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Abstract: Graphene nanoribbons (GNRs) have attracted much interest due to their largely 

modifiable electronic properties. Manifestation of these properties requires atomically precise 

GNRs which can be achieved through a bottom-up synthesis approach. This has recently been 

applied to the synthesis of width-modulated GNRs hosting topological electronic quantum 

phases, with valence electronic properties that are well captured by the Su-Schrieffer-Heeger 

(SSH) model describing a one-dimensional chain of interacting dimers. Here, an ultra-low 

bandgap GNRs with charge carriers behaving as massive Dirac fermions can be realized when 

their valence electrons represent an SSH chain close to the topological phase boundary, i.e. 

when the intra- and inter-dimer coupling become approximately equal. Such a system has been 
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achieved via on-surface synthesis based on readily available pyrene-based precursors and the 

resulting GNRs are characterized by scanning probe methods. The pyrene-based GNRs 

(pGNRs) can be processed under ambient conditions and incorporated as the active material in 

a field effect transistor. A quasi-metallic transport behavior is observed at room temperature, 

whereas at low-temperature the pGNRs behave as quantum dots showing single-electron 

tunneling and Coulomb blockade. This study may enable the realization of devices based on 

carbon nanomaterials with exotic quantum properties.  

 

 

The last decade has brought significant advances in the bottom-up fabrication of atomically 

precise graphene nanomaterials[1] and structures of increasing complexity.[2–4] While GNRs 

with zigzag edges (ZGNRs) so far have not been integrated into devices due to their reactivity, 

major progress in the processing of GNRs with armchair edges (AGNRs) has been achieved, 

and field effect transistors (FETs) that exploit their sizable electronic bandgaps have recently 

been reported.[5,6] However, the large bandgaps of the currently available AGNRs severely limit 

device performances due to significant Schottky barriers at the contacts. The synthesis of GNRs 

with smaller bandgaps would hence be highly desirable. To this end, width-modulated AGNRs 

are promising candidates, because their periodically arranged and overlapping electronic states 

give rise to one-dimensional topological bands within the bandgap of the pristine AGNR 

backbone.[7,8] According to the SSH model, their fundamental electronic properties such as 

bandgap, band width, and topological class can be widely tuned by varying the intra- and the 

inter-dimer coupling strength which are related to the overlap between the corresponding 

electronic states located at the ribbon edge extension. Exploiting this concept, we show that for 

a GNR obtained by a specific intermolecular fusion of pyrene subunits (pGNR), the intra-dimer 

coupling describing the frontier electronic states of the pyrene subunit and the inter-dimer 

coupling describing the coupling between them are almost identical. This results in an ultra-
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low bandgap of ~ 0.2 eV as confirmed by scanning tunneling spectroscopy (STS). Finally, we 

demonstrate the integration of pGNRs as active channel material in FET devices. 

On-surface synthesis of pGNRs is achieved by activation of 1,6-dibromopyrene[9] on 

Au(111) under ultrahigh vacuum conditions. The reaction route, illustrated in Figure 1a, 

follows two surface-assisted steps including dehalogenative homocoupling to yield an 

intermediate polymer and cyclodehydrogenation to form the fully conjugated ribbon. 

Polymerization is achieved by annealing the sample to 180 ºC (Figure 1b and Supplementary 

Section 1). As shown in the close-up STM image and the superimposed chemical models in 

Figure 1b, the alternating up-down tilting of the pyrene units matches well with the alternating 

STM protrusions along the polymers. The second annealing step (300 ºC) induces 

cyclodehydrogenation of the intermediate polymer via the rotation of every second pyrene unit 

within the polymer chain and results in planar pGNRs (Figure 1c). For a more detailed 

discussion of the reaction pathway, we refer to the Supplementary Section 2. The formation of 

the targeted pGNR can be unambiguously verified by high-resolution STM imaging and bond-

resolved nc-AFM imaging (Figure 1d).[10,11]  

To determine the electronic properties of the pGNR, we first compute its band structure 

by DFT calculations. Its bandgap is found to be as small as 0.18 eV (Figure 1e), significantly 

less than the DFT calculated bandgap of ~0.4 eV for the “quasi-metallic” 5-AGNR.[12] 

Experimentally, the electronic properties of the pGNR can be probed by STS. We have 

performed differential conductance dI/dV spectroscopy of a pGNR with a length of ~17 nm 

(Figure 2a and 2b), which provides information on the local density of states (LDOS). The red 

spectrum taken in the middle of the pGNR (marked by a red cross in Figure 2b) exhibits three 

pronounced peaks at low bias voltages, whereas spectra taken at the termini of the ribbon 

(marked by a blue cross in Figure 2b) show barely any resonance peaks. The spatial distribution 

of the frontier electronic states revealed in Fig. 2a is obtained from a series of point spectra 

taken along the ribbon as indicated by the green line in Figure 2b. We note that the assignment 



     

4 

 

of the peaks observed around the Fermi level in Figure 2a to their corresponding bands is not 

straightforward, as the difference in workfunctions of GNRs and metal surfaces usually causes 

a shift in energy of the electronic states of surface-bound GNRs.[13,14] Nevertheless, the 

observed electronic states can be identified from their characteristic spatial distribution, as 

finite-length effects, i.e. the scattering of electrons at the ribbon ends, allow imaging of the 

resulting standing wave patterns via dI/dV mapping (Figure 2c).[15,16] Here, the contrast of the 

differential conductance map is enhanced by functionalizing the tip with a CO molecule. As 

shown in Figure 2c, two distinct standing wave patterns are observed at bias voltages of 70 mV 

and -30 mV, which correspond to the first and second confined states, i.e. the HOMO (onset of 

VB) and HOMO-1 of the finite ribbon. This assignment is corroborated by comparing the dI/dV 

maps with the DFT calculated LDOS maps of the corresponding molecular orbitals (Figure 2c). 

Note that the nodal patterns in the STS maps are different from those by DFT because the CO-

functionalized tip was not taken into account in the simulations. The next higher energy state 

at 300 mV is thus identified to be the LUMO (onset of CB), which translates into a bandgap of 

230 mV. 

With the frontier states of the pGNR being identified, we proceed with the acquisition 

and analysis of data for pGNRs of different lengths, which allows for a determination of the 

pGNR electronic gap as a function of ribbon length (Figure S3). We find that the electronic gap 

of the pGNR on Au(111) converges to 230 mV with increasing ribbon length (the longest ribbon 

we measured consists of 37 pyrene units, i.e. a length of ~24.5 nm). The decrease of the 

electronic gap with ribbon length is qualitatively well reproduced by DFT calculations (Figure 

S4 a,b), although they predict a somewhat slower decrease. Importantly, the measured gap of 

the pGNR on Au(111) of 230 mV represents the smallest bulk bandgap of all GNRs that have 

so far been synthesized and studied on surfaces.  

