
Journal of Scientific Computing (2020) 82:49
https://doi.org/10.1007/s10915-020-01153-9

Stability and Convergence of Spectral Mixed Discontinuous
Galerkin Methods for 3D Linear Elasticity on Anisotropic
Geometric Meshes

Thomas P. Wihler1 ·Marcel Wirz1

Received: 13 August 2019 / Revised: 4 November 2019 / Accepted: 1 February 2020 /
Published online: 12 February 2020
© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
Weconsider spectral mixed discontinuousGalerkin finite element discretizations of the Lamé
system of linear elasticity in polyhedral domains in R

3. In order to resolve possible corner,
edge, and corner-edge singularities, anisotropic geometric edge meshes consisting of hex-
ahedral elements are applied. We perform a computational study on the discrete inf-sup
stability of these methods, and especially focus on the robustness with respect to the Poisson
ratio close to the incompressible limit (i.e. the Stokes system). Furthermore, under certain
realistic assumptions (for analytic data) on the regularity of the exact solution, we illustrate
numerically that the proposed mixed DG schemes converge exponentially in a natural DG
norm.

Keywords Linear elasticity in polyhedra · Anisotropic geometric meshes · Spectral
methods · Discontinuous Galerkin methods · Inf-sup stability · Exponential convergence

Mathematics Subject Classification 65N30

1 Introduction

Consider an axi-parallel, open and bounded polyhedron Ω ⊂ R
3, with Lipschitz boundary

∂Ω , in the three-dimensional Cartesian system.Using a spectral discontinuousGalerkin finite
element method (DGFEM), we shall study the numerical approximation of the following lin-
ear elasticity problem in mixed form: Find a displacement field u = (u1, u2, u3) ∈ H1

0 (Ω)3,
and a pressure function p ∈ L2

0(Ω) such that
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−Δu + ∇ p = f in Ω, (1)

∇ · u + (1 − 2ν)p = 0 in Ω, (2)

u = 0 on ∂Ω. (3)

Here, ∇· is the divergence operator, ν ∈ (0, 1/2] is the Poisson ratio, and f ∈ L2(Ω)3 is an
external force (scaled by 2(1+ν)/E, where E > 0 is Young’s modulus). We shall include the
limit case ν = 1/2 which corresponds to the Stokes equations of incompressible fluid flow.

Elliptic boundary value problems in three-dimensional polyhedral domains are well-
known to exhibit isotropic corner and anisotropic edge singularities, as well as a combination
of the both; see, e.g., [7,19,20]. In a recent series of papers [25–27] on the numerical approx-
imation of the Poisson equation in 3d polyhedra the use of hp-version DG methods has been
proposed (see also [17] for eigenvalue problems with singular potentials). These schemes
provide a convenient framework to resolve anisotropic edge singularities on (irregular) geo-
metrically and anisotropically refined meshes, whilst using high-order spectral elements in
the interior. Furthermore, supposing that the data is sufficiently smooth, it has been proved
in [26,27] that exponential convergence rates for hp-DG methods can be achieved.

In our previous work [31], we have employed the approach [25–27] in order to apply
the high-order mixed DG methods introduced in [14] to the three-dimensional framework.
More precisely, we have analyzed high-order interior penalty (IP) DG methods (of uniform
but arbitrarily high polynomial degree) for the numerical approximation of (1)–(3) on geo-
metrically refined edge meshes. They can be seen as hp-methods with fixed and uniform
polynomial degrees, or as spectral methods on locally refined meshes; in this paper they shall
simply be termed spectral DGFEM. Incidentally, in contrast to classical IPDGmethods, these
DG schemes feature anisotropically scaled penalty terms which account for possible element
anisotropies; see also [8]. A focal point of the article [31] has been to provide an inf-sup
stability analysis for mixed IPDG schemes on anisotropic meshes. Our results, which are
based in parts on [24], are explicit with respect to both the (uniform) polynomial degree
and the Poisson ratio ν. In particular, for fixed (but arbitrarily high) polynomial degrees, our
stability analysis proves that the behaviour of the mixed DG scheme remains robust as ν

tends to the critical limit of 1/2 of incompressible materials. Furthermore, following the tech-
niques presented in [26–28] we showed that the proposed DG schemes are able to achieve
exponential rates of convergence for the class of piecewise analytic functions in weighted
Sobolev spaces studied in [7].

The goal of the present paper is to provide a computational investigation of the theoretical
inf-sup stability results of mixed spectral DGFEM on anisotropic geometric edge meshes
presented in [24, Thm. 9] and [31, Thm. 5.1]; in the context of mixed-type spectral and
higher-order finite element discretizations of the Stokes equations and the system of linear
elasticity, we additionally point to the earlier works [1,16,18,21,22,29,30]. A further aim of
our current work is to confirm the asserted exponential convergence of the spectral mixed
DG method, see [31, Thm. 6.2], for a number of examples with typical edge and corner
singularities in polyhedral domains.Wewill also look into the robustness of the DG approach
with respect to the Poisson ratio as ν → 1/2. The precise outline of the paper is as follows:
In Sect. 2, we present the mixed formulation of (1)–(3), and recall its regularity in terms of
anisotropically weighted Sobolev spaces. Furthermore, in Sect. 3 the geometric edge meshes
and the spectral mixed DG discretizations will be introduced; in addition, in Sect. 3.4, we
revisit a discrete inf-sup stability framework together with the well-posedness of the DG
scheme on anisotropic geometric edge meshes. Then, in Sect. 4, we discuss the practical
computation of the DG solution as well as of the discrete inf-sup constants, and present some
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numerical results in a few typical reference situations. In Sect. 5 we perform a number of
experiments which confirm the exponential convergence as well as the robustness of the DG
method with respect to the Poisson ratio. Finally, we add a few concluding remarks in Sect. 6.

Notation
Throughout this article, we use the following notation: For a domain D ⊂ R

d , d ≥ 1, let
L2(D) signify the Lebesgue space of square-integrable functions equipped with the usual
norm ‖ · ‖L2(D). Furthermore, we write L2

0(D) to denote the subspace of L2(D) of all func-
tions with vanishing mean value on D. The standard Sobolev space of functions with integer
regularity exponent s ≥ 0 is signified by Hs(D); wewrite ‖·‖Hs (D) and |·|Hs (D) for the corre-
sponding norms and semi-norms, respectively. As usual, we define H1

0 (D) as the subspace of
functions in H1(D)with zero trace on ∂D. For vector- and tensor-valued functions we use the
standard notation (∇v)i j := ∂ jvi , and (∇ · σ)i := ∑3

j=1 ∂ jσi j and σ : τ := ∑3
i, j=1 σi jτi j ,

respectively. Moreover, for vectors v,w ∈ R
3, let v ⊗ w ∈ R

3×3 be the matrix whose i j th
component is vi w j .

