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Abstract The Global Carbon Budget 2018 (GCB2018) estimated by the atmospheric CO2 growth rate,
fossil fuel emissions, and modeled (bottom-up) land and ocean fluxes cannot be fully closed, leading to a
“budget imbalance,” highlighting uncertainties in GCB components. However, no systematic analysis has
been performed on which regions or processes contribute to this term. To obtain deeper insight on the
sources of uncertainty in global and regional carbon budgets, we analyzed differences in Net Biome
Productivity (NBP) for all possible combinations of bottom-up and top-down data sets in GCB2018: (i) 16
dynamic global vegetation models (DGVMs), and (ii) 5 atmospheric inversions that match the atmospheric
CO2 growth rate. We find that the global mismatch between the two ensembles matches well the GCB2018
budget imbalance, with Brazil, Southeast Asia, and Oceania as the largest contributors. Differences
between DGVMs dominate global mismatches, while at regional scale differences between inversions
contribute the most to uncertainty. At both global and regional scales, disagreement on NBP interannual
variability between the two approaches explains a large fraction of differences. We attribute this mismatch
to distinct responses to El Niño–Southern Oscillation variability between DGVMs and inversions and to
uncertainties in land use change emissions, especially in South America and Southeast Asia. We identify
key needs to reduce uncertainty in carbon budgets: reducing uncertainty in atmospheric inversions (e.g.,
through more observations in the tropics) and in land use change fluxes, including more land use
processes and evaluating land use transitions (e.g., using high-resolution remote-sensing), and, finally,
improving tropical hydroecological processes and fire representation within DGVMs.

1. Introduction
The United Nations Framework Convention on Climate Change Paris Agreement from 2015 (UNFCCC,
2015) has the goal to limit the increase in global average temperature well below 2 ◦C above preindustrial
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levels, and pursue efforts not to exceed the target of 1.5 ◦C above preindustrial levels. To achieve this over-
arching goal, the agreement calls for “a balance between anthropogenic emissions by sources and removals
by sinks of greenhouse gases in the second half of this century.”

On the policy side, the problem is expected to be tackled at the national level through Nationally Determined
Contributions, that is, mitigation policies defined by countries (UNFCCC, 2015). The collective progress
toward the overall goal of the agreement is to be assessed regularly in the “global stocktake” process to sup-
port the update of Nationally Determined Contributions according to the best available science. However,
the ultimate goal of stabilizing global mean surface temperature requires evaluating common progress at
the global scale, as well as the evolution of natural sinks. It is therefore crucial that bottom-up estimates
of CO2 fluxes (e.g., inventories and models) provide accurate estimates that are consistent with the global
atmospheric greenhouse gas mole fractions.

Global carbon (C) budgets for the anthropogenic perturbation have been estimated in the successive Inter-
governmental Panel on Climate Change (IPCC) assessment reports (IPCC, 2001, 2007, 2013) and have been
revised and updated in the Global Carbon Budget (GCB) by the Global Carbon Project almost every year
since 2005 (Le Queré et al., 2009; Le Quéré, Andrew, Friedlingstein, Sitch, Pongratz, et al., 2018; Le Quéré,
Andrew, Friedlingstein, Sitch, Hauck, et al., 2018b).

Fossil fuel and cement production emissions (EFF) can be estimated from historical energy statistics (Boden
et al., 2017; UNFCCC, 2018) with a 1 standard deviation (1𝜎) uncertainty of 5–11% (Le Quéré, Andrew,
Friedlingstein, Sitch, Hauck, et al., 2018b; Quilcaille et al., 2018). The fluxes from changes in land use and
management (FLUC) cannot be directly measured and are estimated in Le Quéré, Andrew, Friedlingstein,
Sitch, Hauck, et al. (2018b) by bookkeeping models (Hansis et al., 2015; Houghton & Nassikas, 2017), with
a reported uncertainty of 0.7 Pg C yr−1 (1𝜎) for decadal average FLUC over the industrial era. Global car-
bon uptake by the ocean and land can also not be directly measured, and are estimated in the GCB by
process-based models for the land, and process- and data-driven models for the ocean (Le Quéré, Andrew,
Friedlingstein, Sitch, Hauck, et al., 2018b; Sitch et al., 2013).

In the Global Carbon Budget 2018 (GCB2018; Le Quéré, Andrew, Friedlingstein, Sitch, Hauck, et al., 2018b),
the net annual balance between the anthropogenic sources and the sinks of CO2 from process-based models
does not exactly match the accurately observed atmospheric CO2 growth rate (GATM ; Dlugokencky & Tans,
2018). The residual flux resulting from this gap, the “budget imbalance,” can be interpreted as a measure of
the limitations of the data sets used and of the imperfect process understanding by the modeling commu-
nity (Le Quéré, Andrew, Friedlingstein, Sitch, Hauck, et al., 2018b). Since the budget imbalance does not
show a significant trend since the 1960s but high year-to-year variability, Le Quéré, Andrew, Friedlingstein,
Sitch, Hauck, et al. (2018b) proposed that errors in the land and ocean sinks explain most of the imbalance
term, but uncertainty in FLUC is also known to be high (Arneth et al., 2017; Piao et al., 2018). In GCB2018,
estimates of ocean and land net CO2 fluxes from process-based models were compared with those from four
observation-based atmospheric inversions (Chevallier et al., 2005; Rödenbeck et al., 2003; Saeki & Patra,
2017; van der Laan-Luijkx et al., 2017) for the globe and over three latitudinal bands, where large differ-
ences between process-based models and inversions, but also between inversions were found. A recent study
(Gaubert et al., 2019) further compared 10 different inversion systems, including the four mentioned above,
showing an overall fair match with aircraft CO2 measurements and varying consistency (<10% on 3-year
mean varying with the inversion) with GATM . However, their results showed that differences in fossil fuel
emission priors used affected the ocean-land partitioning, setting limits to the accuracy of inversions for
quantifying regional surface-atmosphere CO2 fluxes. Even though inversions were adjusted for differences
in EFF priors in Le Quéré, Andrew, Friedlingstein, Sitch, Hauck, et al. (2018b), large disparities were still
found for regional fluxes estimated by the four atmospheric inversions, especially the balance between the
Northern Hemisphere and the tropics.

Le Quéré, Andrew, Friedlingstein, Sitch, Hauck, et al. (2018b) proposed that regional-level analyses may
uncover sources of errors in the inferred fluxes. For example, comparisons of net CO2 surface flux estimates
from atmospheric inversions and dynamic global vegetation models (DGVMs) allowed assessing in detail the
response of the tropical net CO2 exchange to the 2015–2016 El Niño event, and evaluating the DGVMs' ability
to simulate the anomalies in carbon fluxes in 2015/16 (Bastos et al., 2018; Gloor et al., 2018; Rödenbeck et
al., 2018; van Schaik et al., 2018). Likewise, the studies produced in the framework of the REgional Carbon
Cycle Assessment and Processes (RECCAP; Canadell et al., 2012) provided a first evaluation of global and
regional budgets, budget component fluxes and uncertainties. RECCAP produced multiple global syntheses
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of regional CO2 fluxes between 1990 and 2009 and their driving processes (Andres et al., 2012; Ciais et al.,
2014; Chen et al., 2013; Houghton et al., 2012; Khatiwala et al., 2013; Peters et al., 2012; Peylin et al., 2013;
Sitch et al., 2013; Wanninkhof et al., 2013) as well as independent budgets for nine land, four ocean and
coastal regions.

