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Abstract

Recent studies have analyzed whether one forecast method dominates another un-

der a class of consistent scoring functions. While the existing literature focuses on

empirical tests of forecast dominance, little is known about the theoretical conditions

under which one forecast dominates another. To address this question, we derive a new

characterization of dominance among forecasts of the mean functional. We present var-

ious scenarios under which dominance occurs. Unlike existing results, our results allow

for the case that the forecasts’ underlying information sets are not nested, and allow

for uncalibrated forecasts that suffer, e.g., from model misspecification or parameter

estimation error. We illustrate the empirical relevance of our results via data examples

from finance and economics.
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1 Introduction

Forecasts of a random variable Y (such as the inflation rate, a financial volatility measure, or

the sale price of a house) play an important role in economics. Recent technological advances

have contributed to an ever increasing array of data sources and forecasting techniques,

which necessitates statistically principled comparisons of forecast quality. Here we focus on

the typical task of predicting the mean of Y . It is well known that squared error loss sets

the incentive to correctly forecast the mean, conditional on a certain information set. This

basic insight underlies the use of squared error for estimating regression models. However,

Savage (1971) shows that there are infinitely many other scoring (or loss) functions that

are also consistent with the goal of forecasting the mean. Consider, for example, the task

of modeling and forecasting the mean of a binary variable Y ∈ {0, 1}, which is simply the

probability that Y = 1. In this case, squared error is often referred to as the ‘Brier score’

(following Brier, 1950). While squared error can be used to construct consistent parameter

estimators in regression models and to evaluate probability forecasts out-of-sample, there is

a continuum of other scoring functions that can be used as well (see e.g. Buja et al., 2005).

The Bernoulli log likelihood function, which corresponds to maximum likelihood estimation,

is arguably the most popular of these choices. In the general case where Y is not restricted

to be binary, squared error continues to be a popular scoring function, and can be motivated

as the (negative) log likelihood function of a Gaussian density with known variance. Log

likelihood functions corresponding to other single-parameter families (such as Poisson or

Exponential) can be employed as well; Table 1 below provides examples.

The non-uniqueness of consistent scoring functions is challenging, in that rankings of two

forecast methods by average scores may depend on the specific function used for out-of-

sample evaluation. Ehm et al. (2016), Ehm and Krüger (2018), Yen and Yen (2018), Ziegel

et al. (2018) and Barendse and Patton (2019) therefore propose graphical tools and hypoth-

esis tests to analyze the robustness of empirical forecast rankings. In their terminology, one

forecast method dominates another if it performs better in terms of every consistent scoring
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function.

Adopting a theoretical perspective, Holzmann and Eulert (2014) show that a correctly speci-

fied forecast method dominates a competitor that is based on a smaller (nested) information

set. However, forecasts based on diverse and thus non-nested information sets play a major

role in applications, and are often encouraged by designers of forecast surveys and contests.

For example, the European Central Bank’s ‘Survey of Professional Forecasters’ features

private and public-sector, financial and non-financial institutions from all over Europe (Eu-

ropean Central Bank, 2018). Patton (2018) demonstrates that non-nested information sets

may lead to lack of forecast dominance, i.e., to forecast rankings that fail to be robust across

consistent scoring functions. This issue has been tackled for probability forecasts of a binary

variable (DeGroot and Fienberg, 1983; Krzysztofowicz and Long, 1990), but results for more

general situations are available only under specific assumptions. Furthermore, all existing

theoretical results assume that the forecasts under comparison specify the correct expecta-

tion of Y , given some information set. As illustrated by Patton (2018), this assumption is

often violated in applications, which may lead to non-robust forecast rankings.

The present paper sheds new light on the theoretical conditions under which forecast domi-

nance occurs. An understanding of these conditions is useful to interpret empirical results of

(non-)robust forecast rankings, and to identify desiderata of forecasting methods that may

inspire improvements of existing methods. Unlike previous studies, we derive conditions that

allow for non-nested information sets. Furthermore, we allow for various types of forecast

imperfections resulting, amongst others, from model misspecification and parameter estima-

tion error (if forecasts are generated by statistical methods) or cognitive biases (if forecasts

are judgmental, generated by humans). These phenomena are ubiquitous in practice but

have not been tackled by the existing theoretical literature on forecast dominance.

The paper is structured as follows. Section 2 presents our main technical result, a new

characterization of dominance among mean forecasts. We then discuss alternative sets of

assumptions that yield natural conditions for dominance. Section 3 considers the case of
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auto-calibrated forecasts, which means that the forecast matches the conditional expectation

of Y , given the forecast itself. Under this condition, which allows for non-nested information

sets, the forecast which is more variable in the sense of convex order (see e.g. Shaked and

Shanthikumar, 2007; Levy, 2016) dominates the other. This result generalizes the result of

Holzmann and Eulert (2014) mentioned above, and thus provides weaker sufficient conditions

for forecast dominance. Section 4 drops the auto-calibration assumption, but instead requires

joint normality of each forecast with the predictand. Alternatively, Section 5 assumes that

both forecasts are based on the same information set F , but yield imperfect approximations

of the conditional expectation of the predictand given F . Our results in Sections 4 and

5 demonstrate that there can well be dominance relations among two uncalibrated (i.e.,

not auto-calibrated) forecasts. In Section 6, we illustrate our theoretical results via data

examples from finance and economics. Section 7 concludes with a discussion of the results

and open problems. All proofs are deferred to the appendix. An online appendix presents

additional analytical examples and details on hypothesis testing in our data examples.

2 A Characterization of Forecast Dominance

Savage (1971) considers scoring functions of the form

S(x, y) = φ(y)− φ(x)− φ′(x) (y − x), (1)

where x ∈ R is a forecast, y ∈ R is a realization, and φ is a convex function with subgradient

φ′. Here, a scoring function assigns a negatively oriented penalty, such that a smaller value

of S corresponds to a better forecast. Functions of the form given in (1) are consistent for

the mean (Gneiting, 2011): If Y has cumulative distribution function (CDF) F , then

E (S(m(F ), Y )) ≤ E (S(x, Y )) , for any x ∈ R. (2)
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Here m(F ) =
∫
x dF (x) is the mean of F (which we always assume to exist and be finite), and

E denotes expectation. Equation (2) states that a forecaster minimizes their expected score

when stating the mean of Y as their forecast. The scoring function S is strictly consistent if

equality in (2) implies x = m(F ). Strict consistency corresponds to a strictly convex function

φ in (1). Under some additional assumptions (see Gneiting, 2011, Theorem 7), the scoring

functions given at (1) are the only consistent scoring functions for the mean. Note that the

additive term φ(y) in (1) is included to enforce the convention that S(y, y) = 0. However,

the term does not depend on x, and is hence irrelevant in terms of optimal forecasting. Table

1, which is a modified version of Yen and Yen (2018, Table 1), presents examples of strictly

consistent scoring functions for the mean.

Range Range
S(x, y) φ(z) of X of Y Comment(s)

(y − x)2 z2 R R squared error

−y log x− (1− y) log(1− x)∗ z log z + (1− z) log(1− z) (0, 1) [0, 1] negative log likelihood of
Bernoulli dist.

log x+ y
x − 1∗ − log z (0,∞) [0,∞) negative log likelihood of

exponential dist.; equal to
QLIKE loss (Patton, 2011)

−y log x+ x∗ z log z − z (0,∞) [0,∞) negative log likelihood of
Poisson dist.