2 Linear Elasticity in Polyhedra

Wediscuss theweak formulation of themixed systemof linear elasticity (1)–(3). Furthermore,
we review its regularity in polyhedral domains.

2.1 Mixed Formulation andWell-Posedness

A standard mixed formulation of (1)–(3) is to find (u, p) ∈ H1
0 (Ω)3 × L2

0(Ω) such that

A(u, v) + B(v, p) =
ˆ

Ω

f · v dx,

−B(u, q) + C(p, q) = 0,
(4)

for all (v, q) ∈ H1
0 (Ω)3 × L2

0(Ω), where

A(u, v) :=
ˆ

Ω

∇u : ∇v dx, B(v, q) := −
ˆ

Ω

q ∇ · v dx,

C(p, q) := (1 − 2ν)

ˆ
Ω

pq dx .

More compactly, we can write (4) equivalently in the form

a(u, p; v, q) =
ˆ

Ω

f · v dx ∀ (v, q) ∈ H1
0 (Ω)3 × L2

0(Ω), (5)

with

a(u, p; v, q) := A(u, v) + B(v, p) − B(u, q) + C(p, q).

It is straightforward to verify that a is a bounded bilinear form on H1
0 (Ω)3×L2

0(Ω), and that,
for ν ∈ (0, 1/2), it is also coercive. In particular, by application of the Lax-Milgram theorem,
we conclude that the solution (u, p) ∈ H1

0 (Ω)3 × L2
0(Ω) of (5), and, thus, of (4), exists and

is unique. In addition, for ν = 1/2, which corresponds to the Stokes equations, problem (5)
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is still well-posed. Indeed, this is an immediate consequence of the inf-sup condition

inf
0 
≡q∈L2

0(Ω)

sup
0 
≡v∈H1

0 (Ω)3

− ´
Ω

q∇ · v dx

‖∇v‖L2(Ω)‖q‖L2(Ω)

≥ κ > 0,

where κ is the inf-sup constant, depending only on Ω; see [6,9] for details.

2.2 Regularity

Following [7] we recall the regularity of the solution of (1)–(3) in weighted Sobolev spaces;
cf. also [11–13]. To this end, we denote by C the set of corners, and by E the set of edges
of Ω . Potential singularities of the solution are located on the skeleton of Ω given by

S =
(

⋃

c∈C
c

)

∪
(

⋃

e∈E
e

)

⊂ ∂Ω.

Given a corner c ∈ C, an edge e ∈ E , and x ∈ Ω , we define the distance functions

rc(x) = dist(x, c), re(x) = dist(x, e), ρce(x) = re(x)/rc(x).

Furthermore, for each corner c ∈ C, we signify by Ec = { e ∈ E : c ∩ e 
= ∅ } the set of
all edges of Ω which meet at c. For any e ∈ E , the set of corners of e is given by Ce =
{ c ∈ C : c ∩ e 
= ∅ }. Then, for c ∈ C, e ∈ E , respectively e ∈ Ec, and a sufficiently small
parameter ε > 0, we define the neighbourhoods

ωc = { x ∈ Ω : rc(x) < ε ∧ ρce(x) > ε ∀ e ∈ Ec },
ωe = { x ∈ Ω : re(x) < ε ∧ rc(x) > ε ∀ c ∈ Ce },

ωce = { x ∈ Ω : rc(x) < ε ∧ ρce(x) < ε }.
Moreover, we define the interior part of Ω by Ω0 = {x ∈ Ω : dist(x, ∂Ω) > ε}.

Near corners c ∈ C and edges e ∈ E , we shall use local coordinate systems in ωe and
ωce, which are chosen such that e corresponds to the direction (0, 0, 1). Then, we denote
quantities that are transversal to e by (·)⊥, and quantities parallel to e by (·)‖. For instance,
if α ∈ N

3
0 is a multi-index associated with the three local coordinate directions in ωe or ωce,

then we write α = (α⊥, α‖), where α⊥ = (α1, α2) and α‖ = α3. In addition, we use the
notation |α⊥| = α1 + α2, and |α| = |α⊥| + α‖.

Following [7, Def. 6.2 and Eq. (6.9)], we introduce anisotropically weighted Sobolev
spaces. To this end, to each c ∈ C and e ∈ E , we associate a corner and an edge exponent
βc, βe ∈ R, respectively. We collect these quantities in the weight vector β = {βc : c ∈
C} ∪ {βe : e ∈ E} ∈ R

|C|+|E|. Then, for m ∈ N0, we define the weighted semi-norm

|v|2Mm
β

(Ω) = |v|2Hm (Ω0)
+

∑

e∈E

∑

α∈N30|α|=m

∥
∥rβe+|α⊥|

e Dαv
∥
∥2
L2(ωe)

+
∑

c∈C

∑

α∈N30|α|=m

∥
∥rβc+|α|

c Dαv
∥
∥2
L2(ωc)

+
∑

c∈C

∑

e∈Ec

∥
∥rβc+|α|

c ρ
βe+|α⊥|
ce Dαv

∥
∥2
L2(ωce)

,
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as well as the full norm ‖v‖2Mm
β

(Ω)
= ∑m

k=0 ‖v‖2
Mk

β
(Ω)

; here, the operator Dα denotes the

partial derivative in the local coordinate directions corresponding to the multi-index α. The
space Mm

β (Ω) is the weighted Sobolev space obtained as the closure of C∞
0 (Ω) with respect

to the norm ‖·‖Mm
β

(Ω).
We notice the following regularity property of the solution of (1)–(3) in terms of the

weighted Sobolev spaces defined above; see [7] (in addition, cf. [19,20]):

Proposition 1 There exist upper bounds βE , βC > 0 such that, if the weight vector β satisfies

0 < βe < βE , 0 < βc < βC, e ∈ E, c ∈ C,

then, for every m ∈ N, the solution (u, p) ∈ H1
0 (Ω)3 × L2

0(Ω) of (1)–(3) with f ∈
Mm

1−β(Ω)3 fulfills (u, p) ∈ Mm
−1−β(Ω)3 × Mm−1

−β (Ω).