In this study, we take a closer look at the regional mismatch between the top-down and bottom-up data
sets in GCB2018 (Le Quéré, Andrew, Friedlingstein, Sitch, Hauck, et al., 2018b) to identify the sources of
uncertainty in the terrestrial components, specifically to:

(i) identify the regions driving uncertainties in global budget estimates;
(ii) quantify the relative contribution of uncertainty in net CO2 surface flux estimates from inversions

(top-down) and from DGVMs (bottom-up);
(iii) identify those processes contributing the most to uncertainty in global and regional budgets.

We focus on a group of 18 land regions from Tian et al. (2018), which are consistent with the previous
nine RECCAP large regions and with ecoclimatic specificities, but follow political borders. Evaluating the
agreement between top-down and bottom-up estimates of CO2 fluxes over such regions allows assessing
the confidence and limitations of the state-of-the-art science to provide information on regional budgets,
relevant for the global stocktaking process yet with traceable consistency with the GATM .

In this study, we rely on net CO2 exchange from inversions, considered as uncertain estimates of surface CO2
fluxes consistent with GATM and compare inversions' estimates to those from the 16 DGVMs in GCB2018.
Since Gaubert et al. (2019) recently analyzed the sources of uncertainty between inversions, here we focus
on predictors that can explain the differences between DGVMs and inversions, or differences between indi-
vidual DGVMs. By statistically modeling the mismatch between inversions and DGVMs, we are able to
attribute uncertainty in the global budgets to a few key regions mainly in the tropics, and to identify those
processes contributing the most to regional and global uncertainties.

2. Data
2.1. Atmospheric Inversions
Atmospheric inversions use an optimization process by which atmospheric CO2 mole fraction measure-
ments are used to constrain a priori estimates of the spatial distribution of surface CO2 fluxes using an
atmospheric transport model. In the optimization, information about errors of measurements and of priors,
errors in the transport model, and the spatiotemporal structure of fluxes is also included (Peylin et al., 2013).

The four inversion systems used in this study (Table 1) are all based on in situ CO2 observation mea-
surements but differ in several aspects, such as the observational data assimilated and period covered, the
transport model and prior fluxes used, the model grid, the spatiotemporal a priori correlation structure, as
well as in the fossil fuel data sets used. A complete description of the different atmospheric inversions can
be found in Table A3 in Le Quéré, Andrew, Friedlingstein, Sitch, Hauck, et al. (2018b). Here we use two ver-
sions of CarboScope (Rödenbeck et al., 2003), both covering a period longer than 30 years but with variable
number of assimilated sites: s76 (1976–2017, eight stations) and s85 (1985–2017, 21 stations). Thus, we have
used in total five inversion data sets (CAMS, two CarboScope versions, MIROC, and CarbonTracker Europe;
Table 1).

Because they are based on CO2 concentration measurements, atmospheric inversions estimate the net
surface-atmosphere CO2 fluxes including both the natural (fires, storms, pests, and diseases) and anthro-
pogenic disturbance terms, the subsequent recovery, as well as the carbon taken up from the atmosphere
over land but then passed on to the oceans through freshwaters, estuaries, and coastal areas (Hartmann et
al., 2009; Mayorga et al., 2010; Regnier et al., 2013).

As in Le Quéré, Andrew, Friedlingstein, Sitch, Hauck, et al. (2018b) and Peylin et al. (2013), we adjusted
the ocean and land fluxes for differences in fossil fuel emission (EFF) priors over large latitudinal bands. As
reference EFF , we chose the data used by CAMS, the Emission Database for Global Atmospheric Research
(Olivier et al., 2017) scaled to the Carbon Dioxide Information Analysis Center (Marland et al., 2008) esti-
mates. However, this is only a first-order correction as the biases in EFF not only affect the flux estimation of
the region in question but also the neighboring regions (Saeki & Patra, 2017). The inversion surface fluxes
were then remapped to a regular 1◦ × 1◦ latitude/longitude grid and then aggregated to the 18 land regions.
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Table 1
Top-Down and Bottom-Up Data Sets Used in This Study, Including References and Period Covered

Data set/model Reference Period Fire N-dep SC WH
Inversions (top-down)

Data set
Copernicus Atmosphere Chevallier et al. (2005) 1979–2017
Monitoring Service (CAMS)
CarboScope s76 Rödenbeck et al. (2003) 1976–2017
CarboScope s85 1985–2017
MIROC Patra et al. (2018) 1997–2017
CarbonTracker Europe (CTE) van der Laan-Luijkx et al. (2017) 2001–2017

DGVMs (bottom-up)
Model
CABLE-POP Haverd et al. (2018) 1979–2017 N Y Y Y
CLASS-CTEM Melton and Arora (2016) Y Y N N
CLM5.0 Oleson et al. (2013) Y N Y Y
DLEM Tian et al. (2015) N Y N Y
ISAM Meiyappan et al. (2015) N Y N Y
JSBACH Mauritsen et al. (2018) Y Y Y Y
JULES Clark et al. (2011) N N N N
LPJ Poulter et al. (2011) Y N Y Y
LPJ-GUESS Smith et al. (2014) Y Y Y Y
LPX-Bern Lienert and Joos (2018) Y Y N N
OCN Zaehle et al. (2010) N Y N Y
ORCHIDEE Krinner et al. (2005) N N N Y
ORCHIDEE-CNP Goll et al. (2017) N Y N N
SDGVM Walker et al. (2017) Y Y N N
SURFEX Joetzjer et al. (2015) Y N N N
VISIT Kato et al. (2013) Y N Y Y

Note. For the DGVMs, we indicate whether they simulate fires, nitrogen deposition (N-dep), shifting cultivation (SC), and wood harvest (WH), and in some mod-
els further include irrigation and nitrogen fertilization. A complete description of the processes in each model can be found in Le Quéré, Andrew, Friedlingstein,
Sitch, Hauck, et al. (2018b).

Inversions determine total CO2 fluxes between the surface and the atmosphere whereas the GCB approach
with land and ocean biogeochemical models determines the anthropogenic budget of CO2. The difference
between total and anthropogenic CO2 fluxes is that there is a background preindustrial uptake of CO2 on
land that sustains carbon export from soils to rivers and to the ocean, where compensatory outgassing of
CO2 occurs. This requires an adjustment of inversion CO2 fluxes to transform them into anthropogenic CO2
fluxes, as performed in Le Quéré, Andrew, Friedlingstein, Sitch, Hauck, et al. (2018b) over latitudinal bands.

Based on the data-driven estimates of fluvial exports of organic (Mayorga et al., 2010) and inorganic car-
bon (Hartmann et al., 2009) to the coast, Zscheischler et al. (2017) produced a spatially explicit data set of
climatological land-ocean carbon transfers at 1◦ × 1◦ latitude/longitude resolution and includes the fluxes
from dissolved inorganic carbon from atmospheric origin and from weathering and dissolved and particu-
late organic carbon (DOC and POC). In this study, the DOC and POC exports of this data set were rescaled
per basin to match the estimates of Resplandy et al. (2018). After aggregating these rescaled estimates to
the 18 land regions, we subtracted the fluvial carbon exports from the regionally aggregated inversion net
surface CO2 fluxes, to calculate regional net biospheric production (NBP) that can be compared with the
DGVM estimates. These data are available in (Bastos, 2019).

2.2. DGVMs
DGVMs simulate water, energy and biogeochemical exchanges between the surface and the atmosphere
through ecosystems activity, including growth, turnover and decomposition of vegetation, and soil carbon
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processes. DGVMs simulate the response of ecosystems to changes in environmental conditions (increasing
CO2, changing climate, and altered nitrogen deposition) and land use activity.