To rationalize the origin of the small bandgap and the linearly dispersing bands of the pGNR, 

we devise a description of the frontier bands in the framework of a 2-band SSH model (Figure 
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3). At the basis of this description is the assumption that the HOMO and LUMO of the pyrene 

subunit can be viewed as bonding and anti-bonding dimer states of the SSH chain. Figure 3b 

illustrates the corresponding decomposition of the bonding HOMO state |𝛹𝑏𝑜𝑛𝑑⟩  and the 

antibonding LUMO state |𝛹𝑎𝑛𝑡𝑖⟩ to obtain the A and B sub-lattice polarized zero-energy mode 

wave functions |𝐴̂𝑖⟩ =
1

√2
[|𝛹𝑏𝑜𝑛𝑑⟩ + |𝛹𝑎𝑛𝑡𝑖⟩]  and |𝐵̂𝑖⟩ =

1

√2
[|𝛹𝑏𝑜𝑛𝑑⟩ − |𝛹𝑎𝑛𝑡𝑖⟩] . The latter 

will form the basis states of the SSH chain. At nearest neighbor TB level of theory |𝐴̂𝑖⟩ and |𝐵̂𝑖⟩ 

are fully determined by three wave function amplitudes 𝛾 = 0.521, 𝛿 = 0.418 and 𝜀 = 0.232 

(Figure 3c and 3d). Accordingly, we can write the elements of the SSH Hamiltonian in terms 

of the carbon 2pz nearest-neighbor hopping parameter  𝛾0 ≈ 3 𝑒𝑉 as follows:  

⟨𝐴̂𝑖|𝐻|𝐴̂𝑖⟩ = ⟨𝐵̂𝑖|𝐻|𝐵̂𝑖⟩ = ⟨𝐴̂𝑖|𝐻|𝐴̂𝑖+1⟩ = ⟨𝐵̂𝑖|𝐻|𝐵̂𝑖+1⟩ = 0               (1) 

⟨𝐴̂𝑖|𝐻|𝐵̂𝑖⟩ = ⟨𝐵̂𝑖|𝐻|𝐴̂𝑖⟩ = (2𝜀(𝛾 − 𝛿) + 𝛿2) ∙ 2𝛾0 =
𝐸𝑔,𝑝𝑦

2
= 0.445𝛾0 = 𝑡𝑛  (2) 

⟨𝐴̂𝑖|𝐻|𝐵̂𝑖+1⟩ = ⟨𝐵̂𝑖|𝐻|𝐴̂𝑖+1⟩ = (𝛾2 + 𝛿2) ∙ 𝛾0 = 0.446𝛾0 = 𝑡𝑚   (3) 

Equation 1 is a direct consequence of the sub-lattice polarization of the zero-energy mode wave 

functions. With 𝑐𝐴𝑖

†
, 𝑐𝐵𝑖

†
, 𝑐𝐴𝑖

, 𝑐𝐵𝑖
 denoting the creation and annihilation operators of the zero-

energy modes at pyrene site i, we find: 

𝐻 = − ∑ 𝑡𝑛[𝑐𝐴𝑖

† 𝑐𝐵𝑖
+ 𝑐𝐵𝑖

† 𝑐𝐴𝑖
]𝑖 − ∑ 𝑡𝑚 [𝑐𝐴𝑖

† 𝑐𝐵𝑗
+ 𝑐𝐵𝑖

† 𝑐𝐴𝑗
]<𝑖,𝑗>        (4) 

where < 𝑖, 𝑗 > denotes the sum over neighboring sites. This is exactly the SSH Hamiltonian 

leading to the dispersion relation 

𝐸(𝑘) = ±√𝑡𝑛
2 + 𝑡𝑚

2 ± 2𝑡𝑛𝑡𝑚cos (𝑎𝑘)                                                           (5) 

considering that we have 2 pyrene molecules in the unit cell and therefore 4 bands (see also 

Supplementary Section 4). The fact that the inter-pyrene coupling strength 𝑡𝑚 = 1.002𝑡𝑛 is 
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almost identical to the intra-pyrene coupling constant 𝑡𝑛  has important implications for the 

electronic properties of the pGNR. In Figure 4a the DOS is plotted as a function of 𝑡𝑚 

according to the SSH dispersion relation (Equation 5). For 𝑡𝑚 = 0,  the situation of isolated 

pyrene units with a HOMO-LUMO gap of 𝐸𝑔,𝑝𝑦 = 2𝑡𝑛 is reproduced. For increasing 𝑡𝑚, the 

bandgap decreases and fully closes when 𝑡𝑚 = 𝑡𝑛. This metallic case also marks the topological 

phase boundary separating the topologically trivial phase with 𝑡𝑚 < 𝑡𝑛 from the topologically 

non-trivial phase with 𝑡𝑚 > 𝑡𝑛. This implies that systems with almost equal coupling constants 

𝑡𝑚  and 𝑡𝑛  are naturally located close to the topological phase boundary and have a small 

bandgap given by 𝐸𝑔 = 2|𝑡𝑚 − 𝑡𝑛|. TB calculations of the full structure (i.e. with 32 2pz-

orbitals per unit cell) predict the pGNR to have a small gap and to be topologically trivial 

(Figure S8) with 𝑡𝑚 ≈ 0.86𝑡𝑛 , i.e. slightly smaller than the minimal 2-orbital SSH model. 

Figure 4b shows the different wave functions of the HOMO between topologically trivial and 

non-trivial pGNR by TB calculations. The absence of end states at the termini of the pGNRs in 

experiment confirms their topologically trivial nature.[7,17]  

In the limit of almost equal coupling constants 𝑡𝑛 and 𝑡𝑚, the band dispersion of SSH 

bands, given by Equation 5 can be simplified to 

 𝐸(𝑘) = ±√𝛿𝑡2 + (𝑡𝑎𝑘)2                      (6) 

with 𝑡 = 𝑡𝑛 and 𝛿𝑡 = 𝑡𝑚 − 𝑡𝑛. Comparison of this simplified dispersion relation with the SSH 

bands confirms excellent agreement for small differences between intra- and inter-pyrene 

coupling constants (𝛿𝑡 𝑡⁄ = 0.1, Figure 4c). Interestingly, this approximation corresponds to 

the dispersion relation of massive Dirac fermions with 

𝐸(𝑘) = ±√(𝑚𝑣𝐹
2)2 + (ℏ𝑘𝑣𝐹)2                    (7) 

where m is the effective Dirac mass and 𝑣𝐹  is the charge carrier velocity. Accordingly, all 

relevant electronic properties are fully determined by 𝛿𝑡  and 𝑡 , yielding 𝑣𝐹 = 𝑡𝑎/ℏ , 𝑚 =

𝛿𝑡/𝑣𝐹
2 and a bandgap of 𝐸𝑔 = 2𝛿𝑡. Furthermore, the topological class depends on the sign of 
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𝛿𝑡, i.e. on whether the intra- SSH-dimer coupling is larger or smaller than the inter- SSH-dimer 

coupling.  