3 Mixed Discontinuous Galerkin Methods on Geometric Meshes

In the following section we will introduce spectral mixed DG discretizations on geometric
meshes for the numerical solution of (1)–(3).

3.1 Hexahedral Geometric EdgeMeshes

In order to numerically resolve possible corner and edge singularities in the solution (u, p)
of (1)–(3), we employ anisotropic geometric edge meshes. To this end, we follow the con-
struction in [24], where such meshes have been studied in the context of DGFEM for the
Stokes equations; see also the earlier paper [3] on conforming hp-version finite element
methods. Specifically, we begin from a coarse regular and shape-regular, quasi-uniform
partition T 0 = {Q j }Jj=1 of Ω into J convex axi-parallel hexahedra. Each of these ele-

ments Q j ∈ T 0 is the imageunder an affinemappingG j of the reference patch Q̃ = (−1, 1)3,
i.e. Q j = G j (Q̃). The mappings G j are compositions of (isotropic) dilations and transla-
tions.

Based on the coarse partition (macro mesh) T 0 we will use three canonical geometric
refinements (patches) towards corners, edges and corner-edges of Q̃; see Fig. 1. They feature
a refinement ratio σ ∈ (0, 1), as well as a number of refinement levels � ∈ N0; to give an
example, in Fig. 1, we have selected σ = 1/2, and � = 3.

Given a (fixed) refinement ratio σ ∈ (0, 1) as well as a refinement level value � ∈ N0, geo-
metric meshes inΩ are now built by applying the patch mappings G j to transform the above
canonical geometric mesh patches on the reference patch Q̃ to the macro-elements Q j ∈ T 0,

thereby yielding a local patch mesh Mσ,�
j on Q j . The patches Q j away from the singular

support S (i.e. with Q j ∩S = ∅) are left unrefined, i.e. in this case we letMσ,�
j = {Q j }. It is

important to note that the geometric refinements in the canonical patches have to be suitably
selected, oriented and combined in order to achieve a proper geometric refinement towards
corners and edges of Ω . Then, a σ -geometric mesh in Ω is given by T σ,l = ⋃J

j=1 M
σ,�
j .

Furthermore, the sequence {T σ,l}�∈N0 is referred to as a σ -geometric mesh family. We note
that this family of meshes is anisotropic as well as irregular. For a more general construction
of geometric meshes on polyhedral domains, we refer to [25].
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Fig. 1 Canonical geometric refinements (patches) towards edges, corners, and corner-edges (bottom) to be
built into the macro mesh T 0 (top) by means of suitable affine transformations

3.2 Faces and Face Operators

We denote the set of all interior faces in T σ,l by FI(T σ,l), and the set of all boundary faces
by FB(T σ,l). Further, let F(T σ,l) = FI(T σ,l) ∪ FB(T σ,l) signify the set of all (smallest)
faces of T σ,l . In addition, for an element K ∈ T σ,l , we denote the set of its faces by
FK = { f ∈ F : f ⊂ ∂K }.

Next, we recall the standard DG trace operators. For this purpose, consider an interior
face f = ∂K � ∩ ∂K � ∈ FI(T σ,l) shared by two neighbouring elements K �, K � ∈ T σ,l .
Furthermore, let u, v and w be scalar-, vector, and tensor-valued functions, respectively, all
sufficiently smooth inside the elements K �, K �. Then, we define the following trace operators
along f :

[[u]] = u|K �nK � + u|K �nK � , {{u}} = 1/2
(
u|K � + u|K �

)
,

[[v]] = v|K � · nK � + v|K � · nK � , {{v}} = 1/2
(
v|K � + v|K �

)
,

[[w]] = w|K � ⊗ nK � + w|K � ⊗ nK � , {{w}} = 1/2
(
w|K � + w|K �

)
.

Here, for an element K ∈ T σ,l , we denote by nK the outward unit normal vector on ∂K .
Similarly, for a boundary face f = ∂K ∩ ∂Ω ∈ FB(T σ,l), with K ∈ T σ,l , and a sufficiently
smooth scalar function u, we let [[u]] = u|K nΩ , and {{u}} = u|K , where nΩ is the outward
unit normal vector on ∂Ω; obvious modifications are made for vector- and tensor-valued
functions in accordance with the definition above.

Finally, ∇h and ∇h · denote the element-wise gradient and divergence operators, respec-
tively. Here and in the sequel, we use abbreviations like

ˆ
F

(·)ds :=
∑

f ∈F

ˆ
f
(·)ds, ‖∇h(·)‖2L2(Ω)

:=
∑

K∈T σ,l

‖∇(·)‖2L2(K )
.

3.3 Spectral DG Discretizations

Given a geometric edge mesh T σ,l on Ω and a (variable) polynomial degree k ≥ 1 (which is
assumed uniform and isotropic on T σ,l ), we approximate (1)–(3) by finite element functions
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(uh, ph) ∈ V h × Qh , where

V h := { v ∈ L2(Ω)3 : v|K ∈ Qk(K )3, K ∈ T σ,l },
Qh := { q ∈ L2

0(Ω) : q|K ∈ Qk−1(K ), K ∈ T σ,l }. (6)

Here, for k ≥ 0, K ∈ T σ,l , Qk(K ) denotes the space of all polynomials of degree at most k
in each variable on K . In addition, we let

V (h) = V h + H1
0 (Ω)3.

On the space V h we consider the stabilization function c ∈ L∞(F) given by

c(x) := γh−1(x)k2, (7)

where γ > 0 is a penalty parameter independent of the refinement ratio σ , the number of
refinement levels �, and the polynomial degree k. Furthermore, for x ∈ f , with f ∈ F , the
mesh function h is defined by

h(x) :=
{
min{h⊥

K �, f
, h⊥

K �, f
}, x ∈ f ⊂ FI , f = ∂K � ∩ ∂K �,with K �, K � ∈ T σ,l ,

h⊥
K , f , x ∈ f ⊂ FB, f = ∂K ∩ ∂Ω,with K ∈ T σ,l .

