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This document is structured as follows: Section A contains further analytical examples
related to the Gaussian setup in Section 4 of the paper. Section B provides details on
the hypothesis tests used in Section 6 of the paper. Section C contains a result on forecast
dominance for quantiles (by contrast, the paper treats expectiles, and the mean in particular).

A Further examples for the Gaussian setup

Example A.1. Consider a setup in which the forecast X;; and the realization Y; form a
bivariate time series process that is observed at time ¢t = 1,...,7T, with the understanding
that X;; is the forecast of Y; given some information set. Suppose that the joint process for
Xy; and Y} is described by the following bivariate auto-regression with Gaussian innovations:
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The example implies that given Y;_;, both X;; and Y; are independent of X, ;;. This
restriction can be relaxed but is assumed for simplicity. Furthermore, the process in (1) is
strictly stationary if |ay| < 1, which we assume here. The unconditional joint distribution
of X;; and Y; is Gaussian with mean zero and covariance matrix given by

A ar/(1—ay) Ty +Tvaay /(1 - ay)
Tyj + Tyajay /(1 — ai) v /(1 — ay) '

where

Hence the present time series example matches the setup of Equation (5) in the paper.
Example 2.1 of Ehm and Kriiger (2018) is obtained as a special case if a4 = ag = ay and
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Ty; = ]-2, j € {A, B}, such that both forecasts are auto-calibrated. In the latter situation,
the forecast j for which 7; is greater dominates its competitor. To obtain a simple example
without auto-calibration, let 0 < ay < 1, and assume that forecast A neglects any time
series dependence in Y;, such that ay = 0 and 7y 4 > 0,73 > 0. By contrast, assume that
forecast B sets X;p = Y;_1, corresponding to an erroneous random walk assumption, with
ap =1,7vp = 75 = 0. If it holds that ay72/(1 — a}) < 7ya < 73 < 72/(1 — @%), then the
conditions of Case 2a are satisfied, and A dominates B.

Example A.2. Consider the following parameter setup: 4 = 1.2, 6 = 0.9, pya = pyn =
0.5,0y = 1,y = 0. In this setup, the necessary condition for dominance is satisfied (for
either dominance of A over B, or vice versa), but neither of the four cases applies. Figure 1
below plots the difference in expected scores against the auxiliary parameter ¢ from Proposi-
tion 4.1 in the paper. The figure shows that the difference in expected scores switches signs
in this example, i.e., a dominance relation does not exist.
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Figure 1: The figure plots the difference in expected scores for methods A and B against
the auxiliary parameter . The relevant expression for the expected scores is provided in
Proposition 4.1 of the paper.



B Details on Hypothesis Testing Methods

B.1 Testing for Second-Order Stochastic Dominance

This section explains the subsampling-based test for second order stochastic dominance
(SOSD) by Linton et al. (2005, henceforth LMW). The concept to be tested is defined in
Definition 2 on p. 738 of LMW.

Test statistic

We are interested in the integral of the cumulative distribution function (CDF) F up to a
point z:

D(z) = /Z F(u)du, (2)

c.f. LMW’s Equations (3) and (4), where s = 2 in our case (the notation we use in the
following is generally different from LMW). Replacing F' by its empirical estimate, we get
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While LMW mainly consider symmetric tests for SOSD, we are interested in the asymmetric
hypothesis that A is smaller than B according to SOSD, that is,

Hypothesis: Da(z) < Dg(z) V z € Z, with strict inequality for some z,

where D;(z) is as defined at (2), but referring to distribution j € {A, B}, and Z is the support
of interest. As noted by LMW on p. 740 (end of first paragraph, ‘It is also sometimes of
interest...”), their test can be used for this case as well. Furthermore, we are interested in
the case of only two random variables to be compared. Simplifying Equation (5) of LMW,
the test quantity of interest is hence

sup.2[Ds(2) — Da(2)].
Its empirical analogue is given by
max,eq [DB(Z) - DA(Z)]> (3)

where G is a set of grid point representing Z (see last sentence of Section 3 in LMW), and

A

the estimates D;(z) have been discussed above.



Subsampling

LMW propose to use sub-sampling in order to obtain critical values for the test statistic. The
idea of subsampling is to compute the test statistic on rolling subsamples of size b < n, where
n is the sample size. Subsampling is attractive here because there is no need to impose the
hypothesis being tested (which is required in the bootstrap scheme, and would be difficult to
do in the case of SOSD). Following p. 744 of LMW, let ¢,,;; denote the test statistic at (3),
computed based on the b observations with indices 7,2+ 1,...,i+b— 1. These observations
are an adjacent block in the original time series of data. The subsampling p-value of the
SOSD hypothesis is then given by

1 n—b+1
_ 1(Vbt,p; > T,),
S s v

where T, is the test statistic computed from the original sample. Note that T;, is scaled by
the full sample size y/n, whereas the subsample test statistics ¢, are scaled by Vb, the size
of each subsample.

In order to choose b in practice, LMW advice to plot the subsampling p-value against b, and
choose b from a segment over which p is stable (see last paragraph of Section 5.2). We follow
this advice in our Section 6.1 (see especially our Figure 1).

Implementation in R

The R function 1mw_plot in our replication package gcfdtools implements the test described
above and creates a plot of the test’s p-value against the subsample size. Further information
is available via the function documentation (?1mw_plot).

