Department of Veterinary Anatomy, Faculty of Veterinary Medicine, Freie Universität Berlin, 

Berlin,  e  
  Department of Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, Universität Leipzig, 

Leipzig, Germany;  f    Institute of Anatomy, University of Bern, Bern, Switzerland

 

models for investigating intussusceptive angiogenesis are 
summarized. In addition, other mechanisms of vascular 
growth are briefly reviewed.   Copyright © 2012 S. Karger AG, Basel

  Introduction

  Angiogenesis is very prominent in developing and 
growing organisms. In the adult, it is only active in spe-
cific situations and tissues, such as in wound healing, in 
the cyclic ovary, and in the life cycle of the female mam-
mary glands and uterus. It is also associated with diverse 
pathological conditions, in which it can have a positive or 
negative impact on the pathological process  [1, 2] . Angio-
genesis can repair damage inflicted by ischemia or car-
diac failure, but in certain situations the activation of an-
giogenesis may aggravate the pathology  [3] . Examples of 
the latter are tumor growth and cardiovascular diseases 
such as atherosclerosis, chronic inflammation, diabetic 
retinopathy, psoriasis, endometriosis, and rheumatoid 
arthritis  [4, 5] . The mechanism of angiogenesis has been 
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  Abstract

  Angiogenesis, i.e. the development and growth of blood 
vessels, is a major topic of research as it plays an important 
role in normal development and in various pathologies. Re-
cent evidence revealed the existence of different mecha-
nisms of blood vessel growth, including sprouting and intus-
susceptive angiogenesis, vascular mimicry, and blood vessel 
cooption. The latter two have only been observed in tumor 
growth, but sprouting and intussusceptive angiogenesis 
also occur in healthy, physiologically growing tissues. De-
spite this variety of angiogenic mechanisms, most of the cur-
rent research is focused on the mechanism of sprouting an-
giogenesis because this mechanism was first described and 
because most existing experimental models are related to 
sprouting angiogenesis. Consequently, the mechanism of 
intussusceptive angiogenesis is often overlooked in angio-
genesis research. Here, the mechanism of intussusceptive 
angiogenesis is reviewed and the current techniques and 
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recognized as a promising therapeutic target that has to 
be enhanced or inhibited, depending on the pathology  [1, 
6, 7] . Consequently, a better understanding of the process 
of angiogenesis will help the development of pro- and an-
tiangiogenic therapies.

  Until recently, the process of angiogenesis was thought 
to mainly proceed through the so-called sprouting of 
blood vessels from the pre-existing vasculature. However, 
different mechanisms of angiogenesis have been discov-
ered  [8, 9] . In physiologically growing tissues, two forms 
of angiogenesis have been described, i.e. sprouting angio-
genesis (SA) and intussusceptive angiogenesis (IA). SA 
was initially thought to be the only process of angiogen-
esis, but in the last decade of the previous century IA was 
discovered as an alternative process  [10, 11] . SA is purely 
responsible for vascular growth, whereas IA can also in-
volve vascular remodeling through pruning of excessive 
blood vessels. In addition to these mechanisms, two alter-
native forms of angiogenesis have been described, i.e. vas-
cular cooption and vascular mimicry, but these mecha-
nisms are assumed to be restricted to pathological situa-
tions  [8, 9] . The heterogeneity of angiogenic processes 
should be taken into account in future antiangiogenic 
therapies since recent data revealed that the angiogenic 
phenotype may switch to a different form of angiogenesis 
after angiogenic treatment  [8, 12] . In addition, a better 
knowledge of these forms of angiogenesis can lead to fur-
ther fine-tuning proangiogenic therapy to re-establish a 
functional vascular network in ischemic tissue  [9] .

  Because IA is underrepresented in the recent litera-
ture, the present review mainly focuses on this form of 
angiogenesis. In this context, SA is briefly reviewed, but 
other extensive reviews are available  [7, 13] . Furthermore, 
alternative forms of vascular growth, including vascular 
mimicry and vascular cooption, are briefly reviewed.

  Sprouting Angiogenesis

  SA is a complex process in which a vascular sprout 
arises from a pre-existing vessel and subsequently forms 
a new blood vessel. This mechanism is mainly regulated 
in a paracrine fashion by angiogenic growth factors that 
are expressed by hypoxic tissues  [4, 9] . SA starts with ves-
sel dilatation and an increase in vascular permeability to 
allow extravasation of proteins that partly disrupt the en-
dothelial basement membrane and lay down a provision-
al scaffold for migrating cells  [14] . This enables endothe-
lial cells, pericytes, and vascular smooth muscle cells to 
detach and migrate towards angiogenic stimuli. The en-

dothelial cells start to proliferate and form a lumen. As 
such, a vascular sprout develops and fuses with another 
sprout or another blood vessel. Finally, the endothelial 
cells stop proliferating and mature by binding to each 
other, to the surrounding pericytes, and to the basement 
membrane  [15, 16] . SA is a highly invasive process that 
allows the formation of a vascular network within previ-
ously avascular tissues, such as the hypertrophic zones of 
the cartilage in the growth plate of growing endochon-
dral bones, or in diverse pathological settings including 
tumor growth  [13, 17] .