In this definition, for K ∈ T σ,l and f ∈ FK , we denote by h⊥
K , f the diameter of the element K

in the direction perpendicular to the face f .
Then, we consider the following mixed discontinuous Galerkin discretization of (4): Find

(uh, ph) ∈ V h × Qh such that

Ah(uh, v) + Bh(v, ph) =
ˆ

Ω

f · v dx,

−Bh(uh, q) + Ch(ph, q) = 0,
(8)

for all (v, q) ∈ V h × Qh . The forms Ah , Bh , and Ch are given, respectively, by

Ah(u, v) :=
ˆ

Ω

∇hu : ∇hv dx −
ˆ
F

(
θ{{∇hv}} : [[u]] + {{∇hu}} : [[v]]

)
ds

+
ˆ
F
c [[u]] : [[v]]ds,

Bh(v, q) := −
ˆ

Ω

q ∇h · v dx +
ˆ
F

{{q}}[[v]]ds, (9)

Ch(p, q) := (1 − 2ν)

ˆ
Ω

pq dx,

where θ ∈ [−1, 1] is a fixed parameter. Different choices of θ refer to various types of interior
penaltyDGmethods: for instance, the form Ah may be chosen to correspond to the symmetric
(for θ = 1), incomplete (for θ = 0), or non-symmetric (for θ = −1) interior penalty DG
discretization of the Laplacian; for a detailed review on a wide class of DG methods for the
Poisson problem and the Stokes system, we refer to the articles [2,23], respectively.

As in (5), the discrete DG formulation (8) is equivalent to finding (uh, ph) ∈ V h × Qh

such that

ah(uh, ph; v, q) =
ˆ

Ω

f · v dx (10)
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for all (v, q) ∈ V h × Qh , where

ah(u, p; v, q) := Ah(u, v) + Bh(v, p) − Bh(u, q) + Ch(p, q). (11)

3.4 Discrete Inf-Sup Stability andWell-Posedness

In this section we recapitulate an inf-sup stability result from [31] for the form ah given
in (11). We first define the DG-norm

|||(v, q)|||2DG :=‖v‖2h + (2 − 2ν)‖q‖2L2(Ω)
, (12)

for any (v, q) ∈ V (h) × L2(Ω), where

‖v‖2h := ‖∇hv‖2L2(Ω)
+
ˆ
F
c |[[v]]|2 ds, v ∈ V (h).

If the Poisson ratio satisfies ν ∈ (0, 1/2), and provided that the penalty parameter γ featured
in (7) is chosen sufficiently large, then the following coercivity estimate can be shown:

ah(u, p; u, p) ≥ C‖u‖2h + (1 − 2ν)‖p‖2L2(Ω)
≥ C(1 − 2ν)|||(u, p)|||2DG,

for all (u, p) ∈ V h × Qh ; here, C > 0 is a constant independent of ν, k, l, and the aspect
ratio of the anisotropic elements.

This result can bemade stronger if a discrete inf-sup condition on the form Bh on geometric
edge meshes is assumed: Let T σ,l be a geometric edge mesh on Ω as defined in Sect. 3.1,
with refinement ratio σ ∈ (0, 1), and � ≥ 1 layers of refinement. Suppose that there exist
constants κ > 0 and ρ ≥ 0 that may depend on σ , γ , and on the macro-element mesh T 0,
but are independent of k, �, and the aspect ratio of the anisotropic elements in T σ,l , such that
there holds

γB := inf
0 
≡q∈Qh

sup
0 
≡v∈V h

Bh(v, q)

‖v‖h‖q‖L2(Ω)

≥ κk−ρ, (13)

as k → ∞.

Remark 1 In [24] it was proved that this assumption is fulfilled with ρ = 3/2 (and any k ≥ 2).
Our numerical computations in Sect. 4.4.1 below indicate, however, that the dependence of
the right-hand side of (13) on k is much weaker than k−3/2.

The following result, which implies the well-posedness of (8) even in the incompressible
limit ν = 1/2, follows immediately from [31, Theorem 5.1].

Theorem 1 Let ν ∈ (0, 1/2]. If (13) holds true, then we have the inf-sup condition

γa := inf
(u,p)∈Vh×Qh

(u,p)
=(0,0)

sup
(v,q)∈Vh×Qh

(v,q)
=(0,0)

ah(u, p; v, q)

|||(u, p)|||DG|||(v, q)|||DG ≥ C max{k−2ρ, 1 − 2ν}, (14)

with a constant C > 0 that depends on the penalty parameter γ , however, is independent of
ν, k, l, and the aspect ratio of the anisotropic elements.

We emphasize that, for fixed k, the stability bound (14) does not deteriorate as ν → 1/2.
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4 Computing the DG Solution and the Inf-Sup Constants

Our goal is to investigate the behavior of the inf-sup conditions from (13) and (14) numer-
ically. We note that both of them involve the discrete space Qh from (6). Due to the global
zero mean constraint contained in L2

0(Ω), the construction of Qh in terms of standard local
basis functions, as provided bymost finite element packages, causes difficulties. The classical
remedy is to use the full space

Q̃h := { q ∈ L2(Ω) : q|K ∈ Qk−1(K ), K ∈ T σ,l }, (15)

and to impose the zeromean condition bymeans of a Lagrangemultiplier technique. Noticing
that dim(Qh) = dim(Q̃h)−1,we emphasize that this approach is of equivalent computational
cost as the original DG system (8), yet, it allows to employ standard discrete spaces. This, in
turn, leads to a more convenient practical framework for the computation of the DG solution
and the evaluation of inf-sup constants.

4.1 Reformulation of theMixed DG Discretization

We rewrite the original system (8), which is based on the discrete DG space V h × Qh , on
the new space V h × Q̃h ×R, where Q̃h is the full space from (15). To this end, we introduce
an auxiliary variable r̃ ∈ R which takes the role of the mean value of the pressure ph on Ω .
More precisely, let us consider the following augmented DG formulation: Find (̃uh, p̃h, r̃) ∈
V h × Q̃h × R such that

Ah (̃uh, ṽ) + Bh (̃v, p̃h) =
ˆ

Ω

f · ṽ dx,

−Bh (̃uh, q̃) + Ch( p̃h, q̃) − r̃
ˆ

Ω

q̃ dx = 0,

s̃
 

Ω

p̃h dx − r̃ s̃ = 0,

(16)

for all (̃v, q̃, s̃) ∈ V h × Q̃h × R. Here we use the notation 
Ω

(·)dx := 1

|Ω|
ˆ

Ω

(·)dx

to denote the mean value integral on Ω . Note also that this new system may be written in a
more compact way: Find (̃uh, p̃h, r̃) ∈ V h × Q̃h × R such that

ãh (̃uh, p̃h, r̃; ṽ, q̃, s̃) =
ˆ

Ω

f · ṽ dx ∀(̃v, q̃, s̃) ∈ V h × Q̃h × R,

where

ãh (̃uh, p̃h, r̃; ṽ, q̃, s̃) := Ah (̃uh, ṽ) + Bh (̃v, p̃h) − Bh (̃uh, q̃) + Ch( p̃h, q̃)

− r̃
ˆ

Ω

q̃ dx + s̃
 

Ω

p̃h dx − r̃ s̃.