Here we use a set of 16 DGVMs from the TRENDY-v7 intercomparison (Sitch et al., 2015) that contributed
to GCB2018. In the simulations for GCB2018 (Simulation S3), all 16 models are forced with: (i) observed
climate from the Climate Research Unit (Harris et al., 2014) and the Japanese 55-year Reanalysis (Kobayashi
et al., 2015) data sets, the CRU-JRA reanalysis, following the methodology in Viovy (2016); (ii) global CO2
concentration from NOAA/ESRL (Dlugokencky & Tans, 2018); (iii) land use change transitions and land
management fields from the Land Use Harmonization (LUH2v2.1h) from Hurtt et al., 2011 (2011, 2017),
based on HYDE 3.1 (Klein Goldewijk et al., 2011); and (iv) gridded data of nitrogen (N) deposition when N
cycling is simulated by models.

Some models simulate fire emissions (EFire) and nutrient cycling (nitrogen in ten models, and nitrogen and
phosphorus in one model), including the effects of N deposition (Table 1). While all DGVMs simulate the
fluxes resulting from forest clearing, pasture and crop conversion, abandonment and regrowth and crop
harvest, they implement them using different assumptions about the areas being converted (e.g., gross ver-
sus net conversion). The way DGVMs simulate management practices and the fate of released carbon also
varies between models. Ten models simulate wood harvest and six include shifting cultivation, roughly
corresponding to gross transitions (Table 1). Only few DGVMs simulate crop fertilization or irrigation. To
calculate FLUC, the S3 simulation is compared to the S2 simulation, which is forced with CO2 and climate
changes only, and keeping a fixed land cover map in 1700 (Le Quéré, Andrew, Friedlingstein, Sitch, Hauck,
et al., 2018b).

For FLUC estimated in this way, fluxes resulting from environmental change over managed lands as com-
pared to intact vegetation are included (Pongratz et al., 2014). Due to the effect of CO2 fertilization, intact
vegetation would at present provide a slightly stronger sink, which implies that emissions from, for example,
deforestation are now slightly higher than if compared to the preindustrial state. This term is referred to as
loss of additional sink capacity (LASC) as proposed by Pongratz et al. (2014). In TRENDY-v7, an additional
simulation was performed where preindustrial CO2 and climate were kept fixed, and only land use changes
and management were allowed to change between 1700 and 2017 (S4). FLUC estimated in this way does not
include the LASC term and is therefore more comparable in terms of processes to the ones estimated by the
bookkeeping methods, except for the values of C densities used.

Outputs of monthly NBP from all three simulations (S2, S3, and S4) were first resampled to a common 1◦ × 1◦

latitude/longitude grid, and then aggregated for each region. The regional fluxes from S2 and S3 simulations
are available from (Bastos, 2019).

2.3. Bookkeeping Models
Bookkeeping models track changes in above- and below-ground biomass carbon densities resulting from
land use change processes such as deforestation/afforestation, cropland or pasture expansion, wood harvest,
shifting cultivation, and forest regrowth after land abandonment. In GCB2018, two bookkeeping models
that estimate FLUC at the global scale have been considered: the bookkeeping model of Houghton and
Nassikas (2017), referred as HN2017 henceforth, and the “Bookkeeping of Land Use Emissions” model
(BLUE) described in Hansis et al. (2015). To estimate FLUC, bookkeeping models first calculate the changes in
biomass, soil and the atmosphere carbon pools resulting from a given transition following specific response
curves. The resulting fluxes for a given year can be calculated as the difference in carbon stocks between
two consecutive years. The carbon density values for above- and below-ground biomass used by both mod-
els are based on recent history (ca. 1980s) measurements. This means that the C densities used have an
implicit transient effect of increasing CO2 and climate, leading to somewhat higher CO2 emissions than S4
by DGVMs.

Even though based on similar principles, the two models differ in their mathematical formulation, spa-
tial implementation, assumptions made about LUC transitions, processes included, forcing data used and,
consequently, in the sources of uncertainty.

The HN2017 model covers the period of 1700–2015 and is based on regional statistics from the Food and
Agricultural Organization (FAO) on changes in the areas of croplands and pastures since 1961 and changes
in the areas of forests and other land since 1990 (FAO, 2015; FAOSTAT, 2015), while BLUE used the same
data set as the DGVMs, that is, LUH2v2.1h. In the HN2017 model, calculations are performed at the country
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scale, and in the recent version, the model now incorporates country specific C densities. In this version, the
model does not include shifting cultivation. From 1997 onward, peat fires (Giglio et al., 2016) and emissions
from peat drainage (Hooijer et al., 2010) are added in Southeast Asia. The fluxes resulting from fire sup-
pression are considered, but only in the United States. The HN2017 model allocates pasture preferentially
to grasslands. This may result in lower CO2 emissions by reducing deforestation rates (Reick et al., 2010).

The BLUE model uses a spatially explicit modeling scheme to calculate FLUC on a pixel basis between 850
and 2017. It relies on biome-specific C densities and exponential response curves to track the changes in soil
and biomass carbon pools following land use conversion or due to management. New cropland and pasture
are taken proportionally from natural vegetation types and rangelands clear the natural vegetation for forest
areas and degrade other natural land (Hansis et al., 2015; Le Quéré, Andrew, Friedlingstein, Sitch, Hauck, et
al., 2018b). BLUE further includes shifting cultivation. In the GCB2018 version, BLUE used the same data
set as several of the DGVMs, that is, the LUH2v2.1h, to calculate FLUC at 0.25◦ × 0.25◦ latitude/longitude
resolution. Because BLUE uses a spatially explicit framework and the same LUC forcing as DGVMs, we use
it as a primary basis for comparison with process-based model estimates of FLUC. We then compare BLUE
with HN2017 to evaluate the potential contribution of the forcing used to estimate FLUC by DGVMs and
BLUE to the mismatch between DGVMs and inversions.

2.4. Additional Data
In order to evaluate possible sources of uncertainty, we considered additional data sets to explain the differ-
ences between DGVM and inversion fluxes (see section 2.5): the Oceanic Niño Index (ONI) from NOAA's Cli-
mate Prediction Center (https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_
v4.shtml) from December to March; annual average total water storage (TWS) over each of the 18 regions
from the Gravity Recovery and Climate Experiment (GRACE) reconstruction (Humphrey et al., 2018);
satellite-based land cover maps from the European Space Agency's Climate Change Initiative Land-Cover
(LC-CCI) (ESA, 2017) from 1992–2015 aggregated from 250 m × 250 m to 1◦ × 1◦ latitude/longitude resolu-
tion; carbon emissions data from the Global Fire Emissions Database version 4.1s (GFED4.1s, https://doi.
org/10.3334/ORNLDAAC/1293) available from 1997–2017, described in Randerson et al. (2017); and burned
area from ESA-CCI Fire-CCI v5.1 (Fire-CCI; Chuvieco et al., 2018), covering the period 2001–2017.

2.5. Methods
The goal here is to quantify the mismatch between NBP estimated by inversions and DGVMs. As discussed
in section 2.1, inversions differ in several aspects between each other. Likewise, DGVMs show variable skill
in simulating fundamental processes of the terrestrial C cycle (see Figure B2 in Le Quéré, Andrew, Friedling-
stein, Sitch, Hauck, et al., 2018b) and do not all simulate the same processes (Table 1). Some of the differences
across data sets may arise from complex interactions between processes within models, and not be traceable
to a particular process.

We define Dik𝑗 as the difference in year 𝑗 (𝑗 = 1, … , J) between NBP estimates of the kth inversion (k =
1, … ,n𝑗 , with n𝑗 ≤ 5, depending on the year 𝑗) available over that year and the ith DGVM (i = 1, … , 16).

Dik𝑗 = DGVMi𝑗 − INVk𝑗 (1)

For a given year, the NBP values estimated by the inversions (INVk𝑗) can be then considered as a sample
from a distribution of surface fluxes compatible with GATM , with the size of this sample changing over the
study period (1979–2017) as more inversions become available. For each year we can generate a set of n𝑗 ×16
values of D for the globe (DGlobe), as well as for each of the 18 regions (Dreg).

