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Abstract

We show that, if S is a finite semiring, then the free profinite S-semimodule on a Boolean Stone space X is
isomorphic to the algebra of all S-valued measures on X , which are finitely additive maps from the Boolean
algebra of clopens of X to S. These algebras naturally appear in the logic approach to formal languages
as well as in idempotent analysis. Whenever S is a (pro)finite idempotent semiring, the S-valued measures
are all given uniquely by continuous density functions. This generalises the classical representation of the
Vietoris hyperspace of a Boolean Stone space in terms of continuous functions into the Sierpiński space.

We adopt a categorical approach to profinite algebra which is based on profinite monads. The latter
were first introduced by Adámek et al. as a special case of the notion of codensity monads.

Keywords: profinite algebra, Stone duality, codensity monad, semimodule over a semiring, measure,
Vietoris hyperspace
2010 MSC: 28A60, 54H10, 18A40

1. Introduction

Semirings generalise rings by relaxing the conditions on the additive structure requiring just a monoid
rather than a group. The analogue of the notion of module over a ring is that of semimodule over a semiring,
or more concisely of an S-semimodule where S is the semiring. A profinite S-semimodule is one which is
isomorphic to the inverse limit (or cofiltered limit) of finite S-semimodules. Every profinite S-semimodule
carries a topology turning it into a Boolean (Stone) space, that is, a compact Hausdorff space admitting
a basis of clopens, i.e. of subsets which are simultaneously closed and open. By Stone duality for Boolean
algebras [28], a Boolean space is completely determined by its Boolean algebra of clopen subsets equipped
with the set-theoretic operations. We show in our main result, Theorem 4.1, that the free profinite S-
semimodule on a Boolean space X is isomorphic to the algebra of all the measures on X taking values in
S, provided S is finite. Here, the measurable subsets of X are the clopens, and the measures on X are only
required to be finitely additive (cf. Definition 3.3).

The motivation for the present work comes from logic, and more precisely from the connection between
logic on words and the theory of formal languages. Many interesting classes of formal languages, both in the
computational complexity hierarchy and within regular languages, correspond to fragments of logic. In this
setting, certain quantifiers can be modelled by means of semirings (see, e.g., [21, 29]). It is in understanding
the effect of applying a layer of quantifiers to Boolean algebras of formulas, that profinite semimodules play
an important rôle. Further, in order to show that a certain construction is ‘optimal’ from the viewpoint
of language recognition (this can be thought of as a sort of ‘semantic completeness’ result for a logic) it is
crucial to have a concrete description of these profinite objects, cf. [8, 9]. Such a description is provided by
our main result.

Our measure-theoretic representation provides a bridge between several topics of interest. Firstly, it
connects measures and profinite algebras. In this respect, it is related to Leinster’s observation that the
notions of integration and of codensity monads are tightly related [18]. Codensity monads are a special case of
the concept of right Kan extension. Leinster’s observation is that sometimes they can be seen as providing
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a correspondence akin to the one between ‘integration operators’ and ‘measures’. This analogy becomes
concrete in our measure-theoretic representation. Indeed, profinite algebras arise from a special class of
codensity monads (see Section 2), and we isolate a class of such monads admitting a concrete representation
in terms of genuine measures. On the other hand, our main result makes a connection between measures
and logic, as outlined above. Similar connections already exist and have proved useful. For example, in
model theory, Keisler measures [13] are probability measures on the Boolean algebras of definable subsets
of models, and generalise the notion of (complete) types. Finally, we connect measures and semirings in the
form of integration theory with coefficients in a semiring, which is the main focus of idempotent analysis

[15]. In the particular case of the tropical semiring, see Example 3.2, this leads to tropical geometry.

In dealing with profinite algebras, we adopt a categorical approach. While monads allow for a categorical
treatment of algebra, profinite algebra can be studied by means of profinite monads [5, 2], a special case of
right Kan extensions. In Section 2 we give a complete account of the basic theory of profinite monads meant
to be accessible to non-experts in category theory. In particular, we show in Proposition 2.10 that profinite
monads yield the expected notion of profinite algebra for varieties of Birkhoff algebras. This covers the case
of the profinite S-semimodules free on Boolean spaces, for any S (Corollary 2.11).

We only obtain our measure-theoretic characterisation of the free profinite S-semimodule on a Boolean
space for finite semirings S, but in Section 3 we study the more general situation where S is profinite.
We show that the algebras of all S-valued measures satisfy a universal property with respect to those
semimodules in which the scalar multiplication of S is jointly continuous, that we call ‘strongly continuous’
semimodules (cf. Theorem 3.10). The case of finite semirings is considered in Section 4. If S is finite then
every profinite S-semimodule is strongly continuous. Thus, we obtain our main result, Theorem 4.1.

Finally, in Section 5 we consider the case where S is profinite and idempotent. In this setting, every
measure is uniquely determined by its density function (see Theorem 5.9). Provided S is finite and idempo-
tent, this yields a characterisation of the free profinite S-semimodule on a Boolean space X as the algebra
of all the continuous S-valued functions on X , with respect to an appropriate topology on S.

The main result of this paper was announced in [9], where many details of the proofs were omitted. Here,
we contribute a complete account of the topic, and we consider the main result from a wider perspective by
studying algebras of measures with values in profinite semirings.

2. Codensity and profinite monads

The purpose of this section is to introduce the notion of a profinite monad. This is a special case of a
more general construction, namely that of a codensity monad (which, in turn, is a special case of right Kan
extension). Profinite monads provide a way of associating with a monad T on the category of sets a monad

T̂ on the category of Boolean spaces. We show in Proposition 2.10 that, whenever the monad T is finitary,
T̂X is the free profinite T -algebra on the Boolean space X . Although its content is categorical in nature,
and the reader is supposed to be familiar with the basics of category theory, the section is written so as to
be accessible to non-experts in category theory. In particular, we provide an elementary exposition of the
notions involved up to the concept of monad as a categorical approach to algebra. For a more thorough
introduction to the theory of codensity monads we refer the interested reader to [18].

2.1. Codensity monads: a brief introduction

We start by introducing a class of finitary monads on Set that will play a crucial rôle in the following,
namely the semiring monads. First, let us recall the following notions from algebra.

Definition 2.1. A semiring is a tuple S = (S,+, ·, 0, 1) such that (S,+, 0) is an Abelian monoid, (S, ·, 1) is
a monoid, and for all s, t, u ∈ S the laws

s · (t+ u) = (s · t) + (s · u),

(t+ u) · s = (t · s) + (u · s),

s · 0 = 0 = 0 · s

2



are satisfied. A semimodule over S (or S-semimodule, for short) is an Abelian monoid M = (M,+M , 0M )
equipped with a ‘scalar multiplication’ of S, that is, a function S ×M →M , (s,m) 7→ sm satisfying

s(m+M n) = sm+M sn,

(s+ t)m = sm+M tm,

(s · t)m = s(tm),

1m = m,

0m = 0M = s0M

for all s, t ∈ S and m,n ∈M .

Example 2.2. Semimodules over semirings can be obtained as algebras for certain monads on Set, called
semiring monads. Indeed, every semiring S gives rise to a functor S : Set → Set which associates with a
set X the set of finitely supported S-valued functions on X , i.e.

SX = {f : X → S | f(x) = 0 for all but finitely many x ∈ X}. (1)

If ϕ : X → Y is any function between sets, we get a function Sϕ : SX → SY by setting

Sϕ : f 7→

(
y 7→

∑

ϕ(x)=y

f(x)

)
.

Each f ∈ SX can be represented as a formal sum
∑n

i=1 sixi, where {x1, . . . , xn} ⊆ X is the support of f ,
and f(xi) = si for each i. With this notation, we have Sϕ(

∑n
i=1 sixi) =

∑n
i=1 siϕ(xi). It is straightforward

to check that S : Set → Set is a functor. In fact, it is part of a monad (S, η, µ) whose unit is

ηX : X → SX, ηX(x) : x′ 7→

{
1 if x′ = x

0 otherwise

(in other words, ηX(x) is the S-valued characteristic function of {x}), and whose multiplication is

µX : S2X → SX,
n∑

i=1

sifi 7→

(
x 7→

n∑

i=1

sifi(x)

)
.

We remark that the only place where the multiplication of S plays a rôle is in the definition of the mul-
tiplication µ of the monad. We refer to S as the semiring monad associated with S. Note that the finite
power-set functor Pf : Set → Set is the semiring monad associated with the two-element distributive lattice

2 = ({0, 1},∨,∧, 0, 1),

regarded as a semiring. The algebras for the monad S are precisely the S-semimodules. For example, if S
is 2, N = (N,+, ·, 0, 1) or Z = (Z,+, ·, 0, 1), then the algebras for S are semilattices, Abelian monoids and
Abelian groups, respectively.