We again stress the fact that this system can be expressed in terms of standard local basis
functions, and, thereby, permits to apply a straightforward implementational setting.

To show the equivalence of the two formulations (8) and (16), we require the following
lemma. Here, we shall denote by Q0(Ω) � R the space of all (globally) constant functions
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on Ω , and we note that

Q̃h = Qh ⊕ Q0. (17)

Lemma 1 The form Bh from (9) satisfies

Bh(v, q) = 0 ∀(v, q) ∈ V h × Q0(Ω). (18)

Conversely, if, for given q ∈ Q̃h, there holds that Bh(v, q) = 0 for any v ∈ V h, then it
follows that q ∈ Q0(Ω).

Proof Given (v, q) ∈ V h × Q0(Ω). Since Q0(Ω) is one-dimensional we may, without loss
of generality, suppose that q ≡ 1. Then, we have

Bh(v, q) = −
∑

K∈T σ,l

ˆ
K

∇h · v dx +
ˆ
F

[[v]]ds.

By applying the Gauss–Green theorem on each element K ∈ T σ,l , we obtain two expressions
which are identical, and, thus, cancel out:

Bh(v, q) = −
∑

K∈T σ,l

ˆ
∂K

v · nK ds +
ˆ
F

[[v]]ds = 0.

Let now q ∈ Q̃h , with q − ffl
Ω
q dx 
= 0, and Bh(v, q) = 0 for all v ∈ V h . Then, the

inf-sup condition (13) implies that

0 < γB ≤ sup
0 
=v∈V h

Bh
(
v, q − ffl

Ω
q dx

)

‖v‖h
∥
∥q − ffl

Ω
q dx

∥
∥
L2(Ω)

= sup
0 
=v∈V h

−Bh
(
v,
ffl
Ω
q dx

)

‖v‖h
∥
∥q − ffl

Ω
q dx

∥
∥
L2(Ω)

.

Applying (18) yields a contradiction, and, consequently, we deduce that q − ffl
Ω
q dx = 0.

Thus, we have q ≡ ffl
Ω
q dx ∈ Q0. This completes the proof. ��

Now we can state the equivalence of the two formulations.

Proposition 2 TheaugmentedDGdiscretization from (16)hasaunique solution (̃uh, p̃h, 0) ∈
V h × Q̃h ×R, and (̃uh, p̃h) is the solution of the original DG formulation (8) with p̃h ∈ Qh.

Proof We proceed in three steps.

Step 1:
We first show that the new formulation enforces the pressure p̃h to have zero mean. To this
end, we choose the test variable to be s̃ = 1. Thus, from the third equation of (16), we deduce
that  

Ω

p̃h dx = r̃ .

Furthermore, let us choose q̃ ≡ 1 ∈ Q0. From the second equation of (16), and with the aid
of (18), we infer that

0 = (1 − 2ν)

ˆ
Ω

p̃h dx −
( 

Ω

p̃h dx
)(ˆ

Ω

1dx
)

= −2ν
ˆ

Ω

p̃h dx,
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i.e.
ffl
Ω

p̃h dx = r̃ = 0, since ν 
= 0.

Step 2:
Next, we show that (̃uh, p̃h, r̃) := (uh, ph, 0) ∈ V h × Qh × R, where (uh, ph) is the
solution from (8), solves (16). The first and last equation in (16) are clearly fulfilled with
(̃uh, p̃h, r̃) = (uh, ph, 0). The second equation in (16) simplifies to

−Bh(uh, q̃) + Ch(ph, q̃) = 0, ∀q̃ ∈ Q̃h .

To show that this equation does indeed hold true, we notice that

−Bh(uh, q̃) + Ch(ph, q̃) = −Bh

(

uh,
 

Ω

q̃ dx
)

− Bh

(

uh, q̃ −
 

Ω

q̃ dx
)

+ Ch

(

ph,
 

Ω

q̃ dx
)

+ Ch

(

ph, q̃ −
 

Ω

q̃ dx
)

.

Due to (18), the first term on the right-hand side is zero. For the second term, since q̃−ffl
Ω
q̃ ∈

Qh , it holds

Bh

(

uh, q̃ −
 

Ω

q̃ dx
)

= Ch

(

ph, q̃ −
 

Ω

q̃ dx
)

,

simply by the second equation in (8). Hence, we end up with

−Bh(uh, q̃) + Ch(ph, q̃) = Ch

(

ph,
 

Ω

q̃ dx
)

= (1 − 2ν)

( ˆ
Ω

ph dx
)( 

Ω

q̃ dx
)

= 0,

where we have used the fact that ph has zero mean. Thus, all three equations from (16) are
fulfilled with (̃uh, p̃h, r̃) = (uh, ph, 0) from above.

Step 3:
It remains to show that the solution of (16) is unique. To this end, we assume that there exist
two solutions (̃uh1, p̃h1, 0), (̃uh2, p̃h2, 0) ∈ V h × Qh × R. Using again (18) as well as the
fact that the pressures have zero mean, the second equation in (16) implies that

0 = −Bh

(

ũh1 − ũh2, q̃ −
 

Ω

q̃ dx
)

− Bh

(

ũh1 − ũh2,
 

Ω

q̃ dx
)

+ Ch

(

p̃h1 − p̃h2, q̃ −
 

Ω

q̃ dx
)

+ Ch

(

p̃h1 − p̃h2,
 

Ω

q̃ dx
)

= −Bh

(

ũh1 − ũh2, q̃ −
 

Ω

q̃ dx
)

+ Ch

(

p̃h1 − p̃h2, q̃ −
 

Ω

q̃ dx
)

.