  The constitution of angiogenic sprouts has been inten-
sively studied  [13, 18–21] . Three types of cells are recog-
nized in the growing vascular sprout, i.e. tip cells, stalk 
cells, and phalanx cells ( fig. 1 )  [13] . An angiogenic sprout 
contains a single tip cell that is located at the apex of the 
sprout. Using their numerous filopodia, tip cells scan the 
environment for angiogenic stimuli and guide the angio-
genic sprout in the direction of these stimuli. Stalk cells 
trail just behind the leading tip cell and do not bear filo-
podia. These cells proliferate at a high rate; they start the 
process of lumenization and they contribute to the forma-
tion of the capillary basement membrane. During matu-
ration, stalk cells transform into phalanx cells, which are 
so called as they form an ordered monolayer of endothe-
lial cells reminiscent of the military ‘phalanx formation’ 
of the ancient Greek soldiers  [22] . Phalanx cells proliferate 
at a slower rate than stalk cells. They share the morpho-
logical characteristics of quiescent endothelial cells but 
continue to form the basement membrane and enhance 
the tight junctions. Phalanx cells form a tight barrier be-
tween the blood and the surrounding tissue  [13] .

  Upon activation with vascular endothelial growth fac-
tor (VEGF), the endothelial cells compete with each oth-
er to become the leading tip cell of the capillary sprout 
 [18] . This competition is mediated through VEGF-in-
duced expression of the delta-like ligand 4 (DLL4) protein 
via the VEGF receptor VEGR2. Subsequently, DLL4 ac-
tivates the Notch pathway in nearby endothelial cells. As 
Notch induces VEGFR1 and inhibits the expression of 
the VEGF receptors, VEGFR2 and VEGFR3, it suppress-
es the adjacent cells to become tip cells  [21, 23–25] . These 
mechanisms limit the number of tip cells to one per 
sprout and inhibit the formation of excessive angiogenic 
sprouts. Apart from a high expression of VEGFR2 and 
VEGFR3, tip cells also express high levels of platelet-de-
rived growth factor beta polypeptide (PDGFB) which is 
known to play a role during pericyte recruitment  [19] . In 
addition, recent work by del Toro et al.  [26]  revealed that 
tip cells express three groups of proteins, including pro-
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teins that are involved in the breakdown of the extracel-
lular matrix, proteins that have a function in the con-
struction of the basement membrane, and proteins that 
can regulate the trailing stalk cells in a paracrine fashion.

  Stalk cells proliferate at a high rate, but they are not 
capable of moving to angiogenic stimuli as they lack high 
amounts of VEGFR2 and VEGFR3 on their cell mem-
brane. Recently, Benedito et al.  [27]  demonstrated that 
expression of Jagged1 in stalk cells partly inhibits the in-
teraction of DLL4 with Notch so that the stalk cells re-
main partly responsive to VEGF, enabling them to pro-
liferate but inhibiting them from transforming into tip 
cells  [20, 27] . Stalk cells start the process of lumenization 
and promote the formation of the capillary basement 
membrane  [13] . Stalk cells are characterized by a high ex-
pression of the TIE2 receptor and the APJ receptors  [26] . 
APJ is the receptor for apelin and has been observed to 
induce lumen formation downstream of the ANGPT1-
TIE2 pathway  [28] . ANGPT1 and ANGPT2 are ligands of 
the TIE2 receptor. By activating TIE2, ANGPT1 induces 
vascular maturation as it tightens inter-endothelial junc-
tions and induces migration of pericytes  [29] . This action 
is inhibited by ANGPT2 which competitively binds TIE2 
but fails to activate the receptor  [30, 31] . These interac-
tions suggest that the ANGPT1/ANGPT2 balance trig-

gers the switch from vascular maturation to further pro-
liferation on the endothelial stalk cells.

  Lumen formation is essential to allow a flow of blood 
through the new vessel. Five potential mechanisms have 
been described for lumen formation  [32] : (1) wrapping, 
when a planar cell wraps itself to form a tube; (2) budding, 
when a tube-like structure sprouts out of a pre-existing 
tube; (3) cavitation, when a lumen is created in cell aggre-
gates by apoptosis of the central cells; (4) cord hollowing, 
when a central lumen is formed in cell aggregates through 
changes in shape such as flattening of the cells, and (5) cell 
hollowing or vacuolation, when a lumen is formed inside 
an endothelial cell by an intracellular vacuole  [33, 34] . 
These different mechanisms of lumen formation seem to 
be tissue specific  [32] . Vacuolation is most commonly ob-
served, in vivo as well as in vitro. During vacuolation, pi-
nocytic vesicles coalesce to form a large intracellular vac-
uole. Subsequently, these vacuoles coalesce with those of 
neighboring cells through an exocytotic event, leading to 
the formation of a lumen  [32, 35] . Cord hollowing has 
been described in the developing aorta of mice, amphi-
oxus, and zebrafish  [36, 37] , whereas cavitation has been 
described during lumenization of rat renal glomeruli  [33] .