B.2 Testing Forecast Dominance

We adopt the test by Ziegel et al. (2018) in order to test for forecast dominance. While
Ziegel et al. consider a family of scoring functions that is relevant in the context of forecast-
ing Expected Shortfall (see their Proposition 2.1), we apply their test to the class of Bregman
scoring functions defined in our Equation (1), with associated elementary scores defined in
our Equation (3). We refer to Ziegel et al. (2018, Section 3.2) for a description of the test’s
implementation, noting that their symbol 7 (threshold parameter of the elementary score)
corresponds to 6 in our notation. Following their implementation, we use a geometric distri-
bution with parameter 1.36 n~'/3 in the stationary bootstrap scheme (Politis and Romano,
1994) on which the test is based. Furthermore, we use an equally spaced grid of 100 points
for 6, where the lower and upper end of the grid are determined by the empirical minimum
and maximum of the set {x;4,x;5}}, consisting of all empirical forecasts. This choice is
computationally simple and performs well in the simulation study by Ziegel et al. (2018).
We use 10, 000 bootstrap replications.



R Implementation

The R function dom_test in our replication package gcfdtools implements the test. Please
see the documentation at ?dom_test for details.

C Forecast Dominance for Quantiles

In this section we present a result akin to Theorem 3.1 in the paper, but referring to quantile
forecasts as opposed to mean forecasts. Quantile forecasts play a major role in applications,
notably in financial risk management where quantiles are referred to as ‘Value-at-Risk’. Let
7 € (0,1) denote the level of the quantile. To simplify the presentation, we assume that
the 7-quantile of Y and the conditional 7-quantiles of Y we consider are all unique and that
the distribution and the conditional distributions of Y are continuous at their 7-quantiles.
Consistent scoring functions for quantiles at level 7 are of the form

S(x,y) = {1y<z) — THa(z) — 9(y) }, (4)

where 1(g) is the indicator function of the event F, and g is an increasing function. Analogous
to the case of the mean (Definition 2.1 in the paper), one forecast dominates another if it
attains a lower expected score for all functions covered by Equation (4).

Definition C.1. Auto-calibrated quantile forecast Forecast X is auto-calibrated for Y if
E (1(y<X)|X) =P(Y < X|X) = 7 almost surely.

This notion of auto-calibration is analogous to the one for mean forecasts (Definition 3.1 in
the paper), and corresponds to the null hypothesis of a Mincer-Zarnowitz type regression
for quantile forecasts as proposed by Guler et al. (2017); see also Nolde and Ziegel (2017,
Definition 3). Note that auto-calibration of a quantile forecast is equivalent to independence
of the random variables X and Z = 1(x>y), where P(Z =1) = 7.

Theorem C.1. Suppose X4 and Xp are both auto-calibrated quantile forecasts. Then A
dominates B if and only if one of the following equivalent conditions hold

1.
PXa>Y >0)>P(Xg>Y >0) (5)

for every 6 € R.
2. The distribution L(Y|X 4 >Y') stochastically dominates L(Y |Xp >Y).
Proof. From Ehm et al. (2016, Corollary 1a), A dominates B if and only if
E(S5(Xp,Y)) > E(Sp(Xa4,Y)), forall §€R,

where

So(,y) = (Ly<e) — 7) (Lo<a) — Lio<y))
is the elementary scoring function for quantiles. Using the auto-calibration assumption and
the law of iterated expectations yields that

E ((1(Y<Xj) —7) 1(9<Xj)) =0
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for j € {A, B}. Hence

E(So(Xp,Y)) —E(Sp(Xa,Y)) = E(Ly<xy Lo<y)) —E (Lyexy) Lio<v))
P(Xa>Y >0)-P(Xg>Y >0),

leading to the first statement. The equivalence of the second statement follows because
auto-calibration of the forecasts implies that P(X4 >Y)=P(Xp >Y) =7. O

Theorem C.1 characterizes dominance relations among auto-calibrated quantile forecasts.
Interestingly, the condition in Equation (5) does not depend on the quantile level 7 of
interest. Furthermore, the conditions involves the joint distribution of the forecast X; and
the predictand Y. This situation is different from the corresponding condition for mean
forecasts in Theorem 3.1, which involves the convex ordering of the forecast distributions
but does not depend on the predictand. To understand the interpretation of Equation (5),
it is useful to consider the following simple example.

Example C.1. Let Y = Z + ¢, where Z, ¢ are independent and standard normal. The two
forecasts are given by X4 = Z + ®~!(7) and X5 = /2 ®~!(7), where ® is the CDF of the
standard normal distribution. Both forecasts are correctly specified given their information
sets, whereby the latter is empty in case of Xp. Hence Holzmann and Eulert (2014, Corollary
2) implies that X4 must dominate Xpg, which means that condition (5) must be satisfied.
Note that

0 -1
IP’(XB>Y>9)=]P><\/§¢>‘1(T)>Y>9) = {T_CD(E) 0 < V277,
0 else.

Hence for dominance to hold, P(X4 > Y > 6) > 0 must hold even for some "large’ values
0 > 2 & '(r). (While the generic condition in Equation (5) states a weak inequality,
the probability will be strictly positive for some 6 since both X4 and Y are continuously
distributed.) Heuristically, due to the variability of X 4 there is a nonzero chance that X4
exceeds Y even in cases where Y is large. This situation is in contrast to X which does not
vary at all.

As illustrated in the example, the condition in Equation (5) requires X4 to be more variable
than X in a certain sense. Similar to the case of the mean, the auto-calibration assumption
rules out artificial (uninformative) variation in the forecasts X;. Furthermore, note that
Equation (5) is satisfied with equality for § — —oo, in which case P(X; > Y > 0) — P(X; >
Y) = 7, where the last equality follows from auto-calibration.

Equation (5) is useful in that it yields a better understanding of the conditions under which
dominance occurs. Furthermore, the condition can easily be checked for empirical data.
However, in contrast to our results for the mean in the paper, the conditions for quantiles
are not easily verified in analytical examples where conditional probabilities under inequality
constraints are rarely available in closed form.
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