In order to access experimentally the band dispersion of the VB and the CB of the pGNR, 

we determine the energy positions of the occupied and unoccupied states for pGNRs of different 

lengths by taking dI/dV spectra, and plot them versus 𝑘 = ± 𝑝 𝜋 ((𝑁 + 1)𝑎)⁄ , where the wave 

vector is associated with the 1D-confined frontier states (see discussions in Figure S4). Here, N 

is the number of pyrene units constituting the finite-length pGNR, p is the order of the confined 

frontier states, a is the length of the repeat unit equal to 0.65 nm and (N+1)a approximates the 

effective pGNR length. The resulting band dispersions of VB and CB (Figure 4d) are in good 

agreement with the DFT calculation for infinite-length pGNR (Figure 1e). By fitting the 

experimental VB and CB dispersion data (Figure 4d) with Equation 7 describing the massive 

Dirac fermions, a bandgap of 𝐸𝑔 = 0.12 eV and an effective mass of 𝑚 = 0.02 𝑚𝑒 are obtained, 

where 𝑚𝑒 is the electron rest mass. The small effective mass is in good agreement with the one 

extracted from the fit of a massive Dirac fermion to the DFT result (Figure S5). 

The small but finite bandgap of the pGNR calls for exploring its performance in an FET 

configuration. The first step towards device integration is to demonstrate the robustness of 

pGNRs under ambient conditions. We use Raman spectroscopy to verify the structural integrity 

of the ribbons after exposing them to air. Figure 5a shows the Raman spectrum of pGNRs 

obtained directly on the Au/mica substrate. We compare this to DFT Raman calculations which 

allow us to attribute the Raman peaks to specific phonon modes of pGNR (Figure 5a and Figure 

S10). We find a low energy acoustic mode at 450 rel. cm-1 which we labelled RBLM* in 

analogy to the radial breathing-like mode of AGNRs. We also observe well-defined edge-

related modes in the spectral region labelled CH. These modes are characteristic fingerprints of 

the particular width and edge structure of this ribbon, and their presence after exposure to air 

strongly suggests the ribbons are stable under ambient conditions.[18–20] The observed 
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wavelength dependence (Figure S11) points towards an optical resonance in the infrared, in 

accordance with the low bandgap of the pGNR. 

Electronic device fabrication requires the transfer of GNRs to suitable substrates with 

pre-patterned electrodes.[19,20] We monitor this transfer process by Raman spectroscopy to 

verify the ribbon integrity. Comparison of the spectra in Figure 5a shows the similarity of the 

spectral profiles before and after substrate transfer. While the observed change for the lowest 

frequency CH-mode indicates some modifications of the transferred GNR-film possibly caused 

by either edge modifications at the (more reactive) pGNR edge or an upshift of the same mode 

through interactions with the environment,[21] the continued presence of the characteristic 

RBLM* indicates that the overall structure of the pGNRs remains largely unaffected by the 

processing (Figure S10). Atomic force microscopy imaging of transferred pGNR-films on 

Al2O3 under ambient conditions reveals a high coverage of GNR bundles and a uniform pGNR-

film across the transferred area (Figure 5b). Similar AFM topography was observed for 

transferred 9-armchair-edge GNRs on Al2O3.
[20] 

Finally, pGNRs are integrated into FET devices in order to probe their electrical 

properties by measuring the current as a function of both the bias and gate voltage. Graphene 

is used as electrode material because of its atomic flatness. This allows a 'GNRs-last' fabrication 

process that avoids additional processing steps with the potential to introduce defects in the 

transferred pGNRs films (see Methods). Nanogaps are formed by electrical breakdown of a 400 

nm wide prepatterned graphene channel, resulting in electrode separations of only a few 

nanometers.[22,23] As the nanogap size is smaller than the average length of straight ribbon 

segments (Figure 1c), this allows us to probe transport properties we deem to be representative 

of the intrinsic ribbon properties. 

At room temperature, we observe a linear dependence of the current on the applied bias 

voltage, and a negligible dependence of the applied gate (Figure S12). We attribute this quasi-

metallic behavior to the small bandgap of the pGNR. Figure 5c/d displays transport 
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measurements at low temperature (9 K). In the I-V curves we observe Coulomb blockade of 

charge transport at low bias voltages. The onset of current at higher bias is tunable via the 

applied gate voltage. This is attributed to transport channels of the pGNRs entering the bias 

window. We observe currents of up to 10 nA at 0.7 V bias (Figure S12c) which we assume to 

be limited by coupling of the graphene electrodes to the pGNR channel. Figure 5d shows the 

corresponding stability diagram (differential conductance dI/dV as a function of bias and gate 

voltages) in which diamond-like features are visible.[24,25] These Coulomb diamonds are 

characteristic of weakly coupled quantum dots, while the presence of multiple overlapping 

diamonds suggests that transport occurs through several pGNRs.[26] The observed blockade 

regions range from ~0.2 to ~0.75 V bias (see Supplementary Section 6 for additional devices). 

This agrees well with the range of transport gaps expected for pGNRs if one takes into account 

GW-corrections for electron-electron interaction, the insulating substrate and the range of 

observed ribbon lengths (Figure S3). 

In conclusion, inspired by the principle of topological band engineering,[7,8] we have 

demonstrated a new kind of GNR with an extremely low bandgap which is even lower than the 

one of the “quasi-metallic” 5-AGNR that has a similar width. This GNR has mixed armchair 

and zigzag edge structure, and the origin of its low bandgap can be rationalized within a SSH-

type model. Through on-surface synthesis and using a commercially available molecular 

precursor, we have successfully synthesized the targeted GNR on Au(111) and verified its 

predicted electronic properties. The experimentally determined band structure of the GNR can 

be well described by the dispersion relation for massive Dirac fermions, which gives an 

effective mass of 0.02 m0 and a bandgap of 0.12 eV. Such ultralow bandgap has independently 

been confirmed by low-temperature transport measurements in the single-electron tunneling 

regime with the ribbons integrated into graphene-electrode FETs. These results are of both 

fundamental interest in designing GNRs with desired electronic properties and/or exhibiting 
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specific quantum states, and of technological interest in view of the ultimate realization of high-

performance GNR devices. 

 

Experimental Section  

STM/STS and nc-AFM characterization: A commercial low-temperature STM/AFM (Scienta 

Omicron) system was used for sample preparation and in situ characterization under ultra-high 

vacuum conditions (base pressure below 1×10-10 mbar). Au(111) single crystal and 200 nm 

Au(111) on Mica substrates were cleaned by standard argon sputtering and annealing cycles. 

The molecular precursor 1,6-dibromopyrene was purchased from TCI Chemicals. Deposition 

of the molecular precursors was carried out by thermal evaporation from a 6-fold organic 

evaporator (Mantis GmbH). STM images were recorded in constant-current mode, and the 

dI/dV spectra were recorded using the lock-in technique (URMS = 20 mV). nc-AFM images were 

recorded with a CO-functionalized tip attached to a quartz tuning fork sensor (resonance 

frequency 23.5 kHz, oscillation amplitude ~ 80 pm).  

Tight-binding calculations: The calculations of the molecular -electron system have been 

performed by numerically solving the usual nearest neighbor hopping Hamiltonian considering 

only the C 2pz orbitals: 

𝐻̂ = −𝛾0 ∑ 𝑐𝛼
†

〈𝛼,𝛽〉

𝑐𝛽
− 

With 𝑐𝛼
†

 and 𝑐𝛼
−  denoting the usual creation and annihilation operators on site 𝛼  and 〈𝛼, 𝛽〉 

denoting the sum over neighboring atomic sites.  