  Ultimately, the new vascular sprout needs to connect 
to neighboring sprouts or blood vessels in order to create 

Tip cell Stalk cells Phalanx cells

  Fig. 1.  Schematic illustration of the mecha-
nism of SA.  
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Pericyte

Endothelial cell Intercellular junctions

a b c d e

  Fig. 2.  Schematic illustration of a small capillary surrounded by pericytes ( a ) undergoing IA. The opposite walls 
of this capillary start to migrate to each other ( b ), an intraluminal pillar is formed ( c ), and the cellular junctions 
of the opposing endothelial cells are rearranged ( d ). Subsequently, further growth of the pillar leads to spitting 
of the blood vessel into two new vessels ( e ).
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  Fig. 3.  Schematic illustration of the different forms of angiogenesis during development. Vasculogenesis ( a ) and 
SA ( b ) give rise to the formation of an immature vascular plexus ( c ) that further grows and remodels by the dif-
ferent forms of IA, i.e. IMG ( d ), IAR ( e ), IBR ( f ), and intussusceptive pruning ( g ).
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a continuous blood flow  [38] . This item has received rela-
tively little attention. However, recent work revealed that 
peculiar macrophages that express neuropilin 1 (NRP1) 
and TIE2 on their cell surface are crucial for the guidance 
and fusion of tip cells from two distinct sprouts. Experi-
ments with mice lacking these specific macrophages re-
vealed that tip cells are only able to migrate to an angio-
genic stimulus but are unable to recognize other blood 
vessels or capillary sprouts  [39] .

  Intussusceptive Angiogenesis

  SA has been studied in great detail because it was rec-
ognized as the sole mechanism of angiogenesis for more 
than 170 years and because a whole range of in vitro and 
in vivo test systems have been developed to study this 
specific type of angiogenesis  [9, 40] . In contrast, IA, also 
called splitting angiogenesis or nonsprouting angiogen-
esis, was discovered in the late eighties of the 20th cen-
tury and remains poorly investigated  [10, 11, 41] . Never-
theless, IA seems to play a major role in the growth and 
remodeling of most vascular beds, including the vascular 
beds of tumors  [12, 42, 43] .

  A typical characteristic of IA is the formation of so-
called intraluminal tissue pillars that are formed by an 
invagination of the capillary walls into the vascular lu-
men  [11, 44, 45] . The formation of intraluminal pillars 
proceeds through a multistep process  [46] . It starts when 
the endothelial walls of the opposite sides of a vessel mi-
grate to each other ( fig. 2 a, b), forming an intraluminal 
pillar ( fig. 2 c). The interendothelial junctions are reorga-
nized ( fig. 2 c), and a central perforation is formed in the 
core of the pillar. Subsequently, this pillar is invaded by 
pericytes and myofibroblasts that deposit extracellular 
matrix into the pillar ( fig. 2 d). Finally, several pillars in-
crease in size and fuse with each other, splitting up the 
initial capillary into two new capillaries ( fig. 2 e)  [46] .

  Morphological Characteristics of IA
  Three forms of IA are recognized, depending on the 

outcome or phenotype of these forms, i.e. intussusceptive 
microvascular growth (IMG), intussusceptive arboriza-
tion (IAR), and intussusceptive branching remodeling 
(IBR) ( fig. 3 )  [46] . IMG leads to the rapid expansion of an 
already existing vascular network through the continu-
ous new formation and expansion of pillars into the net-
work. This results in a simple network of similarly sized 
capillaries ( fig. 3 d). IMG is characterized by a diffuse ap-
pearance of numerous pillars. In a mechanism that is 

most likely driven by blood flow, these pillars fuse and 
split the vessels, expanding the capillary network and 
forming the organ-specific architecture  [42] . In contrast, 
IAR contributes to the remodeling of a previously unhi-
erarchical capillary network into a hierarchical vascular 
tree in which major arterioles, venules, and capillaries 
can be discerned. IAR can be recognized in a dense cap-
illary network by the occurrence of a series of pillars, de-
lineating the prospective supply vessel from the neigh-
boring capillaries ( fig. 3 e). The third form of IA, IBR, can 
be defined as the mechanism that optimizes the number 
of vessels to efficiently supply a tissue with blood by either 
changing the branching pattern of blood vessels ( fig. 3 f) 
or pruning the vascular network from superfluous ves-
sels ( fig. 3 g)  [47] . IBR is commonly recognized by the oc-
currence of a tissue pillar close to the bifurcation of two 
blood vessels. These pillars enlarge and eventually merge 
with the perivascular connective tissue. As such, the bi-
furcation is further narrowed and the bifurcation point 
is relocated more proximally. In the case of pruning, pil-
lars also appear close to a bifurcation, but they are situ-
ated more eccentrically and asymmetrically  [48] . The 
elongation and fusion of these pillars cuts off the blood 
flow from the targeted blood vessel, which subsequently 
regresses.

  Occurrence of IA
  IA is a process that only occurs in a pre-existing vas-

cular network that was formed either through vasculo-
genesis or through SA. In the majority of developing vas-
cular beds, the initial network is formed through SA, and 
IA gradually takes over  [49, 50] . IA is a faster process than 
SA and it can occur without interfering with the local 
physiological conditions because no blind ending capil-
lary segments are formed. The basement membrane re-
mains intact during the course of IA, preventing the 
blood vessels from becoming leaky. In addition, endothe-
lial migration and proliferation are kept to a minimum as 
the endothelial cells do not necessarily proliferate but 
rather increase in size and flatten  [51, 52] . This results in 
a relatively lower metabolic cost of IA in comparison with 
SA  [47] .

