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Abstract 22 

 23 

After the airways have been formed by branching morphogenesis the gas-exchange area of 24 

the developing lung is enlarged by the formation of new alveolar septa (alveolarization). The 25 

septa themselves mature by a reduction of their double layered capillary networks to single 26 

layered ones (microvascular maturation). Alveolarization in mice is subdivided into a first 27 

phase (postnatal days 4-21, classical alveolarization), where new septa are lifted off from 28 

immature pre-existing septa, and a second phase (days 14-adulthood, continued 29 

alveolarization), where new septa are formed from mature septa. Tenascin-C (TNC) is a 30 

multi-domain extracellular matrix protein contributing to organogenesis and tumorigenesis. It 31 

is highly expressed during classical alveolarization, but afterwards it is markedly reduced. To 32 

study the effect of TNC deficiency on postnatal lung development, the formation and 33 

maturation of the alveolar septa was followed stereologically. Furthermore, the number of 34 

proliferating (Ki-67-positive) and TUNEL-positive cells was estimated. In TNC deficient mice 35 

for both phases of alveolarization a delay and catch-up was observed. Cell proliferation was 36 

increased at days 4 and 6, at day 7 thick septa with an accumulation of capillaries and cells 37 

were observed, and the number of TUNEL-positive cells (dying cells or DNA-repair) was 38 

increased at day 10. While at days 15 and 21 premature microvascular maturation was 39 

detected, the microvasculature was less mature at day 60 as compared to wildtype. No 40 

differences were observed in adulthood. We conclude that TNC contributes to the formation 41 

of new septa, to microvascular maturation, and to cell proliferation and migration during 42 

postnatal lung development.  43 

 44 

Word count: 250 45 

  46 
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 52 

New & Noteworthy Previously we showed that the extracellular matrix protein tenascin-C 53 

takes part in prenatal lung development by controlling branching 54 

morphogenesis. Now we report that tenascin-C is also important during 55 

postnatal lung development, because tenascin-C deficiency delays the 56 

formation and maturation of the alveolar septa during classical, but 57 

also during continued alveolarization. Adult lungs are undistinguishable 58 

from wildtype due to a catch-up formation of new septa. 59 

 60 

  61 
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Introduction 62 

Structural lung development 63 

Starting from the lung buds (lung anlage) the conducting airways and parts of the respiratory 64 

airways are formed by continuous cycles of branching and growth into the surrounding 65 

mesenchyme (branching morphogenesis (65, 83)). During the stage of alveolarization 66 

the gas exchange surface area is enlarged by the lifting off of new alveolar septa from the 67 

pre-existing septa. The newly formed septa increase in height and subdivide the existing 68 

airspaces into smaller units (septation), called alveoli. During the lifting off of new alveolar 69 

septa one leaflet of the existing double layered capillary network within the existing septa 70 

folds up and gives rise to a new double layered capillary network inside the newly formed 71 

septa (3, 6, 7, 65, 87). Depending on the point of view, this process is either call 72 

alveolarization or septation. While alveolarization focuses on the formation of new airspaces 73 

(alveoli), septation focuses on the formation of new walls (septa) which are subdividing the 74 

existing airspaces. In order to optimize the gas exchange the double layered capillary 75 

networks of all septa are reduced to a central, single layered one by capillary fusion and the 76 

former central layer of connective tissue is reduced to a thin fibrous meshwork interwoven 77 

with the capillaries (microvascular maturation). Alveolarization and microvascular 78 

maturation start in parallel around postnatal day 4 in mice and rats and continue until young 79 

adulthood (50, 59, 65, 70). The stage of alveolarization can be subdivided into two phases. 80 

Classical alveolarization (days 4-21 in mice and rats) is characterized by the lifting 81 

off/folding up of new septa from immature pre-existing septa containing a double layered 82 

capillary network, while during continued alveolarization (day 14-adulthood (roughly days 83 

36-60) in mice and rats) new septa are lifted off/folding up of mature pre-existing septa 84 

containing a single layered capillary network (1, 50, 70). In humans alveolarization is 85 

considered to start before birth and last up to young adulthood, and microvascular maturation 86 

is regarded to last until 2-3 years of age (65, 66, 83).  87 

 88 

 89 
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Cell proliferation and programmed cell death 90 

While the structural mechanism of alveolarization/septation has been well established, the 91 

knowledge about the cellular processes and molecular signals guiding the lifting off of new 92 

septa is still limited (61, 67). It is well recognized that smooth muscle cells, elastic fibers, and 93 

collagen fibrils appear concentrated at the free edges of the existing and newly forming septa 94 

throughout septation. The presence of these three components seems to be crucial for the 95 

formation of new alveolar septa (20, 61, 67). In addition, the importance of cell proliferation 96 

for the lifting off of new septa was emphasized by the finding that in rats the rate of cell 97 

proliferation of all major cell types increased exactly in parallel to the beginning of classical 98 

alveolarization.(39, 45). The absolute number of fibroblasts and epithelial cells is later 99 

diminished by apoptosis. In rats a peak of programmed cell death was detected at the end of 100 

the third postnatal week (45, 68). To the best of our knowledge programmed cell death has 101 

so far never been followed during postnatal lung development in mice, but is expected to be 102 

similar. 103 

 104 

Tenascin-C 105 

It is well acknowledged that the extracellular matrix plays an important role in regulating the 106 

behavior of cells that contact it. During prenatal lung development there is much evidence 107 

that different components of the extracellular matrix, such as tenascin-C elastin, fibronectin 108 

and different laminin-isoforms have unique functions in the regulation of branching 109 

morphogenesis (61). However, less is known about the role of the extracellular matrix on 110 

alveolarization and microvascular maturation. Tenascin-C (TNC) is a large, hexameric 111 

glycoprotein of the extracellular matrix. It is transiently expressed during organogenesis, 112 

where it is especially prominent at mesenchymal-epithelial interaction sites and along 113 

pathways of migrating cells. TNC is markedly reduced in adult tissues, but reappears under 114 

pathological conditions such as inflammation and tumorigenesis (8, 9, 21, 23, 61, 78, 84). 115 