DFT calculations on the LDOS maps and bandgaps of pGNRs: The band structure of pGNR 

were calculated with the Quantum Espresso software package.[27] We used the PBE 

parameterization for the exchange correlation functional.[28] A cutoff of 400 Ry was used for 

the plane waves expansion of the charge density.  For the representation of the ionic potentials 
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we used PAW pseudopotentials derived from the SSSP library.[29] Calculations were done 

within the AiiDA platform.[30]   

The CP2K code[31] was used to produce the orbital mappings and the band gaps of the finite-

length pGNRs. The electronic states were expanded with a TZV2P Gaussian basis set.[32] We 

used the PBE exchange correlation functional[28]. A cutoff of 600 Ry was used for the plane 

wave basis set and norm conserving Goedecker-Teter-Hutter pseudopotentials[33] were used to 

represent the frozen core electrons of the atoms. The simulation cell was determined by adding 

18 Å in each dimension to the molecular bounding box to decouple the periodic images. The 

geometries of the gas-phase systems were optimized until forces were lower than 0.005 eV/Å. 

GNR transfer and ambient AFM imaging: pGNRs were grown on 200 nm Au(111)/mica 

(Phasis, Switzerland) and transferred to different target substrates using the polymer-free 

method.[21] We used Al2O3 (Crystal GmbH) as target substrate for atomic force microscopy 

(AFM) measurements. AFM (Bioscope, Bruker) was performed in ambient conditions using 

tapping mode and silicon probes (OPUS model 160AC-SG Ultrasharp Cantilever) with tip 

radius < 1 nm (force constant ∼26 N m−1, resonance frequency in the range of 300 kHz). Phase 

diagrams were recorded with scan size of 1.5 m and scan speed of 1 Hz. AFM images under 

ambient condition were analyzed using WSxM software.[34] 

Raman Spectroscopy and DFT calculations: Raman spectra were acquired with a WITec 

confocal Raman microscope (WITec Alpha 300R) equipped with a home-built vacuum 

chamber at pressures below 10
-2

 mbar. Imaging conditions were optimized independently for 

each laser wavelength and substrate to yield optimum signal-to-noise while avoiding laser-

induced changes to the GNRs (see Supplementary Table T1 / Figure S10).[35] Signatures of 

cosmic rays and a polynomial background were subtracted from the spectra. 
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Theoretical normal modes and associated Raman intensities were calculated using the Phonopy 

program package[36] in conjunction with DFT and  in-house utility codes. For all DFT 

calculations the program VASP[37–39] was used with projector-augmented-wave 

pseudopotentials,[40] a plane-wave cutoff of 600 eV, and the Perdew–Burke–Ernzerhof 

exchange-correlation functional.[28] Initially, the structure was relaxed in DFT until residual 

forces were less than 10−4 eV/Å in magnitude. Phonopy was then used to calculate the phonon 

mode eigenvectors and frequencies by way of the finite displacement method,[36] where the 

required force calculations were again obtained from DFT. For each normal mode, associated 

resonant Raman intensities were modeled utilizing the normal mode displacements along with 

a finite difference scheme[41] to calculate the derivatives of the frequency dependent dielectric 

matrix obtained from DFT.[42] 

Fabrication and electrical characterization of the FET: Standard Si/SiO2 (highly p-doped, 

0.001 Ohm*cm) with a thermally grown SiO2 (285 nm) was used as the substrate. Metal pads 

were defined using electron-beam lithography in PMMA 50K/950K followed by a metallization 

step (5 nm Ti/40 nm Pt).[5] Chemical vapor deposition (CVD)-grown graphene (Graphenea) 

was transferred on top and patterned into 400 nm wide stripes using reactive ion etching (Ar/O2) 

after another step of e-beam lithography. Sub-5 nm-gaps were formed in the graphene stripes 

using the electrical breakdown technique.[22,23] Before transferring the ribbons, the graphene 

gaps were electrically characterized to ensure successful gap formation (see Figure S13). Last, 

pGNRs were transferred as described above. 

The fabricated FETs were characterized in a probe station (Lake Shore Cryotronics, Model 

CRX-6.5K) under vacuum (<10-6 mbar). We employed a data acquisition board (National 

Instruments USB-6289) to apply the bias and gate voltages and read the voltage output of a 

custom-made I-V converter (Model SP983, Electronics Lab at the Department of Physics, 

University of Basel). 
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Figure 1. On-surface synthesis of the pyrene-based GNR (pGNR). a, Schematic representation 

of the on-surface synthesis route from a molecular precursor over a polymer phase to the pGNR. 

The structure of the intermediate polymer is nonplanar due to steric hindrance between 

neighboring pyrene units. b, STM images of the polymer phase on Au(111) (Vs = -1 V, It =  50 

pA). c, STM image of the pGNR obtained after annealing the polymer to 300 ºC (Vs = -1 V, It 

= 50 pA). d, The high-resolution STM image of a pGNR (left panel, Vs = -0.2 V, It = 120 pA) 

and the nc-AFM image of the area indicated by the green rectangle (right panel, Vs = 5 mV, 

oscillation amplitude: ~80 pm). e, DFT-calculated band structure of the pGNR, energy is given 

with respect to the vacuum level. 
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Figure 2. Electronic states of the pGNR. a, Differential conductance dI/dV spectra taken at the 

positions indicated by the crosses in the STM image in panel b. The spectra are vertically offset 

for clarity. The black curve is taken on a bare Au(111) for reference. b, STM image of the 

investigated pGNR (left), and color-coded map of the dI/dV spectra (right) taken along the 

green line shown in the STM image. Four clearly visible states are highlighted by dashed lines 

and assigned to their corresponding molecular orbitals. c, Constant-height dI/dV maps acquired 

at -30 mV and 70 mV and the corresponding DFT-calculated LDOS maps.  
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Figure 3. Conceptual illustration and model of the low bandgap pGNR. a, Structural model of 

the pGNR (top) shown with the relevant intramolecular (𝑡𝑛) and intermolecular (𝑡𝑚) coupling 

constants used in the SSH model. a is the unit cell length. b, Structural model of the pyrene unit 

shown with the low-lying electronic energy levels as derived from tight-binding (TB). The 

pyrene HOMO-LUMO gap is given by 2𝑡𝑛, where 𝑡𝑛 is the intramolecular coupling constant. 