  Since its discovery in developing lungs in the late 
eighties of the previous century, evidence for ongoing IA 
has been detected in a wide range of developing tissues 
such as bone, retina, muscle, kidney, ovary, mammary 
gland, and many more  [2, 11, 17, 46, 50, 51, 53, 54] . This 
data indicates that IA is actually a very common mecha-
nism of blood vessel growth. Interestingly, investigations 
of different developmental stages in the mammary gland 
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in developing glomeruli and in the cyclic ovary revealed 
that SA is predominant in the early stages of angiogenesis 
while IA predominates in the later stages of vascular 
growth and remodeling  [49, 54, 55] . This suggests that the 
initial vascularization of growing tissues is mainly estab-
lished through vasculogenesis or SA, and that the further 
remodeling is mainly performed by IA, as the latter pro-
cess is quicker and is assumed to use less metabolic en-
ergy.

  IA is also active in diverse pathologies and during tu-
mor growth  [8, 46] . IA has been observed in different 
murine disease models, including models of liver cirrho-
sis, models of inflammation, and the hypoxic mouse ret-
ina  [56–58] . In addition, IA was observed to start glo-
merular repair after induced Thy-1.1 nephritis in rats  [59, 
60] . IA has recently been observed to participate in tumor 
growth, such as in B-cell non-Hodgkin’s lymphoma, in 
different types of gliomas, in mammary tumors, or dur-
ing renal hepatocellular and colon carcinoma  [55, 61–63] . 
Observations in mammary tumors of mice revealed that 
SA is active in small tumors (less than 8 mm in diameter), 
whereas IA is predominant in larger tumors  [55] . Fur-
thermore, recent evidence suggests that tumors respond 
with an angiogenic switch from SA to IA following ion-
izing radiation or antiangiogenic drug therapy using 
PTK787/ZK222584, a broad range tyrosine kinase inhib-
itor. These treatments are mainly designed to stop SA but 
lose their effect because the process of IA enables the vas-
cular network to keep growing  [12, 43, 60] . Consequently, 
future therapies will need to target both mechanisms of 
angiogenesis in order to be effective.

  IA might also be exploited in proangiogenic therapy 
to re-establish a functional vascular plexus in ischemic 
tissues. This form of angiogenesis results in a faster and 
better organized vascular plexus in comparison to SA. 
Current proangiogenic therapies mainly aim to induce 
SA, leading to the accumulation of fluid and transient 
edema in tissues  [64] . This might be due to the leaky na-
ture of newly formed vascular sprouts during SA. The 
specific induction of IA after an initial colonization of 
angiogenic sprouts into the ischemic tissue could en-
hance vascular normalization, improving the therapeutic 
outcome. These proangiogenic therapies could be used in 
various forms of ischemic disease including ischemic 
heart diseases, large wound healing, and atherosclerosis 
 [64] .

  Altogether, this data emphasizes the need for thor-
ough comprehension of the molecular pathways regulat-
ing IA. However, research on these molecular pathways 
is hampered by the limited availability of experimental 

models and analytical tools to study IA  [10] . This is due 
to the difficulty to induce and visualize IA both in vivo 
and in vitro.

  Regulation of IA
  Hemodynamic forces play an important role during 

the process of IA  [47] . Blood flow has been observed to 
establish a hierarchical vasculature with venules and ar-
terioles from a pre-existing capillary plexus in the chick 
chorioallantoic membrane (CAM)  [65, 66] . Experiments 
using the chick CAM revealed an increase in IA in blood 
vessels in which the blood flow is enhanced by clamping 
their side branches  [44, 47] . Interestingly, in 1939 the 
remodeling of a vascular plexus after an experimentally 
induced increased blood flow was already observed to 
occur through the formation of small vessel loops, but 
this network remodeling was not recognized as IA  [42, 
67] . It is still unclear whether the effect of hemodynam-
ics on IA is mainly induced by changes in hydrostatic 
pressure, by cyclic stretch, by shear stress, or by a com-
bination of all of the previous factors  [52] . Shear stress 
seems to play a major role, since in silico models re-
vealed that tissue pillars occur in places with low shear 
stress caused by turbulence due to an increased blood 
flow  [47, 52, 68] .

  Apart from the hemodynamic forces, IA is also regu-
lated by molecular actors. However, due to lack of appro-
priate experimental assays, only scarce data are available 
on the molecular control of IA. Consequently, there are 
mainly indirect indications about the possible roles of 
some molecules during IA.