We briefly recall some basic facts from the theory of monads, see e.g. [3]. If T = (T, η, µ) is a monad on
a category C, we write CT for the category of (Eilenberg-Moore) algebras for T . In the special case where
T is a monad with rank and C is the category Set of sets and functions, the categories of the form SetT

are, up to equivalence, exactly the varieties of algebras (with operations of possibly infinite, but bounded,
arity). This correspondence restricts to categories of algebras for finitary Set-based monads (i.e., monads
preserving filtered colimits) and varieties of Birkhoff algebras. See, e.g., [3, VI.24].

An interesting example of a Set-monad which is not finitary is the ultrafilter monad. Write BStone

for the category of Boolean spaces (i.e., compact Hausdorff spaces with a basis of clopens) and continuous
maps. The underlying-set functor

| − | : BStone → Set

3



has a left adjoint

β : Set → BStone (2)

which sends a set X , regarded as a discrete space, to its Stone-Čech compactification βX . This adjunction
induces a monad on Set, the ultrafilter monad, which is not finitary. By a theorem of Manes (see [20, Section
1.5] for a detailed exposition), its algebras are precisely the compact Hausdorff spaces.

Whether T is finitary or not, the category SetT is always equipped with a (regular epi, mono) factorisa-
tion system. In the category of compact Hausdorff spaces, this is the factorisation of a continuous map into a
continuous surjection followed by a continuous injection. If T is finitary, we recover the usual decomposition
of a homomorphism of Birkhoff algebras into a surjective homomorphism followed by an injective one.

Codensity monads allow us to assign to (almost) any functor a monad on its codomain, and are a special
case of a more general construction, namely that of right Kan extension. Henceforth, if F and G are any
two parallel functors, F ⇒ G denotes a natural transformation from F to G.

Definition 2.3. Let F : C → D and G : C → E be any two functors. The right Kan extension of F along G
is a pair (K,κ), where K : E → D and κ : K ◦G⇒ F , such that the following universal property is satisfied:
for every pair (K ′, κ′) with K ′ : E → D and κ′ : K ′ ◦G ⇒ F , there exists a unique natural transformation
ǫ : K ′ ⇒ K such that the right-hand diagram below commutes. If F = G, the right Kan extension of G
along itself is called the codensity monad of G, and is denoted by TG.

C D K ′ ◦G F

E K ◦G

G

F κ′

ǫG

κ

K

K′

ǫ
κ

We remark that the fact that TG is a monad, i.e. it can be equipped with a unit and a multiplication,
is a consequence of the universal property of the right Kan extension. Indeed, the unit of TG is obtained
by taking K ′ the identity functor and κ′ the identity natural transformation, while the multiplication is
obtained by setting K ′ = TG ◦TG and κ′ = κ ◦TGκ.

The right Kan extension of a functor along another one does not exist in general; however, it does exist
under mild assumptions on the categories at hand, and can be computed as a limit. We state this precisely
in the next lemma, in the special case of codensity monads. To do so, we first need to recall the notion of
comma category. For a functor G : C → D and an object d of D, the comma category d ↓ G has as objects
pairs (α, c), where c is an object of C and α : d→ Gc is a morphism in D. A morphism between two objects
(α1, c1), (α2, c2) of d ↓ G is a morphism f : c1 → c2 in C such that Gf ◦ α1 = α2.

Lemma 2.4 ([19, Theorem X.3.1]). Let G : C → D be any functor. If C is essentially small (i.e., equivalent
to a small category) and D is complete, then the codensity monad TG : D → D exists and for every d in D

TGd = lim
d→Gc

Gc,

where the limit is taken over the comma category d ↓ G.

An example of codensity monad is provided by a result of Kennison and Gildenhuys [14], which identifies
the codensity monad of the inclusion Setf → Set of finite sets into sets as the ultrafilter monad on Set.
Recently, Leinster [18] has reinterpreted Kennison and Gildenhuys’ result as a correspondence between
measures (i.e. ultrafilters, or two-valued measures) and integration operators (i.e. elements of the free algebras
for the codensity monad). He then takes the analogy further to study the codensity monad of the inclusion
of finite-dimensional vector spaces into the category of vector spaces [18, Section 7]. Proposition 2.10 and
Theorem 4.1 together identify a class of codensity monads whose (free) algebras admit a description as
algebras of bona fide measures, thus providing a setting in which the analogy above is concretely realised.
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Example 2.5. Consider the finite power-set monad Pf on the category of sets. The algebras for this monad
are semilattices (cf. Example 2.2), thus the finitely carried algebras are the finite semilattices. Let G be the
functor from the category of finite semilattices and semilattice homomorphisms, to the category BStone of
Boolean spaces, which regards the underlying set of a finite semilattice as a discrete Boolean space. The
codensity monad TG of this functor is the Vietoris monad on BStone. Although this fact can be proved
directly, it will follow at once from equation (8) below, along with the fact that the Vietoris functor on
BStone preserves codirected limits [6, 3.12.27(f)]. We briefly recall how the Vietoris monad is defined. If
X is a Boolean space, write VX for the set of closed subsets of X , and equip it with the topology generated
by the sets of the form

�C = {V ∈ VX | V ⊆ C} and ♦C = {V ∈ VX | V ∩ C 6= ∅}

for C a clopen of X . The ensuing topological space is called the Vietoris hyperspace of X , and is again
a Boolean space [22, Theorem 4.9]. This is a particular case of the hyperspace of an arbitrary topological
space first introduced by Vietoris in 1922, see [31]. For any continuous function f : X → Y between Boolean
spaces, defining Vf : VX → VY as the forward image function yields a functor V : BStone → BStone. The
unit of the Vietoris monad is

ηX : X → VX, x 7→ {x},

and the multiplication is

µX : V2X → VX, S 7→
⋃

V ∈S

V.

Note that the definition of the components µX goes back at least to [17, Theorem 5 p. 52].

2.2. Profinite monads and their algebras

Profinite monads allow us to associate with every monad T = (T, η, µ) on the category of sets a monad

T̂ = (T̂ , η̂, µ̂) on the category of Boolean spaces, called the profinite monad of T . If SetTf denotes the full

subcategory of SetT on the finitely carried T -algebras, we can consider the composition

G : SetTf → Setf → BStone

of the underlying-set functor from finite T -algebras to finite sets, followed by the full embedding of finite
sets into the category of Boolean spaces. Note that SetTf is essentially small and BStone is complete, so

that Lemma 2.4 applies to G. The profinite monad T̂ is defined as the codensity monad of the functor G.
That is

T̂ = TG : BStone → BStone, T̂X = lim
X→G(Y,h)

G(Y, h). (3)

Remark 2.6. Profinite monads were first introduced as a natural categorical extension of the profinite
algebraic methods which are heavily used in the theory of regular languages. In [5], Bojańczyk associates
with a Set-monad T another Set-monad which models the profinite version of the objects modelled by
T . Profinite monads, as defined above, first appeared in [2], where it is pointed out that Bojańczyk’s

construction can be recovered by composing the monad T̂ with the adjunction β : Set ⇆ BStone : | − | in
(2). We point out that in [2] the authors consider, more generally, monads on a variety of Birkhoff algebras
V . The associated profinite monad is then a monad on the category of profinite V -algebras. Here, we shall
deal only with the case where V = Set. The monadic approach to formal language theory, put forward
by Bojańczyk in op. cit., is also adopted in [9] to deal with different kinds of quantifiers at the same time.
Since our measure-theoretic representation of the free profinite S-semimodules is instrumental to some of
the main results in [9], in the following we give a complete account of the basic theory of profinite monads.

The Vietoris hyperspace monad V on Boolean spaces, which coincides with the profinite monad of the
finite power-set monad Pf on the category of sets (see Example 2.5), provides a prime example of the
profinite monad construction. The original monad Pf and its profinite extension V come equipped with a

5



‘comparison map’: for each Boolean space X there is a function τX : PfX → VX which views a finite subset
of the space X as a closed subspace. The ensuing natural transformation τ plays a key rôle, and can be
defined for any profinite monad, as we shall now explain. Write

κ : T̂ ◦G⇒ G (4)

for the natural transformation such that the pair (T̂ , κ) satisfies the universal property defining the right
Kan extension. The forgetful functor | − | : BStone → Set is right adjoint, hence it commutes with right

Kan extensions [19, Theorem X.5.1]. That is, | − | ◦ T̂ is the right Kan extension of | − | ◦G along G. Now,
consider the left-hand diagram below.