The decomposition of the HOMO (|𝛹𝑏𝑜𝑛𝑑⟩) and the LUMO (|𝛹𝑎𝑛𝑡𝑖⟩) into the A and B sub-

lattice polarized zero-energy mode wave functions |𝐴̂𝑖⟩ and |𝐵̂𝑖⟩. c, Four state basis for two 

coupled pyrenes. d, Schematic representation of the coupling between two pyrenes with the 

amplitudes of the two coupling states. 
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Figure 4. a, SSH-derived density of states (DOS) as a function of the intermolecular coupling 

constant 𝑡𝑚 . The corresponding topological class is indicated by ℤ2 . The grey dashed line 

marks the position |𝑡𝑚 − 𝑡𝑛| 𝑡𝑛⁄ = 0.1. b, The TB-calculated HOMO wave functions of a 

finite-length pGNR belonging to topologically trivial (ℤ2 = 0) and non-trivial( ℤ2 = 1) GNR, 

with 𝑡𝑚 = 1/3𝑡𝑛 and 𝑡𝑚 = 5/3𝑡𝑛, respectively.  c, Band dispersion of SSH-derived bands in the 

limit of small differences between intramolecular and intermolecular coupling constants 

( |𝑡𝑚 − 𝑡𝑛| 𝑡𝑛⁄ = 0.1 , red) shown together with the dispersion of massive Dirac fermions 

(Equation 6, |𝛿𝑡| 𝑡 = 0.1⁄ , grey). The resulting bandgap has a magnitude of 2|t|. d, Plot of the 

experimental dispersions of VB and CB of the pGNR based on length-dependent energy 

position of the frontier states (red squares) using 𝑘 = ± 𝑝𝜋 ((𝑁 + 1)𝑎)⁄ . The black curve is a 

fit to the experimental data using the dispersion relation of massive Dirac fermions (Equation 

7). 
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Figure 5. Ex-situ characterization of pGNR films and pGNR device characterization. a, Raman 

spectra of pGNR (top) simulated by DFT, (middle) acquired directly on the Au/Mica growth 

substrate, (bottom) and after substrate transfer to device substrates. Spectra are scaled to the 

same G-peak intensity. Excitation wavelength λ = 785 nm. Normal mode displacements 

corresponding to the labeled peaks are illustrated in Figure S11. b, AFM topography image of 

pGNRs transferred onto an Al2O3 substrate. c, Current-voltage traces at various gate voltages 

for a typical device recorded at 9K. The gate voltages at which these curves were recorded are 

marked with arrows in panel d. The inset shows the schematic of the device and measurement 

layout. d, dI/dV-map of the device in c as a function of applied bias and gate voltages. White 

dashed lines are guides to the eye 
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A new ultra-low bandgap GNR consisting of covalently fused pyrene subunits has been 

realized, whose charge carriers behave like massive Dirac fermions. The origin of the low 

bandgap derives from the periodically arranged molecular states of the pyrene units being in 

the limit of comparable intra- and inter- SSH-dimer coupling and can be rationalized by the 

SSH model. 
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1. On-surface synthesis of the pyrene-based GNR (pGNR) 

After deposition of the molecular precursor 1,6-dibromopyrene on Au(111) at room temperature, a self-

assembled porous structure is observed, which is stabilized by halogen bonds as seen in the STM 

images (Fig. S1 a,c). For the polymer phase obtained upon annealing to 180 ºC, closely packed island 

structures are observed (Fig. S1 b,d), which are probably stabilized by π-π interaction between 

neighboring polymer chains due to the out-of-plane tilting of the pyrene units. Partial 

cyclodehydrogenation of the polymers is already observed at this temperate, resulting in planar pGNRs 

that are imaged with lower apparent height in STM (Fig. S1b). This indicates a lower 

cyclodehydrogenation threshold temperature than most other GNR systems, but well in line with the 

case of the (3,1)-chGNR which has a strained configuration in its polymer phase. [1] Also note that we 

did not observe the formation of organometallic intermediates like in the case for the formation of 5AGNR 

from dibromoperylene.[2]  

 

Supplementary Figure S1. Room-temperature and polymer phases. a. Large-scale and c. close-up 

STM images of the room-temperature phase on Au(111) (a. Vs = -1 V, It = 50 pA; b. Vs = -5 mV, It = 250 

pA;). b. Large-scale and d. close-up STM images after annealing the sample to 180 ºC, where most of 

the molecules form island structures indicated by white arrows(c. Vs = -1 V, It = 50 pA; d. Vs = -20 mV, 

It = 200 pA). The polymers are identified by superimposing structural models to the STM image. 

 

2. Reaction pathway 

To investigate the reaction mechanism transforming the pyrene-based polymer into the pGNR, we use 

the nudged elastic band method in the climbing image formulation (NEB).[3] To avoid artifacts due to 

size limitations we adopted a large atomistic model with more than 1700 atoms. A polymer formed by 

six pyrene units is adsorbed on a Au(111) slab whose 2D periodic cell is 58.9 * 40.8 Å2 in size. The slab 

contains four layers of Au. A layer of hydrogen atoms is added to one side of the slab to quench the 

Au(111) surface state. The hydrogen layer and the bottom two Au layers are kept fixed to ideal positions, 
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while all the other atoms are relaxed according to the optimization algorithm employed (for both 

geometry optimization and NEB).  

All calculations are performed within density functional theory as implemented in the CP2K code[4]. 

Goedecker-Teter-Hutter pseudopotentials[5] are employed to represent the ionic potential, DZVP/TZV2P 

basis sets are employed for the Au/C,H species and a cutoff of 600 Ry is used for the plane wave 

expansion of the charge density. To account for van der Waals interactions we use the scheme proposed 

by Grimme.[6] Calculations were done within the AiiDA platform[7]. Due to the complexity of atomic 

rearrangements involved in the reaction, we do not rely on a direct linear interpolation between the 

geometries of initial and final states to create an initial guess for the reaction path. A chain of constrained 

geometry optimizations is performed for each reaction step where a collective variable (CV) (for example 

a C-C distance or the rotation angle of a pyrene unit) is forced to vary bringing the system from an initial 

to a final configuration. From the initial path thus created, we select an adequate number of images to 

perform the NEB calculations. 

The reaction pathway that emerges from the simulation consists of six reaction steps as depicted in Fig. 

S2:  

i) A pyrene unit within a segment of polymer (configuration 1) rotates reaching configuration 2. This step 

is dominated by an energy loss due to a reduction of van der Waals energy between the pyrene unit 

and substrate. However, the derived energy barrier of 1.73 eV suffers from an overestimation of vdW 

interaction typical of the Grimme approach. A more accurate approach[8–10], unfortunately still not 

implemented within CP2K, would result in a weaker interaction[11] and a lower barrier. 

ii) Two carbon atoms (red spheres in Fig. S2) initially in a sp2-hybridization state come closer to each 

other, followed by re-hybridizing to sp3 carbons to accommodate the formation of a new C-C covalent 

bond. In this state, the hydrogen atoms (violet and cyan spheres) point towards and away from the 

surface respectively, yielding a tetrahedral geometry of the bonds of each carbon atom (configuration 3, 

energy barrier 1.44 eV). 

iii) The H atom pointing toward the substrate (violet sphere) migrates toward the periphery of the ribbon 

(configuration 4, negligible energy barrier 0.03 eV). 

iv) The H atom detaches and migrates to the Au surface (configuration 5, an energy barrier of 1.5 eV) 

where it starts diffusing and eventually desorbs from the substrate. We point out that a number of 

different paths for the dissociation of the C-H bonds can occur in reality according to the actual position 

of the polymer with respect to the surface gold atoms. The polymer is indeed expected to move on the 

substrate "slowly" compared to the dissociation events we are investigating, and thus, a number of paths 

with slightly different barriers have to be expected. Our aim here is to identify at least one path whose 

activation energy is compatible with the experimental conditions.  

v) The H atom that is pointing away from the substrate (cyan sphere) migrates to the closest edge 

carbon atom (configuration 6, energy barrier 0.45 eV), which also occurs in the case of 7-AGNRs[12]. 