During prenatal lung development TNC accumulates in the basement membranes and 116 

mesenchyme surrounding the branching and growing tips of the bronchial tree (41, 85, 88). 117 
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At this location it contributes to the control of branching morphogenesis (60). At the 118 

beginning of classical alveolarization TNC appears concentrated at the tips of the newly 119 

forming septa in parallel to smooth muscle cells, elastic fibers, and collagen fibrils. During the 120 

following postnatal lung development and during adolescence TNC expression declines to 121 

rarely detectable levels (38, 53, 62, 85). TNC expression is up-regulated by different growth 122 

factors, cytokines, as well as by mechanical stress (8, 15). It was shown to be down 123 

regulated by glucocorticoids (36, 58) and also in surgical induced congenital diaphragmatic 124 

hernia (81).  125 

Antibody perturbation assays and tissue culture studies have suggested multiple 126 

functions for TNC (12). TNC has been shown to inhibit adhesion to fibronectin of most cells 127 

in culture, but for some cells, it functions as adhesion substrate. Therefore, it has been 128 

classified as adhesion-modulating protein (10, 54, 63). Furthermore, depending on the cell 129 

type TNC has been demonstrated to promote or inhibit cell migration and cell proliferation, 130 

and to modulate cell shape (36, 46) (18). Given the multiplicity of functions which have been 131 

suggested for TNC by in vitro studies it was rather surprising when TNC null mice were 132 

initially reported to show no abnormalities. At the same token no mechanism of 133 

compensation for the loss of TNC was found (5, 18, 24, 47, 62, 80). Looking in more detail it 134 

became evident that TNC knockout mice show subtle phenotypes, e.g. [i] behavioral 135 

abnormalities (26, 40), [ii] a reduced hematopoietic activity of bone marrow cells (52), [iii] an 136 

impaired healing of corneal wounds which were exposed to mechanical stress (48), [iv] a 137 

suppression of the formation of fibrous adhesions after injury of temporomandibular joint 138 

(73), [v] a reduced Wnt/β-catenin signaling combined with a reduced proliferation and 139 

migration of stem cells in whisker follicle stem cell niches (32, 79). 140 

Developmental alterations have also been reported (14). E.g., [i] fetal lung organ 141 

cultures of TNC-null mice showed a reduction of the number of branches, while the growth of 142 

the lung explants was not altered (60), and [ii] an increased migration and reduced 143 

proliferation of neural precursor cells was detected during the development of the central 144 

nervous system (40).  145 
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Aim of the present study 146 

Although it is well recognized that in the developing lung the expression of TNC peaks at the 147 

start of the first phase of alveolarization (classical alveolarization), the effect of TNC 148 

deficiency during this phase has never been investigated so far. The aim of the present study 149 

was to provide this information. Therefore, we followed alveolarization/septation and 150 

microvascular maturation in the TNC null mice strain generated by Forsberg et al. (24) and in 151 

matched wildtype mice using morphological and stereological methods. In addition, the 152 

extent of cell proliferation and of TUNEL-positive cells was compared between TNC null and 153 

wildtype lungs. 154 

  155 
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Material and methods 156 

Animals and tissues 157 

Lungs from the TNC null mouse strain “Tnc tm1Ref” of Forsberg et al. (24) and from 158 

129/SV wildtype control animals were obtained between postnatal days 2-86 as described in 159 

the following. For every data point an N = 3-8 male animals was used (see figure legends), 160 

because the experiments were done at a time were the ethics committee asked for one sex 161 

only in order to reduce the number of animals necessary for the study. The animals were 162 

housed in the central animal facility of the University of Bern at a 12/12 hour day/night circle. 163 

They received water and food ad libitum. The animals were deeply anesthetized using a 164 

mixture of medetomidin, midazolam, and fentanyl (22) and afterwards euthanized by 165 

exsanguination during the removal of the lung. After abdomen and thorax of the deeply 166 

anesthetized mice were opened, the airspace was filled via tracheal installation with freshly 167 

prepared 4% paraformaldehyde in PBS (10mM sodium phosphate, containing 127 mM 168 

sodium chloride, pH 7.4) at a constant pressure of 20 cm water column. At this pressure, the 169 

lung reaches roughly its total lung capacity. In order to prevent a recoiling of the lung, the 170 

pressure was maintained at least for 2h at 4°C. For the immunohistochemical investigation, 171 

the pulmonary blood vessels were beforehand perfused with phosphate-buffered saline 172 

(PBS, 10 mM sodium phosphate, containing 127 mM sodium chloride, pH 7.4), containing 5 173 

U/ml heparin, 10 mg/ml procaine, and 10 mM EDTA (Fluka Chemie AG, Buchs, Switzerland).  174 

Handling of the animals before and during the experiments, as well as the 175 

experiments themselves, were approved and supervised by the Swiss Agency for 176 

Environment, Forests and Landscape and the Veterinary Service of the Canton of Berne. For 177 

ethical reasons we were obliged to keep the number of animals as low as possible. 178 

Therefore, we used the left lung for the stereological studies, the right lower lobe for imaging, 179 

and the remaining lobes of histochemical staining. According to Zeltner et al. and Barré et al. 180 