SetTf Set BStone BStone

BStone Set Set

G

|−|◦G T̂

|−| |−|
|−|κ

|−|◦T̂ T◦|−|

τ

T

τ

There is an obvious natural transformation α : T ◦ |− | ◦G⇒ |− |◦G whose component at a finite T -algebra

(X,h) is simply α(X,h) = h. Therefore, by the universal property of the right Kan extension (|− |◦ T̂ , |− |κ),

there is a unique natural transformation τ : T ◦ |−| ⇒ |−|◦ T̂ as in the right-hand diagram above, satisfying

| − |κ ◦ τG = α. (5)

In view of equation (3), the components of the natural transformation τ admit explicit descriptions as limit
maps. Since the functor | − | preserves limits, we have

|T̂X | = | lim
X→G(Y,h)

G(Y, h)| = lim
X→G(Y,h)

Y.

In turn, each object (X
ϕ
−→ G(Y, h), (Y, h)) of the comma category X ↓ G yields a function ϕ∗ : T |X | → Y

given by ϕ∗ = h◦T |ϕ|. Note that ϕ∗ is the unique T -algebra morphism extending the function |ϕ| : |X | → Y .

Definition 2.7. Let T be any monad on Set, and T̂ its profinite monad. We define τ : T ◦|−| ⇒ |−|◦T̂ to be

the unique natural transformation satisfying (5). For any X in BStone, the component τX : T |X | → |T̂X |
is the unique function induced by the cone

{ϕ∗ : T |X | → Y | (ϕ, (Y, h)) ∈ X ↓ G}.

In [1, Proposition B.7.(a)] the authors prove that the natural transformation τ behaves well with re-

spect to the units and multiplications of the monads T and T̂ . That is, in the terminology of [30],

(| − |, τ) : (BStone, T̂ ) → (Set, T ) is a monad functor. This means that the next two diagrams commute.

| − | | − | ◦ T̂ T 2 ◦ | − | T ◦ | − |

T ◦ | − | T ◦ | − | ◦ T̂ | − | ◦ T̂ 2 | − | ◦ T̂

|−|η̂

η|−|
Tτ

µ|−|

τ
τ

τT̂ |−|µ̂

(6)

An immediate consequence of this is that the underlying-set functor | − | : BStone → Set lifts to a functor

BStoneT̂ → SetT , thus showing that every algebra for the profinite monad T̂ admits a T -algebra reduct,
and every morphism of T̂ -algebras preserves this structure. For a free T̂ -algebra T̂X , its T -algebra reduct
is provided by the composition

T |T̂X | |T̂ 2X | |T̂X |.
τ
T̂X |µ̂X |

(7)

6



Lemma 2.8. For every Set-monad T and Boolean space X, the map in (7) yields a T -algebra structure on

(the underlying set of ) the space T̂X such that the map τX : T |X | → |T̂X | is a morphism of T -algebras.

Proof. This is a direct consequence of the commutativity of the diagrams in (6).

In the case of the map τX : PfX → VX the previous lemma states that the Vietoris space VX is
a semilattice when equipped with the binary operation ∪, and τX : (PfX,∪) → (VX,∪) is a semilattice
homomorphism. Another important property of the map τX : PfX → VX is the well-known fact (see [16,
Theorem 4 p. 163]) that it has dense image. In fact, this feature is common to all profinite monads. In the
special case of a finite discrete space X , this follows from [1, Proposition B.7.(b)].

Lemma 2.9. For every Set-monad T and Boolean space X, the map τX : T |X | → |T̂X | has dense image.

Proof. Since the category X ↓ G is codirected, it is enough to show that every non-empty subbasic open set
of T̂X , in the limit topology, contains an element in the image of τX . Such an open set is of the form p−1(y),

where p : T̂X → Y is a continuous function in the limit cone defining T̂X (cf. equation (3)) and y ∈ Y is in

the image of p. More precisely, this means that there exists (X
ϕ
−→ G(Y, h), (Y, h)) in the comma category

X ↓ G such that |p| ◦ τX = ϕ∗ : T |X | → Y . To settle the statement, it thus suffices to prove (ϕ∗)−1(y) 6= ∅.
Recall that ϕ∗ is the T -algebra morphism obtained as the free extension of the function |ϕ| : |X | → Y .

We can then consider its (regular epi, mono) factorisation in the category of T -algebras as displayed below.

(T |X |, µ|X|) (Y, h)

(Y ′, h′)

ϕ∗

e m

The map e : T |X | → Y ′ is surjective, hence it is enough to prove m−1(y) 6= ∅. Note that m is a morphism in
the category X ↓ G. Indeed, e ◦ η|X| : |X | → Y ′ is the underlying function of a continuous map ϕ′ : X → Y ′

(namely, an appropriate corestriction of ϕ) and m ◦ ϕ′ = ϕ. Hence, m : (ϕ′, (Y ′, h′)) → (ϕ, (Y, h)) is a

morphism in X ↓ G. It follows that there exists p′ : |T̂X | → Y ′ satisfying m ◦ p′ = p. Since y is in the image
of p by hypothesis, it is also in the image of m, as was to be shown.

In general, the morphisms τX : T |X | → |T̂X | do not have to be injective. A counterexample is provided
by the power-set monad P on Set, whose profinite monad is again the Vietoris monad. In this case the map
τX : PX → VX sends a subset of X to its topological closure, and it is injective precisely when X is finite.

However, the components of the natural transformation τ are injective provided the monad T is finitary
and restricts to finite sets. To see this observe that, whenever T restricts to finite sets, the underlying-set
functor SetTf → Setf is right adjoint and is thus preserved by right Kan extensions. It follows that the
limit formula in (3) can be considerably simplified to yield, for every Boolean space X ,

T̂X = lim
X։fY

TY . (8)

Here, the notation X ։f Y means that Y is a finite continuous image of X . Moreover, the limit is computed
in BStone by equipping the finite sets TY with the discrete topology. In this setting the function τX is the
limit map for the cone

{T |ϕ| : T |X | → TY | ϕ : X ։f Y }

and hence it is injective if, and only if, this cone is jointly monic. Suppose f, g : S → T |X | are any two
functions, and f(s) 6= g(s) for some s ∈ S. If T is finitary, and F is the collection of finite subsets of |X |,

T |X | = T
(
colim
F∈F

F
)
= colim

F∈F
TF

implies the existence of a finite subset F of X such that f(s), g(s) ∈ TF . Since X is a Boolean space, there
is a finite discrete space Z and a continuous surjection ψ : X ։f Z such that ψ separates any two distinct
elements of F . Then T |ψ| distinguishes f(s) and g(s), showing that the cone is jointly monic.

7



Regarding the injectivity of τX , it will follow from Proposition 2.10 below that the hypothesis that T
restricts to finite sets cannot, in general, be dropped. Indeed, for a finitary monad T and a finite discrete
space X , injectivity of τX corresponds to the free finitely generated T -algebra T |X | being residually finite.
That is, any two distinct morphisms into T |X | can be separated by a morphism T |X | → Y with Y a finitely
carried T -algebra. In turn, Birkhoff varieties containing no non-trivial finite members (see, e.g., [4]) yield
obvious examples of monads T for which τX fails to be injective.

We conclude the section by showing that, whenever the monad T is finitary, T̂X is a profinite T -algebra,
i.e. it belongs to the pro-completion Pro-SetTf of SetTf (cf. [12, Chapter VI]). The objects of Pro-SetTf can
be identified with those T -algebras Y carrying Boolean topologies such that there exists a cone of continuous
T -algebra morphisms

{Y → Yi | i ∈ I},

where {Yi | i ∈ I} is a codirected diagram of finite T -algebras equipped with the discrete topologies, whose
image in BStone is a limit cone.1 Further, the morphisms in Pro-SetTf can be identified with the continuous

T -algebra morphisms. In fact, T̂X is the free profinite T -algebra on X . That is, T̂ is the monad induced by
the forgetful functor Pro-SetTf → BStone, and its left adjoint. We thus recover the folklore result stating
that, for any Boolean space X , the Vietoris space VX is the free profinite semilattice on X .

Proposition 2.10. Let T be a finitary Set-monad, and X a Boolean space. Then T̂X is the free profinite

T -algebra on the Boolean space X.

Proof. We first show that T̂X is a profinite T -algebra. Let

{πY : T̂X → Y | (ϕ, (Y, h)) ∈ X ↓ G}

be the cone of continuous functions defining T̂X as an inverse limit. It suffices to show that each |πY | is a
T -algebra morphism. In turn, this amounts to saying that the outer rectangle below commutes,

T |T̂X | |T̂ 2X | |T̂X |

|T̂ Y |

TY Y

τ
T̂X

T |πY |

|µ̂X |

|T̂ πY |

|πY |

|κ(Y,h)|τY

h

where κ : T̂ ◦ G ⇒ G is as in (4). The bottom triangle commutes by (5), while the left-hand trapezoid
commutes by naturality of τ . Finally, the commutativity of the right-hand trapezoid follows from the
equalities κ ◦ T̂ κ = κ ◦ µ̂G and πY = κ(Y,h) ◦ T̂ϕ. The first one is obtained by noticing that µ̂ : T̂ 2 ⇒ T̂

is the unique natural transformation induced by the universal property of the right Kan extension (T̂ , κ)

and the natural transformation κ ◦ T̂ κ : T̂ 2 ◦ G ⇒ G. For the second equality, it suffices to show that
|πY |◦τX = |κ(Y,h)◦ T̂ϕ|◦τX . In turn, this follows from naturality of τ , and the fact that |πY |◦τX = h◦T |ϕ|.