This grants a gain in dispersive energy since the overall geometry becomes flatter. A direct dissociation 

to the vacuum region would have a high energy barrier and is unlikely to happen. 

vi) After migration, the H atom can further detach from the structure upon a C-H bond cleavage 

(configuration 7, energy barrier 0.46 eV). The H atom corresponding to the green sphere is in this case 

the H closest to the substrate.  

We note that our NEB calculations depict the energy profile of the system at 0K along a possible 

minimum energy reaction pathway.  As such, energy presented in the graph corresponds to enthalpy 

and does not include entropic effects. Also note that the current calculation does not consider the 

desorption of H atoms into the vacuum, which can correspond to an energy gain of 1eV for one H  in 
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such systems.[13] We have drawn additional dashed lines in Fig. S2a to indicate the effect of the H 

desorption (step 5, 6 and 7).  

We also note that we did not observe the intermediate 4 in experiments. Despite this state being 

characterized by a very low enthalpy, it is quite unlikely to observe such a state in the experiment. This 

state is reached when a H atom detached from C (starting geometry 3) migrates over the substrate, and 

instead of abandoning the polymer it attaches again to a different C atom (step 4). This low energy 

configuration (intermediate 4) is quite unlikely to occur since it requires a specific orientation of the 

polymer with respect to the substrate, a very specific path of H migration on the substrate and the 

additional condition that no other H atoms diffusing on the substrate would recombine with this particular 

H atom. We included this state in our diagram for completeness, to grant the reproducibility of our results 

and to highlight that despite this state is low in energy, the barrier to escape from it can still be overcome 

at the experimental temperature used to trigger the initial steps of the reaction. 

To indicate the most likely reaction path that would not step through intermediate 4, we added a dashed 

line bridging state 3 and state 5 In Figure S2,. 

 

 

Supplementary Figure S2. Reaction pathway to fuse one segment of the polymer into a planar 

segment of pGNR. a. In the top panel, the activation barriers between the different metastable states 

are sketched with parabolas. An endothermic energy of 1eV is considered for one H atom desorption 

from the surface into vaccum in step 5, 6 and step 7, giving an additional energy profile indicated by 
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dashed curves. The blue line bridging state 3 and state 5 corresponds to the path most likely occurring 

in experiments. The lower panels are ball and stick representations of the corresponding atomistic 

models in each configuration labeled accordingly. The large spheres in light gray represent Au atoms. 

Small (white, cyan violet and green) spheres are H atoms. Dark grey and red spheres are C atoms. b. 

The corresponding reaction path described by chemical sketches. 

 

3. Electronic properties of the pGNR 

 

Supplementary Figure S3. STM images of pGNRs of different lengths, and the energy positions of 

their frontier states on Au(111) as determined by STS. It is seen that the electronic bandgap gap 

converges to 230 mV with increasing ribbon length. 
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Supplementary Figure S4. a, b, The experimental and DFT calculated energy positions of frontier 

states of finite-length pGNRs as a function of length (in terms of constituting pyrene units). c, d, The 

experimental energy positions of the unoccupied and occupied orbitals as a function of pGNR length.  

Determination of the band dispersion from frontier orbital energy positions: 

The band dispersions of pGNR in Fig. 3e are determined from the finite-length frontier orbital energy 

positions of pGNRs (data points in Fig. S4 c,d). For a 1D quantum well, the wave functions 𝛹𝑝 of the 

system are sinusoids with discrete wave vectors k = ± pπ L⁄  and a number of discrete energy levels 

Ep
[14], where p is the order of the confined frontier states. The energy levels Ep can be determined by 

differential conductance dI/dV spectroscopy, which probes the local density of states that is proportional 

to the square of the wave 𝛹𝑝
2. By plotting the frontier energy positions of finite-length pGNRs as a 

function of their corresponding wave vectors, one can thus determine the dispersion of their frontier 

bands. 

For the width of the quantum well confining the pGNR electronic states, we use the effective length L =

(𝑁 + 1)a of the pGNR, where N is the number of the repeating molecular units and a is the length of the 

unit cell. The extension by 1 molecular unit takes into account that the wave function envelope of the 

frontier orbitals will go to zero not at the structural extremities of the finite ribbon, but at the center of the 

virtual neighboring unit cell. Generally, the effective length to be considered for the correct description 

of the allowed wave vectors in finite GNRs critically depends on the atomic configuration at the GNR 

termini[15]. Here, by numerical simulations of the periodic pGNR and finite systems with varying N, we 

find k(N) = ± pπ ((N + 1) ∗ a)⁄  to be an adequate mapping function of the chain length to the equivalent 

wave vector. 



     

29 

 

 

Supplementary Figure S5. The DFT calculated valence and conduction band dispersion of pGNR (blue 

squares) fit by the dispersion relation of massive Dirac fermions (black curves). The effective mass 

derived from the fit is 0.025 me, where me is the electron rest mass. The fit is done by considering both 

VB and CB simultaneously and with equal parameters 𝛿𝑡 and 𝑡. 

 

4. Construction of the SSH model for the pGNR 

In order to describe the frontier bands of the pGNR within the SSH model, i.e. in terms of a dimerized 

chain of electronic states, we need to deconstruct the electronic structure of the pGNR around the Fermi 

level.  

Before doing so, we briefly reiterate the construction of the valence and conduction band in the SSH 

model from the two uncoupled basis states |𝐴̂𝑖⟩ and |𝐵̂𝑖⟩ which constitute the dimer. This process is 

represented schematically in Fig. S6. Starting from the left we can see how ‘switching on’ the intra- SSH-

dimer coupling (i.e. going from 𝑡𝑛 = 0 to 𝑡𝑛 ≠ 0) leads to hybridization of the two zero-energy basis 

states |𝐴̂𝑖⟩ and |𝐵̂𝑖⟩ to the bonding and anti-bonding states |𝜓𝑏𝑜𝑛𝑑⟩ and |𝜓𝑎𝑛𝑡𝑖⟩ of the SSH-dimer, with 

an energy splitting that corresponds to twice the absolute value of the coupling term 𝑡𝑛 = ⟨𝐴̂𝑖|𝐻𝑛|𝐵̂𝑖⟩, 

where 𝐻𝑛  denotes the intra- SSH-dimer coupling term of the Hamiltonian. We note that |𝜓𝑏𝑜𝑛𝑑⟩and 

|𝜓𝑎𝑛𝑡𝑖⟩ are nothing else than the HOMO and LUMO of the dimer, which will be important in the discussion 

further below. Coupling a periodic sequence of SSH-dimers (i.e. with an inter- SSH-dimer coupling 𝑡𝑚 ≠

0) will then result in the formation of the valence and conduction bands with 𝑡𝑚 = ⟨𝐴̂𝑖|𝐻𝑚|𝐵̂𝑖+1⟩. Here, 

𝐻𝑚 denotes the inter- SSH-dimer coupling Hamiltonian, and the indices i and i+1 denote the ith and 

(i+1)th dimer of the chain. 