Table 1: Examples of strictly consistent scoring functions for the mean. Each example is char-
acterized by a strictly convex function φ(z). Scoring functions marked by an asterisk (∗) differ
from Equation (1) by subtracting φ(y). This transformation ensures that the scoring function is
well-defined over the entire range of Y . Rankings of any two forecasts x1, x2 remain unchanged,
and strict consistency of the scoring function is preserved.

Consider two generic forecasters (or forecasting methods) A and B who issue forecasts XA

and XB of the mean of Y . We treat these forecasts as random variables and consider their

joint distribution with Y , the random variable to be predicted. We assume throughout that

XA, XB and Y are integrable. The random variables are defined on the probability space

(Ω,A,Q) whereby the point forecastsXA, XB are measurable with respect to information sets

AA,AB ⊆ A; see Ehm et al. (2016, Section 3.1) for a detailed discussion. This setup includes
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the case of a binary predictand Y ∈ {0, 1}, in which the mean forecasts XA, XB quote the

probability that Y = 1, conditional on their respective information sets. We emphasize that

the setup is consistent with the case that Y ≡ Yt is a time series and Xj ≡ Xtj, j ∈ {A,B}

are associated forecasts. The only requirement is that the joint distribution of the forecasts

and the predictand is strictly stationary, such that the objects that we use in the following

(notably expectations and CDFs) are well defined and do not depend on time. See Strähl

and Ziegel (2017, Definition 2.2) for a formal probability space setup involving time series

of forecasts and realizations, and Example 3.3 for an illustration. The following notion of

forecast dominance is central to this paper.

Definition 2.1 (Forecast dominance). Forecast A dominates forecast B if

E (S(XA, Y )) ≤ E (S(XB, Y ))

for every function S of the form given in (1).

The preceding definition implies that the better performance of A compared to B is robust

across all consistent scoring functions S. Theorem 1b and Corollary 1b of Ehm et al. (2016)

imply that forecast dominance holds if and only if E (Sθ(XA, Y )) ≤ E (Sθ(XB, Y )) for all

θ ∈ R, where

Sθ(x, y) =
1

2
(θ − y)1(x>θ) (3)

is the so-called elementary score for the mean indexed by the parameter θ ∈ R, up to a term

that does not depend on x and is thus irrelevant in terms of forecast rankings (see Lemma A.3

for details). Building upon the elementary score, we next present a novel characterization of

forecast dominance.

Theorem 2.1. Let A and B be forecasts for the mean. Then A dominates B if and only if
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ψA(θ) ≥ ψB(θ) for all θ ∈ R, where

ψj(θ) =
1

2

∫ ∞
θ

P(Xj > w) dw +
1

2
E
(
(E
(
Y
∣∣Xj

)
−Xj)1(Xj>θ)

)
for j ∈ {A,B}.

The function ψj(θ) appearing in Theorem 2.1 is the expected value of the random variable

−Sθ(Xj, Y ), where Sθ(x, y) has been defined at (3). Theorem A.4 in Appendix A is a more

general version of Theorem 2.1, covering forecast dominance for expectiles at level τ ∈ (0, 1).

Expectiles are an asymmetric generalization of the mean which is the expectile at level

τ = 1/2 (Newey and Powell, 1987). While the representation of forecast dominance in Ehm

et al. (2016) is an important prerequisite for our Theorems A.4 and 2.1, our derivation of

an analytical expression for the expected score is novel, and is crucial in order to establish

forecast dominance (or lack thereof) in theoretical scenarios. The two summands of the

function ψj separate the influence of the variability (first summand) and the calibration

(second summand) of the forecast. Roughly speaking, calibration refers to the statistical

compatibility of forecasts and observations; see Section 3 for details. Variability of a forecast

may or may not be desirable depending on the calibration properties; see Theorem 3.1 and

Proposition 4.1. In the remainder of this paper, we derive various interpretable scenarios

under which the technical condition of Theorem 2.1 is satisfied.

3 Auto-Calibrated Forecasts

Definition 3.1 (Auto-calibration). X is an auto-calibrated forecast of Y if E
(
Y
∣∣X) = X

almost surely.

The definition implies that the forecast X of Y can be used ‘as is’, without any need to

perform bias correction. The prefix ‘auto’ indicates that X is an optimal forecast relative to

the information set σ(X) generated by X itself. Patton (2018, Proposition 2) also considered

this notion of auto-calibration in the context of forecast dominance. In the literature on

forecasting binary probabilities, which are mean forecasts and thus nested in the current
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setting, the same notion is often simply called ‘calibration’, see e.g. Ranjan and Gneiting

(2010, Section 2.1). Furthermore, the definition coincides with the null hypothesis of the

popular Mincer and Zarnowitz (1969, henceforth MZ) regression, given by

Y = α + βX + error; (4)

the null hypothesis (α, β) = (0, 1) corresponds to X being an auto-calibrated forecast of Y .

Auto-calibration relates to the joint distribution of the forecast Xj and the realization Y .

Below we make use of the concept of convex order that compares univariate distributions.

Definition 3.2 (Convex order). A random variable Z1 is greater than Z2 in convex order if

E (φ(Z1)) ≥ E (φ(Z2)), for all convex functions φ such that the expectations exist.

By Strassen’s (1965) theorem, Z1 is greater than Z2 in convex order if and only if there

are random variables Z ′1, Z
′
2 on a joint probability space such that Z ′1 ∼ Z1, Z

′
2 ∼ Z2 and

E
(
Z ′1
∣∣Z ′2) = Z ′2. Here, ∼ denotes equality in distribution. If Z1 is greater than Z2 in

convex order then V (Z1) ≥ V (Z2), where V denotes variance. The converse is generally

false; however, in the special case that Z1 and Z2 are both Gaussian with the same mean,

V (Z1) > V (Z2) implies that Z1 is greater in convex order than Z2.

If Z1 is greater than Z2 in convex order, then−Z2 second-order stochastically dominates−Z1.

(A random variable V second-order stochastically dominates another random variable W if

E (u(V )) ≥ E (u(W )) for all non-decreasing and concave functions u; see Levy (2016, Section

3.6). Note that this definition is weaker than convex order since the latter involves both

increasing and decreasing functions φ.) Furthermore, writing Z ′1 = Z ′2 + ε with ε = Z ′1−Z ′2,

we obtain E
(
ε
∣∣Z ′2) = 0. In the economic literature, Z1 is sometimes referred to as being

equal in distribution to ’Z2 plus noise’ (Rothschild and Stiglitz, 1970; Machina and Pratt,

1997). The term ‘noise’ for ε suggests that the variation in Z1 is undesirable. Indeed, if −Z1

and −Z2 represent two investments with stochastic monetary payoffs, then every risk-averse

decision maker with concave utility function will prefer −Z2 to −Z1. We avoid the ‘noise’
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terminology since the negative connotation of the term is not justified in the present context;

by contrast, the following result indicates that being more volatile is highly desirable in the

context of auto-calibrated mean forecasts.

Theorem 3.1. Assume that A and B are both auto-calibrated mean forecasts. Then, A

dominates B if and only if XA is greater than XB in convex order.