It remains to prove that T̂X satisfies the universal property with respect to the unit η̂X : X → T̂X .
That is, for every profinite T -algebra Y and every continuous map f : X → Y there is a unique continuous
morphism of T -algebras T̂X → Y making the following diagram commute.

X T̂X

Y

η̂X

f

(9)

1Let V be a variety of Birkhoff algebras, and Vf its full subcategory on the finite members. The pro-completion Pro-Vf

is equivalent to the full subcategory of the category BStoneV , whose objects are topological V -algebras based on Boolean
spaces and whose morphisms are continuous homomorphisms, on those objects which are limits of codirected diagrams of finite
discrete V -algebras [12, Corollary VI.2.4]. Since the forgetful functor BStoneV → BStone preserves and reflects limits, this
description of Pro-Vf is equivalent to the one given above, where T is the finitary monad associated with the variety V .
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Note that, if such a map exists, it is unique. Indeed, assume g1, g2 : T̂X → Y are continuous T -algebra
morphisms making diagram (9) commute. By Lemma 2.9, along with the fact that T̂X is Hausdorff, if we
prove |g1| ◦ τX = |g2| ◦ τX it will follow that g1 = g2. By the universal property of the free T -algebra T |X |
there is a unique T -algebra morphism ξ : T |X | → |Y | extending |f | : |X | → |Y |, i.e. satisfying

ξ ◦ |ηX | = |f |. (10)

By Lemma 2.8 the maps |g1| ◦ τX , |g2| ◦ τX are T -algebra morphisms. In turn, the left-hand diagram in (6)
entails that they are both solutions to equation (10). We obtain that |g1| ◦ τX = |g2| ◦ τX , whence g1 = g2.

To conclude, we prove that diagram (9) admits a solution. Let {Yi | i ∈ D} be a codirected diagram of
finite discrete T -algebras, and {ρi : Y → Yi | i ∈ D} a cone of continuous T -algebra morphisms whose image

in BStone is a limit cone. Note that each Yi belongs to the diagram defining T̂ Y (see equation (3)). Thus,

for every i ∈ D, there is a continuous map πi : T̂ Y → Yi in the limit cone. As we saw in the first part of
the proof, each |πi| is a T -algebra morphism. Consider now the continuous map ϕi : T̂X → Yi defined by

ϕi = πi ◦ T̂ f . The function |T̂ f | is a T -algebra morphism, as pointed out before Lemma 2.8. It follows that

{ϕi : T̂X → Yi | i ∈ D}

is a cone of continuous T -algebra morphisms. Since Y is the limit of {Yi | i ∈ D} in Pro-SetTf , there is a

unique continuous T -algebra morphism ϕ : T̂X → Y such that ρi ◦ ϕ = ϕi for every i ∈ D. We claim that
ϕ is a solution to (9). It is enough to prove ρi ◦ ϕ ◦ η̂X = ρi ◦ f for every i ∈ D. In turn, this follows from
the definition of ϕ and the commutativity of the left-hand diagram in (6).

Recall from Example 2.2 the notion of semiring monad on Set. We conclude by specialising Proposition
2.10 to the particular case of a semiring monad S, and its profinite monad Ŝ on BStone.

Corollary 2.11. Let S be any semiring, and X a Boolean space. Then ŜX is the free profinite S-semimodule

on the Boolean space X.

3. Algebras of measures with values in profinite semirings

In the previous section we saw that, for any semiring S, the free profinite S-semimodule on a Boolean
space X is isomorphic to ŜX (Corollary 2.11), where Ŝ is the profinite monad of the semiring monad

associated with S. We are interested in a concrete description of the profinite algebra ŜX . It turns out that
ŜX can be identified with the algebra of all the S-valued measures on X (in the sense of Definition 3.3),
provided S is finite. This is the content of Section 4. In the present section, we deal with the more general
case of profinite semirings S. Here, it is not true that the free profinite S-semimodule on a Boolean space X
is isomorphic to the algebra of all the S-valued measures on X (cf. Remark 3.11). However, we shall see in
Theorem 3.10 that the latter algebra enjoys a universal property relative to those profinite S-semimodules
in which the scalar multiplication of S is jointly continuous. If S is finite, then separate and joint continuity
coincide, thus providing the desired measure-theoretic representation of ŜX .

Throughout this section we work with a fixed profinite semiring S = (S,+, ·, 0, 1), i.e. S is the limit of
an inverse system of finite discrete semirings and semiring homomorphisms. Every profinite semiring is a
Boolean topological semiring.2 In view of [26, Proposition 7.2], the converse is also true. That is, a semiring
is profinite if, and only if, it is equipped with a Boolean topology which makes the operations + and ·
continuous. Every finite semiring, endowed with the discrete topology, is trivially profinite. Two infinite
profinite semirings are described in Examples 3.1 and 3.2 below.

Before proceeding, we briefly recall some basic facts about Stone duality for Boolean algebras [28] which
will be used in the remainder of the paper. Concisely, Stone duality states that the category BA of Boolean
algebras and their homomorphisms is dually equivalent to the category BStone of Boolean spaces and

2This fact is not specific about semirings, and it holds for any variety of Birkhoff algebras. Cf. footnote 1.
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continuous maps. In more detail, the dual algebra BX (or simply B, if no confusion arises) of a Boolean
space X is the Boolean algebra consisting of the clopen subsets of X , equipped with set-theoretic operations.
For any continuous map f : X → Y between Boolean spaces, the inverse image function f−1 : BY → BX is
a Boolean algebra homomorphism. In the converse direction, the dual space of a Boolean algebra B is the
Boolean space XB of ultrafilters of B. Recall that an ultrafilter of B is a proper subset x ⊆ B which is
closed under finite meets, upward closed, and for every a ∈ B it satisfies either a ∈ x or ¬a ∈ x. The set
XB is equipped with the Stone topology generated by the basis of clopens consisting of the sets of the form

â = {x ∈ XB | a ∈ x},

for a ∈ B. If h : A→ B is a homomorphism of Boolean algebras, the function h−1 : XB → XA is continuous
with respect to the Stone topologies. Stone duality for Boolean algebras states that, up to a natural
isomorphism, the ensuing contravariant functors BA ⇆ BStone are inverse to each other. In particular,
the isomorphism a 7→ â allows one to recover the Boolean algebra B as the algebra of clopens of XB. The
connection between Stone duality and profinite algebra is a deep one, and it was fully exposed in [7].

Example 3.1. Let N∞ be the (Alexandroff) one-point compactification of the set N of natural numbers,
regarded as a discrete space. That is, N∞ = N∪{∞} and its opens are the subsets which are either cofinite,
or do not contain∞. It is well-known that N∞ is the dual space of the Boolean subalgebra of P(N) consisting
of the finite and cofinite subsets of N. The usual addition and multiplication on N can be extended to N

∞

by setting

∀x ∈ N
∞, x+∞ = ∞ and x · ∞ =

{
0 if x = 0,

∞ otherwise.

This gives a semiring (N∞,+, ·, 0, 1) which is easily seen to be topological, hence profinite.

Example 3.2. We equip the Boolean space N∞, defined in the previous example, with a different semiring
structure. Define the addition of the semiring to be the min operation (with identity element ∞), and the
multiplication to be +. The ensuing idempotent semiring (N∞,min,+,∞, 0) is called the (min-plus) tropical
semiring. The operations min and + are continuous with respect to the Boolean topology, hence this is a
profinite semiring. The tropical semiring plays an important rôle in the theory of formal languages, see e.g.
the survey [24].

Next we introduce the notion of measure, that will play a central rôle throughout.

Definition 3.3. Let X be a Boolean space with dual algebra B. An S-valued measure (or simply a measure,
if the semiring is clear from the context) on X is a function µ : B → S which is finitely additive, i.e.

1. µ(0) = 0;
2. µ(a ∨ b) = µ(a) + µ(b) whenever a, b ∈ B satisfy a ∧ b = 0.

Item 2 can be expressed without reference to disjointness, in the following way:

∀a, b ∈ B, µ(a ∨ b) + µ(a ∧ b) = µ(a) + µ(b).