(4, 86) the lobes represent a representative sample of the entire lung.  181 

For light microscopical morphometry as well as for TdT-mediated dUTP nick end 182 

labeling assay and Ki-67-staining the left lung was dehydrated en bloc in a graded series of 183 
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ethanol and embedded in paraffin using HistoclearTM (Life Science International, Frankfurt, 184 

Germany) as intermedium. A series of step sections of 4.5 µm thickness was obtained 185 

perpendicular to the longitudinal axis of the left lung at 10-13 equally spaced locations. The 186 

gap between the locations (length of the step) was constant for all lobes obtained at the 187 

same postnatal day, but increased with the size of the lobes. The first location was 188 

determined as follows. The blocks were cut until first pieces of lung appeared in the sections. 189 

Afterwards a randomly selected number of sections was discarded before the first step 190 

section was taken / the first location was reached. This number was smaller than the number 191 

of sections between two equally spaced locations. The sections were transferred onto 192 

silanized micro slides and air-dried overnight at 37°C. Sections used for light microscopical 193 

morphometry were stained with fuchsine.  194 

Approximately 40 images were taken from all serial sections of the left lung of each 195 

animal according to a systematic random sampling scheme (19). Images were recorded 196 

using a Leica DM RB light microscope (Glattbrugg, Switzerland) equipped with a motorized 197 

Maerzheuser XY stage (Wetzlar, Germany) and a JVC 930 3-chip color video camera 198 

(Oberwil, Switzerland) and the software analySIS (Münster, Germany). The estimation of the 199 

volume density of the lung parenchyma, the septal surface area density, the length of the 200 

free septal edge, as well as the number of TUNEL-positive cells was done at a final 201 

magnification of 250x, whereas for the estimation of the number of proliferating cells and the 202 

total number of cells a final magnification of 870x was used. 203 

For transmission electron microscopy and synchrotron-radiation x-ray-tomographic 204 

microscopy the right upper and right lower lobes were diced into tissue cubes of about 2mm 205 

edge length. The tissue blocks were postfixed with 2.5% glutaraldehyde in 0.03M potassium 206 

phosphate buffer (pH 7.4, osmolarity 360 mOsm) for at least 48h at 4°C, stained for 1 hour in 207 

1% Na-cacodylate buffered osmium tetroxide solution (osmolarity 350 mOsm, pH 7,4) and 208 

stained for another 2 hours in 0.5% uranyl acetate solution. After dehydration in a graded 209 

series of ethanol the tissue blocks were embedded in Epon 812 (68).  210 
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For transmission electron microscopy 5 Epon embedded tissue blocks of the right 211 

upper lobes were randomly taken and ultrathin sections (80-90nm) were cut using a 212 

Reichert-Jung Ultracut microtome. Sections were double stained with lead citrate (56) and 213 

uranyl acetate (25). One section per block was viewed in a Philips 400 transmission electron 214 

microscope. Approximately 25 images per section were taken according to a systematic 215 

random sampling scheme (19) by a Morada camera (soft-imaging-system, Münster, 216 

Germany) and the software item (Münster, Germany). Stereological measurements were 217 

done at a final magnification of 3400x.  218 

For synchrotron-radiation x-ray-tomographic microscopy 5 blocks of the right lower 219 

lobes were randomly taken, shaped down to rods of a diameter of 1.3 mm on a 220 

watchmaker’s lathe and glued on a rod-like holder of a diameter of 3.0 mm. Special care was 221 

taken that they were mounted perpendicularly to the surface of the holder in order to fit 222 

exactly into the window of the camera. 223 

 224 

Immunohistochemistry 225 

Immunohistochemistry was applied to stain proliferating cells with anti-Ki-67, a marker 226 

for cell proliferation (71), and to stain TUNEL-positive cells performing the TdT-mediated 227 

dUTP nick end labeling assay adapted from Gavrieli and associates (29).  228 

Anti-Ki-67 staining. As described in (68, 69), paraffin sections were cooked in a 229 

household pressure cooker in Target Retrieval Solution (DAKO, Glostrup, Denmark) for 13 230 

min at 2 bar, blocked with TBS containing 100mg/ml Casein (Sigma) and incubated over 231 

night at 4°C with the monoclonal rat anti-mouse-Ki-67-antibody (Clone Tec-3, DAKO, diluted 232 

1:50 in antibody diluent, DAKO). Immunoreactivity was detected using the biotinylated 233 

polyclonal rabbit anti rat antibody (DAKO, diluted 1:200 in antibody diluent, DAKO), 234 

streptavidin-biotin horseradish peroxidase complex (DAKO), and 3-amino-9-ethylcarbazole 235 

(Sigma) as a substrate. The nuclei were counterstained with Mayer`s hematoxylin (VWR, 236 

Darmstadt, Germany).  237 
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TUNEL assay. As described in (68, 69), paraffin sections were digested with 3.6 238 

g/ml proteinase K (21°C, 10 min) and incubated with terminal transferase reaction solution, 239 

containing 9 mM digoxigenin-11-dUTP and 0.165 U/ml enzyme (Roche, Rotkreuz, 240 

Switzerland) for 40 min at 37°C. The incorporated digoxigenin was detected using an 241 

alkaline-phophatase labelled anti-digoxigenin antibody (Roche Rotkreuz, Switzerland; diluted 242 

1:1000 in blocking reagent for nucleic acid hybridization and detection, Roche Rotkreuz, 243 

Switzerland) and 4-nitro-blue-tetrazolium-chloride (Roche Diagnostics, Mannheim, 244 