According to Theorem 3.1, it is desirable for a forecast to be large in convex order: Given

the assumption that forecasts are auto-calibrated, being large in convex order implies that

the forecast is more variable and is based on a ‘larger’ information set Aj. Without the

assumption of auto-calibration, a forecast could be more variable simply because of erratic

variation (see Sections 4 and 5 below). In the case that Y is binary and XA, XB are discretely

distributed with finite support, Theorem 3.1 coincides with DeGroot and Fienberg (1983,

Theorem 1). However, Theorem 3.1 is much more widely applicable since it imposes no

assumptions on the distributions of Y , XA and XB.

Example 3.1. Let Y = Z1 + Z2 + Z3 + Z4, where {Zk}4k=1 are independent and identically

distributed random variables with mean zero. The distribution may be non-Gaussian, may

involve skewness and excess kurtosis, or could be discrete. Now let XA = Z1 + Z2 and

XB = Z3, such that both A and B are auto-calibrated for Y , and XA is greater than XB in

convex order. By Theorem 3.1, A dominates B. This setup includes the example of Ehm

et al. (2016, p. 557) where Zk are all standard normal and dominance is established via

calculations that exploit normality.

Example 3.2. Suppose that XA and XB are both auto-calibrated and normally distributed.

If V (XA) > V (XB), then normality implies that XA is greater than XB in convex order, so

that A dominates B by Theorem 3.1. This example generalizes Patton (2018, Proposition

2) since it is based on slightly weaker assumptions and establishes dominance under all

consistent scoring functions instead of a subclass called exponential Bregman loss.
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Proposition 3.2. For j = A,B, let Xj = E
(
Y
∣∣Fj) , where FB ⊂ FA. Then XA and XB

are both auto-calibrated and XA is greater than XB in convex order.

Examples 3.1 and 3.2 both feature non-nested information sets. Proposition 3.2 establishes

that two forecasts with nested information sets satisfy the auto-calibration and convex order

conditions that underlie Theorem 3.1. The latter then states that XA dominates XB, as

would be expected given that XA has access to a larger information set and both forecasts

are correctly specified. The result of Holzmann and Eulert (2014, final line of Corollary 2)

uses the same setup as Proposition 3.2 above, and is thus a special case of Theorem 3.1.

Hence, Theorem 3.1 provides sufficient conditions for forecast dominance that are weaker

than the ones by Holzmann and Eulert. However, the result of Holzmann and Eulert applies

to general functionals, whereas we focus on the mean functional. The following example

concerns forecasts made at different points in time, which is an important special case of

nested information sets in practice.

Example 3.3. Let Yt = a Yt−1 + εt, where |a| < 1 and εt is independent and identically

distributed with mean zero and variance σ2, and let Ft be the information set generated by

observations until time t. Suppose XtA = E
(
Yt
∣∣Ft−1) = a Yt−1 and XtB = E

(
Yt
∣∣Ft−h) =

ah Yt−h for some h ∈ {2, 3, . . .}. Then Yt, XtA and XtB are all strictly stationary time series,

and Ft−h ⊂ Ft−1. Proposition 3.2 thus implies that both forecasts are auto-calibrated, and

that XtA is greater than XtB in convex order. Hence, the variance of XtA exceeds that of

XtB, which also follows from Corollary 2 of Patton and Timmermann (2012).

Finally, the following corollary describes a simple implication of Theorem 3.1 that is closely

related to empirical practice in econometrics.

Corollary. Consider MZ regressions as in Equation (4), conducted separately for forecast

j ∈ {A,B}. Suppose that A and B satisfy the conditions of Theorem 3.1. Then in population,

the MZ regression for A attains a higher R2 than the one for B.
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This relates to the empirical literature on forecasting financial volatility, where R2s of MZ

regressions are commonly used to assess forecasting ability of alternative methods (e.g. An-

dersen et al., 2003, Tables III.A and III.B). See Section 6.1 for an empirical illustration.

4 Forecast Dominance under Normality

Auto-calibration essentially rules out uninformative variation (‘noise’) in a forecast that may

result from an overfitted statistical model, for example.

Example 4.1. Let Y = XA+ε, whereXA and ε are independently standard normal. Suppose

forecaster A quotes XA as a mean forecast for Y , and forecaster B quotes XB = XA+ζ, where

ζ ∼ N (0, σ2
ζ ), independently of XA and ε. One obtains easily that E

(
Y
∣∣XB

)
= XB/(1+σ2

ζ ),

which implies that forecast B is uncalibrated.

In Example 4.1, intuition suggests that A is a better forecast than B since the latter simply

adds the noise term ζ on top of the former. Theorem 3.1 cannot be used to derive this

statement since B is uncalibrated. In this section and in Section 5, we dispense with the

auto-calibration assumption. In order to arrive at interpretable conditions, we investigate

the scenario in which the forecast Xj, j ∈ {A,B} and the realization Y follow a bivariate

normal distribution, such that

Xj

Y

 ∼ N

µj

µY

 ,

 σ2
j ρY j σjσY

ρY j σjσY σ2
Y


 , (5)

where ρY j ∈ [−1, 1] is the correlation between Xj and Y . The Gaussian setup is similar

to Satopää et al. (2016) who motivate joint normality of forecasts and realizations from a

situation in which forecasters observe small bits (’particles’) of the information that generates

the predictand; see their Section 3.2. Forecast dominance does not depend on the dependence

structure between the forecasts. Hence Equation (5) refers to the pair (Xj, Y )′ only; the joint

distribution of (XA, XB)′ is left unspecified, and may be non-Gaussian. The distribution in
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(5) is an unconditional one, and does not specify the dependence (or independence) across

forecast instances. See Example A.1 in the Online Appendix for a stationary time series

illustration that fits into the Gaussian framework.

We assume that µY = µA = µB, which means that forecasts A and B correctly assess the

unconditional mean of Y . This simplifies our analysis but does not seem restrictive in most

applications. The setup in Equation (5) allows for a wide range of scenarios in terms of

forecast accuracy. In particular, the correlation parameter ρY j may be positive or negative,

and there is no prespecified relation between the variance parameters σj and σY . This

modeling approach hence is capable of describing the behavior of imperfect forecasts.

Proposition 4.1. Assume that for j ∈ {A,B} the distribution of (Xj, Y ) is bivariate normal

as in Equation (5). Then

E(Sθ(XB, Y ))− E(Sθ(XA, Y )) =
σY
2

{
ρY A ϕ

(
θ − µY
σA

)
− ρY B ϕ

(
θ − µY
σB

)}
+

(θ − µY )

2

{
Φ

(
θ − µY
σA

)
− Φ

(
θ − µY
σB

)}
, (6)

where Sθ(x, y) is the elementary score function defined at (3), and ϕ and Φ are the probability

density and CDF of a standard normal distribution, respectively.

By Ehm et al. (2016, Theorem 1b and Corollary 1b), A dominates B if the left hand side

of (6) is non-negative for all θ ∈ R. The expression in (6) yields several sets of sufficient

conditions for forecast dominance, where we use the notation βj = ρY j σY /σj to denote the

population slope coefficient in a MZ regression of Y on Xj as in Equation (4). The condition

βj = 1 is necessary and sufficient for auto-calibration.

Case 1 Let σA ≥ σB, and assume that βB ≤ 1 ≤ βA. Then A dominates B.

Case 2 Let σA ≤ σB.

Case 2a Assume that 0 ≤ βA, βB ≤ 1. If βAσ
2
A ≥ βBσ

2
B, then A dominates B.
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Case 2b If βB ≤ 0 ≤ βA, then A dominates B.