For any Boolean space X with dual algebra B, write

M(X,S) = {µ : B → S | µ is a measure}

for the set of all the S-valued measures on X . The latter is naturally equipped with a structure of S-
semimodule, whose operations are computed pointwise:

∀s ∈ S ∀µ1, µ2 ∈ M(X,S), µ1 + µ2 : b 7→ µ1(b) + µ2(b) and s · µ1 : b 7→ s · µ1(b).

On the other hand, M(X,S) can also be equipped with a natural topology, namely the subspace topology
induced by the product topology of SB. This coincides with the initial topology for the set of evaluation
functions

evb : M(X,S) → S, µ 7→ µ(b), (11)
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for b ∈ B. Note that evb is the restriction of the b-th projection SB → S. A subbasis for this topology is
given by the sets of the form

〈b, U〉 = {µ ∈ M(X,S) | µ(b) ∈ U}, (12)

for b ∈ B and U a clopen subset of S. With respect to this topology, M(X,S) is a Boolean space.

Lemma 3.4. For any Boolean space X, the space M(X,S) of all the S-valued measures on X is Boolean.

Proof. By Tychonov’s theorem, the product topology on SB is compact. Since S admits a basis of clopens,
so does SB. Hence, SB is a Boolean space. Since a closed subspace of a Boolean space is Boolean, it is
enough to prove that M(X,S) is a closed subset of SB. If b ∈ B, write πb : S

B → S for the b-th projection.
By definition of measure, we have

M(X,S) = π−1
0 (0) ∩

⋂

a∧b=0

{f ∈ SB | f(a ∨ b) = f(a) + f(b)}. (13)

The set π−1
0 (0) is closed because so is {0} ⊆ S. Further, for each a, b ∈ B,

{f ∈ SB | f(a ∨ b) = f(a) + f(b)}

is closed since it is the equaliser of the continuous maps

SB S
πa∨b

πa+ πb

into the Hausdorff space S. Here, πa+πb is the composition of the continuous product map p−1
i (f) : SB → S2

with the continuous map +: S2 → S. Thus, equation (13) exhibits M(X,S) as an intersection of closed
subsets of SB.

The previous lemma shows that the spaces of measures sit in the category BStone. In fact, they can be
seen as limit objects in this category, in the following sense. Let X be a Boolean space, and D = {Xi | i ∈ D}
the codirected diagram of the finite discrete spaces ‘under’ X (i.e. D is obtained from the comma category
X ↓ (Setf → BStone) by forgetting the component which specifies the map from X). Each function
ϕij : Xi → Xj in this diagram yields a continuous map Sϕij : S

Xj → SXi , where SXi and SXi are equipped
with the product topologies. Since a product of Boolean spaces is again Boolean, we get a codirected diagram
D′ = {SXi | i ∈ D} in BStone.

Lemma 3.5. The limit in BStone of the diagram D′ = {SXi | i ∈ D} is the space of measures M(X,S).

Proof. For each i ∈ D, the corresponding continuous function πi : X → Xi yields a map π∗
i : M(X,S) →

M(Xi, S) sending a measure to its pushforward along πi. That is, for µ ∈ M(X,S) and b a clopen of Xi,
π∗
i µ(b) = µ(π−1

i (b)). It is not difficult to see that π∗
i is continuous. Composing with the continuous map

M(Xi, S) → SXi , µ 7→
(
x 7→ µ(x)

)

(the expression µ(x) = µ({x}) makes sense because Xi is discrete), we get a continuous map M(X,S) → SXi

that we denote again by π∗
i . For every function ϕij : Xi → Xj in D we have a commutative diagram

M(Xi, S) M(Xj, S)

SXi SXj

ϕ∗
ij

Sϕij

so that Sϕij ◦ π∗
i = π∗

j . We claim that {π∗
i : M(X,S) → SXi | i ∈ D} is a limit cone in BStone.
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Let Y be a Boolean space, and {fi : Y → SXi | i ∈ D} a cone of continuous functions. We show that
there exists a unique continuous function ξ : Y → M(X,S) such that fi = π∗

i ◦ ξ for every i ∈ D. Given a
clopen b of X , consider its characteristic function χb : X → 2 into the discrete two-element space 2 = {0, 1}.
Then there exists ib ∈ D such that πib = χb. Define

ξ : Y → M(X,S), y 7→
(
b 7→ fib(y)(1), where fib(y) ∈ S2

)
.

It is not difficult to see that ξ is well-defined. Further, it is continuous because for every b ∈ B and every
clopen U ⊆ S, ξ−1(〈b, U〉) = (π1◦fib)

−1(U), where π1 : S
2 → S is the evaluation at 1. To see that fi = π∗

i ◦ξ
for every i ∈ D, fix such an i and consider an arbitrary x ∈ Xi. It suffices to show that πx ◦ fi = πx ◦ π∗

i ◦ ξ,
where πx : S

Xi → S is the x-th projection. If b = π−1
i (x), we have a commutative diagram as follows.

X

Xi 2

πi πib

χ{x}

Therefore, Sχ{x} ◦ π
∗
i = π∗

ib
. It follows that

πx ◦ fi = π1 ◦ Sχ{x} ◦ fi = π1 ◦ fib = π1 ◦ π
∗
ib
◦ ξ = π1 ◦ Sχ{x} ◦ π

∗
i ◦ ξ = πx ◦ π∗

i ◦ ξ,

as was to be shown. For the uniqueness of ξ, suppose ζ : Y → M(X,S) is another continuous map such that
fi = π∗

i ◦ ζ for every i ∈ D. Then, for all y ∈ Y and b ∈ B,

ζ(y)(b) = π1 ◦ π
∗
ib
◦ ζ(y) = π1 ◦ fib(y) = π1 ◦ π

∗
ib
◦ ξ(y) = ξ(y)(b)

showing that ζ = ξ.

We will see in Lemma 3.8 below that the S-semimodule structure on M(X,S) is compatible with the
Boolean topology in a strong sense. Recall from Definition 2.1 that a semimodule over S is given by an
Abelian monoid M , along with a ‘scalar multiplication’

α : S ×M →M

satisfying certain compatibility conditions. Suppose M is equipped with a topology making the monoid
operation continuous, that is M is a topological monoid. If α is separately continuous, i.e. the functions
α(s,−) : M →M are continuous for each s ∈ S, then M is called a topological S-semimodule. Further,

Definition 3.6. An S-semimodule M is strongly continuous if the scalar multiplication α of S on M is not
only separately continuous, but also jointly continuous. That is, α : S ×M →M is continuous with respect
to the product topology on S ×M .

Not every topological S-semimodule is strongly continuous, as the next example shows.

Example 3.7. We give an example of a finite and discrete S-semimodule which is not strongly continu-
ous. Denote by A the semilattice on the set {0, 1, ω} whose order is 0 < 1 < ω. Recall from Example
3.1 the profinite semiring (N∞,+, ·, 0, 1). The obvious action of N on A (obtained by regarding A as an
Abelian monoid) can be extended to an action α : N∞ × A → A of N∞ on A by setting α(∞, 0) = 0, and
α(∞, 1) = α(∞, ω) = ω. This action yields a structure of N∞-semimodule on A. If A is equipped with
the discrete topology, then the scalar multiplication is obviously separately continuous. However, it is not
jointly continuous. Indeed, one has

α−1(ω) = (∞, 1) ∪ (N∞ \ {0})× {ω},

which is not clopen because ∞ is not an isolated point of N∞.
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The spaces of measures M(X,S) turn out to be strongly continuous, hence topological, S-semimodules.

Lemma 3.8. For any Boolean space X, M(X,S) is a strongly continuous S-semimodule.

Proof. Let X be an arbitrary Boolean space with dual algebra B. To prove that M(X,S) is a topological
monoid it suffices to show that, for each b ∈ B, the composition

M(X,S)×M(X,S) M(X,S) S
+ evb

is continuous, where evb is the evaluation map defined in (11). In turn, this follows from the commutativity
of the next diagram, and the fact that +: S × S → S is continuous.

M(X,S)×M(X,S) S × S

M(X,S) S

evb×evb

+ +

evb

The same argument, mutatis mutandis, shows that the function S ×M(X,S) → M(X,S) taking (s, µ) to
s · µ is continuous. Therefore, M(X,S) is a strongly continuous S-semimodule.

By Lemmas 3.4 and 3.8, for any Boolean space X , M(X,S) is a strongly continuous topological S-
semimodule on a Boolean space. In [26, Proposition 7.5] it is shown that every such semimodule is the
inverse limit of a system of finite and discrete strongly continuous S-semimodules. In particular, M(X,S)
is a profinite S-semimodule. However, M(X,S) is not, in general, the free profinite S-semimodule on X (cf.
Remark 3.11). Nonetheless, we will see in Theorem 3.10 that M(X,S) enjoys a universal property relative to
those Boolean topological S-semimodules that are strongly continuous. In order to prove the latter theorem
we need a preliminary result, Lemma 3.9 below, relating finitely supported functions and measures on X .