  VEGF is the best described angiogenic growth factor, 
but few data exist on the function of VEGF during IA 
 [69] . Initial work in developing chick glomeruli and in the 
chicken embryonic lung indicated that VEGF mainly af-
fects SA and that it is downregulated in vascular beds that 
are growing by IA  [49, 70] . This indicates that factors oth-
er than VEGF might be involved in IA. However, recent 
investigations on the chick CAM and observations in hu-
man gliomas suggest that VEGF and VEGF isoforms play 
an important but unclear role during IA  [48, 63, 71] . A 
decrease in VEGF levels after depletion of VEGF releas-
ing hydrogels on the growing chick CAM is associated 
with a reduction of the vascular network through intus-
susceptive vascular pruning  [48] . Recent data indicate 
that a different expression of the VEGF receptors might 
determine the angiogenic phenotype. A study of the gene 
expression in developing glomeruli revealed upregula-
tion of VEGFR2 in early glomerular development but a 
significant downregulation of this receptor in later devel-
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opment when glomeruli were still growing  [50] . In addi-
tion, glomerular repair through IA is not readily halted 
after addition of a VEGFR2 inhibitor (PTK787/ZK222584) 
 [60] . This might suggest that VEGFR2 is mainly impor-
tant for SA, being the main mechanism in early glomer -
 ular growth, and that other receptors for VEGF (e.g. 
VEGFR1) might be more important for IA which pre-
dominates in late glomerular growth  [49, 50] . Better in-
sight into the expression of specific VEGF isoforms and 
of their receptors during IA might clarify the role of 
VEGF during IA and SA.

  Apart from VEGF, the angiopoietins are also impor-
tant angiogenic growth factors, and there are clear indi-
cations that these factors play an important role during 
IA  [10, 72] . Targeted deletion of TIE2 expression in mice 
leads to deficient pillar formation  [73] . ANGPT1-overex-
pressing mice show a vascular phenotype of enlarged ves-
sels with abundant small invaginations that are reminis-
cent of the intraluminal pillars encountered during IA 
 [41, 74, 75] . Both ANGPT1 and ANGPT2 are continu-
ously expressed in growing kidney glomeruli  [50, 76] . 
Moreover, overexpression of ANGPT2 affects ongoing IA 
in the chick CAM as it leads to remodeling of a previ-
ously uniform capillary mesh into an arborized vascular 
tree  [77] .

  Studies on the developing chick vasculature also indi-
cated that fibroblast growth factor (FGF2) and PDGFB 
might play a regulatory role during IA  [49, 70] . In the de-
veloping chick mesonephros, increased FGF2 expression 
in podocytes was correlated with a phenotypic switch 
from SA to IA  [49] . The function of FGF2 during IA is 
still elusive. Expression of FGF2 induces PDGF receptor 
expression in newly formed blood vessels. PDGFB is im-
portant for pericyte recruitment  [78]  and, since pericytes 
play a role in the formation of tissue pillars, it might be 
hypothesized that FGF2 regulates IA by inducing PDGFB 
responsiveness in pericytes through upregulation of the 
PDGF receptors  [42, 44] . However, recent investigations 
on the angiogenesis inhibitor (PTK787/ZK222584) re-
vealed that IA is only inhibited after 14 days of treatment, 
suggesting that this type of angiogenesis might be regu-
lated by additional factors  [60] .

  Recently, IA was observed to be upregulated in response 
to hypoxia with a chronic hypoxia model in mice  [79] . Hy-
poxia can trigger the expression of several angiogenic 
genes through upregulation of hypoxia-inducible factors 
 [80] . As an example, hypoxia-inducible factor 2 alpha (HI-
F2 � ) upregulates erythropoietin (EPO) expression  [81, 82] . 
EPO has been described as a possible regulator of IA, as 
addition of EPO to the chick CAM enhanced IMG  [83] . In 

addition, EPO was observed to be expressed in blood ves-
sels undergoing IA in human glioma tumors  [84] .

  Because of the current scarcity of experimental and 
descriptive studies on IA, it can be expected that addi-
tional angiogenic factors might also influence the process 
of IA. The most likely candidates might be factors that 
regulate EC-pericyte interactions and cell-cell junctions. 
Among the factors regulating cell-cell interactions, VE-
cadherin might be an interesting candidate since deletion 
of this factor in mice leads to a disturbed morphogenesis 
of developing blood vessels  [9, 85] . In addition, the eph-
rins and the eph-B receptor or monocyte chemotactic 
protein 1 have also been proposed as other potential reg-
ulators of IA  [46, 72] .

  Descriptive Methods to Study IA

  Vascular Corrosion Casting
  The process of IA was first discovered on the basis of 

scanning electron microscopy (SEM) with vascular cor-
rosion casts  [11] . This enables the identification of intra-
luminal pillars that become evident as small holes with a 
diameter of 1–2  � m through the cast capillary lumen 
( fig. 4 ). The analysis of corrosion casts with SEM provides 
a good approach for screening various tissues for the 
presence of IA. However, only the external surface of the 
corrosion casts can be monitored. This drawback was re-
cently overcome by scanning casts with an in-house-de-
veloped high-resolution micro computerized tomogra-
phy (micro-CT) system  [50, 86] . In contrast to most com-
mercial systems, this high-resolution micro-CT provides 
a resolution of 1  � m, just precise enough to recognize in-
traluminal pillars  [50] . The major drawback of vascular 
corrosion casting is that it can only be used for end-stage 
evaluation of the angiogenic morphology.