Case 3 Suppose that βAσA = βBσB, and that either βA, βB > 1 or βA, βB < 1. Then the

forecast j for which |βj − 1| is smaller dominates the other.

Case 4 If σA = σB, the forecast j for which βj is higher dominates the other.

Justification of these claims is given in the Appendix. For two auto-calibrated forecasts

(βA = βB = 1), Case 1 implies that the one with higher variance is dominant, which echoes

the statement of Theorem 3.1. (Since both forecasts are Gaussian with the same mean,

having higher variance is the same as being greater in convex order.) However, Case 1

does not require auto-calibration. It implies that there may be dominance relations among

two uncalibrated forecasts, or dominance of an auto-calibrated forecast over an uncalibrated

competitor, or vice versa. Case 2a describes a situation in which A has lower variance than

B, but at the same time has higher covariance with Y . This suggests that A has a more

favorable signal-to-noise ratio than B, explaining dominance of A over B. In Case 2b, B is a

particularly poor forecast, featuring high variance and negative correlation with Y . Case 3

describes situations in which both forecasts have the same correlation with Y , and both are

uncalibrated. In these situations, the forecast that comes closer to being auto-calibrated is

dominant. Finally, Case 4 describes a simple condition for dominance if both forecasts have

the same variance.

Proposition 4.1 yields a simple necessary condition for forecast dominance: ForA to dominate

B, it must hold that ρY A ≥ ρY B. (This can be seen by evaluating the expected score difference

in Proposition 4.1 at θ = µY .) If the forecast parameters satisfy this necessary condition

but can not be classified into one of the four cases presented above, it is unclear whether

a dominance relation exists. In this situation, one can use the result of Proposition 4.1 for

an informal numerical check of dominance; see Example A.2 in the Online Appendix for an

illustration.

A major implication of the Gaussian case is that auto-calibration – which underlies Section
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3, as well as all of the previous literature – is not generally required to establish forecast

dominance. In particular, there may well be dominance relations among forecasts generated

from mis-specified statistical models; see Section 5.

5 Forecasts based on a Common Information Set

The results in Section 4 do not require auto-calibration, but require joint Gaussianity of

forecasts and realizations. In this section, we present a result that requires neither auto-

calibration nor Gaussianity, but assumes that both forecasts can be represented as E
(
Y
∣∣F)

plus noise, where the information set F is common across forecasting methods. The forecast

methods can be viewed as different ways of exploiting F , based on statistical models using

alternative estimation algorithms or functional form assumptions, for example.

Theorem 5.1. Let F ⊂ A be a σ-algebra, and let

Y = E
(
Y
∣∣F)+ ε, Xj = E

(
Y
∣∣F)+ ηj, j ∈ {A,B},

where E
(
ε
∣∣F) = 0, and ηj is conditionally independent of ε given F . Assume that, con-

ditionally on F , the distributions of ηA and ηB are both symmetric around zero and are

such that |ηA| is smaller than |ηB| with respect to first order stochastic dominance. Then A

dominates B.

Conditional independence of ηj and ε says that, given the information F , ηj must not

contain information about ε. This requirement seems natural given our interpretation of ηj

as a modeling error. The assumptions about ηA and ηB imply that the former is less variable

(Shaked and Shanthikumar, 2007, Section 3.D). In the special case that ηj|F ∼ N (0, σ2
j ), the

condition is satisfied if σ2
A < σ2

B. The assumption that E
(
ηj
∣∣F) = 0 implies that modeling

errors are unsystematic, which seems plausible in the context of overfitted statistical models,

for example. The theorem nests the case that ηj = 0 almost surely for one model j ∈ {A,B}.
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In contrast to Theorem 3.1 and Proposition 4.1, the conditions of Theorem 5.1 are not

directly testable for empirical data. However, we present testable implications.

Proposition 5.2. Under the conditions of Theorem 5.1, the following statements hold:

(a) E (XA) = E (XB) = E (Y ).

(b) Cov(Xj, Y ) ≤ V (Xj) for j ∈ {A,B}, that is, both forecasts attain a slope coeffient

βj ≤ 1 in MZ regressions.

(c) E
(
X2k
B

)
≥ E

(
X2k
A

)
for all k ∈ N.

Theorem 5.1 has implications for out-of-sample prediction in linear models.

Example 5.1. Let

Y = Z ′β + ε,

where Z is a p-dimensional vector of regressors, and ε is an error term satisfying E
(
ε
∣∣Z) = 0.

Suppose that forecast j ∈ {A,B} is based on some estimator for β, obtained from training

data {Yi, Zi}ni=1. We seek to make predictions for a new observation Y0 = Z ′0β + ε0, where

Z0 and ε0 are independent of the training data. We have that Xj = Z ′0β̂
n
j = Z ′0β +Z ′0 (β̂nj −

β), where β̂nj is the estimator underlying forecast j, and ηj = Z ′0 (β̂nj − β) represents the

approximation error of forecast j. Setting F = σ(Z0), we can apply Theorem 5.1. By

assumption, β̂nj − β (which is generated from training data) is independent of ε0, such that

ηj is conditionally independent of ε0 given F . For large training samples, it is natural to

assume multivariate normality of β̂nj − β for j ∈ {A,B} with mean zero and covariance

matrix Σj. Under this assumption, dominance of A over B occurs if a′ΣAa ≤ a′ΣBa, for all

a ∈ Rk, which is equivalent to (ΣB − ΣA) being positive semi-definite. This is the standard

notion of A being a more precise estimator of β (Lehmann and Casella, 1998, Equation 4.4).
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6 Data Examples

6.1 Forecasting the volatility of financial asset returns

Following Andersen et al. (2003), a large literature is concerned with modeling and fore-

casting realized measures of asset return volatility. Here we consider forecasting log RKt,

where RKt is a realized kernel estimate (Barndorff-Nielsen et al., 2008) for the Dow Jones

Industrial Average on day t. The two forecast specifications we compare are of the form

̂log RKt = β̂0 + β̂1Zt−1 + β̂2

5∑
l=1

Zt−l + β̂3

22∑
l=1

Zt−l,

where {Zt}t is a sequence of predictor variables. This functional form follows Corsi (2009),

and provides a simple way of capturing the temporal persistence in log RKt that is typical

of financial volatilities. For forecast A, Zt corresponds to the daily logarithmic value of

the VIX index, an implied volatility index computed from financial options. For forecast

B, Zt corresponds to the logarithmic value of the absolute index return on day t. We

estimate both specifications using ordinary least squares, based on a rolling window of 1000

observations. Data on the realized kernel measure and daily returns are from the Oxford-Man

Realized library at https://realized.oxford-man.ox.ac.uk/; data on the VIX are from

the FRED database of the Federal Reserve Bank of St. Louis (https://fred.stlouisfed.

org/series/VIXCLS). The sample obtained from merging both data sources covers daily

observations from January 4, 2000 to May 10, 2018. The initial part of the sample is reserved

for estimating the model. We evaluate forecasts for an out-of-sample period ranging from

February 13, 2004 to May 10, 2018 (3580 observations).

To illustrate the conditions for Theorem 3.1 empirically, we first consider MZ regressions for

both forecasts, based on the out-of-sample period. For forecast A (based on VIX), we obtain

the estimate
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Yt = 0.029 + 1.010 XtA + error;

[0.030] [0.022]

the R2 of the regression is 64%, and standard errors that are robust to autocorrelation

and heteroscedasticity are reported in brackets. The standard errors are computed using

the function NeweyWest from the R package sandwich (Zeileis, 2004), which implements the

Newey and West (1987, 1994) variance estimator. For forecast B (based on absolute returns),

we obtain

Yt = 0.015 + 1.003 XtB + error,

[0.051] [0.046]

with an R2 of 48.2%. In both regressions, a Wald test of the hypothesis of auto-calibration

(corresponding to an intercept of zero and a slope of one) cannot be rejected at conventional

significance levels.