Let X be a Boolean space. Recall from equation (1) the set S|X | of finitely supported S-valued functions
on X . Every f ∈ S|X | gives a measure on X , namely

∫
f : B → S, b 7→

∫

b

f =
∑

x∈b

f(x). (14)

(Throughout, we identify a sum over the empty set with the identity element 0). The ‘integration map’
f 7→

∫
f allows us to identify S|X | with a dense subset of M(X,S).

Lemma 3.9. The map S|X | → M(X,S) sending f to
∫
f , defined as in (14), is injective with dense image.

Proof. To prove the injectivity, assume f, g are distinct elements of S|X | and pick x ∈ X such that f(x) 6=
g(x). Write σ for the union of the supports of f and g, and note that x ∈ σ. Since X is Boolean, there is a
clopen b ∈ B such that b ∩ σ = {x}. Therefore

∫

b

f = f(x) 6= g(x) =

∫

b

g,

showing that the assignment f 7→
∫
f is injective. With respect to the density, we must prove that every

non-empty basic open subset of M(X,S) contains a measure of the form
∫
f , for some f ∈ S|X |. In view of

equation (12), such a basic open can be written as

O = 〈b1, U1〉 ∩ · · · ∩ 〈bm, Um〉

where b1, . . . , bm ∈ B, and U1, . . . , Um are clopens of S. Let {c1, . . . , cn} be the clopen partition of the set⋃m
i=1 bi induced by the covering {b1, . . . , bm}, and assume without loss of generality that each cj is non-

empty. In other words, the cj ’s are the atoms of the Boolean subalgebra of B generated by the bi’s. Fix
an element xj ∈ cj for each j = 1, . . . , n. Since O is not empty, it contains a measure µ. Define a function
f : X → S with support {x1, . . . , xn} such that f(xj) = µ(cj) for each j. By finite additivity of µ we have∫
bi
f = µ(bi) for all i = 1, . . . ,m, so that

∫
f ∈ O.
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We are now ready to prove the main result of this section, which provides a characterisation of the
profinite algebra M(X,S) by means of a universal property. Let us say that a strongly continuous S-
semimodule is profinite if it is the inverse limit of finite and discrete strongly continuous S-semimodules.
As observed after Lemma 3.8, M(X,S) is a profinite strongly continuous S-semimodule. The next theorem
shows that M(X,S) is free on X with respect to this structure.

Theorem 3.10. Let S be a profinite semiring. For any Boolean space X, the collection M(X,S) of all the
S-valued measures on X is the free profinite strongly continuous S-semimodule on X.

Proof. Let ηX : X → M(X,S) be the continuous function sending x to the measure µx concentrated in x,
i.e. µx(b) = 1 if x ∈ b, and µx(b) = 0 otherwise. We will prove that M(X,S) satisfies the universal property
with respect to the map ηX . That is, for every profinite strongly continuous S-semimodule Y and continuous
function f : X → Y , there exists a unique continuous homomorphism of S-semimodules g : M(X,S) → Y
such that the following triangle commutes.

X M(X,S)

Y

ηX

f
g (15)

By Lemma 3.9 the function S|X | → M(X,S), mapping f to
∫
f , is injective and has dense image. Observe

that any measure on X of the form
∫
f , for f ∈ S|X |, is a finite linear combination with coefficients in S of

measures concentrated in a point. Thus any two continuous homomorphisms making diagram (15) commute
must coincide on the image of S|X | → M(X,S). Since the latter is dense in M(X,S), and Y is Hausdorff,
there is at most one solution to the diagram above.

To exhibit such a solution, we proceed as follows. Let {πi : Y → Yi | i ∈ I} be a cone of continuous
homomorphisms defining Y as the inverse limit of the finite and discrete strongly continuous S-semimodules
Yi, and set

fi = πi ◦ f : X → Yi.

We will define a cone of continuous homomorphisms {gi : M(X,S) → Yi | i ∈ I} such that the induced limit
map M(X,S) → Y provides the desired solution. For each i ∈ I consider the square

X M(X,S)

Yi M(Yi, S)

ηX

f f∗
i

hYi

where f∗
i : M(X,S) → M(Yi, S) sends a measure µ to its pushforward with respect to fi, i.e. f

∗
i µ(b) =

µ(f−1
i (b)) for every clopen b of Yi, and

∀ν ∈ M(Yi, S), hYi
(ν) =

∑

y∈Yi

ν(y) · y.

Here, ν(y) stands for ν({y}), and the expression makes sense because Yi is discrete. It is not difficult to see
that the pushforward maps f∗

i are continuous homomorphisms of S-semimodules. Suppose for a moment
that the hYi

’s are also continuous homomorphisms. Then, for each i ∈ I, gi = hYi
◦f∗

i would be a continuous
homomorphism satisfying gi ◦ ηX = fi. Indeed,

∀x ∈ X (gi ◦ ηX)(x) =
∑

y∈Yi

f∗
i µx(y) · y = fi(x)

because f∗
i µx is the measure on Yi concentrated in fi(x). If g : M(X,S) → Y is the continuous homomor-

phism of S-semimodules induced by the cone {gi : M(X,S) → Yi | i ∈ I}, we have g ◦ ηX = f . That is, g
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is a solution to diagram (15). Hence, it remains to show that each hYi
is a continuous homomorphism. To

improve readability, we write Z instead of Yi, and assume that Z = {y1, . . . , yn}. We only check that hZ is
continuous, for the preservation of the algebraic structure is easily verified. Consider the composition

γ : (S × Z)n → Zn → Z

where the first map sends ((ℓ1, z1), . . . , (ℓn, zn)) to (ℓ1 · z1, . . . , ℓn · zn), and the second one sends (z1, . . . , zn)
to z1 + · · · + zn. Since Z is a strongly continuous S-semimodule, γ is a continuous function. For any
z ∈ Z, let Tz be the closed subset of Sn obtained by projecting the clopen set γ−1(z) ⊆ (S × Z)n onto the
S-coordinates. Then, one has

h−1
Z (z) =

{
ν ∈ M(Z, S) |

∑

y∈Z

ν(y) · y = z
}
= (evy1 × · · · × evyn

)−1(Tz)

for any z ∈ Z, where evy1 × · · · × evyn
: M(Z, S) → Sn. The latter function is continuous, whence h−1

Z (z) is
a closed subset of M(Z, S), showing that the function hZ is continuous. This concludes the proof.

We conclude the section by showing that, in general, M(X,S) is not the free profinite S-semimodule on
X . This is due to the fact that separate continuity of the scalar multiplication on an S-semimodule does not
imply joint continuity. However, it clearly does if S if finite, for then the two notions coincide. The latter
case will be treated in the next section.

Remark 3.11. Let X be any Boolean space. We claim that every profinite S-semimodule which is a
continuous homomorphic image of M(X,S), is a strongly continuous S-semimodule. Note that this implies
that M(X,S) cannot be the free profinite S-semimodule on X , for otherwise every profinite S-semimodule
would be strongly continuous (and we know by Example 3.7 that this is not the case).

To settle the claim, let A be a profinite S-semimodule and f : M(X,S) ։ A a continuous surjective
homomorphism. Write α : S × M(X,S) → M(X,S), β : S × A → A for the scalar multiplications on
M(X,S) and A, respectively. We have the following commutative square.

S ×M(X,S) M(X,S)

S ×A A

α

idS×f f

β

We must prove that β is continuous. Note that f , and hence also idS × f , are topological quotients. Thus,
for every open subset U ⊆ A, β−1(U) is open if, and only if, β ◦ (idS × f)−1(U) is open in S ×M(X,S). In
turn, the latter set is open because the diagram commutes and f ◦ α is continuous.

4. The case of finite semirings: the main result

We aim to give a concrete representation of the free profinite S-semimodule on a Boolean space X . In
view of Proposition 2.10 the latter is isomorphic to ŜX , where Ŝ is the profinite monad of the Set-monad
S associated with the semiring S. In Theorem 3.10 we saw that, if S is profinite, then the algebra M(X,S)
of all the S-valued measures on X is the free profinite strongly continuous S-semimodule on X . Provided S
is finite, every topological S-semimodule is strongly continuous. Therefore, we obtain the following theorem
as a corollary.

Theorem 4.1. Let S be a finite semiring, and X a Boolean space. Then ŜX, the free profinite S-semimodule

on X, is isomorphic to the algebra M(X,S) of all the S-valued measures on X.