For each (inversion, DGVM) pair, the DGlobe can be decomposed into the 18 region components:

DGlobeik𝑗
=

18∑

r=1
DRregrik𝑗

(2)

We can, therefore, quantify the contribution of each region to the variance (V) of DGlobe as

V(DGlobeik
) =

18∑

r=1
V(DRregrik

) + 2
18∑

r=1

18∑

p=1
Cov (DRregrik

DRregpik
) (3)

BASTOS ET AL. 6 of 21

https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v4.shtml
https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v4.shtml
https://doi.org/10.3334/ORNLDAAC/1293
https://doi.org/10.3334/ORNLDAAC/1293


Global Biogeochemical Cycles 10.1029/2019GB006393

The contribution of each region r to the variance of DGlobe is therefore the quotient between the sum of the
regional variance and covariance terms in r and the variance of DGlobe, for each (inversion, DGVM) pair.

To identify possible drivers of D, we test several statistical models using likely predictors for the mismatch
between inversions and DGVMs. Linear mixed effects (LME) models allow modeling D as a function of fixed
effects (e.g., El Niño/La Niña cycles), but also of random effects describing several sources of variability
(DGVMs, years, inversions). We start by fitting to Dik𝑗 the following simple LME model without any predictor
region by region (the lme function from the R package lme4; Bates et al., 2014) described in equation (4)
(LMERE):

Dik𝑗 = 𝜇 + 𝛼i + 𝛽𝑗 + 𝛾i𝑗 + 𝜖ik𝑗 (4)

where 𝜇 is the average mismatch (i.e., D averaged over all models, years, and inversions) over the considered
region. The random effects 𝛼i, 𝛽𝑗 and 𝛾i𝑗 (all with zero mean and variance V𝛼 , V𝛽 , and V𝛾 , respectively)
describe the variability of D across the DGVMs with index i, the between-year variability of D with index
𝑗, and the interaction between models and years on D, respectively. The interaction term accounts for the
possibility that some models may have larger D in some years, and smaller D in other years. The 𝜖ik𝑗 term
describes the variability across the five inversions and their interactions with year and DGVMs with index
k and variance V𝜖 . For each region, a set of LME models with the possible combinations of one, two or all
three random effects are fit to D, the model that best explains D for each region is retained, by choosing the
one with lowest Akaike Information Criterion and with significant fit (p value < 0.05). We then expand the
LME in equation (4) in order to explain part of the variance of D using different sets of predictors. We test
four hypotheses (equation (5)) that are supported by literature and for which data are available. We define
a set of LME models (equation (5)) (LMEFE) with one or more predictors (Xa, Xb, Xc, Xd) and associated
coefficients (ca, cb, cc, cd) corresponding to the following hypotheses:

a. D can be explained by a linear time trend, for example, if models under- or overestimate the sensitivity to
a process with a strong trend component such as CO2 increase (Graven et al., 2013; Thomas et al., 2016);

b. Since D corresponds to the difference between top-down and bottom-up estimates of NBP, and NBP
includes FLUC, which is highly uncertain (Le Quéré, Andrew, Friedlingstein, Sitch, Hauck, et al., 2018b;
Piao et al., 2018), D might be explained by errors in FLUC;

c. Differences can be due to too strong response of DGVMs to ENSO (Bastos et al., 2018);
d. In fire-dominated regions, D may be explained by the fact that some DGVMs do not simulate fires (Table 1),

or because those that do still show limited ability to correctly represent spatial and interannual variability
in burned area and fire emissions (Li et al., 2014; Poulter et al., 2015; Yue et al., 2014, 2015).

The full model includes the four predictors and is expressed as

Dik𝑗 = ca × Xa𝑗 + cb × Xb𝑗 + cc × Xc𝑗 + cd × Xd𝑗 + 𝜇 + 𝛼i + 𝛽𝑗 + 𝛾i𝑗 + 𝜖ik𝑗 (5)

Because the predictors have different units, and variability across regions may also vary significantly for FLUC
and E𝑓 ire, we centered and standardized these variables (i.e., the mean was subtracted and the result divided
by the standard deviation). As done for the random effects, we define multiple models with one, two, three,
or four predictors as fixed effects, and choose the best model fit (lowest Akaike information criterion and
significant fit). We fit the LMEFE separately for 1997–2017 when including fire emissions as a predictor.

When any of these variables is found to provide the best fit, we explore how the predictors may contribute
to explain the differences. In the case of FLUC we compare the estimates from DGVMs with those of BLUE
and HN2017 and evaluate the role of the forcing LUC to explain D in that region. As ENSO effects on NBP
are mainly related to changes in temperature and water availability in the tropics (warm/dry during El Niño
and cool/wet during La Niña) we evaluate the sensitivity of fluxes to soil water availability and temperature
by performing a multiple linear regression of spatially aggregated fluxes with regionally averaged annual
temperature from CRU-JRA and water availability. Water availability was estimated by annual TWS from
GRACE for inversions and simulated soil moisture for DGVMs. Where E𝑓 ire is found to contribute to D, we
compare simulated emissions from fire as well as burned area with the reference data sets.

We further group DGVMs by “flavors,” corresponding to whether they represent (or not) the processes
highlighted in Table 1: fire, N deposition, shifting cultivation and wood harvest. We evaluated whether
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Figure 1. Mismatch between DGVMs and inversions for the global land sink estimates, calculated following equation (1). The thin colored lines correspond to
D for each inversion and each model, with the colors indicating the respective inversion (CAMS in dark blue; the two CarboScope inversions s76 and s85 in
dark and light cyan, respectively; MIROC in pink; and CarbonTracker Europe [CTE] in purple). The bold lines show the multimodel ensemble mean of D for
each inversion. The budget imbalance calculated by Le Quéré, Andrew, Friedlingstein, Sitch, Hauck, et al. (2018b) is shown in black (inverted sign to match the
sign of equation (1)) for comparison.

the different groups of DGVMs have significantly lower biases (𝜇) than the set of 16 DGVMs at global
and regional scale (supporting information Table S1), and additionally add the process representation as a
predictor in the LMEFE fit (Figure S7).

3. Results
3.1. Global Differences and the “Budget Imbalance”
The values of GATM reconstructed from the inversions fluxes on average match those from GCB2018 (Figure
S1), with differences of −0.04±0.41, 0.11±0.36, 0.14±0.36, 0.29±0.42, and 0.00±0.48 Pg C yr−1, for CAMS,
CarboScope s76, CarboScope s85, MIROC, and CarbonTracker Europe, respectively, over the period covered
by each inversion. For comparison, the budget imbalance term in GCB2018 for 2008–2017 was 0.5 Pg C yr−1.

The ensemble of DGlobe calculated following equation (1) for all (inversion, DGVM) pairs is shown in
Figure 1. Over the 1979–2017 period, DGlobe averaged across all DGVMs for each inversion (bold lines) show
strong multiannual fluctuations. From 1983–1989 (except 1982) and over the late 1990s, DGlobe was strongly
positive, which indicates stronger NBP from DGVMs compared to inversions; following the year 2000, DGlobe
showed a decreasing trend. These multiannual tendencies are punctuated by years of strong peaks, for exam-
ple, 1982, 1991/1992, 2009/2010, and 2015 (negative DGlobe) and 1984, 1988/1989, 2000, and 2011 (positive).
The trough in 1991/1992 suggests that DGVMs miss the large abnormal sink deduced from GATM , which is
a known feature from all previous budgets (Le Queré et al., 2009; Le Quéré, Andrew, Friedlingstein, Sitch,
Pongratz, et al., 2018; Le Quéré, Andrew, Friedlingstein, Sitch, Hauck, et al., 2018b) and likely linked to
the underestimation by DGVMs of the land sink enhancement in response to the eruption of Mt. Pinatubo
(Lucht et al., 2002; Mercado et al., 2009). Other years are associated with positive and negative phases of El
Niño (Bastos et al., 2018; Bowman et al., 2017), suggesting a possible contribution to DGlobe of mismatches
in the response of DGVMs and inversions to ENSO.