     

30 

 

 

Supplementary Figure S6. Schematic representation of the construction of the SSH dimerized chain 

from the SSH-dimer building blocks on the left to the valence and conduction band states to the right. 

The dots in the squares symbolize the state amplitude and color symbolizes the parity, the vertical axis 

denotes energy. 

 

The relations between |𝐴̂𝑖⟩, |𝐵̂𝑖⟩, |𝜓𝑏𝑜𝑛𝑑⟩ and |𝜓𝑎𝑛𝑡𝑖⟩ are evidently the following: 

|𝜓𝑏𝑜𝑛𝑑⟩ =  
1

√2
(|𝐴̂𝑖⟩ + |𝐵̂𝑖⟩)  and    |𝜓𝑎𝑛𝑡𝑖⟩ =  

1

√2
(|𝐴̂𝑖⟩ − |𝐵̂𝑖⟩)  (1) 

|𝐴̂𝑖⟩ =  
1

√2
(|𝜓𝑏𝑜𝑛𝑑⟩ + |𝜓𝑎𝑛𝑡𝑖⟩)  and    |𝐵̂𝑖⟩ =  

1

√2
(|𝜓𝑏𝑜𝑛𝑑⟩ − |𝜓𝑎𝑛𝑡𝑖⟩)  (2) 

 

 

Supplementary Figure S7. Relation between the two-level SSH chain and pGNR with variable 

pyrene-pyrene coupling. a. Schematic representation of the SSH chain with the zero-energy modes 

|𝐴̂𝑖⟩  and |𝐵̂𝑖⟩  as basis. b. Tight Binding model of the coupled pyrene with variable pyrene-pyrene 

coupling parameter . c. Schematic representation for =0, i.e. the decoupled pyrene chain.     

 

As discussed in the main text, representing the frontier bands of the pGNR would lead to a quasi-metallic 

band structure with a nearly vanishing gap (because tn ≈ tm). This prediction can be compared with a TB 

calculation on the full pGNR structure (i.e. taking into account all 32 -bands). Here, we keep the C 2pz 

hopping parameter constant at 0 for all bonds within the pyrene unit (i.e. the intra- SSH-dimer coupling) 

but vary it for the bonds connecting the pyrenes (i.e. the inter- SSH-dimer coupling which we denote as 

IP = *0) as shown in Fig. S7b. We now plot the density of states as a function of the inter- SSH-dimer 

coupling () in Fig. S8a. As can be seen the band gap progressively closes as IP approaches 0 (i.e. 

=1). The gap vanishes for IP = 1.160 which is indicated by the red line in Fig. S8a, and the 

corresponding band structure is shown in Fig. S8c. The natural choice of IP = 0 (black line in Fig. S8a 

and band structure shown in Fig. S8c) will yield a small bandgap and a winding number of 0 making this 

situation ℤ2=0 topologically trivial. For 𝛾0 < 𝛾𝐼𝑃 = 1.32𝛾0 (yellow line in Fig. S8a and band structure in 

Fig. S8d) we find a topologically non-trivial ℤ2 = 1 situation, revealing topological end states. 
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Supplementary Figure S8. TB calculations regarding the topology of the pyrene ribbon. a. Energy 

diagram of the pGNR as a function of the inter-pyrene coupling strength IP = *0 while keeping the 

intra-pyrene coupling constant at 0. The red line in indicates the topological phase boundary at an inter-

pyrene coupling strength of IP = 1.160. b. Left: Band structure of the pGNR with a trivial electronic 

topology (at IP = 0), which is indicated by the black arrow in a. Right: The wave functions of the HOMO 

and LUMO of a finite-length pGNR, where there are no topological end states. c. Band structure of the 

pGNR located at the topological phase boundary (at IP = 1.160), which is indicated by the red arrow in 

a. d. Left: Band structure of the pGNR with a non-trivial topology (at IP = 1.320), which is indicated by 

the yellow arrow in a. Right: The wave functions of its HOMO and LUMO of a finite-length pGNR, where 

the topological end states are clearly seen. The color (yellow = 0 to black = 1) in the band structures 

encodes the projection of the band states onto the dimer states according to 𝜌𝑛(𝑘) =
1

2
{|⟨𝐴̂𝑖|𝜓𝑛(𝑘)⟩| +

|⟨𝐵̂𝑖|𝜓𝑛(𝑘)⟩|}.  

 

The fact that for the natural case =1, i.e. IP = 0 the full TB model of Fig. S8b yields a larger band gap 

than the two-level SSH model (see main text) is due to the non-linear closure of the gap shown in Fig. 

S8a for the full TB calculation. This non-linearity is due to the hybridization of the frontier bands of the 

pGNR with higher/lower orbitals than just the LUMO/HOMO of the pyrene. This is expressed in the 

values of 𝜌𝐶𝐵(Γ) = 𝜌𝑉𝐵(Γ) = 0.933  and 𝜌𝐶𝐵(X) = 𝜌𝑉𝐵(X) = 0.874  not being 1 for the valence and 

conduction band (VB and CB) at the G and X points of the Brillouin zone.        
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5. Raman characterization of pGNRs 

Experimental details: 

Raman spectra were acquired with a confocal Raman microscope (WITec Alpha 300R) before (on 

Au/mica) and after substrate transfer (on Al2O3/Au/SiO2/Si) using 785 nm, 532 nm and 488 nm laser 

wavelengths. All Raman measurements were performed in vacuum (<10-2 mbar) using a 50 × objective 

with a numerical aperture NA = 0.55.  

Raman spectra were acquired using a mapping approach and samples were transferred onto Raman-

optimized-device type substrates with a top-layer of Al2O3.[16] We optimized the measurement settings 

for each sample-wavelength combination as summarized in Table T1. 

In Fig. S9 we provide an example of signal-optimization and background subtraction. 

 

 

Supplementary Figure S9. Data acquisition and processing. a, Raw spectra of pGNRs on a Au/Mica 

substrate acquired with 785 nm excitation wavelength in vacuum for 10 mW and 40 mW excitation 

power. No power-dependent change is observed in the spectra. b, Example for data processing by 

polynomial background subtraction. A polynomial is fitted to the raw data with a fit mask excluding 

Raman lines, resulting in a spectrum with a flat baseline. This makes it easier to compare spectra 

acquired with different excitation wavelengths (which result in different backgrounds) and theory. 

Supplementary Table T1. The optimized parameters for each of the spectra in Fig. 4a of the main text 

and Fig. S12. The scaling factor to allow for a comparison of signal-to-noise ratios is computed as follows: 

scaling factor = 1 / (power*integration-time*number0.5). 