In the remainder of the section we indicate how one could give a direct proof of Theorem 4.1, exploiting
the finiteness of the semiring. Throughout the section we assume S = (S,+, ·, 0, 1) is a finite semiring. We

first describe the dual algebra of ŜX in terms of the dual algebra of the Boolean space X . Recall from
(1) the set S|X | of finitely supported S-valued functions on X , and the integration map S|X | → M(X,S),
f 7→

∫
f of (14).
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Lemma 4.2. Let X be a Boolean space with dual algebra B. The algebra B̂ dual to ŜX is isomorphic to

the Boolean subalgebra of P(S|X |) generated by the elements of the form

[b, k] =
{
f ∈ S|X | |

∫

b

f = k
}
,

for b ∈ B and k ∈ S.

Proof. Let X be a Boolean space. Then X is the limit of the codirected diagram {Xi | i ∈ I} of its finite
continuous images. Write πi : X → Xi for the i-th limit map. Since S is finite, by equation (8) the Boolean

space ŜX is homeomorphic to the inverse limit of the finite discrete spaces SXi. Let pi : ŜX → SXi be the
i-th limit map. As observed in Section 2, under these hypotheses the ‘comparison map’ τX : S|X | → |ŜX |
from Definition 2.7 is injective and satisfies

Sπi = pi ◦ τX (16)

for each i ∈ I. To improve notation, we identify S|X | with its image under τX . The dual algebra B̂ of ŜX
is generated by the set

{p−1
i (U) | i ∈ I, U ∈ P(SXi)}.

Note that the set above actually coincides with B̂, because it is already closed under the Boolean operations.
Indeed, it is clearly closed under taking complements, and it is closed under finite intersections because the
diagram {Xi | i ∈ I} is codirected. Now, consider the Boolean algebra homomorphism γ : B̂ → P(S|X |)

sending a clopen of ŜX to its restriction to the subset S|X |. In view of equation (16), this map can be
equivalently described as

γ : B̂ → P(S|X |), p−1
i (U) 7→ (Sπi)

−1(U)

and it is injective precisely because τX has dense image by Lemma 2.9. Therefore, B̂ is isomorphic to the
Boolean subalgebra γ(B̂) of P(S|X |). In turn, for every (Sπi)

−1(U) ∈ γ(B̂) we have

(Sπi)
−1(U) =

⋃

f∈U

{
g ∈ S|X | | Sπi(g) = f

}

=
⋃

f∈U

⋂

x∈Xi

{
g ∈ S|X | |

∫

π
−1
i

(x)

g = f(x)
}

=
⋃

f∈U

⋂

x∈Xi

[π−1
i (x), f(x)].

To conclude that B̂ is isomorphic to the subalgebra of P(S|X |) generated by the elements of the form [b, k],

where b ranges over the clopens of X and k ∈ S, it suffices to show that each [b, k] belongs to γ(B̂). Assume
without loss of generality that b 6= ∅, X and consider its characteristic map χb : X → 2. Then there is ib ∈ I
such that πib = χb. It follows that [b, k] = (Sπib)

−1(U) ∈ γ(B̂), where U = {f : 2 → S | f(1) = k}.

Now, let ϕ be a point of ŜX , i.e. an ultrafilter on the Boolean algebra B̂. By the previous lemma, for
each b ∈ B, {[b, k] | k ∈ S} is a finite set of pairwise disjoint elements of B̂ whose join is the top element.
Thus we can define a function

ŜX → M(X,S), ϕ 7→ µϕ (17)

where, for each b ∈ B, we define µϕ(b) to be the unique k ∈ S satisfying [b, k] ∈ ϕ. It is not difficult to see
that each µϕ is, indeed, a measure. This correspondence is injective because the elements of the form [b, k]

generate the Boolean algebra B̂ (see Lemma 4.2).

On the other hand, let µ : B → S be a measure on X . We will exhibit an ultrafilter ϕ on B̂ such that
µ = µϕ. Consider the set F = {[b, µ(b)] | b ∈ B} ⊆ P(S|X |). Observe that [b, k] = ∅ if, and only if, b = 0
and k 6= 0. Hence, the empty set does not belong to F because µ(0) = 0. Moreover, for every b1, . . . , bn ∈ B,

[b1, µ(b1)] ∩ · · · ∩ [bn, µ(bn)] 6= ∅
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by additivity of µ, i.e. F is a filter base. Let ϕ be the (proper) filter generated by F . It is enough to prove

that ϕ is an ultrafilter, for then µ = µϕ. Since the [b, k]’s generate B̂, it suffices to show that [b, k] /∈ ϕ
implies [b, k]c ∈ ϕ. Assume [b, k] /∈ ϕ. Then k 6= µ(b) entails [b, µ(b)] ⊆ [b, k]c, whence [b, k]c ∈ ϕ.

This shows that the map in (17) is a bijection. One can check that it is also a continuous homomorphism
of S-semimodules, so that we recover the result in Theorem 4.1.

Theorem 4.3. Let S be a finite semiring, and X a Boolean space. The map in (17) yields a continuous

isomorphism of S-semimodules between ŜX and M(X,S). Therefore, the free profinite S-semimodule over

X is isomorphic to the algebra M(X,S) of all the S-valued measures on X.

Upon identifying an element of ŜX with the corresponding measure on X , the ‘comparison map’
τX : S|X | → |ŜX | of Definition 2.7 can be concretely described as the integration function

τX : S|X | → M(X,S), f 7→

∫
f.

The latter map is an embedding with dense image and, for each b ∈ B and k ∈ S, the closure of the subset

[b, k] =
{
f ∈ S|X | |

∫

b

f = k
}

of M(X,S) is the subbasic clopen subset

〈b, k〉 = {µ ∈ M(X,S) | µ(b) = k}.

Moreover, for any continuous map h : X → Y and measure µ ∈ M(X,S), the continuous homomorphism

Ŝh : M(X,S) → M(Y, S) sends a measure µ on X to its pushforward with respect to h. That is,

Ŝh(µ) : b 7→ µ(h−1(b))

for every clopen b of Y . Further, recall from (2) the adjunction | − | : BStone ⇆ Set :β. Since adjoints
compose, the free profinite S-semimodule on a set A is isomorphic to M(βA, S), where βA is the Stone-Čech
compactification of the discrete space A. Note that an element of M(βA, S) is a finitely additive function
P(A) → S, i.e. the measurable subsets of βA are in bijection with the subsets of A.

Remark 4.4. Theorem 4.1 yields, in the case of the two-element distributive lattice 2, a representation
of the Vietoris space VX of a Boolean space X as the space of 2-valued measures over X . This may be
compared with the representations by Shapiro [27] and Radul [25] of VX , for X a compact Hausdorff space,
in terms of real-valued functionals.

5. The case of profinite idempotent semirings: algebras of continuous functions

In this final section we show that, if S is a profinite idempotent semiring, then all the S-valued measures
are uniquely given by continuous density functions (Theorem 5.8). By Theorem 4.1, this yields a represen-
tation of the free profinite S-semimodule on a Boolean space X in terms of continuous S-valued functions
on X , provided S is a finite idempotent semiring.

Suppose (S,+, ·, 0, 1) is a profinite semiring which is idempotent, i.e. it satisfies s+ s = s for every s ∈ S.
Any idempotent semiring is equipped with a natural partial order 6 defined by s 6 t if, and only if, there
is u such that s+ u = t. The operation + is then a join-semilattice operation with identity 0. Accordingly,
we write ∨ instead of +. In particular, a profinite idempotent semiring is a topological join-semilattice on
a Boolean space.3 Next we recall some basic facts about such topological semilattices that we will use in
the following. We warn the reader that, while we work with join-semilattices, most of the literature (cf.
[10, 11, 12]) deals with meet-semilattices.

3Although we shall not need this fact, we remark that the topological semilattices whose underlying spaces are Boolean, are
precisely the profinite semilattices [23].
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Definition 5.1. An element k in a complete lattice L is compact if, for every subset S ⊆ L such that
k 6

∨
S, there is a a finite subset F ⊆ S with k 6

∨
F . An algebraic lattice is a complete lattice in which

every element is the supremum of the compact elements below it.

Let L be a directed complete poset (dcpo, for short). That is, L is a poset in which every directed subset
admits a supremum. A subset U ⊆ L is called Scott open if it is upward closed and, for every directed subset
D ⊆ L, ∨

D ∈ U ⇒ D ∩ U 6= ∅.

The collection of all Scott open subsets is a topology, the Scott topology of L. Further, the lower topology

on L is the topology generated by the sets of the form (↑x)c for x ∈ L.

Definition 5.2. The Lawson topology of a dcpo L is the smallest topology containing both the Scott
topology and the lower topology.

The following theorem identifies the topology of a topological meet-semilattice on a Boolean space as
the Lawson topology. For a proof see, e.g., [10, Theorem VI-3.13].

Theorem 5.3. Let L be a topological meet-semilattice with 1 whose underlying space is Boolean. Then L
is an algebraic lattice and its topology is the Lawson topology.