Germany).  245 

Negative controls were performed with nonspecific mouse IgG (Ki-67 staining) or by 246 

omitting of the terminal transferase reaction solution (TUNEL). None or only little nonspecific 247 

background was observed in all negative controls. In addition, the Ki-67 was observed as a 248 

nuclear staining, only.  249 

 250 

Light microscopical morphometry 251 

After the fixation the volumes of the left lungs were first measured by water 252 

displacement (64). After embedding in paraffin and sectioning the lung volumes were 253 

estimated by the Cavalieri method (33, 49). Both volumes were used to calculate the 254 

shrinkage for every lung in order to correct for the shrinkage. The volume density of the lung 255 

parenchyma (airspaces and septal tissue, excluding bronchi, bronchioli and blood vessels > 256 

20µm in diameter) was estimated by point counting.  257 

The surface density of the alveolar septa was estimated by intersection counting. The 258 

absolute values were calculated as the product of the surface density and the lung volume 259 

for each animal and each time-point (33, 82). 260 

The length density and length of the free septal edge was estimated stereologically as 261 

described and applied by Schittny and coworkers (50, 58, 70, 77). Briefly, this approach is 262 

based on the following two principles. First, any length appearing in three-dimensional (3D) 263 

space may be stereologically estimated by counting the number of points cutting the plane of 264 

2D sections (33, 82). Second, in 3D space every airspace possesses one entrance ring 265 
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which is represented by the free edges of the alveolar septa. Because the free septal edges 266 

are recognized as tips of the cut septa in 2D sections, their length density was estimated by 267 

counting the number of the tips of the cut septa in a reference area on paraffin sections. By 268 

simple enlargement of the lung, without the addition of new septa, the length density of the 269 

free edges of the alveolar septa will decrease, because a volume increases by a factor of x3, 270 

while a length increases only by a factor of x1. This kind of growth follows the principle of 271 

isometric scaling and geometric similarity – meaning that proportional relationships are 272 

preserved. E.g., when the volume increases by a factor of 8, the surface increases by a 273 

factor of 4 and the length by a factor of 2. This principle, the square-cube law, (27) was most 274 

likely first described by Galileo Galilei in 1638 . In order to calculate the length of the free 275 

septal edge, which were newly formed in addition to the isometric scaled growth of the lung, 276 

we mathematically corrected the growth induced decrease of the length density by 277 

multiplying the length density by a factor of 3√ (Vx/V0)
2 (thereby Vx represents the 278 

parenchymal lung volume at the time point X, and V0 the volume at the start of the growth). 279 

The resulting “growth corrected length density” stays constant throughout isometric scaled 280 

growth of the lung parenchyma, but shows an increase if new septa are formed. Therefore, 281 

the increase of the growth corrected length density was taken as a measure for the anlage of 282 

new alveolar septa as follows. The growth corrected length density at a given day was 283 

divided by the growth corrected length density at day 4 and multiplied by 100 to express the 284 

result as percentage. Therefore, the anlage of new septa is given as increase of the septa 285 

present at day 4.  286 

The number of proliferating or TUNEL-positive cells as well as the total number of 287 

cells was estimated using the physical disector principle (33, 76). The disector was kept 288 

constant at 9 m.  289 

 290 

Electron microscopical morphometry 291 

The fraction of the alveolar surface area characterized by a single or double layered 292 

capillary network or an atypical appearance with more than two capillary layers was 293 
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estimated by intersection counting (33, 82). In addition, the thickness of the septum was 294 

measured perpendicular to the surface of the septum at each intersection. Intersections with 295 

lung epithelium adjacent to non-parenchymal structures were not taken into account (82).  296 

 297 

Synchrotron radiation x-ray tomographic microscopy and visualization 298 

5 samples of each time-point were scanned at the TOMCAT (X02DA) beamline at the 299 

Swiss Light Source (SLS) of the Paul-Scherrer-Institute (PSI), Villigen, Switzerland (75). The 300 

energy was tuned to 12.398 keV (corresponding to an x-ray wavelength of 1 Å). After 301 

penetration of the sample, x-rays were converted into visible light by a thin Ce-doped YAG 302 

scintillator screen (Crismatec Saint-Gobain, Nemours, France). Projection images were 303 

further magnified by diffraction limited microscope optics and finally digitized by a high-304 

resolution CCD camera (Photonic Science Ltd., East Sussex, UK), (74). The optical 305 

magnification was set to 10x and on-chip binning was selected to improve the signal to noise 306 

ratio, resulting in isotropic voxels of 1.43
 μm3

 for the reconstructed images. For each 307 

measurement, 1500 projections were acquired along with dark and periodic flat field images 308 

at an integration time of 100ms each (30, 31, 42-44). Data were post-processed and 309 

rearranged into flat field corrected sinograms online. Reconstruction of the volume of interest 310 

was performed on a 24-node Linux PC farm using highly optimized filtered back-projection 311 

routines. We used a global thresholding approach for surface rendering. For 3D-visualization 312 

and surface rendering we used the software Imaris (Bitplane AG, Zürich, Switzerland) on an 313 

Athlon 64 3500 based personal computer. To enhance the contrast between air and lung 314 

tissue and to smooth the images we applied the gamma correction tool using the software 315 

Adobe Photoshop C53 version 10.0 (Adobe Systems Incorporated, Microsoft Windows 316 

Media Technologies). 317 

 318 

Statistical analysis 319 

The Kolmogorov-Smirnov test was applied to assess the Gaussian distribution of the 320 

data. Differences between groups were assessed by one-way analysis of variance (ANOVA) 321 
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followed by Bonferroni-Holm-corrected post hoc t-tests (2, 57). Statistical significance was 322 

defined as <0.05. For all morphometrical measurements 3-8 male animals per time point 323 

were used (see figure legends). 324 

  325 
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Results 326 

Morphological observation in 3D visualizations of the lung parenchyma  327 

In order to study the effect of TNC deficiency during postnatal lung development, we 328 

morphologically compared the three-dimensional (3D) structure of the terminal airspaces 329 

between TNC null and wildtype lungs during the phase of classical alveolarization. As 330 

method, we used 3D- visualizations which were obtained by x-ray-tomographic microscopy. 331 