Therefore, we get the following system for the difference (̃uh1− ũh2, p̃h1− p̃h2) ∈ V h ×Qh

of the two solutions:

Ah (̃uh1 − ũh2, ṽ) + Bh (̃v, p̃h1 − p̃h2) = 0,

−Bh

(

ũh1 − ũh2, q̃ −
 

Ω

q̃ dx
)

+ Ch

(

p̃h1 − p̃h2, q̃ −
 

Ω

q̃ dx
)

= 0,

for all (̃v, q̃ − ffl
Ω
q̃ dx) ∈ V h × Qh . This, in turn, is just the mixed formulation (8) with the

unique zero solution. ��
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4.2 Inf-Sup Constant of the Form Bh

We will now discuss how to compute the inf-sup constant γB from (13) numerically. To do
so, we proceed along the lines of [6, Chapter II.3.2]. Let us choose two sets of basis functions
{φi }Mi=1 ⊂ V h and {ψ j }Nj=1 ⊂ Q̃h , with M = dim(V h) and N = dim(Q̃h). For any v ∈ Vh
and q ∈ Q̃h , we store the associated coefficients in two vectors v := (v1, . . . , vM )� and
q := (q1, . . . , qN )�, respectively. Counting degrees of freedom in each element, we remark
that

M = 3(k + 1)3

k3
N > 3N . (19)

Furthermore, we define the matrix B ∈ R
M×N by

Bi j := Bh(φi , ψ j ), 1 ≤ i ≤ M, 1 ≤ j ≤ N .

Due to Lemma 1, we notice that q ∈ Q0 if and only if the associated coefficient vector q
satisfies q ∈ ker(B). Moreover, by virtue of (17), we conclude that q ∈ Qh if and only if
q ∈ R

N / ker(B). Moreover, since dim(Q0) = 1, it follows that dim(ker(B)) = 1, and, in
view of (19),

rank(B) = rank(B�) = N − 1. (20)

Let us further introduce the symmetric positive definite matrices D ∈ R
M×M and E ∈

R
N×N corresponding to the norms ‖ · ‖h and ‖ · ‖L2(Ω), respectively, through

‖v‖2h = v�Dv, ‖q‖2L2(Ω)
= q�Eq.

Taking into account our considerations above, we infer that

γB = inf
0
=q∈RN / ker(B)

sup
0
=v∈RM

v�B q
(v�Dv)1/2(q�E q)1/2

= inf
0
=q∈RN / ker(B)

sup
0
=v∈RM/ ker(B�)

v�B q
(v�Dv)1/2(q�E q)1/2

.

To proceed, we define

B̃ := D−1/2BE−1/2. (21)

On a practical note, for the purpose of our numerical experiments below, the matrix B̃ is
computed as follows: In a first step, we solve the equation D1/2Y = B for Y := B̃E1/2. Here,
following the approach [10, Sec. 4.2.10], thematrix square root ofD is obtained by employing
the Cholesky decomposition, i.e. D = LL�, and by applying a singular value decomposition
(SVD) of L = USV�, with two orthogonal matrices U and V, and a diagonal matrix S; this
yields D1/2 = USU�. In a second step, exploiting the symmetry of E, we determine B̃ from

E1/2̃B
� = Y�, where the matrix square root of E is computed analogously as before.

Let the SVD of B̃ be given by

B̃ =: ṼΣQ̃
�
,

with the singular values σ1 ≥ · · · ≥ σN−1 > σN = 0, cf. (20), being contained on the
diagonal of Σ, and orthogonal matrices Ṽ and Q̃ with columns ṽ1, . . . , ṽM and q̃1, . . . , q̃N ,
respectively. In addition, we set

v̂i := D−1/2 ṽi ∀ i ∈ {1, . . . , M}, q̂i := E−1/2 q̃i ∀ i ∈ {1, . . . , N }. (22)
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For i ∈ {1, . . . , N } we then conclude
B q̂i = D1/2̃BE1/2 q̂i = D1/2ṼΣQ̃

�
E1/2 q̂i = D1/2ṼΣQ̃

�
q̃i = D1/2ṼΣ ei ,

where ei is the i th standard unit vector in R
N . Hence, we have

B q̂i = σiD
1/2Ṽ ẽi = σiD

1/2 ṽi = σiD v̂i , (23)

where ẽi is the i th standard unit vector in R
M . Involving (22), we deduce that

v̂�
i D v̂ j = δi j ∀ i, j ∈ {1, . . . , M},
q̂�
i E q̂ j = δi j ∀ i, j ∈ {1, . . . , N }. (24)

Given linear combinations

v =:
N−1∑

i=1

αi v̂i ∈ R
M/ ker(B�), q =:

N−1∑

j=1

β j q̂ j ∈ R
N / ker(B), (25)

and using (23) and (24), we obtain

v�B q =
N−1∑

i, j=1

αiβ j v̂�
i B q̂ j =

N−1∑

i, j=1

σ jαiβ j v̂�
i D v̂ j =

N−1∑

i=1

σiαiβi .

Moreover, employing (24) and (25), the norms are represented by

‖v‖h =
(
v�Dv

)1/2 =
(
N−1∑

i=1

α2
i

)1/2

, ‖q‖L2(Ω) =
(
q�E q

)1/2 =
(
N−1∑

i=1

β2
i

)1/2

.

We will now evaluate the inf-sup constant

γB = inf
β 
=0

sup
α 
=0

∑N−1
i=1 σiαiβi

(∑N−1
i=1 α2

i

)1/2(∑N−1
i=1 β2

i

)1/2
, (26)

with α := (α1, . . . , αN−1) and β := (β1, . . . , βN−1). Without loss of generality, we may
suppose that ‖v‖h = ( ∑N−1

i=1 α2
i

)1/2 = 1, and ‖q‖L2(Ω) = ( ∑N−1
i=1 β2

i

)1/2 = 1. Then, (26)

simplifies to γB = infβ supα

∑N−1
i=1 σiαiβi . By applying the Cauchy-Schwarz inequality,

that is,

N−1∑

i=1

σiαiβi ≤
(
N−1∑

i=1

α2
i

)1/2 (
N−1∑

i=1

σ 2
i β2

i

)1/2

=
(
N−1∑

i=1

σ 2
i β2

i

)1/2

,

we observe that the supremum is attained for αi = ( ∑N−1
i=1 σ 2

i β2
i

)−1/2
σiβi . This leads to

γB = inf
β�β=1

(
N−1∑

i=1

σ 2
i β2

i

)1/2

= σN−1.