 

Normal mode analysis: 

Fig. S10 shows the DFT-calculated Raman spectrum for an excitation energy of 2.54 eV (panel a) and 

the normal mode displacements (panel b) corresponding to the most intense modes. We display the 

Laser 
wavelength 

Substrate Power  
(mW) 

Integration 
time (s) 

Number of 
averaged spectra 

Scaling factor 

785 nm Au/Mica 40 60 3 1/4157 

 
Al2O3 5 0.3 900 1/45 

532 nm Au/Mica 2 26 25 1/260 

 
Al2O3 2 0.3 900 1/18 

488 nm Au/Mica 20 3 400 1/1200 

 
Al2O3 0.5 1 3600 1/30 
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fundamental acoustic mode defined by the size of a pGNR unit cell in a plot showing four pyrene units 

to highlight its relation to the ribbon geometry. 

 

Supplementary Figure S10. pGNR normal mode analysis. a. DFT-calculated Raman spectrum for 

an excitation energy of 2.54 eV. b. Normal mode atomic displacements of the modes labelled in a. A 

single pyrene unit is highlighted in blue in the topmost structure 

 

Wavelength dependent Raman spectra: 

In addition to the spectrum shown in Fig. 5a of the main text, we also acquired Raman spectra at 532 

nm and 488 nm excitation wavelength. These are displayed for comparison in Fig. S11 with a scaling 

factor applied to account for the different acquisition modes. The spectra after transfer are obtained on 

interference substrates optimized for excitation at 488 nm[16]. This allows the observation of additional 

features with visible light excitation, however the spectra acquired with infrared excitation remain the 

ones showing most details. Fig. S11b shows calculated Raman spectra for the same wavelengths. 

These reproduce the experimentally observed spectra remarkably well, in particular the relative intensity 

of LO and TO phonons that contribute to the G-like peak around 1600 cm-1. While the non-resonant 

Raman cross-section should increase with the 4th power of photon energy, the spectrum acquired with 

785 nm excitation shows the highest signal-to-noise ratio for acquisition directly on the growth substrate. 

Moreover, it is the only spectrum clearly exhibiting the low-energy geometry-dependent RBLM*. This 

points towards a resonance effect in the near infrared which agrees with the predicted narrow electronic 

bandgap as reflected in the higher intensity for the calculated Raman spectra at the 785 nm excitation. 

Supplementary Figure S11. Wavelength-dependent Raman spectra. a, pGNR Raman spectra 

obtained directly on the Au/Mica growth substrate (solid lines) and after substrate transfer to 

(interference optimized) device substrates. Spectra are offset for clarity and scaled with the factor 

mentioned in Table T1 (and an additional factor of 2 as noted in the figure). b, DFT-calculated 

wavelength-dependent Raman spectra. 
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6. Transport characterization of pGNRs 

The electrical transport properties of pGNRs were characterized as described in the main manuscript 

and methods. Fig. S12 below shows additional measurements of the gap characteristics of the device 

discussed in Fig. 5c (Device 1) before and after ribbon substrate transfer. Fig. S13 shows low-

temperature stability diagrams for two additional devices. 

Supplementary Figure S12. Additional electrical characterization of Device 1. a. Electrical 

characterization of the gap after the electrical breakdown process at 9 K. Superimposed I-V 

characteristics recorded at gate voltages from -80 V to +80 V in steps of 10 V confirm an empty gap in 

all regimes. The noise-level is 2 pA with a current offset of 3 pA at Vbias = 0 V. b. Comparison of device 

performance before and after transfer of the pGNRs. c. Room temperature I-V characteristics at different 

gate voltages indicating no gate dependence. d. Source-drain current vs gate voltage at different bias 

voltages corresponding to horizontal cuts in Fig. 5d of the main manuscript. A maximum on current of 

10 nA is measured at a bias voltage of 0.7 V. 
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Supplementary Figure S13. Electrical characterization of additional pGNR devices. Electrical 

measurements recorded on a. Device 2, b. Device 3. Left panel: I-V characteristics before and after the 

incorporation of the pGNRs, measured at 9 K and 300 K, respectively. The I-V characteristics without 

pGNRs (labelled “before transfer”) indicate an empty gap. Right panel: dI/dV-map of the corresponding 

pGNR device as a function of the applied bias voltage and gate voltage, recorded at 9 K. 

 

7. References 

[1] N. Merino-Díez, J. Li, A. Garcia-Lekue, G. Vasseur, M. Vilas-Varela, E. Carbonell-Sanromà, M. Corso, 

J. E. Ortega, D. Peña, J. I. Pascual, D. G. de Oteyza, J. Phys. Chem. Lett. 2018, 9, 25. 

[2] K. Sun, P. Ji, J. Zhang, J. Wang, X. Li, X. Xu, H. Zhang, L. Chi, Small 2019, 15, 1804526. 

[3] G. Henkelman, B. P. Uberuaga, H. Jónsson, J. Chem. Phys. 2000, 113, 9901. 

[4] J. Hutter, M. Iannuzzi, F. Schiffmann, J. VandeVondele, Wiley Interdiscip. Rev. Comput. Mol. Sci. 

2014, 4, 15. 

[5] S. Goedecker, M. Teter, J. Hutter, Phys. Rev. B 1996, 54, 1703. 

[6] S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 2010, 132, 154104. 

[7] G. Pizzi, A. Cepellotti, R. Sabatini, N. Marzari, B. Kozinsky, Comput. Mater. Sci. 2016, 111, 218. 

[8] V. G. Ruiz, W. Liu, E. Zojer, M. Scheffler, A. Tkatchenko, Phys. Rev. Lett. 2012, 108, 146103. 

[9] A. Tkatchenko, R. A. DiStasio, R. Car, M. Scheffler, Phys. Rev. Lett. 2012, 108, 236402. 

[10] A. Ambrosetti, A. M. Reilly, R. A. DiStasio, A. Tkatchenko, J. Chem. Phys. 2014, 140, 18A508. 

[11] A. V. Yakutovich, J. Hoja, D. Passerone, A. Tkatchenko, C. A. Pignedoli, J. Am. Chem. Soc. 2017, DOI 

10.1021/jacs.7b10980. 



     

36 

 

[12] S. Blankenburg, J. Cai, P. Ruffieux, R. Jaafar, D. Passerone, X. Feng, K. Müllen, R. Fasel, C. A. 

Pignedoli, ACS Nano 2012, 6, 2020. 

[13] J. Bjo�rk, J. Phys. Chem. C 2016, 120, 21716. 

[14] C. Kittel, P. McEuen, Introduction to Solid State Physics, Wiley New York, 1976. 

[15] L. Talirz, H. Söde, S. Kawai, P. Ruffieux, E. Meyer, X. Feng, K. Müllen, R. Fasel, C. A. Pignedoli, D. 

Passerone, ChemPhysChem 2019, 20, 2348. 

[16] J. Overbeck, G. B. Barin, C. Daniels, M. Perrin, L. Liang, O. Braun, R. Darawish, B. Burkhardt, T. 

Dumslaff, X.-Y. Wang, A. Narita, K. Müllen, V. Meunier, R. Fasel, M. Calame, P. Ruffieux, 

ArXiv190701797 Cond-Mat 2019. 

 

 

 

 

 

 

 

 

 


	1