In the case of the profinite idempotent semiring S, the previous theorem entails that S is a complete
lattice in which every element is the infimum of the co-compact elements above it (the concept of co-compact
element is the order-dual of that of compact element). Thus the topology of S, the dual Lawson topology

(i.e., the Lawson topology of the order-dual of S), has as basic opens the sets of the form

↓k ∩ (↓l1)
c ∩ · · · ∩ (↓ln)

c, (18)

where k, l1, . . . , ln are co-compact elements of S. Every set of the form ↓k, with k co-compact, is clopen
[11, Theorem II.3.3]; this shows that the sets in (18) provide a basis of clopens for S. Finally, any directed
subset of S considered as a net converges to a unique limit, namely its least upper bound. Similarly, for
codirected subsets and greatest lower bounds (see, e.g., [11, II.1]).

In view of the completeness of S, for each measure µ ∈ M(X,S) we can define a function

δµ : X → S, x 7→
∧

x∈b

µ(b)

that intuitively provides the value of the measure µ at a point. In general, the functions δµ : X → S are not
continuous with respect to the dual Lawson topology of S. However, they are continuous with respect to the
dual Scott topology, i.e. the Scott topology of the order-dual of S. The latter coincides with the topology of
all those open sets (in the dual Lawson topology) which are downward closed, cf. [10, Proposition III-1.6].

Definition 5.4. Let S be a profinite idempotent semiring. We define S↓ to be the topological space obtained
by equipping the underlying set of S with the dual Scott topology.

Lemma 5.5. Let S be a profinite idempotent semiring. For every Boolean space X and measure µ ∈
M(X,S), δµ : X → S↓ is a continuous function.

Proof. Let µ be a measure on X , and U an open down-set of S. We must prove that the preimage

δ−1
µ (U) =

{
x ∈ X |

∧

x∈b

µ(b) ∈ U
}

is open. Note that the set {µ(b) | x ∈ b} is codirected. If its infimum belongs to U , which is dual Scott
open, there must exist b ∈ B containing x and satisfying µ(b) ∈ U . Thus

δ−1
µ (U) ⊆

⋃
{b ∈ B | µ ∈ 〈b, U〉}.

The converse inclusion holds because U is a down-set. This shows that δ−1
µ (U) is open in X .
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Let C(X,S↓) denote the set of all the S-valued functions on X which are continuous with respect to
the dual Scott topology of S. This can be regarded as a semilattice, with respect to the pointwise order.
Similarly for M(X,S). In view of the previous lemma, there is a function

δ : M(X,S) → C(X,S↓), µ 7→ δµ (19)

which is readily seen to be monotone. In the converse direction, since S is complete, for every function
f : X → S and clopen b of X we can define the integral of f over b as

∫

b

f =
∨

x∈b

f(x).

This notion of integration with values in an idempotent semiring is well-known, and it is studied in particular
in idempotent analysis (see, e.g., [15]). So we have the integration map

∫
: C(X,S↓) → M(X,S), f 7→

(
b 7→

∫

b

f
)

(20)

which is also monotone.

Proposition 5.6. Let S be a profinite idempotent semiring. The maps

δ : M(X,S) ⇄ C(X,S↓) :

∫

defined in (19) and (20) form an adjoint pair, where δ is upper adjoint and
∫

is lower adjoint.

Proof. We must prove that, for any µ ∈ M(X,S) and f ∈ C(X,S↓), we have
∫
f 6 µ ⇔ f 6 δµ. In turn,

this follows at once from the definitions of
∫
f and δµ.

The set C(X,S↓) of continuous S↓-valued functions on X carries a natural structure of S-semimodule,
where both the monoid operation and the scalar multiplication are defined pointwise. With respect to
this structure, the functions δ : M(X,S) ⇄ C(X,S↓) :

∫
are seen to be homomorphisms of S-semimodules.

Moreover, they are continuous if the set C(X,S↓) is equipped with the topology generated by the sets of
the form {

f ∈ C(X,S↓) |

∫

b

f ∈ U
}
,

for b a clopen of X and U an open subset of S. We will see that, in fact, the adjoint pair in Proposition
5.6 provides an isomorphism of topological algebras between M(X,S) and C(X,S↓). We first show that δµ
can be regarded as the density function of the measure µ.

Lemma 5.7. Let S be a profinite idempotent semiring, and X a Boolean space with dual algebra B. For

every µ ∈ M(X,S) and b ∈ B, µ(b) =
∫
b
δµ.

Proof. Fix b ∈ B. We show that µ(b) is the limit in S of the directed set

N =
{ ∨

x∈F

δµ(x) | F ∈ Pf(b)
}
,

considered as a net. Since
∫
b
δµ is also a limit for this net, it will follow that µ(b) =

∫
b
δµ because S is

Hausdorff. Let k, l1, . . . , ln be co-compact elements of S such that the basic open set

U = ↓k ∩ (↓l1)
c ∩ · · · ∩ (↓ln)

c.

contains µ(b). We prove that the net N is eventually in the open neighbourhood U of µ(b). Note that,
for each x ∈ b, δµ(x) is below µ(b) whence it belongs to ↓k. So it suffices to find, for every i ∈ {1, . . . , n},
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a point xi ∈ b such that δµ(xi) ∈ (↓li)c, for then every element of N above
∨n

i=1 δµ(xi) will belong to U .
Assume by contradiction that there exists i ∈ {1, . . . , n} with

b ∩ δ−1
µ ((↓li)

c) = ∅.

That is, b ⊆ δ−1
µ (↓li). Since ↓li is clopen, for each x ∈ b there is an open neighbourhood Ux of δµ(x)

contained in ↓li. By definition, δµ(x) is the limit of the net {µ(b) | x ∈ b}, so for every x ∈ b there is bx ∈ B
such that x ∈ bx and µ(bx) ∈ Ux. We can assume without loss of generality that each bx is contained in b.
Then the clopen covering {bx | x ∈ b} of b has a finite subcover {bx1, . . . , bxp

}. For every j ∈ {1, . . . , p} we
have µ(bxj

) ∈ Ux ⊆ ↓li, thus
µ(b) = µ(bx1) ∨ · · · ∨ µ(bxp

) 6 li,

a contradiction.

Theorem 5.8. Let S be a profinite idempotent semiring, and X a Boolean space. Then the continuous

homomorphisms of S-semimodules

δ : M(X,S) ⇄ C(X,S↓) :

∫

of (19)–(20) are inverse to each other. Thus M(X,S), the algebra of all the S-valued measures on X, is

isomorphic to the algebra C(X,S↓) of all the continuous S↓-valued functions on X.

Proof. In view of Lemma 5.7 we know that
∫
◦ δ is the identity of M(X,S), for every Boolean space X . It

remains to prove that, whenever f : X → S↓ is a continuous function, the measure µ =
∫
f satisfies f = δµ.

That is, for each x ∈ X ,

f(x) =
∧{∫

b

f | x ∈ b, b ∈ B
}
,

where B is the dual algebra of X . Regarding the codirected set

N =
{ ∫

b

f | x ∈ b, b ∈ B
}

as a net, this is equivalent to saying that the limit of N is f(x). Consider co-compact elements k, l1, . . . , ln
of S such that the basic open set

U = ↓k ∩ (↓l1)
c ∩ · · · ∩ (↓ln)

c

contains f(x). We must prove that N is eventually in U . Of course we have
∫
b
f ∈ (↓l1)c ∩ · · · ∩ (↓ln)c for

every b containing x. So it suffices to find a clopen b′ ∈ B such that x ∈ b′ and
∫
b′
f 6 k, for then every

element of N below
∫
b′
f will belong to U . Since the function f is continuous with respect to the dual Scott

topology of S, and ↓k is dual Scott open, f−1(↓k) is an open neighbourhood of x. Let b′ ∈ B be a clopen
satisfying x ∈ b′ ⊆ f−1(↓k). Then ∫

b′
f 6 k,

as was to be proved.

Note that, if the semiring S is finite, the dual Scott topology on S is simply the down-set topology, i.e.
the Alexandroff topology of the order-dual of S. In this situation, the previous theorem has the following
immediate corollary.

Theorem 5.9. Let S be a finite idempotent semiring, and X a Boolean space. Then ŜX, the free profinite

S-semimodule on X, is isomorphic to the algebra C(X,S↓) of all the continuous S↓-valued functions on X.

Proof. This follows from Theorems 4.1 and 5.8.

Remark 5.10. If S is the two-element distributive lattice 2, then S↓ is homeomorphic to the Sierpiński
space. We thus recover from Theorem 5.9 the classical representation of the Vietoris space VX of a Boolean
space X as the semilattice of all the continuous functions from X into the Sierpiński space.

20



Acknowledgements

I would like to thank my Ph.D. advisor Mai Gehrke, and Daniela Petrişan, for many helpful discussions
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