The “budget imbalance” time series from GCB2018 (black line, Figure 1) shows very similar variability to
the group of ensemble means, supporting the hypothesis that errors in the land sink representation explain a
large fraction of the GCB2018 imbalance term. The values of D show an offset compared to this term though,
which is in part explained by the adjustment of lateral fluxes to Resplandy et al. (2018) values. Even though
over the 39-year period no clear trend can be distinguished in the whole ensemble, seven out of the 80 pairs
inversion-DGVM show significant trends, evaluated by the Mann-Kendall test.

BASTOS ET AL. 8 of 21



Global Biogeochemical Cycles 10.1029/2019GB006393

Figure 2. The 18 study regions: United States (USA), Canada (Canada), Europe (EU), Northern Africa (NAF), central
Asia (CAS), Russia (RUS), Korea and Japan (KAJ), China (CHN), Southeast Asia (SEAS), Oceania (OCE), south Asia
(SAS), Middle East (MIDE), southern Africa (SAF), equatorial Africa (EQAF), southern South America (SSA), Brazil
(BRA), northern South America (NSA), and central America (CAM) are shown in the top panel. In the lower panel, the
contribution of each region to the variance of D is shown for each inversion, calculated for the multi-DGVM mean for
each of the five inversions. The bar order corresponds to CAMS, CarboScope s76 and s85, MIROC, and CarbonTracker
Europe.

The variability across (inversion, DGVM) pairs is much higher than the variability from year-to-year of the
ensemble means. The 1𝜎 of DGlobe is 0.9 Pg C yr−1 (Figure 1). This value is comparable to the uncertainty
reported for the GCB2018 imbalance term (±1 Pg C yr−1 ).

3.2. Regional Contributions to the Global Differences
We quantify the contribution of each of the 18 regions to the variance of the spatially averaged differences
over the globe (DGlobe, Figure 2) for the ninversions × 16 DGVM pairs. All (inversion, DGVM) pairs single out
Brazil (BRA) as the region contributing the most to D at the global scale (16–27%, averaged accross DGVMs),
followed by Oceania (OCE, 7–17%). Inversions also agree on a moderate contributions of northern South
America (NSA, 4–7%), southern South America (SSA, 3–6%) and China (CHN, 3–11%). Four out of five
inversions estimate a strong contribution of Southeast Asia (SEAS) to DGlobe (−1% for CAMS, 6–11% for the
other four). CAMS assigns a strong negative contribution of EU (−6%) versus a strong positive contribution
of RUS (21%) to DGlobe, while the other inversions indicate comparable contributions of EU and RUS (0–7%).
This suggests that inversions have dipoles in their allocation of the Eurasian CO2 sink with inversions having
more uptake in Russia and less in Europe. This is likely due to the relatively sparse observation network in
RUS that does not allow to separate easily the flux of nearby regions.
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Figure 3. Coefficients of the linear mixed effects model fit only with random effects only (equation (4)) to the time series of D over each region. The intercept 𝜇
corresponds to the error D averaged over all models and all years over each region (top panel). A positive (negative) value of 𝜇 indicates an overestimate
(underestimate) of NBP by the DGVMs compared to inversions over the study period (1979–2017). Regions where 𝜇 values are not significantly different from
zero are masked out in white. The coefficients for the random effects for each region and for the globe are shown in the bottom panel. A high value indicates a
strong contribution of random effects from differences between DGVMs (𝛼), between-year variability (𝛽), model year variability (𝛾), and variability between
inversions (𝜖).

If the contribution of a given region to the variance of DGlobe changed over time, differences between the
three “long” and the two short inversions (Table 1) can be explained partly by their different validity periods.
However, large differences are found even between inversions with comparable validity periods, so they are
most likely due to differences in the inversion systems. Moreover, we find a large spread of results between
(inversion, DGVMs pairs) for several regions, indicating a relevant contribution of the uncertainty in spatial
patterns of NBP from DGVMs to DGlobe.

As for the globe, the spread of regional D (Dreg) for the 5 × 16 members ensemble in certain regions can be
very high (Figure S2). There is not necessarily a correspondence between the regions with larger Dreg spread
and those regions identified above for their contribution to DGlobe. The regions showing larger average spread
over the 39-year period are, in decreasing order, RUS (1.3 Pg C yr−1), USA, and EU (1.0 Pg C yr−1), and BRA
and CAN (0.9 Pg C yr−1). In some years the spread in Dreg can reach 2.6 and 1.8 Pg C yr−1 for RUS and BRA,
respectively, and 1.6 Pg C yr−1 in USA, EU, and CHN, which is close to the magnitude of the global sink
(Le Quéré, Andrew, Friedlingstein, Sitch, Hauck, et al., 2018b). In most regions, it is hard to distinguish
between individual inversions, showing that the variability across DGVMs also contributes considerably to
the range of Dreg. Moreover, some regions show consistent interannual or long-term variability in Dreg and its
spread. For example, DBRA is predominantly positive in the 1980s and 1990s, and becomes mostly negative
following 2010. In OCE, a very large spread across data sets is observed for some years (e.g., 1999 and 2011)
but not during most of the study period.

3.3. Decomposition of D
The intercept (𝜇) of the LMERE fit corresponds to the average stationary value of Dreg for the period
1979–2017 (Figure 3 top panel). For the globe,𝜇 is positive, indicating that DGVMs estimate a stronger global
CO2 sink than inversions. Regionally, negative 𝜇 values are found over most of the Northern Hemisphere's
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extratropics (except CAN and RUS) and positive values in the tropics and southern extratropics. Negative
(positive) values indicate that DGVMs report a weaker (stronger) sink in the northern (tropical and south-
ern) regions. The largest 𝜇 terms are found in South America (> 0.2 Pg C yr−1), followed by EUR, CHN and
USA (< −0.15 Pg C yr−1). The tropics and southern extratropics have average D of 1.0 Pg C yr−1 and the
northern regions of −0.5 Pg C yr−1.

The variance of DGlobe and Dreg attributed to each random term of LMERE is shown in Figure 3 (bottom panel).
Interannual variability (𝛽) is the term contributing the most to DGlobe, followed by the between-DGVM vari-
ability (𝛼) and model year combined (𝛾). Variability between inversions (𝜖) contributes the least to DGlobe,
but at the regional scale it is the most important factor in half of the regions, and is especially high in USA,
CAN, EU, RUS, and CHN.

Interannual variability is the second most relevant term regionally, especially in BRA, OCE, NSA, and SSA
where the interannual term dominates over the difference between inversions, although for the latter two
the variance is rather small. Between-DGVM differences do not contribute much to the regional differences,
except in RUS.

If random effects could explain all of the variance of D, the residuals of the model fit should be randomly
distributed around 0 and not change over time. However residuals of the LMERE fit show clear trends or
multiannual patterns (Figure S3). This misfit of LMERE suggests that deterministic processes that explain
interannual variability in D are missing or have a common bias in either inversions or DGVMs (probably
being attributed to 𝛽). The most evident cases are the decadal variations in the residuals for the globe, the
sharp decreasing trend in the misfit in BRA since circa 2005, and long-term trends in SSA, EU, and RUS.