Proposition 3 The inf-sup constant γB from (13) is given by the smallest positive singular
value, σN−1, of the matrix B̃ from (21).
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4.3 Inf-Sup Constant of the Form ah

In order to compute the inf-sup constant from (14), we proceed analogously as in the previous
section. To this end,we choose a basis {χ i }M+N

i=1 ofV h×Q̃h , and define the systemmatrixM ∈
R

(M+N )×(M+N ) by

Mi j := ah(χ j ,χ i ), 1 ≤ i, j ≤ M + N ,

with ah from (11). For brevity, we consider only the limit case ν = 1/2. Due to Lemma 1 and
the coercivity of the form Ah from (8), we conclude that M has a one-dimensional kernel.
Denoting by D ∈ R

(M+N )×(M+N ) the symmetric positive matrix defining the ||| · |||DG-norm
through

|||(u, p)|||2DG = v�Dv,

where v ∈ R
M+N is the coefficient vector of a given pair (u, p) ∈ V h × Q̃h with respect to

the basis {χ i }M+N
i=1 , we let

M̃ := D−1/2MD−1/2; (27)

the computation of M̃ can be performed analogously as in (21). Given the SVD of M̃ by

M̃ =: X̃ΣỸ
�
, with the singular values σ1 ≥ · · · ≥ σM+N−1 > σM+N = 0 being contained

on the diagonal of Σ, and orthogonal matrices X̃ and Ỹ, we infer the following result.

Proposition 4 In the incompressible case ν = 1/2, the inf-sup constant from (14) satisfies
γa = σM+N−1, where σM+N−1 is the smallest positive singular value of the matrix M̃
from (27).

4.4 Numerical Computation of the Inf-Sup Constants

We shall now investigate the inf-sup constants γB and γa from (13) and (14), respectively, by
means of a number of numerical experiments. In particular,wewill investigate the dependence
on the approximation degree k and on the Poisson ratio ν. In the sequel, we choose θ from (9)
to be 1 (i.e. we use the symmetric interior penalty DGmethod), the mesh grading factor from
Sect. 3.1 as σ = 1/2, and the penalty parameter from (7) is set to γ = 10. As shape functions
weuse tensorizedLagrange polynomials in theGauss quadrature points.All our computations
are performed with the finite element library deal.II; see, e.g., [4,5].

4.4.1 Inf-Sup Constant �B

We consider the canonical edge, corner, and corner-edge patch meshes presented in Sect. 3.1,
see Fig. 1, with the modification that, in case of the corner-edge mesh, we refine one corner
and all adjacent neighbouring edges. Furthermore, we study the situation of geometrically
refined meshes on a Fichera domain given by (−1, 1)3 \ [0, 1)3, where we simultaneously
refine the reentrant corner and all three adjacent edges.

Let us first fix the approximation degree k, and refine the meshes by increasing the number
of refinement levels � step by step. For different approximation degrees the results are depicted
in Fig. 2.We clearly observe that the values of γB level off after some initial refinement steps,
thereby underlining the robustness of the inf-sup constant of Bh with respect to the anisotropic
geometric refinements. The asymptotic values are visualized in Fig. 3; it is observed that there
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Fig. 2 Inf-sup constant γB of the form Bh in case of geometrically refined edge, corner, corner-edge patches,
as well as for a Fichera corner refinement, for different approximation degrees k

Fig. 3 Asymptotic values of the inf-sup constants from Fig. 2 (on the right with logarithmic scaling; the dashed
line shows a slope of −3/2)

is a mild k-dependence of the inf-sup constant γB , however, our results indicate that, for the
given examples, the dependence is considerably more optimistic than the theoretical bound
k−3/2 proved in [24], cf. Remark 1.
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Fig. 4 Inf-sup constant γa of the form ah in case of geometric edge, corner, and corner-edge refinements, with
different approximation degrees k and ν = 1/2

4.4.2 Inf-Sup Constant of the Form ah

Let us turn to the behavior of the inf-sup constant γa from (14) with respect to k, with ν = 1/2.
From Theorem 1 recall the theoretical dependence γa � max{k−2ρ, 1−2ν}; this result holds
true with a theoretical value of ρ = 3/2, cf. Remark 1. Since we set ν = 1/2, we deduce
γa � k−3.

We focus on the canonical geometric edge, corner, and corner-edge refinements from
Sect. 3.1. As before, we first fix the approximation degree k, and refine the meshes step by
step in order to monitor the inf-sup constant; see Fig. 4 for the resulting plots with different
approximation degrees. Again, we display the asymptotic values of γa for increasing k in
Fig. 5. The results are qualitatively similar to the inf-sup constant γB discussed earlier.
There is a k-dependence of the inf-sup constant γa which is again much weaker than k−3.
Furthermore, our results show that the inf-sup constant γa does not deteriorate in the critical
limit ν = 1/2 as shown in Theorem 1.
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Fig. 5 Asymptotic values of the inf-sup constants from Fig. 4 (on the right with logarithmic scaling; the dashed
line shows a slope of −3)

5 Exponential Convergence on Geometric Meshes

In this section we turn to the exponential convergence of the spectral mixed DG method (8).
Inspired by the regularity theory from [7] for analytic data (cf., in particular, Theorem 6.9),
we suppose that the solution (u, p) of (1)–(3) belongs to A−1−β(Ω)3 × A−β(Ω), where, for
a weight vector γ ∈ R

|C|+|E|, we consider the countably normed space of piecewise analytic
functions

Aγ (Ω) :=
{

v ∈
⋂

m≥1

Mm
γ (Ω) : ‖v‖Mm

γ (Ω) ≤ Cm+1
v m! ∀m ∈ N

}

,

with a constant Cv > 0 depending on the function v. Under this assumption, referring to [31,
Theorem 6.2], it can be shown that the DG approximation (uh, ph) from (8) converges at an
exponential rate. To quantify this fact, let ν ∈ (0, 1/2], and consider a sequence of geometric
edge meshes T σ,l as in Sect. 3.1. Moreover, choose a uniform polynomial degree k ≥ 2 that
is proportional to the number of layers � ≥ 1 in T σ,l . Then, the DG approximation (uh, ph)
from (8) satisfies the error bound

|||(u − uh, p − ph)|||2DG � exp(−b 5
√
N ), (28)

where N := dim(V h × Qh) denotes the number of degrees of freedom.

5.1 Exponential Convergence on Canonical Patches

In our numerical examples,we usemanufactured solutions,which feature typical singularities
close to S in the displacement u = (u1, u2, u3), and then test the spectral DGFEM (8) with
the resulting right-hand side force functions f in (1). The domain Ω is chosen to be the unit
cube. To cover all possible cases, we consider one solution with an edge, one with a corner,
and another one with a corner-edge singularity:

– Displacement with an anisotropic edge singularity along the z-axis:

u1 = u2 = 0, u3 = (x2 + y2)1/4z(1 − z).