To assess the convex order condition empirically, let Fj denote the CDF of forecast j ∈

{A,B}. Then A is greater than B in convex order if and only if

∫ x

−∞
FA(z) dz −

∫ x

−∞
FB(z) dz ≥ 0 (7)

for every x ∈ R, and equality holds in the limit as x → ∞ (see the proof of Theorem 3.1

in Appendix B). Figure 2 plots the empirical CDFs of both forecasts. Visual inspection

suggests that the integral condition in Equation 7 is plausible in the current example. In

order to provide a more formal assessment, we use the subsampling based test by Linton et al.

(2005) to investigate the hypothesis that one distribution is smaller than another in convex

order. (Linton et al. (2005) test for second order stochastic dominance (SOSD). Under the

assumption of auto-calibration, both forecasts have the same expected value, so that SOSD

and convex order coincide, except for a differential sign convention.) We abbreviate the

hypothesis of interest as ‘A is CO-smaller than B’ in the following discussion. Since the

test depends on a tuning parameter (the size b of the subsamples) that is hard to select in
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Figure 1: Subsampling based p-values of the test by Linton et al. (2005) plotted against the
subsample size parameter b. The dashed horizontal line marks a p-value of five percent.

practice, Linton et al. (2005, Section 5.2) suggest to plot the test’s p-value against b, and

select b from within a range over which p is stable; see Online Appendix B.1 for details.

Figure 1 shows the test results. The hypothesis that A is CO-smaller than B is rejected at

the five percent levels for a range of b ≥ 2000 over which the p-values are stable. By contrast,

the right panel of Figure 1 shows no evidence against the hypothesis that B is CO-smaller

than A, with large p-values for all values of b. In summary, the test thus reinforces the

impression that a convex ordering (with A being greater than B) is plausible in the present

example.

Hence both conditions of Theorem 3.1 seem plausible, and forecast A appears to be more

informative than forecast B. Thus, we expect A to dominate B. In order to test dominance

empirically, we use the bootstrap-based test by Ziegel et al. (2018) which we modify to cover

the class of Bregman scoring functions at (1), instead of the class of scoring functions related

to Expected Shortfall that is used by Ziegel et al. (2018). Following their implementation, we

use a stationary bootstrap with block length drawn from a geometric distribution with mean

1.36 n−1/3, where n is the size of the forecast evaluation sample. We use 10, 000 bootstrap

iterations; see Online Appendix B.2 for further details. In line with the implication of

Theorem 3.1, the hypothesis that A dominates B is not rejected by the test, with a bootstrap

p-value of one. In contrast, the hypothesis that B dominates A is rejected with a bootstrap
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p-value below one percent.
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Figure 2: Volatility example: Empirical CDFs of both forecasts.

6.2 Forecasting US inflation

We illustrate the results of the normally distributed case from Section 4 with inflation fore-

casts from the Survey of Professional Forecasters (SPF), a widely used survey of macroeco-

nomic experts. We compare the survey against two simple forecasting schemes: A random

walk forecast (RW) that states the latest realization available to SPF participants, and a

rolling mean forecast (RM) considering the four latest available observations (Atkeson and

Ohanian, 2001). Given their simplicity, these methods act as minimal benchmarks for more

sophisticated competitors, and are routinely included in practical forecast comparisons (see

e.g. Faust and Wright, 2013, Section 2.5). Our analysis is based on real-time data pub-

lished by the Federal Reserve Bank of Philadelphia at https://www.philadelphiafed.

org/research-and-data/real-time-center. We focus on inflation as measured by the

GDP deflator; the relevant series codes are PGDP (SPF forecasts) and P (realizations). We

compare the forecasts against the second vintages of the realizations data. We further center

the forecasts and realizations at zero in order to enforce the common mean assumption made
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in Section 4 (µY = µA = µB); however, our results are very similar if we omit this centering

step.

We first assess the assumption that forecasts Xtj and realizations Yt follow a bivariate normal

distribution. To this end, we implement the test by Lobato and Velasco (2004) for the null

hypothesis that a univariate stationary time series is unconditionally Gaussian. The test is

appealing in that it is free of tuning parameters. We apply the test to the forecasts Xtj,

the outcome Yt and the forecast errors Yt −Xtj, all of which are normally distributed if Xtj

and Yt are jointly normal. Repeating this procedure for three different forecast methods

j (SPF, random walk and rolling mean) and at five forecast horizons (ranging from zero

to four quarters ahead), we obtain p-values above 20% in all but one case. These results

indicate that there is little evidence against pairwise bivariate normality of forecasts and

realizations. Analogous tests for other macroeconomic variables (GDP growth and consumer

price inflation) yielded clear rejections of normality, which is why we do not consider these

variables here.

As a simple summary measure of forecast performance, Table 2 presents the methods’ mean

squared error (MSE) at various forecast horizons. The SPF attains the smallest MSE among

the three methods, with the rolling mean method performing similarly well at some horizons.

The random walk method attains the largest MSE at all horizons. In order to assess the

plausibility of various dominance scenarios (see below Proposition 4.1), Table 2 presents

some relevant statistics related to the covariance matrix of (Xtj, Yt)
′. We check whether

these statistics match any of the scenarios under which dominance may occur. Consider,

for example, the comparison of SPF versus RW at horizon h = 0 in the first column of

Table 2. The SPF forecasts have a smaller empirical standard deviation than the random

walk forecasts (σSPF = 0.916 < 1.156 = σRW ). At the same time, the SPF’s MZ regression

coefficient (βSPF = 0.903) exceeds that of the random walk (βRW = 0.471). These findings

indicate that the SPF forecasts have a better signal-to-noise ratio than the random walk.

Indeed, the point estimates satisfy the conditions of Case 2a in Section 4, with the SPF
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taking the role of the dominant forecast A.

The left panel of Table 3 summarizes the outcomes of similar comparisons for all forecast

horizons h. This analysis is based on the empirical point estimates, and can hence be thought

of as calibrating the theoretical results of Section 4 to empirical data. The table reports a

‘X’ entry whenever the parameters in Table 2 belong to one of the sufficient conditions

for dominance presented in Section 4 (Case 1-4). The SPF forecasts are dominant in six

instances, all of which satisfy the conditions of Case 2a. These findings hence indicate that

the SPF forecasts tend to contain less noise and more signal than the simple time series

methods. Furthermore, according to the parameter estimates, the RM forecast dominates

the RW forecast at the three shortest horizons, with the parameters again belonging to Case

2a in each case.

The right panel of Table 3 reports bootstrap p-values for various possible dominance relations.

The bootstrap implementation is analogous to the one in Section 6.1. The bootstrap is

nonparametric, contrasting the Gaussian setup of the theory in Section 4. In comparing

the left and right panels of Table 3, one can see a fairly close correspondence between the

theoretical implications and the empirical test results. In particular, instances where theory

predicts dominance (symbol X in left panel) correspond to high bootstrap p-values in the

right panel, such that there is no evidence against dominance. Cases where theory rules out

dominance (symbol X in left panel) tend to go along with low bootstrap p-values in the right

panel, corresponding to evidence against dominance.