3.4. Effects of Predictors
For each region and for the globe, we test a set of key predictors (fixed effects model, LMEFE, equation
(5)) that might help explain D. The predictors tested are the (i) a simple linear trend (“year” as predictor);
(ii) the Oceanic Nino Index (ONI); (iii) FLUC from the BLUE bookkeping model between 1979 and 2017,
and (iv) the same predictors plus E𝑓 ire for 1997–2017 (the period covered by GFED4.1s). For each region,
we tested additional predictors such as TWS, burned area and changes in forest and cropland areas. These
additional predictors are correlated with the previous ones (e.g., soil water with ENSO, or FLUC from crop-
land/forest area changes) and were not found to provide additional information. The regression coefficients
of the LMEFE fit to Dreg and DGlobe are shown in Figure 4 for the two periods.

The coefficients indicate the effect of a unit change in the predictor (e.g., FLUC) to a corresponding unit
change in D. We find that DGlobe is dominated by ONI and FLUC, with a small trend component, during
1979–2017, and only by the trend during 1997–2017, as other effects cancel out regionally. All coefficients
for the globe have negative sign, indicating that positive anomalies of each predictor contribute to explain
an underestimate of the CO2 sink by DGVMs relative to inversions. This means, for example, that a positive
anomaly in land use change emissions (above average) would coincide with lower NBP in DGVMs compared
to inversions.

For the 39-year period, a strong negative relationship is found between DGlobe and ONI, implying that
DGVMs tend to estimate a weaker sink or stronger source than inversions in response to El Niño, and the
opposite during La Niña events. The global relationship of DGlobe and ONI is mainly driven by NSA, BRA,
SAF, and SEAS, which also show strong negative effects of ONI, and partly offset by an opposing effect in
CAS, MIDE, and SAS.

The LMEFE indicates DGlobe is explained by emissions from land use change in those regions where land use
changes are more intense. The minus sign indicates that the higher FLUC (positive for emissions), the more
DGVMs underestimate the net sink globally compared to inversions. Such a negative contribution from
LUC emissions is found in BRA, EU, EQAF, and SEAS. We tested LMEFE using FLUC simulated by DGVMs
(Experiments S2 and S3), which yielded very similar results. This suggests that too strong emissions from
LUC in DGVMs might result in a weaker sink compared to inversions (which implicitly include FLUC).

We find a weak negative trend contribution to DGlobel, revealing a significant, though small, divergence of
inversions and DGVMs over time by −26 Tg C decade−1. In other words, DGVMs underestimate the rate of
increase of the global terrestrial sink compared to inversions. Significant trend components of D are found
in 8 regions (negative in NSA, BRA, SSA, RUS, and CAS and positive in EU, KAJ, and SEAS), but their values
are rather small (from 1–10 Tg C yr−1 in absolute magnitude).
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Figure 4. Coefficients of the LME model fit with fixed effects (equation (5)). FLUC , ONI, and EFire correspond to
emissions from land use change, the Oceanic Niño Index, and emissions from fire, respectively. The regions
abbreviations are described in Figure 2 . The symbols indicate statistically significant results: crosses for p value < 0.05
and asterisks for p value < 0.01. The top panel shows values for the period 1979–2017, and the bottom panel for the
period 1997–2017.

Significant effects of E𝑓 ire are found in NSA, CAS, and SEAS (Figure 4), the first two negative (DGVMs
estimating lower sink/stronger source associated with fires than inversions) and positive in SEAS (DGVMs
estimating stronger sink/weaker source associated with fires than inversions). Including E𝑓 ire reduces the
variance of the residuals of the LME fit to DGlobe during 1997–2017 by 80%, compared to a reduction of 58%
for the fit without fire in that period (Figure S3). For one DGVM simulating fire using a state-of-the-art fire
module, Yue et al. (2015) have shown a tendency of the model to overestimate fire emissions and burned
area in regions roughly corresponding to NSA, BRA, and CAS, and to underestimate E𝑓 ire and burned area
in SEAS. This is discussed in section 3.5.3.

3.5. Sources of Uncertainty
3.5.1. ENSO, Temperature, and Soil Moisture Variability
The sensitivity of soil moisture from DGVMs to ONI in the regions with significant effects (NSA, BRA, SAF,
and SEAS, negative and CAS, MIDE, and SAS, positive) is generally consistent with that of TWS from the
GRACE reconstruction (Humphrey et al., 2018), although slightly underestimated for NSA and BRA (Figure
S4). In SAF and SEAS the sensitivity of SM from DGVMs to ONI is close to that of TWS, but in the former
DGVMs show a large range. The differences between DGVMs and inversions in these regions can be further
related with the sensitivity of modeled NBP to the hot/cooler (e.g., by too strong respiration response to
warming) or dry/wet anomalies linked with El Niño/La Niña events (e.g., by too strong water stress controls
on productivity). Therefore, we evaluate the sensitivity of NBP to temperature and simulated soil moisture.

In NSA and BRA, inversions tend to estimate a positive sensitivity of NBP to temperature (higher uptake for
warmer conditions, Figure 5), indicating a positive effect of temperature on productivity, which is mainly
limited by radiation rather than water (Nemani et al., 2003). On the contrary, DGVMs tend to estimate
negative sensitivity of NBP to temperature (lower NBP with warming). On the other hand, DGVMs esti-
mate higher sensitivity of NBP to water availability than inversions (Figure 5). Higher sensitivity to water
availability is also observed in SEAS, but inversions and DGVMs show similar sensitivity to temperature in
this region.
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Figure 5. Sensitivity of NBP to annual temperature (CRU-JRA, top panel) and to soil moisture for inversions (GRACE
reconstruction from (Humphrey et al., 2018)) and DGVMs (with simulated soil moisture) (bottom panel). The bars
indicate the range of sensitivities from each set of data, and the crosses show the ensemble mean.

3.5.2. Land Use Change
The results of LMEFE (Figure 4) point to a negative effect of FLUC in DGlobe, indicating that DGVMs might
overestimate emissions from LUC or underestimate LUC-related recovery sinks. However, the FLUC data
used relies on the same LUC forcing as DGVMs (BLUE) as a predictor. Therefore, the agreement between
BLUE and DGVMs' estimates of FLUC is partly explained by their use of a common forcing. In this sense,
BLUE cannot be seen as a fully independent estimate of FLUC. We find a remarkable disagreement between
regional estimates of FLUC from DGVMs and BLUE with those from HN2017, especially in NSA, BRA, and
SEAS. This points to a strong influence of the underlying LUC data used to force models, more than to
structural differences between bookkeeping models or differences between bookkeeping and process-based
models.

We compare FLUC from DGVMs with the two bookkeeping models (BLUE and HN2017, FLUC−BLUE and
FLUC−HN2017, Figure 6). Simulation S3 (climate, CO2 and LUC), although more suitable to compare with
NBP from inversions, includes in their FLUC the LASC term (FLUC−LASC). The difference between S3 and S2
(climate and CO2 only) is thus not directly comparable to bookkeeping model estimates. Therefore, we
further include results from Simulation S4 (LUC only under preindustrial climate and CO2) that does not
include the LASC to calculate FLUC−noLASC.

Globally, the multimodel ensemble mean (MMEM) of FLUC−LASC is above the estimates by the two book-
keeping models during most of the 39-year period (Figure 6), but FLUC−noLASC values are mostly between the
two bookkeeping models, when they would be expected to be slightly lower. The two bookkeeping models
differ on average by 0.5 Pg C yr−1, with BLUE systematically above HN2017, possibly because it includes
more processes, particularly shifting cultivation (Arneth et al., 2017), or because HN2017 use grasslands
preferentially over forest for pasture expansion (Hansis et al., 2015).