At day 4 the lungs of TNC deficient and of wildtype animals showed a similar appearance. 332 

The lung parenchyma was characterized by large terminal airspaces (saccules) in both 333 

groups (Fig. 1A+B). At day 7 newly formed septa and alveoli were detected in wildtype lungs 334 

indicating that alveolarization is ongoing (Fig 1D). TNC null lungs of the same age appeared 335 

to be in a state analogous to day 4, but showed focal areas of atypically thickened septa (Fig. 336 

1C, arrowhead). At postnatal day 15 we were not able to observe any structural differences 337 

between both groups by morphological inspection of the 3D-visualizations at light 338 

microscopical resolution (Fig. 1E+F).  339 

 340 

Stereological estimations 341 

To verify our observations the lung volumes, the anlage of new alveolar septa and the septal 342 

surface area were quantified and compared between wildtype and TNC null animals. The 343 

lung volumes of TNC deficient animals were increased by 10-20% between days 2-21 (Fig. 344 

2A). We did not observe any differences regarding the body weight of TNC null versus 345 

wildtype animals. Thus, the specific lung volume (lung volumes per body weight) of TNC null 346 

animals was larger than the one of wildtype mice between days 4-21 (data not shown). By 347 

following the anlage of new alveolar septa and alveolar surface area, we observed that the 348 

first and second phase of alveolarization (classical and continued alveolarization) was 349 

delayed. Alveolarization started delayed after day 7 in TNC deficient lungs, was 350 

compensated at days 15 -21, again delayed at day 36 and again compensated at day 60 and 351 

afterwards (Fig. 2 B+C).  352 
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By comparing the morphology of the interairspace septa between wildtype and TNC 353 

null lungs using light- and electron microscopy, focal areas of atypically thickened septa with 354 

an accumulation of capillaries and connective tissue, as well as an increased cellularity were 355 

observed in TNC null lungs at day 7 (Fig. 3). To better characterize this phenotype [i] the 356 

septal wall thickness was measured, [ii] microvascular maturation was followed by estimating 357 

the septal surface area possessing double versus single layered capillary networks on 358 

electron-microscopical images using intersection counting, and [iii] the number of 359 

proliferating cells (Ki-67-positive cells) as well as [iv] the total number of cells were 360 

stereologically estimated. The mean septal wall thickness of TNC null lungs was increased 361 

by 100% at day 7 (Fig. 4A). A histogram of the measured thickness revealed a shift from the 362 

classes of thinner measurements (0-10 μm) to thicker measurements (15-65 μm) in the TNC 363 

null lungs at this age (Fig. 4B). This result underlines our impression that only focal areas of 364 

the septa are thickened. Microvascular maturation was delayed and started after day 7 in 365 

TNC null animals (Fig. 5). In addition, about 33% of the alveolar septa of the TNC null lungs 366 

showed an atypical appearance with more than two capillary layers at day 7. This phenotype 367 

was only observed in tenascin-C null lungs of this age. At days 15 and 21 microvascular 368 

maturation appeared to be overcompensated. The percentage of mature septa was 369 

increased in TNC null lungs, but the difference disappeared at day 36. At day 60 a 370 

decreased fraction of mature septa was detected in TNC null mice. In adult animals at day 86 371 

no differences were observed (Fig. 5). Following cell proliferation by estimating the number 372 

of Ki-67-positive cells, a peak of proliferating cells was detected at days 4 and 6 both in 373 

wildtype and TNC null animals. However, the number of proliferating cells was significantly 374 

larger in tenascin-C null lungs than in wildtype (Fig. 6C). The total number of cells was 375 

increased in tenascin-C deficient lungs at days 10 and 14, but at day 17 or later no 376 

differences were observed (Fig. 6D and data not shown).  377 

Asking whether this disappearance of the difference in the total normal number of 378 

cells at day 17 or later may be explained by an increased rate of cell death, the number of 379 

TUNEL-positive cells was compared between TNC null and wildtype lungs. The TUNEL-380 
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essay stains cell possessing a large amount of DNA breakage which is typical for apoptosis, 381 

programed cell death, and highly elevated DNA repair. Both in wildtype and TNC null animals 382 

a peak of TUNEL-positive cells was observed at days 14 and 17. In addition, TNC deficient 383 

lungs showed a premature increased rate of TUNEL-positive cell at day 10. At all other 384 

investigated time points no differences were observed (Fig. 7).  385 

  386 
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Discussion 387 

Although numerous reports on TNC expression during organ and tissue development exist 388 

and many in vitro studies have suggested multiple functions for this protein during 389 

development (see introduction and (36) (9)), until now only one developmental abnormality 390 

has been reported in lungs of TNC deficient mice (60) (14). Recently we described a reduced 391 

branching morphogenesis during the development of the bronchial tree (60).  In the present 392 

study we investigated the effect of TNC deficiency during postnatal lung development using 393 

the TNC null mice strain of Forsberg et al. (24). Early postnatal lung development is 394 

characterized by the start of alveolarization and microvascular maturation as well as a peak 395 

of cell proliferation. It is well acknowledged that TNC expression peaks in the lung while 396 

these processes take place. By following the anlage of new septa and microvascular 397 

maturation by stereological estimations, we observed that both developmental processes 398 

were delayed in TNC null lungs and started after day 7 (Figs. 2B, 5A, and 8) which is 3-4 399 

days too late. This result lets us conclude that TNC contributes to the regulation of 400 

alveolarization/septation and microvascular maturation during early postnatal lung 401 

development. Remarkably, at day 7 about one third of the septal surface area present in 402 