The preceding analysis shows that our theoretical results under normality can inform em-

pirical forecast comparisons. In addition, the comparisons between the two simple time

series methods (RW and RM) are also in line with the theoretical conditions of Theorem

5.1: First, both methods are based on the same information set generated by observations

up until time t. Second, the theorem’s testable implications in Proposition 5.2 all seem

plausible here; compare the coefficients βj, σj and E(X4
j ) reported in Table 2. The theorem

then predicts dominance of RM over RW. As shown in Table 3, this conclusion is broadly in
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line with empirical nonparametric bootstrap tests.

h 0 1 2 3 4

MSESPF 0.665 0.778 0.862 0.920 1.001
MSERW 1.412 1.535 1.497 1.348 1.538
MSERM 0.886 0.917 0.991 1.103 1.201

σY 1.160 1.160 1.160 1.160 1.160
σSPF 0.916 0.917 0.967 1.008 1.012
σRW 1.156 1.161 1.176 1.213 1.221
σRM 0.924 0.935 0.950 0.971 0.987

βSPF 0.903 0.834 0.755 0.706 0.665
βRW 0.471 0.425 0.441 0.496 0.432
βRM 0.766 0.741 0.692 0.624 0.570

E(X4
SPF ) 2.088 2.220 2.488 3.172 2.813

E(X4
RW ) 5.393 5.383 5.515 6.506 6.534

E(X4
RM) 1.895 1.932 2.028 2.234 2.354

Table 2: Sample estimates for the US inflation data. h indicates the forecast horizon (in quar-
ters); the sample period is 1984:Q1 to 2018:Q2. For forecast method j ∈ {SPF,RW,RM},
MSEj denotes the mean squared error, σj denotes the standard deviation, βj denotes the
slope coefficient from a regression of realized inflation on the forecast, and E(X4

j ) is the
fourth moment of the forecast. σY is the standard deviation of the realized inflation rates.

Theory implications Bootstrap p-values
h 0 1 2 3 4 0 1 2 3 4

SPF �?
fd RW X X X ? X 1.000 1.000 1.000 0.968 0.798

RW �?
fd SPF X X X X X 0.031 0.043 0.050 0.030 0.056

SPF �?
fd RM X X ? ? ? 0.911 0.650 0.723 0.441 0.736

RM �?
fd SPF X X X X X 0.435 0.255 0.160 0.291 0.225

RW �?
fd RM X X X X X 0.032 0.014 0.027 0.473 0.298

RM �?
fd RW X X X ? ? 1.000 1.000 0.999 0.760 0.919

Table 3: The notation ‘A �?
fd B’ denotes the possibility that A dominates B. h indicates the

forecast horizon. Left panel: X means that one of the sufficient conditions for dominance is
satisfied. X means that the necessary condition is not satisfied. ? means that the necessary
condition (but none of the sufficient conditions) is satisfied. Right panel: Bootstrap p-values
of nonparametric forecast dominance test.
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7 Discussion

Patton (2018) identifies three reasons why forecast dominance may not hold in practice:

Non-nested information sets, misspecification, and estimation error. Motivated by this as-

sessment, the present paper provides a theoretical analysis of forecast dominance that relates

to each of these situations. Under the assumption that forecasts are auto-calibrated, our re-

sults in Section 3 provide a novel characterization of the role played by information sets

that may or may not be nested. Misspecification and estimation error are likely to lead to

uncalibrated forecasts for which no analytical results are available in the existing literature

on forecast dominance. Our results in Sections 4 and 5 cover this case in detail, based on

two distinct sets of assumptions that allow us to arrive at interpretable conditions.

Conceptually, our results indicate that the notion of forecast dominance may be less strong

than suggested by Patton (2018), Nolde and Ziegel (2017, Section 2.3), and others. In partic-

ular, there can be dominance relations among two forecasts that are both highly imperfect.

From a more technical perspective, an interesting question is whether similar conditions for

forecast dominance can be derived for functionals other than the mean. As starting points of

the analysis, our Theorem A.4 specifies conditions for dominance for the expectile functional

(which includes the mean as a special case), and we treat quantiles in Online Appendix C.

An open challenge are full distributional forecasts.
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Appendix

A Result for Dominance of Expectile Forecasts

We state and prove a more general version of Theorem 2.1. We consider the expectile

functional of Y at level τ ∈ (0, 1) (Newey and Powell, 1987). The expectile is the unique

value t that satisfies

(1− τ)

∫
(−∞,t]

(t− y) dF (y) = τ

∫
[t,∞)

(y − t) dF (y),

where F (y) is the CDF of Y . The mean functional is obtained as a special case for τ = 1/2.

As shown by Gneiting (2011), the class of consistent scoring functions for the expectile at

level τ is given by

S(x, y) = |1(y<x) − τ | (φ(y)− φ(x)− φ′(x) (y − x)) , (8)
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where φ is a convex function with subgradient φ′. The relevant class for the mean (see

Equation 1) emerges for τ = 1/2. Analogously to Definition 2.1, we then have the following

definition of forecast dominance for expectiles.

Definition A.1 (Forecast dominance for expectiles). Forecast A dominates forecast B if

E (S(XA, Y )) ≤ E (S(XB, Y ))

for every function S of the form given in (8).

Lemma A.1. For any Borel set A ⊂ R,

E ((X − Y )+1A(X)) =

∫ ∞
−∞

P(Y < w,X > w,X ∈ A) dw,

E ((Y −X)+1A(X)) =

∫ ∞
−∞

P(Y ≥ w,X ≤ w,X ∈ A) dw.

Proof. By Fubini’s theorem, we obtain

E ((X − Y )+1A(X)) =

∫
R

∫
R
(x− y)+1A(x) dF (y|X = x) dG(x)

=

∫
R

1A(x)

∫
(−∞,x]

(x− y) dF (y|X = x) dG(x)

=

∫
R

1A(x)

∫
(−∞,x]

∫ x

y

dw dF (y|X = x) dG(x)

=

∫
R

∫
R

∫ ∞
−∞

1(−∞,w)(y)1(w,∞)(x)1A(x) dw dF (y|X = x) dG(x)

=

∫ ∞
−∞

∫
(w,∞)

1A(x)

∫
(−∞,w)

dF (y|X = x) dG(x) dw

=

∫ ∞
−∞

E
(
1(w,∞)(X)1(−∞,w)(Y )1A(X)

)
dw

where F (·|X = x) denotes the conditional CDF of Y given X = x, and G denotes the CDF

of X. The proof of the second equality is analogous.
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Lemma A.2. Let X,Z be two random variables such that E (XZ) exists and is finite. Then,

E (XZ) =

∫ ∞
0

∫ ∞
0

(
H(x, z)− F (x)−G(z) + 1

)
dx dz +

∫ 0

−∞

∫ 0

−∞
H(x, z) dx dz

+

∫ 0

−∞

∫ ∞
0

(
H(x, z)−G(z)

)
dx dz +

∫ ∞
0

∫ 0

−∞

(
H(x, z)− F (x)

)
dx dz, (9)

where H(x, z) = P(X ≤ x, Z ≤ z), F (x) = P(X ≤ x), G(z) = P(Z ≤ z) are the joint and

marginal CDFs of (X,Z), X and Z, respectively.