  Serial Sections
  Light microscopic or transmission electron microscop-

ic observations of serial semithin (1  � m) or ultrathin ( 8 60 
nm) sections provide the most appropriate technique to 
unambiguously confirm the presence of intraluminal pil-
lars. With this method, the intraluminal pillars can be vi-
sualized by the subsequent appearance and disappearance 
of the pillar  [44] . This technique provides the possibility 
to investigate the fine morphological changes during the 
process of pillar formation ( fig. 5–7 ). However, this meth-
od is laborious and the recognition of pillar formation in 
complex vascular beds is very challenging, making it un-
suitable for large-scale screening of blood vessels.
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a b

  Fig. 4.  Scanning electron micrographs of corrosion casts of the growing vasculature in the porcine neonatal 
mandibular ( a ) and frontal ( b ) bone. Intraluminal pillars can be observed as small holes through the casts (ar-
rowheads). Scale bar = 100  � m.

a b

c d

  Fig. 5.  Lightmicroscopic micrographs of serial semithin sections through an intraluminal pillar during the pro-
cess of IMG showing a section just next to a tissue pillar ( a ), through a pillar ( b ), and on the other side of the 
pillar ( c ). The black arrow in  d  points to an intercellular junction between the two endothelial layers. Scale bar 
= 80  � m ( a–c ) and 40  � m ( d ). Adapted from Djonov et al.  [47] .
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  Confocal Laser Scanning Microscopy
  IA can also be observed by confocal laser scanning mi-

croscopy (CLSM) on tissue sections stained with immu-
nofluorescent endothelial cell markers  [87] . Using this ap-
proach, three-dimensional images can be obtained from 
intraluminal pillars, and double labeling with specific en-

dothelial cell markers together with pericyte markers 
might provide more insight into the function of these cells 
in the formation of intraluminal pillars  [12] . Moreover, 
CLSM can also be used to investigate the precise localiza-
tion of certain growth factors and cell membrane-bound 
proteins around the growing tissue pillar. Recently, a 

a b

c d

e f

  Fig. 6.  Transmission electron microscopic micrographs of ultrathin sections through an intraluminal pillar 
( a–f ); a pillar is formed with collagen fibers within its core (cf in  b ), and interendothelial junctions are visible 
(arrows in  c ). The nucleus of an endothelial-like cell (ELC) is positioned between the capillary walls ( d ,  e ). Scale 
bar = 2  � m. En = Endothelium; Pc = pigment; Ca = capillary lumen. Adapted from Djonov et al.  [44] .
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method was optimized to visualize capillaries without us-
ing EC-specific antibodies but rather using lipophilic car-
bocyanine dyes, making the process of fluorescent blood 
vessel labeling much easier  [88] . CLSM has also been com-
bined with vascular corrosion casts to which a fluorescent 
dye was added  [89] . With this technique, the surrounding 
tissue can remain intact, enabling microscopic observa-
tion of the surrounding endothelial cells and pericytes.

  In vivo Microscopic Video Analysis
  In certain tissues, such as in the chick CAM, the pro-

cess of IA might also be analyzed in real time using in 
vivo microscopic video analysis. By injecting a fluores-
cent dye into the vasculature, the morphogenesis of the 
capillaries of the chick CAM can be monitored, and the 
formation of intraluminal pillars can be detected near the 
bifurcation points of capillaries  [47]  ( fig.  7 b, c). This 
method is specifically suitable for monitoring intralumi-
nal pillar formation in real time. It might also be used in 
other vascular beds, but these should be easily accessible, 
without need for dissection procedures interfering with 
the angiogenic process.

  Experimental Models to Study IA

  While descriptive studies may provide more hypoth-
eses on the process of IA, experimental models are crucial 
to gain evidence for these postulates. A plethora of in vi-
tro and in vivo angiogenesis models has been described 
during the past decades. However, most models are only 
optimized to study SA or do not enable discernment of 
sprouting from IA  [40, 90, 91] .

  The ideal experimental model for angiogenesis should 
provide a good mimic of the process under study  [40] . In 
addition, it should be highly reproducible, it should pro-
vide the possibility to monitor the process of angiogen-
esis in real time without inducing extra environmental 
bias, and it should enable the possibility to carefully 
monitor and adjust the concentration of angiogenic fac-
tors in a spatial and temporal fashion  [90, 91] . Unfortu-
nately, no such model has been developed to date. In vi-
tro models provide the possibility to monitor the concen-
tration of all angiogenic factors and the process of 
angiogenesis in real time without interfering with the 
ongoing angiogenesis. However, the conditions in these 
in vitro models are highly different from in vivo condi-
tions. This hampers the extrapolation of experimental 
results from an in vitro context to the in vivo situation 
 [90] . In vivo models provide an interesting alternative as 

the process of angiogenesis in these models occurs in 
natural physiological conditions. However, in vivo mod-
els are highly complex and the concentrations of angio-
genic factors and other environmental factors cannot be 
easily monitored and adjusted. Moreover, realtime mon-
itoring of the angiogenic process at high resolution is al-
most impossible in in vivo models  [40, 90] . As a result, 
most studies rely on a combination of in vitro and in vivo 
models.