TNC null lungs showed an atypical structure with more than 2 capillary layers (Fig. 5B). To 403 

the best of our knowledge such incorrectly structured septa have never been detected during 404 

postnatal lung development before.  405 

 406 

TNC and cell migration 407 

The expression of TNC is in parts controlled by mechanical stimuli. Furthermore, the 408 

presence of TNC facilitates cell migration e.g. by binding of TNC to the cell binding domain of 409 

fibronectin or by the recognition of TNC by 8 integrin (8, 13, 15, 78). Since the process of 410 

lifting off of new alveolar septa most likely includes mechanical forces and requires a 411 

coordinated migration of all cell types present in the distal lung, this phenotype implies that 412 

cell migration and the transduction of mechanical forces may be impaired by TNC deficiency. 413 

In consequence, we hypothesize that TNC contributes to mechano transduction and to the 414 
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regulation of cell migration which are both required for the lifting off of new alveolar septa and 415 

for the formation of correct structured alveolar septa including the capillary network during 416 

early postnatal lung development.  417 

 418 

Cell proliferation 419 

In parallel to the delayed start of alveolarization and microvascular maturation, an increased 420 

number of proliferating cells was detected in TNC deficient lungs at days 4 and 6 (Fig. 6C). 421 

We therefore conclude that TNC also takes part in the regulation of cell proliferation, and 422 

thus seems to be a key factor for the regulation of the major developmental processes, i.e. 423 

alveolarization, microvascular maturation, cell migration and cell proliferation, taking place 424 

during early postnatal lung development. Moreover, our result of an increased cell 425 

proliferation is basically interesting, because this study is the first one detecting this 426 

phenomenon in vivo in TNC deficient mice. Many in vitro studies have shown that depending 427 

on the cell type TNC can either stimulate (37) (11) (35) (72) (16) or inhibit cell proliferation 428 

(11) (55) (17). However, in vivo studies have only observed a reduced rate of cell 429 

proliferation in TNC deficient mice so far, namely in association with a model of renal 430 

glomerulonephritis and in association with the behavior of neural precursor cells during the 431 

development of the central nervous system (28) (51). Thus, our results indicate that TNC can 432 

exert supportive or inhibitory effects on cell proliferation not only in vitro, but also in vivo. 433 

 434 

Mechanical forces 435 

Taking into account that TNC expression may be induced due to mechanical strain, and TNC 436 

is highly expressed at the tips of the alveolar septa, which are recognized to bear high 437 

mechanical forces, we moreover speculate that TNC expression might be up-regulated by 438 

mechanical stimuli during early postnatal lung development. Since TNC seems to contribute 439 

to the regulation of cellular processes like cell migration and cell proliferation during early 440 

postnatal lung development, its function during this period might be described as mechano-441 
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transducer, in a sense that mechanical stimulation promotes cellular action via up-regulation 442 

of TNC expression.  443 

 444 

Continued alveolarization 445 

The peak of TNC expression during the first postnatal week is followed by a decline to 446 

markedly reduced, but still detectable, levels during the third postnatal week during normal 447 

lung development in rats and mice (58, 63, 85). Unexpectedly, besides impairing early 448 

postnatal lung development (classical alveolarization), TNC deficiency did also alter later 449 

stages of lung development. In TNC deficient lungs the continued alveolarization (second 450 

phase) was prolonged. While a premature microvascular maturation was detected at days 15 451 

and 21 (Fig. 2B and 5A), a delay of microvascular maturation was observed at day 60. The 452 

latter may be due to the catch-up of alveolarization observed between days 36 and 60 in the 453 

TNC deficient lungs, because newly formed septa are immature and it takes a short while 454 

until they mature. Therefore, we hypothesize that the observed higher “input rate” of new 455 

septa induces a higher percentage of immature septa in the TNC deficient lungs at day 60. 456 

The altered continued alveolarization let us hypothesize that TNC contributes not only to the 457 

lifting off of new septa and microvascular maturation at the start of postnatal lung 458 

development, but that the low levels of TNC detected during later stages of lung 459 

development also contribute to the regulation of both of the latter named processes.  460 

 461 

Programmed cell death.  462 

Given the roles of the protein TNC both during early postnatal lung development and during 463 

later stages which have been demonstrated in the present study, it seems to be surprising 464 

that no differences were detected in TNC deficient lungs in adulthood at postnatal day 86. 465 

This result may be explained by the presence of corrective mechanisms during postnatal 466 

lung development in TNC deficient animals. Although an increased number of proliferating 467 

cells was observed in TNC null lungs at days 4 and 6, the total number of cells was 468 

increased only at days 10 and 14, but not thereafter (Fig. 6). A possible mechanism 469 
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explaining this phenomenon would be a compensatory alteration of the rate of programmed 470 

cell death similarly to the alterations observed in rat which were treated with dexamethasone 471 

as neonates (45). Estimating the number of TUNEL-positive cells a premature peak of 472 

positive cells was detected in TNC null animals at day 10 (Fig. 7). Unfortunately, the TUNEL-473 

essay is not completely specific for programmed cell death. It also detects cells expressing a 474 

high amount of DNA breakage during DNA repair. Because, programmed cell death is 475 

reported during this stage of development, it is likely that at least a high number of the 476 

TUNEL-positive cells are dying. The present study is the second one reporting that both cell 477 

proliferation and programmed cell death are altered in TNC deficient mice during 478 

development. However, in contrast to our observation Garcion et al. found a reduced rate of 479 

cell proliferation and a reduced rate of programmed cell death of neural precursor cells 480 

during development of the central nervous system in TNC deficient mice (28). Thus, the 481 

compensation of impaired cell proliferation by the adaptation of programmed cell death 482 

seems to be an important corrective mechanism which leads to the apparent normality of 483 