Proof. For a random variable Y , we can write

Y+ =

∫ ∞
0

(1− 1[Y,∞)(x)) dx, Y− =

∫ 0

−∞
1[Y,∞)(x) dx,

where Y+ = max{Y, 0}, Y− = max{−Y, 0} are the positive and the negative part of Y ,

respectively. Therefore,

(XZ)+ = X+Z+ +X−Z− =

∫ ∞
0

∫ ∞
0

(1− 1[X,∞)(x))(1− 1[Z,∞)(z)) dx dz

+

∫ 0

−∞

∫ 0

−∞
1[X,∞)(x)1[Z,∞)(z) dx dz. (10)

Taking the expectation in (10) and using Fubini’s theorem, we obtain

E ((XZ)+) =

∫ ∞
0

∫ ∞
0

H(x, z)− F (x)−G(z) + 1 dx dz +

∫ 0

−∞

∫ 0

−∞
H(x, z) dx dz,

and, similarly, with (XZ)− = X+Z− +X−Z+,

E ((XZ)−) =

∫ 0

−∞

∫ ∞
0

G(z)−H(x, z) dx dz +

∫ ∞
0

∫ 0

−∞
F (x)−H(x, z) dx dz.

Lemma A.3. The elementary scoring function for expectiles in Ehm et al. (2016, Equation
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12) is identical to the function

Sθ(x, y) = |1(y<θ) − τ |(θ − y)1(x>θ), (11)

up to a difference of τ (y − θ)+ which does not depend on x.

Proof. Adjusting the notation in Equation (12) of Ehm et al. (2016) (using the symbol τ

instead of α for the expectile level), we have

Sθ(x, y) = |1(y<x) − τ |
{

(y − θ)+ − (x− θ)+ − (y − x) 1(θ<x)

}
.

Since |1(y<x) − τ | = 1(y<x)(1− 2τ) + τ and (z)+ = z1(z>0), the score can be rewritten as

Sθ(x, y) =
[
1(y<x)(1− 2τ) + τ

]
(θ − y)

[
1(x>θ) − 1(y>θ)

]
.

Subtracting the term τ(y − θ)1(y>θ) (which does not depend on x) and rearranging, we get

Sθ(x, y) =
[
1(y<x)(1− 2τ)

]
(y − θ)

(
1(y>θ) − 1(x>θ)

)
+ τ(θ − y)1(x>θ)

=


[
1(y<x)(1− 2τ) + τ

]
(θ − y)1(x>θ) y ≤ θ[

1(y<x)(1− 2τ)
]

(y − θ)
(
1− 1(x>θ)

)
+ τ(θ − y)1(x>θ) y > θ

=


(1− τ)(θ − y)1(x>θ) y ≤ θ

τ(θ − y)1(x>θ) y > θ

= |1(y≤θ) − τ |(θ − y)1(x>θ) = |1(y<θ) − τ |(θ − y)1(x>θ).

Theorem A.4. Let A and B be forecasts for the τ -expectile. Then A dominates B if and
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only if ψA(θ) ≥ ψB(θ), for all θ ∈ R, where

ψj(θ) =

∫ ∞
θ

τP(Xj > w, Y > w) + (1− τ)P(Xj > w, Y ≤ w) dw

+ τE
(
(Y −Xj)+1(Xj>θ)

)
− (1− τ)E

(
(Xj − Y )+1(Xj>θ)

)
, for j ∈ {A,B}.

Proof. By Ehm et al. (2016, Corollary 1b), A dominates B if and only if E (Sθ(XB, Y )) ≥

E (Sθ(XA, Y )) for all θ ∈ R, where Sθ is given at (11), see Lemma A.3. Note that Sθ(Xj, Y )

is integrable if Y is integrable, j ∈ {A,B}. We apply Lemma A.2 to the random variables

1(Xj>θ) and |1(Y <θ)−τ |(θ−Y ). We have F (x) = P(1(Xj>θ) ≤ x) = 1(x≥1)+1(x∈[0,1))P(Xj ≤ θ),

G(z) = P(|1(Y <θ) − τ |(θ − Y ) ≤ z)

= P((1− τ)(θ − Y ) ≤ z, Y < θ) + P(τ(θ − Y ) ≤ z, Y ≥ θ)

= 1(z>0)P(Y ≥ θ − z/(1− τ)) + 1(z≤0)P(Y ≥ θ − z/τ),

H(x, z) = P(1(Xj>θ) ≤ x, |1(Y <θ) − τ |(θ − Y ) ≤ z)

= 1(x≥1)G(z) + 1(x∈[0,1),z>0)P(Xj ≤ θ, Y ≥ θ − z/(1− τ))

+ 1(x∈[0,1),z≤0)P(Xj ≤ θ, Y ≥ θ − z/τ).

Therefore, the first integral on the right hand side of (9) is

∫ ∞
0

∫ ∞
0

H(x, z)− F (x)−G(z) + 1 dx dz

=

∫ ∞
0

∫ 1

0

P(Xj ≤ θ, Y ≥ θ − z/(1− τ))− P(Xj ≤ θ))− P(Y ≥ θ − z/(1− τ)) + 1 dx dz

=

∫ ∞
0

P(Xj > θ, Y < θ − z/(1− τ)) dz.

Similarly, we can compute the third integal on the right hand side of (9) to obtain

∫ 0

−∞

∫ ∞
0

H(x, z)−G(z) dx dz = −
∫ 0

−∞
P(Xj > θ, Y ≥ θ − z/τ) dz.
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The second and the fourth integral on the right hand side of (9) are zero because H(x, z)

and F (x) are zero for x < 0. Using a change of variables, we obtain

ψj(θ) = −E (Sθ(Xj, Y ))

= τ

∫ ∞
θ

P(Xj > θ, Y ≥ w) dw − (1− τ)

∫ θ

−∞
P(Xj > θ, Y < w) dw.

We can rewrite this as

ψj(θ) =

∫ ∞
θ

τP(Xj > w, Y ≥ w) + (1− τ)P(Xj > w, Y < w) dw

+ τ

∫ ∞
θ

P(w ≥ Xj > θ, Y ≥ w) dw

− (1− τ)

(∫ ∞
θ

P(Xj > w, Y < w) dw +

∫ θ

−∞
P(Xj > θ, Y < w) dw

)
=

∫ ∞
θ

τP(Xj > w, Y ≥ w) + (1− τ)P(Xj > w, Y < w) dw

+ τ

∫ ∞
−∞

P(Xj ≤ w, Y ≥ w,Xj > θ) dw

− (1− τ)

∫ ∞
−∞

P(Xj > w, Y < w,Xj > θ) dw

=

∫ ∞
θ

τP(Xj > w, Y ≥ w) + (1− τ)P(Xj > w, Y < w) dw

+ τE
(
(Y −Xj)+1(Xj>θ)

)
− (1− τ)E

(
(Xj − Y )+1(Xj>θ)

)
,

where the second equality holds because P(w ≥ Xj > θ, Y ≥ w) = 0 for w < θ and

P(Xj > w, Y < w,Xj > θ) = P(Xj > w, Y < w) for w ≥ θ, P(Xj > w, Y < w,Xj > θ) =

P(Y < w,Xj > θ) for w < θ. The last equality follows from Lemma A.1 with A = (θ,∞).