In BRA, the LASC has a relatively small effect (Figure 6). The MMEM for FLUC−noLASC is generally close to
the estimates of BLUE and shows the same dynamics: a decreasing trend from the 1980s until circa 2009, and
then a sudden increase in FLUC of about 0.5 Pg C yr−1, followed by a period with high emissions and strong
interannual variability. This 2009–2017 period coincides with a strong decrease in Dreg in BRA (Figure S2),
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Figure 6. Comparison of FLUC from different data sets for the (top) globe, (middle) BRA, and (bottom) SEAS (where
FLUC is a significant predictor of D).

that is, DGVMs simulating a much weaker sink than inversions. HN2017, on the contrary, indicates lower
emissions in the 1980s, a slow increasing trend until circa 2005 and a decreasing trend afterward.

In SEAS, peat burning and drainage are a major component of LUC-related fluxes (Moore et al., 2013).
Since DGVMs do not simulate peat, the comparison of FLUC with bookkeeping models should be adjusted
for peat burning and drainage emissions (also note that part of these fluxes in models could be included in
E𝑓 ire, which are discussed in the next section). When these emissions are removed from FLUC estimated by
bookkeeping models (Figure 6): FLUC−LASC is close to the higher value estimated by BLUE, and FLUC−noLASC
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Figure 7. Comparison for the three regions where fire has a significant effect on D of E𝑓 ire (cross markers, left panel)
and burned area (cross markers, right panel) simulated by DGVMs (green bars indicate the DGVM range) and E𝑓 ire
reported by GFED4.1s and burned area from Fire-CCI Burned Area v5.1.

is between the two bookkeeping models, but only following the year 2000. Before that, FLUC−noLASC is well
below both bookkeeping models, which is consistent with the lower equilibrium C densities in this simula-
tion, as compared with bookkeeping values. The year 2000 also marks a period with higher FLUC in BLUE,
indicating a possible effect of the LUC forcing.
3.5.3. Fire
Fire emissions from GFED4.1s are found to be a significant predictor for Dreg in NSA, CAS and SEAS. In
the first two regions, E𝑓 ire effects on Dreg are negative, indicating that higher fire emissions in GFED4.1s
are associated with too weak CO2 uptake by DGVMs compared with inversions. In SEAS, the effect is the
opposite, which suggests an underestimation by DGVMs of E𝑓 ire.

In Figure 7 (left panel) we compare E𝑓 ire from those DGVMs that simulate fire (7 out of 16) with GFED4.1s
fire emissions (Giglio et al., 2016). In NSA and CAS the ensemble of DGVMs estimates fire emissions about
twice as high on average as those reported by GFED4.1s, but also much more variable (Figure S6). On
the contrary, in SEAS, DGVMs estimate fire emissions that are, on average lower than the total emissions
reported by GFED4.1s (about 60%). These results are consistent with overestimation of fire emissions in
NSA and CAS leading to an underestimation of the CO2 sink compared with inversions, and the opposite
in SEAS.

Biases in emissions from fire can be due to biases in simulated burned area or in the fuel properties and
fire characteristics (e.g., human influence on ignitions). The comparison of simulated burned area with
Fire-CCI burned area product (Chuvieco et al., 2016) indicates an overestimation by DGVMs of burned area
in CAS and underestimation in SEAS, consistent with E𝑓 ire biases. However, this is not the case in NSA,
where DGVMs estimate too high fire emissions in spite of underestimating burned area.

4. Discussion
Tropical regions explained most of the variance in DGlobe, especially Brazil and northern South America,
Southeast Asia and Oceania. These are, at the same time, the regions less constrained by observations.
However, the regions with higher biases (Figure 3) are generally those with better observational coverage
(USA, CAN, EU). These regions are strong EFF emitters, suggesting that spatial and temporal differences
between prescribed EFF might still affect surface fluxes estimated by inversions, which were only adjusted
for latitudinal bands.

At regional scale, negative values of D (DGVMs underestimating the long-term sink) dominate in the North-
ern Hemisphere (especially Europe, China and USA), and positive values in the south, mostly in South
America. We find that regional differences can be mostly attributed to variability across inversions, followed
by interannual variability in the fluxes.

BASTOS ET AL. 15 of 21



Global Biogeochemical Cycles 10.1029/2019GB006393

We found a strong contribution of interannual variability in NBP to D, associated with El Niño–Southern
Oscillation (ENSO) and fluxes from land use change (FLUC), especially in Brazil and Southeast Asia, the two
regions also contributing the most to DGlobe variance.

Using a similar set of DGVMs and some of the inversions used here, Bastos et al. (2018) have shown that
DGVMs estimated a positive source anomaly in response to El Niño in 2015/2016 that was 0.3–0.6 Pg C yr−1

stronger than inversions. The coefficient of ONI estimated here (−0.3 Pg C yr−1/s.d.u., s.d.u. being the ONI
values in standard deviation units) would imply a source anomaly difference between the inversions and
DGVMs of about 0.5 Pg C yr−1 for these years (ONI2015∕16 = 1.6s.d.u.), consistent with their estimate.

Several studies have shown that variability in tropical CO2 fluxes (mainly driven by ENSO) is better
explained by variations in soil water storage than by temperature alone (Bastos et al., 2013; Humphrey et
al., 2018; Poulter et al., 2014). The regions with stronger negative coefficients for ONI (NSA, BRA, SAF, and
SEAS, Figure 4) are those where El Niño events impose strong warm and dry conditions, and those with
positive coefficients (CAS, MIDE, and SAS) are associated with cool and wet conditions during El Niño
(Bastos et al., 2013; Mason & Goddard, 2001). The combination of these two results hints at differences in
the sensitivity of NBP from inversions and DGVMs to changes in water availability or temperature related
with ENSO (section 3.5.1), or possibly also to changes in atmospheric circulation/mixing patterns linked to
ENSO. The opposing sign in the sensitivity to temperature between inversions and DGVMs (Figure 5) may
be due to an overestimate of the sensitivity of respiration to temperature (Bastos et al., 2018; van Schaik et
al., 2018), or indirectly linked to the higher sensitivity of NBP to water availability in DGVMs compared to
inversions. Models differ in prescribed soil depth and root water access for transpiration, but in general do
not have deep rooting and ground water access of plants (Fan et al., 2017), which may explain why the sen-
sitivity of regional CO2 fluxes to water availability in DGVMs is higher than that of inversions with TWS.
Still, inversions also show high uncertainty in these regions, which hampers the attribution of errors to one
or other data source.

Excluding the years corresponding to the Mt. Pinatubo eruption, the strong peaks in DGlobe are associated
with moderate or strong El Niño (1982, 2009/2010, and 2015) or La Niña events (1984, 1988/1989, 2000, and
2011). In most of these years,the GCB2018 budget imbalance term shows similar changes as DGlobe. This
suggests that improvements in DGVMs modeling of tropical vegetation sensitivity to water availability could
help reducing this gap in future GCBs.

The higher values of FLUC−LASC are consistent with the effect of CO2 fertilization on natural ecosystems
resulting in higher LUC-related emissions if a pristine forest is converted to managed land. However,
FLUC−noLASC values (Figure 6) remain mostly between the two bookkeeping models, when they would be
expected to be slightly lower, given that they rely on preindustrial C densities. Since most DGVMs do not
include shifting cultivation, which is included in the BLUE model, estimates of FLUC from DGVMs are
likely too high. The negative effect of FLUC to Dreg in BRA and SEAS, and consequently in DGlobe, suggests
therefore a possible overestimation of LUC-related emissions due to the forcing used, for example, higher
deforestation rates in LUH2 than in FAO/FRA.