TNC deficient mice in adulthood. Furthermore, it needs to be mentioned that the present 484 

study is the first one following TUNEL-positive cells in the developing mouse lung. Over the 485 

last decades postnatal lung development was generally considered to be identical in mice 486 

and rats. However, while rat lung development was well characterized by morphometrical 487 

methods, postnatal lung development in the mouse was only followed by morphological 488 

observations. We were recently able to show that postnatal lung development in mice and 489 

rats is not identical regarding the endpoint of alveolarization, the rate of the anlage of new 490 

alveolar septa and the growth rate of the lung parenchyma (70) (50). In the present study we 491 

further observe that the peak of TUNEL-positive cells starts earlier in mice than in rats. While 492 

in rats a peak was detected at days 19 and 21 (45) (68), the peak was observed in mice 493 

already at days 14 and 17 (Fig. 7).  494 

 495 

Rescue of phenotype  496 
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An additional question arising is why the anlage of new alveolar septa and septal surface 497 

area observed in adult TNC deficient animals is identical to wildtype. The phenotype of a 498 

practically absent formation of new septa between days 4-7 in TNC deficient lungs was 499 

compensated in the TNC deficient lungs leading to an increased rate of newly forming septa 500 

between days 7-15. The reduced formation of new septa between days 21-36 in TNC 501 

deficient animals was compensated by prolonged alveolarization between days 36-60 (Fig. 502 

2B). In parallel to the prolonged alveolarization a decrease of the fraction of the septal 503 

surface area characterized by a single layered capillary network (mature capillary network) 504 

was observed between days 36-60 in TNC deficient lungs (Fig. 5A). Principally, the lifting off 505 

of new septa requires the existence of a double layered capillary network. While during 506 

classical alveolarization (first phase) double layered capillary networks are still present in the 507 

prenatally formed septa, the late formation of new septa is facilitated by local duplications of 508 

the single layered capillary network at the sides of septation (70) (65). Most likely the double 509 

layered capillary networks which are present during adolescence and young adults in 510 

wildtype and TNC deficient lungs (Fig. 5A) appear at sites where new septa are forming and 511 

grow into the alveolar lumen. Therefore, it is anticipated that an increased rate of the 512 

formation of new septa should result in a transient immaturity of the alveolar septa. 513 

 Another process which was associated with TNC deficiency during postnatal lung 514 

development and which practically represents a rescue mechanism is the increased lung 515 

volume we observed in TNC null animals during early postnatal lung development (Fig. 2A). 516 

Although in TNC null lungs practically no septa were formed between days 4-7 and the 517 

anlage of septa was still decreased at day 10, the septal surface area of TNC deficient 518 

animals was only slightly reduced at day 7 and not significantly different at day 10 (Fig. 2C). 519 

However, this compensatory effect was restricted to the first three postnatal weeks and did 520 

not rescue the reduced formation of new alveolar septa between days 21-36.  521 

In principle the increase of the lung volume could be caused by two different effects: 522 

increased lung growth and/or increased compliance of the lung tissue and the thorax (the 523 

filling of the lungs was done when the thorax was still closed except a small hole in the 524 
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diaphragm). We would not like to speculate which of the mechanisms is predominately 525 

involved. However, for the TNC deficient mice it does not matter, because in both cases, 526 

lung growth versus compliance, a larger gas-exchange area could be used as compared to 527 

wildtype – and most likely the latter is what counts for the mice.  528 

Does the question of increased lung growth versus lung compliance effect the 529 

stereological estimations? No, because the estimations are done as good as possible under 530 

standardized conditions. To use a constant pressure for filling represents the state of the art 531 

(34). However, stereological estimations do not tell anything about the reason why a 532 

parameter is different in different groups of animals.  533 

Does the question affect the finding of delayed and catch-up alveolarization? No, 534 

because without the observed increase of lung volume the effect would be even more 535 

pronounced.  536 

 537 

Conclusion 538 

In summary, we describe a new developmental phenotype of the TNC null mouse. In TNC 539 

deficient lungs both alveolarization and microvascular maturation started with a delay, cell 540 

proliferation was increased and thick septa with an accumulation of capillaries and cells were 541 

observed during early postnatal lung development. These results are summarized in figure 8. 542 

These results let us hypothesize that TNC contributes to the lifting off of new septa, the 543 

regulation of cell migration and cell proliferation, and furthermore to microvascular maturation 544 

at the start of postnatal lung development. The increased cell proliferation was most likely 545 

rescued by an increased number of dying cells (TUNEL-positive), while the delayed 546 

alveolarization and microvascular maturation were compensated by an increase of the 547 

formation of new alveolar septa and an increase of septal maturation. In addition, the phase 548 

of continued alveolarization (second phase) was prolonged and in parallel the alveolar 549 

microvascular was less mature in TNC deficient mice towards the end of continued 550 

alveolarization. The latter may be explained by an increased or better catch-up formation of 551 

new alveolar septa which are immature directly after they are formed. We hypothesize that 552 
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TNC contributes not only to the lifting off of new alveolar septa and microvascular maturation 553 

during early postnatal lung development, but also during later stages.  554 
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Figures legends  810 

Figure 1. 3D-visualizations of the terminal airspaces. On postnatal day 4 the lung 811 

parenchyma of wildtype (WT) and TNC null mice (TNC) consisted of large terminal airspaces 812 