  In vivo
  The occurrence of IA can be monitored in most in vivo 

angiogenesis models using the vascular corrosion casting 
technique. Unfortunately, vascular corrosion casting is 
not regularly used in most angiogenic investigations, and 

ECEC

ECEC

RBCRBC

a

b c

  Fig. 7.   a  Three-dimensional reconstruction of transmission elec-
tronic micrographs from serial ultrathin sections through a tissue 
pillar showing the endothelial cells (EC), the intraluminal pillar 
(arrowhead), and a red blood cell (RBC) within the capillary lu-
men.  b ,  c  Fluorescent micrograph of the formation of an intralu-
minal pillar formation during intussusceptive pruning happen-
ing in the chick CAM in real time; the pillars (arrowheads) are 
formed at the basis of the capillary that will be disconnected from 
the blood flow (star). Adapted from Djonov et al.  [44]  and Hlush-
chuk et al.  [48] .
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a thorough screening for the phenotype of the angiogen-
ic mechanism is hardly performed.

  Recently, IA was reported to occur in the retina of mice 
that were raised in hypoxic conditions  [79] . This chronic 
hypoxia model is often used to study retinal angiogenesis 
and might also form an interesting model for studying IA. 
Kidney glomeruli are also interesting candidates to study 
this mechanism of angiogenesis. These vascular beds are 
already used as models of angiogenic repair through IA 
 [59, 60] . During their development, growing glomeruli 
display a remarkable switch of the angiogenic phenotype 
from SA to IA  [49, 50] . In the rat arteriovenous loop mod-
el, an arteriovenous fistula (loop) is constructed from the 
femoral neurovascular bundle and embedded in a fibrin 
matrix within a Teflon isolation chamber  [92] . This pro-
cedure combined with corrosion casting and SEM allows 
quantitative investigation of the influence of angiogenic 
growth factors on the angiogenic phenotype including in-
tussusceptive pillar formation. The above in vivo models 
are promising tools to study the molecular pathways reg-
ulating IA. However, they only allow evaluation of the 
capillaries after sacrificing the animals and they do not 
allow evaluation of the process of IA in real time.

  The chick CAM assay is the only model that was re-
cently developed to study IA in real time  [44, 71, 77]  and 
ranks among the most frequently used angiogenesis as-
says  [40, 91] . It consists of a remodeling two-dimensional 
capillary bed that can be monitored in real time with a 
fluorescent microscope after injection of a fluorescent 
dye into the circulation of the growing embryo. In this 
way, the process of pillar formation at the bifurcation 
point of splitting vessels can be demonstrated  [44] , and 
the influence of various pro- and antiangiogenic sub-
stances can be evaluated  [71, 77] . The major drawback of 
this assay is the fact that it is only applicable with bird 
species which are phylogenetically more distant from hu-
mans than the species used in mammalian models. More-
over, the chick CAM microvasculature is already angio-
genically highly active by itself, and this might interfere 
with experimental results  [40, 93] .

  In vitro
  To date, only two in vitro models have been reported 

to show some characteristics of IA  [94, 95] . Hirschberg et 
al.  [95]  performed an ultrastructural investigation of an 
in vitro angiogenesis model in which endothelial cells 
form a capillary-like network without being imbedded in 
an exogenous extracellular matrix  [40, 96] . SEM observa-
tions of the process of angiogenesis in these cell cultures 
reveal that cellular strands form a complex network 

through the expansion of gaps in the cell strands ( fig. 8 ). 
This process of network formation is reminiscent of the 
process of IA, but further ultrastructural analysis should 
better characterize this process of in vitro network for-
mation. In the model of Levin et al.  [94] , endothelial cells 
are seeded at a high density on a pre-established mono-
layer of smooth muscle cells. The endothelial cells form a 
monolayer on top of the smooth muscle cells and are sep-
arated from each other by a basement membrane, mim-
icking the vascular wall of blood vessels in vivo. Subse-
quently, the endothelial cell wall starts to fold and to pro-
cure intravascular pillars. These pillars do not possess a 
lumen but contain components of the extracellular ma-
trix and basement membranes, similar to intraluminal 
pillars formed during IA. Although this seems a promis-
ing in vitro model of pillar formation, these pillars should 
be further characterized as it is still questionable whether 
these pillars are effectively similar to the intraluminal 
pillars that are observed during IA  [94] .

  An additional drawback of the present in vitro models 
of IA is the lack of experimentally induced blood flow at 
the capillary level. Since IA is a blood flow-mediated 
mechanism of vessel remodeling, experimentally in-
duced blood flow in vitro will result in angiogenic models 
that better represent the in vivo situation. Many in vitro 
models mimicking blood flow in tubes with varying di-
ameters exist  [97] , but these tubes are synthetic and do 
not allow organic reorganization of the endothelial cells 
and capillaries.