B Proofs and Technical Details

Proof of Theorem 2.1. The result follows from Theorem A.4 with τ = 1/2 because P(Xj >

w, Y ≥ w) + P(Xj > w, Y < w) = P(Xj > w) and E
(
((Y −Xj)+ − (Xj − Y )+)1(Xj>θ)

)
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= E
(
(Y −Xj)1(Xj>θ)

)
= E((E

(
Y
∣∣Xj

)
− Xj)1(Xj>θ)), where the second equality uses the

law of iterated expectations.

Proof of Theorem 3.1. Under auto-calibration, E
(
Y
∣∣Xj

)
= Xj holds almost surely. In view

of Theorem 2.1, Theorem 3.1 then follows from Müller and Rüschendorf (2001, Corollary

4.1) which shows that XA is greater than XB in convex order if and only if
∫∞
a

P(XA >

t) dt ≥
∫∞
a

P(XB > t) dt for all a ∈ R, and

lim
a→−∞

(∫ ∞
a

P(XA > t) dt−
∫ ∞
a

P(XB > t) dt

)
= 0. (12)

To see why (12) holds, note that

lim
a→−∞

(∫ ∞
a

P(XA > t) dt−
∫ ∞
a

P(XB > t) dt

)
= E (XA)− E (XB) = E (Y )− E (Y ) = 0,

where the first equality follows from Müller and Rüschendorf (2001, Proposition 4.1.(a)(iii)),

and the second equality follows from auto-calibration.

Proof of Proposition 3.2. Auto-calibration of Xj holds because σ(Xj) ⊆ Fj and E
(
Y
∣∣Xj

)
=

E
(
E
(
Y
∣∣Fj) ∣∣Xj

)
= E

(
Xj

∣∣Xj

)
= Xj, where the first equality uses the tower property of

conditional expectation. To show that XA is greater than XB in convex order, note that

E
(
XA

∣∣XB

)
= E

(
E
(
Y
∣∣FA) ∣∣XB

)
= E

(
Y
∣∣XB

)
= XB, where the second equality again uses

the tower property, together with the fact that σ(XB) ⊂ FA. Strassen’s 1965 characterization

mentioned in Section 2 thus implies that XA is greater than XB in convex order.

Proof of Corollary at the end of Section 3. Due to auto-calibration, Cov(Xj, Y ) = V (Xj)

for j ∈ {A,B}, where Cov denotes covariance. The convex order condition implies that

V (XA) ≥ V (XB), and hence that Cor(XA, Y ) =
√
R2
A ≥ Cor(XB, Y ) =

√
R2
B, where Cor

denotes correlation and R2
j is the R2 from the Mincer-Zarnowitz regression for forecast j.

Proof of Proposition 4.1. Suppose that (Xj, Y ) follow a bivariate normal distribution. We

compute ψj(θ) defined in Theorem 2.1 for j ∈ {A,B}. We have that E
(
Y
∣∣Xj

)
= µY +
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ρY j(σY /σj)(Xj − µj), and hence

E
(
(E
(
Y
∣∣Xj

)
−Xj)1(Xj>θ)

)
= E

((
µY + ρY j

σY
σj

(Xj − µj)−Xj

)
1(Xj>θ)

)
=

(
µY − θ − ρY j

σY
σj

(µj − θ)
)(

1− Φ

(
θ − µj
σj

))
+

(
ρY j

σY
σj
− 1

)
σjΨ

(
θ − µj
σj

)
,

where we define for θ ∈ R, Ψ(θ) =
∫∞
θ

1− Φ(w) dw. Then,

ψj(θ) =
σj
2

Ψ

(
θ − µj
σj

)
+

1

2
E
(
(E
(
Y
∣∣Xj

)
−Xj)1(Xj>θ)

)
=

1

2

(
µY − θ − ρY j

σY
σj

(µj − θ)
)(

1− Φ

(
θ − µj
σj

))
+
ρY jσY

2
Ψ

(
θ − µj
σj

)
. (13)

Using the assumption that µA = µB = µY and the fact that Ψ(θ) = ϕ(θ) − θ (1 − Φ(θ)),

Equation (13) yields that

2 ψj(θ) = ρY jσY ϕ

(
θ − µY
σj

)
− (θ − µY )

(
1− Φ

(
θ − µY
σj

))
. (14)

Notes on Cases 1 to 4. Case 1 holds because, for each θ ∈ R, we have 2ψA(θ) + (θ − µY ) ≥

σA ϕ((θ−µY )/σA)+(θ−µY )Φ((θ−µY )/σA) ≥ σBϕ((θ−µY )/σB)+(θ−µY )Φ((θ−µY )/σB) ≥

2ψB(θ) + (θ − µY ), where ψj(θ) has been defined at (14). Case 2a can be shown by re-

parametrizing σY j = σY σjρY j, and differentiating 2ψj(θ) with respect to σj. Case 3 can be

shown by differentiating 2ψj(θ) with respect to σj. Cases 2b and 4 are immediate.

Proof of Theorem 5.1. Denote the CDF of ηj, conditional on F , by FFj , for j ∈ {A,B}. By

Shaked and Shanthikumar (2007, Theorem 3.D.1), the assumptions of Theorem 5.1 imply

that

FFA (z)− FFB (z)


≥ 0, for z ≥ 0,

≤ 0, for z ≤ 0.

(15)

By Ehm et al. (2016, Corollary 1b), A dominates B if and only if E (Sθ(XB, Y )) ≥ E (Sθ(XA, Y ))
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for all θ ∈ R, where Sθ is given at (3). The random variable Sθ(Xj, Y ) is integrable if Y is

integrable. Define W = E
(
Y
∣∣F), and let θ ∈ R. Then,

2 E (Sθ(Xj, Y )) = E
(
1(θ<Xj)(θ − Y )

)
= E

(
E
(
1(θ<W+ηj)(θ −W − ε)

∣∣F))
= E

(
E
(
1(θ−W<ηj)

∣∣F)E ((θ −W − ε)∣∣F)) = E
(
(1− FFj (θ −W ))(θ −W )

)
.

Hence, (15) implies

E (Sθ(XB, Y ))− E (Sθ(XA, Y )) =
1

2
E
((
FFA (θ −W )− FFB (θ −W )

)
(θ −W )

)
≥ 0.

Proof of Proposition 5.2. Parts (a) and (b) are immediate given the setup of Theorem 5.1.

Regarding (c), we have the following inequality for any strictly increasing function φ:

E
(
φ(|ηB|)

∣∣F) =

∫ ∞
0

P(φ(|ηB|) > w|F) dw

=

∫ ∞
0

(
P(ηB < −φ−1(w)|F) + P(ηB > φ−1(w)|F)

)
dw

≥
∫ ∞
0

(
P(ηA < −φ−1(w)|F) + P(ηA > φ−1(w)|F)

)
dw = E (φ(|ηA|)|F) ,

(16)

where the inequality follows from (15) in the proof of Theorem 5.1.

Now let W = E
(
Y
∣∣F) , such that (Xj)

2k = (W + ηj)
2k. For terms of the form W cηdj , with

c and d being odd integers, it holds that E
(
W cηdj

)
= E

(
W cE

(
ηdj
∣∣F)) = 0, where the last

equality follows from symmetry of FFj around zero. For terms of the form W cηdj , with c and d

being even integers, it holds that E
(
W cηdB

)
= E

(
W c E

(
ηdB
∣∣F)) ≥ E

(
W c E

(
ηdA
∣∣F)) , where

the inequality follows from (16). Part (b) of Theorem 5.1 then follows from the binomial

theorem.
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