(A+B). In wildtype mice the start of alveolarization is characterized by the formation of new 813 

septa (arrow) and alveoli (asterisk) on day 7 (D). In TNC null lungs focal areas of atypical 814 

thickened septa were detected (arrowhead in C) on day 7 which are indicative for a halted 815 

alveolarization. At postnatal day 15 the differences disappeared (E+F). Bar, 50μm; 816 

visualizations are based on synchrotron-based x-ray-tomographic microscopy. 817 

 818 

Figure 2. Lung volume, total length of the free septal edge, anlage of newly forming 819 

alveolar septa, and total surface area. The lung volumes (A), the total length of the free 820 

septal edge (B), the anlage of newly forming alveolar septa (C), and the septal (alveolar) 821 

surface area (D) were stereologically estimated. The anlage of newly formed septa is 822 

normalized to day 2 and equal to the newly formed length of the free septal edge. The lung 823 

volumes of TNC null animals were increased by approximately 20% between days 2-21 (A). 824 

In TNC null lungs classical alveolarization started delayed after day 7 (B-D). Furthermore, the 825 

formation of new alveolar septa was markedly reduced between days 21-36, but 826 

alveolarization was prolonged to day 60 (B+C). The septal surface area of TNC deficient 827 

animals was decreased at days 7 and 36 (D). Error bars indicate the standard deviations; 828 

N = 5-8 lungs of male mice per time point and genotype. 829 

 830 

Figure 3. Morphological observations on light and electron- microscopical images at 831 

postnatal day 7. The morphological appearance of the interairspace septa of wildtype and 832 

tenascin C null lungs was compared on light- (A+B) and electron microscopical images 833 

(C+D). We observed focal areas with atypical thickened septa in TNC null lungs at postnatal 834 

day 7 (arrows). The focally thickened areas showed an abnormal structure with an 835 

accumulation of capillaries and connective tissue, as well as an increased cellularity, but no 836 

epithelial cells inside the thickening. Bar, 50 μm in A+B; 20μm in C+D. 837 
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 838 

Figure 4. Thickness of septa. The thickness of the septa was measured on electron 839 

microscopical lung images as shown in figure 3C+D. At day 7 the mean septal wall thickness 840 

of the tenascin C null mice was increased by 100% as compared to wildtype mice (A). Panel 841 

B shows a histogram of the thickness measured at postnatal day 7 using a class width of 842 

5μm. In TNC deficient lungs a broader distribution and a shift to thicker septa was observed. 843 

Error bars indicate the standard deviations; N = 5 lungs of male mice per time point and 844 

genotype. 845 

 846 

Figure 5. Microvascular maturation. In TNC null lungs microvascular maturation was 847 

delayed and started after day 7 (A). About one third of the alveolar septa of TNC deficient 848 

animals showed an atypical appearance with more than two capillary layers at day 7 (B). At 849 

days 15 and 21 premature microvascular maturation was detected. The difference 850 

disappeared at day 36. At day 60 a decreased fraction of single layered septa was observed 851 

in TNC null lungs, but in adult animals at day 86 no differences were detected (A). Error bars 852 

indicate the standard deviations; N = 5 lungs of male mice per time point and genotype. 853 

 854 

Figure 6. Cell proliferation and total number of cells. Lung sections of TNC deficient and 855 

wildtype mice were stained with anti-Ki-67, a marker for cell proliferation, and counterstained 856 

with hematoxylin as shown for postnatal day 6 (A+B). The number of Ki-67- positive cells (C) 857 

as well as the total number of cells (D) per cubic millimeter of septal volume was evaluated 858 

between postnatal days 4-17. Both in wildtype and in TNC null lungs a peak of proliferating 859 

cells was detected at days 4 and 6, but the number of Ki-67- positive cells observed in mice 860 

lacking TNC exceeded the one in wildtype (C). At days 10 and 14 the total number of cells 861 

per cubic millimeter was larger in TNC null than in wildtype lungs (D). Bar, 50 μm. Error bars 862 

indicate the standard deviations; N = 3 lungs of male mice per time point and genotype.  863 

 864 
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Figure 7. TUNEL-essay positive cells. Sections of TNC null and wildtype lungs were 865 

labelled by the TUNEL-procedure as shown for postnatal day 10 (A+B). The TUNEL-essay 866 

stains cell possessing a large amount of DNA breakage which is typical for programed cell 867 

death and highly elevated DNA repair. A peak of TUNEL-positive cells was observed at days 868 

14 and 17 both in TNC deficient and wildtype lungs. At day 10 a four-fold increase was 869 

detected in lungs lacking TNC as compared to wildtype (C). Bar, 200 μm. Error bars indicate 870 

the standard deviations; N = 3 lungs of male mice per time point and genotype.  871 

 872 

Figure 8. Timeline of phenotypes. The different phenotype in TNC deficient lungs are 873 

compared to the phenotype of wildtype lungs. Panel A summarizes the structural 874 

differences: Lung volumes of TNC deficient lungs are increased between days 4-21, but the 875 

length of the free septal edge, the anlage of septa and the alveolar surface area are all 876 

decreased at days 7 (-10) and 36. The three of them catch up at days 15-21 and a second 877 

time at day 60. Panel B illustrates cell number, proliferation, and death. An increased cell 878 

proliferation at days 4-7 is associated with an increased number of cells at days 10-15 in 879 

TNC deficient lungs. Programmed cell death is increased at day 10 which results in a 880 

normalization of the number of cells at days 15-86 as compared to wildtype. Panel C 881 

compares septal thickness and microvascular maturation. It seems to be that the delay of 882 

classical alveolarization at day 7 causes an increase of the septal thickness. Microvascular 883 

maturation is also effected at day 7, but showed a decreased maturity. The same was 884 

observed at day 60 which is most likely due to a catch-up alveolarization between days 36-885 

60. All data are given as increase or decrease in comparison to wildtype (WT).   886 
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