– Displacement with an isotropic corner singularity at the origin:

u1 = u2 = 0, u3 = (x2 + y2 + z2)1/6z(1 − z).
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Fig. 6 The mesh and the approximation degree during the first 4 refinement steps for the approximation of
the solution with a corner-edge singularity

– Displacement which combines the above edge and corner singularities:

u1 = u2 = 0, u3 = (x2 + y2 + z2)1/6(x2 + y2)1/4z(1 − z).

The corresponding pressures p for these displacements are then given via (2):

p = − 1

1 − 2ν
∇ · u, ν 
= 1/2.

Incidentally, in order to avoid too complicated right-hand sides f , we do not enforce the
displacements u to vanish on the whole boundary ∂Ω . More precisely, they are chosen such
that u · n∣

∣
∂Ω

= 0, i.e. the normal component of the displacement field is zero. Then, by the
Gauss–Green theorem, notice the mean value property of the pressure,

ˆ
Ω

p dx = − 1

1 − 2ν

ˆ
Ω

∇·u dx = − 1

1 − 2ν

ˆ
∂Ω

u·n ds = 0.

The nonzero Dirichlet boundary conditions are accounted for by means of a standard flux
term which is added to the right-hand side of the DGFEM formulation (10).

For our test examples, we use ν ∈ {1/8, 1/2, 3/8}. In order to solve the resulting linear
systems we employ the GMRES method in combination with the SparseILU preconditioner
implemented in deal.II. The iterations terminate as soon as the Euclidean norm of the (unpre-
conditioned) residual becomes smaller or equal to 10−12. The initial meshes consist of a
single element, and an approximation degree k = 1. In the following, we refine successively
the meshes towards the singularities, and simultaneously increase the approximation degree
by one in each refinement step such that k ∼ �, where � is the number of layers. Since the
singularities (and thereby their location) in the examples above are known explicitly, we only
refine the corresponding edge and/or corner; see Fig. 6 for the corner-edge example.

In Figs. 7 and 8we display the error of the approximation in the DG-norm (12) in a semi-
logarithmic coordinate system with respect to the 4th, respectively the 5th root of the number
of degrees of freedom N ; cf. (28). Indeed, on a single element, the number of degrees of
freedom growswithO(k3); in addition, when resolving a corner-edge singularity, the number
of elements grows with O(�2), while, for an edge or a corner singularity, only O(�) many
elements are needed. Hence, recalling that k ∼ �, in the cases of the edge and the corner
singularity examples a growth ofO(N 4) degrees of freedom is obtained, while in the case of
the corner-edge example we even have O(N 5) (thus the 5th root in (28)). The graphs show
that, after some initial refinement steps,we obtain nearly constant slopes in all three situations.
Hence, these experiments confirm that the proposed spectral DGFEM (8) on geometric edge
meshes is able to resolve isotropic as well as anisotropic singularities at exponential rates.
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Fig. 7 Performance of the DGFEM for the solutions with an edge singularity (top) and a corner singularity
(bottom)
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Fig. 8 Performance of the DGFEM for the solution with a corner-edge singularity

5.2 Robustness with Respect to the Poisson Ratio

The purpose of the second series of experiments is to investigate the robustness of the expo-
nential convergence bound (28) with respect to ν as ν → 1/2. The domain Ω is again chosen
to be the unit cube.

Example 1 Wefirst consider an example where the displacement u is smooth and divergence-
free:

u = sin(πx) sin(π y) sin(π z) ·
⎛

⎝
sin(πx) cos(π y) cos(π z)
sin(π y) cos(πx) cos(π z)

−2 sin(π z) cos(πx) cos(π y)

⎞

⎠ .

In this case it immediately follows that p = 0, and, hence, −Δu = f ; in particular, the
resulting right-hand side force function f is independent of ν.

For this example, we use a fixed uniform mesh consisting of 64 elements, and simply
vary the uniform polynomial degree k. For this setup, since the solution (u, p) is analytic,
we expect exponential convergence with respect to the 3rd root of the number of degrees of
freedom. In order to study the convergence with respect ν as ν → 1/2, in Fig. 9, we plot the
error of the DG method with respect to different values of the Poisson ratio ν. Clearly, the
deviations between the different exponential convergence curves are almost negligible, and,
thereby, underline the robustness of the DGFEM with respect to ν for this example.
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Fig. 9 Example 1: Performance of the spectral DGFEM for different values of ν

Fig. 10 The mesh and the approximation degree k for the first five refinement steps for the approximation of
the reference solution

Example 2 In our last experiment, we choose a circular force in the x-y-plane and a linear
force in the z-direction, i.e.

f =
⎛

⎝
−y − 1/2

x − 1/2

x − 1/2

⎞

⎠ .

Since the exact solution is not known in this example, we compute a reference solution based
on refining all edges and corners of Ω with k = � = 5; cf. Figure 10. The DG error for
different values of ν is depicted in Fig. 11; as in the previous example, we observe that the
DGFEM remains stable when ν tends to the incompressible limit 1/2. Furthermore, the nearly
straight graphs indicate that exponential convergence is also achieved in these computations.
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Fig. 11 Example 2: Performance of the spectral DGFEM for different values of ν

6 Conclusions

This paper centres on spectral mixed discontinuous Galerkin discretizations for linear elas-
ticity and Stokes flow in three dimensional polyhedral domains. In a series of numerical
experiments we have validated our theoretical results from [31] for various canonical ref-
erence situations. In particular, we have performed a computational study on the inf-sup
stability and the exponential convergence of this class of methods on anisotropic geometric
edge meshes. For the former purpose we have derived a simple procedure to determine the
discrete inf-sup constants based on a singular value decomposition approach along the lines
of [6].

Following the approach [25–27], our work may be extended to variable (and possibly
anisotropic) polynomial degree distributions, thereby leading to hp-version DGFEM. To
prove stability results in that context, however, the discrete inf-sup condition (13) would
need to be generalized to the corresponding hp-meshes. Finally, let us mention that the linear
mixed DG discretizations addressed in the present work could be combined with the iterative
Newton DG (NDG) approach [15] in order to approximate problems in nonlinear elasticity
in three dimensions.
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