26 μm

  Fig. 8.  Scanning electron micrographs of endothelial cells in cul-
ture. A three-dimensional network of capillary-like (arrows) 
structures is apparent. 
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  In silico Models
  Mathematical models are increasingly used in life sci-

ence. These models permit the interpretation of highly 
complex systems in which multiple factors are influen-
tial, enabling a holistic approach to investigating biologi-
cal systems  [98, 99] . In the past decades, some in silico 
models have been optimized to study the process of IA. 
The current models are based on the chick chorioallan-
toic model as this model allows relatively easy verification 
of the in silico data in the in vivo system when compared 
to other in vivo models of angiogenesis  [52] . Initially, the 
in silico models were merely based on the formation of 
bifurcations  [100] , but later models also included the for-
mation of intraluminal pillars  [68, 101, 102] . Because the 
models are all strictly based on studying hemodynamic 
forces, Szczerba et al.  [103]  developed a more realistic 
model for IA in which biochemical factors may also be 
incorporated and in which multiple cell layers, not mere-
ly the vascular wall, are taken into account. This model 
may be used as a first in silico step to test various hypoth-
eses prior to more laborious in vitro and in vivo tests. 
These experiments will in turn provide extra information 
to further optimize the current in silico models and vice 
versa  [52, 103] . In addition, these models might be com-
bined with other theoretical models of vascular remodel-
ing that have been described in the past  [65, 66, 104] .

  Vascular Cooption and Vascular Mimicry

  Apart from SA and IA, two other forms of angiogen-
esis have recently been described, i.e. vascular cooption 
and vascular mimicry. However, to date, these forms have 
only been detected in developing tumors and will not be 
discussed in great detail in this review.

  Vascular Cooption
  In highly vascularized tissues, tumors can grow to a 

certain extent without eliciting a specific angiogenic re-
sponse by parasitizing on the pre-existing vasculature of 
the tissue in which the tumors grow  [8] . This has been 
observed in human melanoma tumors that were intro-
duced in mice brain parenchyma  [105, 106] . Instead of 
eliciting an angiogenic response, the tumors associate 
with the pre-existing host vessels, and as the tumors in-
crease in size, the blood vessels become completely em-
bedded in the tumor  [105] . However, after a period of 
time, the co-opted vessels in these tumors start to regress 
because of an elevated ANGPT2 expression resulting 
from a host defense mechanism  [8, 106] . Consequently, 

vascular cooption is mainly observed during initial tu-
mor growth. The subsequent regression of the co-opted 
vessel elicits a robust angiogenic response and new blood 
vessels enter the tumor via SA or IA or through vascular 
mimicry  [8] .

  Recently, a mechanism similar to vascular cooption 
was described in healing wound tissues whereby myofi-
broblasts pull nearby blood vessels into the injured area, 
thereby allowing the recruitment of mature vessels that 
can trigger a quick start to vascular remodeling and the 
reconstitution of a functional vascular network in the in-
jured tissue  [107] .

  Vascular Mimicry
  In certain tumors, the tumor cells can take over an 

endothelial phenotype and can form a capillary-like net-
work on their own  [108] . This process of vascular mim-
icry results in a capillary network completely composed 
of tumor cells rather than vascular endothelial cells. This 
was described for the first time by Maniotis et al.  [109] . 
Vascular mimicry might also lead to mosaic vessels that 
are characterized by alternating tumoral and endothelial 
cells in the capillary walls  [110] .

  Vascular mimicry is mainly detected in aggressive tu-
mors including melanomas, renal cell carcinoma, Ewing 
sarcoma, and breast, ovarian, prostate, and lung tumors 
 [108, 109] . In aggressive melanomas, the tumor cells ex-
hibiting an endothelial phenotype were observed to ge-
netically reverse from an aggressive melanoma type to an 
endothelial-like phenotype in which endothelial specific 
genes are upregulated  [111] . This suggests that vascular 
mimicry closely resembles and recapitulates vasculogen-
esis which is mainly observed in the growing embryo, 
except that vascular mimicry starts from dedifferentiated 
tumor cells whereas vasculogenesis starts with endothe-
lial progenitor cells  [108, 112] . The occurrence of vascular 
mimicry may complicate the use of antiangiogenic strat-
egies to treat certain tumors, as the loss of one type of 
angiogenesis due to therapy might be compensated by a 
phenotypic switch to another mechanism of angiogene -
 sis  [8] .

  Conclusions

  The growth and remodeling of blood vessels is a com-
plex process that proceeds through different mechanisms 
of angiogenesis. Proper knowledge of these distinct 
mechanisms will enhance our understanding of angio-
genesis and aid in the development of more efficient strat-
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egies for future pro- or antiangiogenic therapies. SA is 
being extensively studied, and some therapeutics are al-
ready used in anticancer therapies. However, the exis-
tence of alternative processes of angiogenesis may render 
these specific therapies inefficient. In addition, SA is only 
responsible for vascular growth, but not for vessel prun-
ing or for the remodeling of capillary beds. Thorough 
knowledge of IA could also help proangiogenic therapy 
since this form of angiogenesis is both faster and more 
efficient than SA. Inducing this form of angiogenesis may 
improve therapeutic revascularization strategies in isch-
emic tissues.

  IA is now viewed as a very general mechanism of blood 
vessel remodeling that takes place in a great variety of 
developing organs, as well as during pathological angio-

genesis. Better knowledge of the mechanism of IA is thus 
urgent and may revolutionize the current research on an-
giogenesis. However, investigations on IA are only per-
formed by a few researchers worldwide. Future studies 
should pay more attention to the angiogenic phenotype 
in in vivo models since the vascular phenotype is often 
overlooked in angiogenic experiments. In addition, more 
and better in vivo and in vitro models are needed to study 
the molecular pathways regulating IA.
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