The strong peak in emissions from LUC following 2009 in DGVMs and in BLUE is mainly explained by
sharp increases in cropland area during 2009–2017 coinciding with increased forest loss in the LUH2v2.1h
land cover data set (Figure S5). On the contrary, in the FAOSTAT (2015) data used by HN2017, most of
the cropland area increase occurs before 2009, and forest loss slows down only after 2005. The LC-CCI
also reports a slow down of forest area loss and stabilization of cropland in Brazil after 2005. A slowdown
in deforestation rates in Brazil over this period has further been reported by Hansen et al. (2013) using
high-resolution satellite imagery. This indicates that the overestimation of DGVMs of FLUC inferred from
the MMEM appears to be related with biases in deforestation rates from LUH2v2.1 in this region.

In SEAS, the two forcings show opposing changes in deforestation rates starting from circa 2000 onward
(Figure S5), coinciding with higher FLUC in DGVMs and BLUE (Figure 6) LUH2v2.1h indicates a faster
decrease of forest area, while (FAO, 2015) shows a tendency for deceleration in deforestation. LUH2v2.1h
also reports higher cropland expansion values, with much faster rates following 2005. The study by Hansen
et al. (2013) indicated that gross forest loss rates increased in Indonesia between 2000–2012. Li et al. (2018)
showed that net forest area changes in Southeast Asia and Indonesia from Houghton et al. (2012) and from
LUH2v2h between 1992–2012 are consistent with the changes reported by Hansen et al. (2013), but much
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stronger than reported in LC-CCI data. LUH2v2h also reports higher increase in cropland areas when com-
pared to LC-CCI (Figure S5). Li et al. (2018) pointed that these differences could be from the increase in
plantations such as oil palm, which is categorized as cropland in FAOSTAT but detected as forest from satel-
lites. It is thus not fully clear if the higher emissions by DGVMs in SEAS compared to HN2017 are indeed
because of the LUC forcing.

We found that biases in burned area explain well biases in E𝑓 ire and its contribution to DSEAS and DCAS, but
not in NSA. A possible explanation for this disagreement might be related with simulated soil moisture and
fuel dryness in this region (Van Leeuwen et al., 2013). For example, some models show very high E𝑓 ire in
1997/1998 and 2015 in NSA compared to GFED4.1s. These very strong peaks are possibly a consequence of
how vegetation response to drought during El Niño and consequent fire emissions (Patra et al., 2005) are
simulated by DGVMs, perhaps leading to an overestimation of fire intensity and combustion completeness
(since burned area is still lower than that of Fire-CCI in those years). In order to understand the errors in
simulated fire emissions by DGVMs, a much more detailed analysis of the different factors controlling E𝑓 ire,
from burned area to fuel characteristics and fire dynamics, is needed, which is beyond the scope of this study.

DGVMs tend to simulate a slower increase in CO2 uptake than reported by inversions in several regions and
globally. The weak negative trend in DGlobe is consistent with studies showing that DGVMs may underesti-
mate the response of vegetation to the effect of CO2 fertilization (Fernndez-Martnez et al., 2019; Thomas et
al., 2016), or the effect of N deposition in Asia (Liu et al., 2013), or forest regrowth (Pugh et al., 2019). The
positive values for the trend in EU, KAJ, and SEAS indicate that DGVMs show a stronger long-term increase
in the land sink compared to inversions. This might be because DGVMs underestimate the negative effects
of warming and decrease in water availability concurrent with increasing CO2 in some regions (Buermann
et al., 2018). However, inversions might also indirectly overestimate the land sink by underestimating the
ocean sink intensification in recent years (Landschützer et al., 2015).

We found a significant contribution of uncertainty in FLUC and of E𝑓 ire, as well as a small trend component,
to regional and global D. It is thus worth evaluating whether those DGVMs including representation of key
LUC processes such as shifting cultivation and wood harvest (Arneth et al., 2017), N deposition or fires
perform better compared to the ensemble of 16 DGVMs.

By fitting the LME to each subset of DGVMs, we find that simulating fire, N deposition or wood harvest
does not lead to major reductions in uncertainty (Table S1). The DGVMs including shifting cultivation,
though, show significant reduction of the bias globally, as well as in SEAS and EQAF, regions where these
practices are relevant (Heinimann et al., 2017). When adding the process representation as a predictor in
the LMEFE (Figure S7), including some of these processes as predictors are found to improve the LME fit,
but the coefficients are generally nonsignificant, excepting N deposition globally and wood harvest in some
regions. These results indicate that including gross transitions in FLUC estimates is a key improvement to
DGVMs, in order to reduce uncertainties in global and regional budgets.

The fact that models with fire do not perform much better than those without fire may be because models
do not realistically simulate burned area and E𝑓 ire, as discussed above, but also because those DGVMs not
simulating fire might compensate by having higher sensitivity of decomposition to temperature (as found
for tropical regions in Figure 5). Simulating wood harvest also does not seem to necessarily reduce the bias
in D, and is only a weak predictor in NSA, NAF and KAJ. This is possibly because the wood harvest fluxes
are generally small, compared to other terms, for example, shifting cultivation (Wilkenskjeld et al., 2014), or
because trade of wood products is not accounted for, and therefore the location of sinks and sources related
with wood production and consumption is not well captured by DGVMs. Finally, N deposition if found to
significantly contribute to DGlobe (the negative sign indicating that models simulating N deposition tend to
have lower D), but when fitting the LMEFE model to that subset of DGVMs, no reduction in D is found. This
suggests that uncertainty from other terms is probably higher.

5. Conclusions
In this study we attempted to identify the sources of uncertainty explaining the budget imbalance term of the
latest GCB (Le Quéré, Andrew, Friedlingstein, Sitch, Hauck, et al., 2018b). We compared DGVM outputs of
the NBP between 1979 and 2017 with results from an ensemble of atmospheric inversions, whose fluxes are
consistent with the growth rate of atmospheric CO2. We showed that the difference between NBP estimates
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by DGVMs and inversions matches the main variation patterns of the GCB2018 budget imbalance term.
At the global scale, interannual variability and between-DGVM variability contribute the most to D, and
variability across inversions contributes the least. Based on our results, we could identify key regions and
processes that deserve special attention from the Earth System and C cycle communities:

(i) the reduction of uncertainty in atmospheric inversions, for example, through more in situ observations
in the tropics, or the use of remote-sensing;

(ii) improvements in FLUC estimates, by including shifting cultivation DGVMs and also by evaluating thor-
oughly land use change estimates at country level, especially for the period overlapping high-resolution
satellite records;

(iii) the improvement of tropical hydroecological processes and fire representation within DGVMs;
(iv) accurate estimates of lateral carbon fluxes and their variability, to guarantee a fair comparison between

top-down and bottom-up approaches.

There are several ongoing efforts to tackle each of the processes highlighted above. Satellite-based inversions
might help to reduce uncertainty in the flux partitioning between land, ocean, and different continents, and
regional inversions might provide better constraints of regional CO2 fluxes. Above-ground biomass prod-
ucts at annual time steps and moderate resolution are currently available at least for the tropics (Brandt et
al., 2018), providing a truly independent estimate of losses and gains of carbon in ecosystems due to both
natural and anthropogenic processes. Considerable work is being put into improving tropical phenology,
vegetation-water interactions, mortality, and nutrient limitations by several modeling teams.

The predictors tested in this work reduced the variance of residuals of D only by 25–51%, and residuals
still show large variability at the global and regional scale. This points to other processes not discussed in
this study either on the DGVM side (e.g., response of forests to climate change, forest regrowth or forest
aging, or their response to nitrogen deposition to nutrient limitations) or on the inversion side (e.g., errors in
transport modeling, inversion set up, atmospheric monitoring network) that might deserve more attention
in the future. Such efforts will hopefully allow reducing uncertainty in global and regional CO2 budgets in
the near future. This, in turn, is fundamental for a science-based evaluation of the effectiveness of mitigation
policies implemented in light of the Paris Agreement.
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