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Abstract

The protozoan parasite Theileria inhabits the host cell cytoplasm and possesses the unique capacity to transform the cells it
infects, inducing continuous proliferation and protection against apoptosis. The transforming schizont is a multinucleated
syncytium that resides free in the host cell cytoplasm and is strictly intracellular. To maintain transformation, it is crucial that
this syncytium is divided over the two daughter cells at each host cell cytokinesis. This process was dissected using different
cell cycle synchronization methods in combination with the targeted application of specific inhibitors. We found that
Theileria schizonts associate with newly formed host cell microtubules that emanate from the spindle poles, positioning the
parasite at the equatorial region of the mitotic cell where host cell chromosomes assemble during metaphase. During
anaphase, the schizont interacts closely with host cell central spindle. As part of this process, the schizont recruits a host
cell mitotic kinase, Polo-like kinase 1, and we established that parasite association with host cell central spindles requires
Polo-like kinase 1 catalytic activity. Blocking the interaction between the schizont and astral as well as central spindle
microtubules prevented parasite segregation between the daughter cells during cytokinesis. Our findings provide a striking
example of how an intracellular eukaryotic pathogen that evolved ways to induce the uncontrolled proliferation of the cells
it infects usurps the host cell mitotic machinery, including Polo-like kinase 1, one of the pivotal mitotic kinases, to ensure its
own persistence and survival.
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Introduction

The apicomplexan parasites Theileria annulata and T. parva are

transmitted by ticks and cause severe lymphoproliferative disease in

cattle in large areas of Africa, the Middle East, and Asia. The

pronounced pathology and high mortality are linked to the ability of

Theileria to stimulate the uncontrolled proliferation of the cells it

infects, inducing a phenotype typical of tumor cells. T. parva infects

predominantly T- and B-lymphocytes, whereas T. annulata targets

B-lymphocytes and macrophages/monocytes. Theileria-transformed

cells proliferate independently of antigenic stimulation or exogenous

growth factors. Parasitized cells become resistant to apoptosis [1–3]

and acquire the capacity to invade and multiply in non-lymphoid as

well as lymphoid tissues (reviewed in [4–6]). In buffalo, the natural

host of Theileria, and in domestic animals that survive infection, the

parasite persists for years, resulting in a carrier state.

Theileria parasites differ from other Apicomplexan parasites,

such as Plasmodium and Toxoplasma, in that they do not reside in a

parasitophorous vacuole. Shortly after entry, the invading

sporozoite dissolves the surrounding host cell membrane. Free in

the cytosol, the sporozoite immediately associates with host cell

microtubules (MTs) and differentiates into the schizont stage of the

life cycle [7], a multinucleated syncytium that maintains the host

cell in a transformed state.

Significant progress has been made understanding how this

parasite manipulates its host. To achieve transformation, the

parasite induces the activation of host cell signaling pathways that

control cell proliferation and survival. This includes signaling

pathways that regulate G1 to S transition, resulting in host cell

DNA replication [6,8]. Transformation is entirely dependent on

the presence of the parasite in the cytoplasm, however, and upon

killing of the parasite by treatment with a specific theilericidal

drug, cells lose the transformed phenotype, stop proliferating [9],

and reacquire sensitivity to apoptosis.

Theileria-infected cells can be cultured indefinitely in vitro, and

in established cultures, more than 95% of the cells harbor the
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parasite. Parasite and host cell DNA replication is asynchronous,

with the schizont predominantly undergoing DNA synthesis and

nuclear division as the host cell enters mitosis [10]. Schizonts are

strictly intracellular and, to maintain the host cell transformed

phenotype, the organism must be passed on to both daughter cells

each time the host cell goes through mitosis and cytokinesis (M

phase). Viruses that transform their host cells have evolved

mechanisms to guarantee their persistence in proliferating cells. In

the case of retroviruses, this involves integration into the host cell

genome (reviewed in [11]). DNA viruses such as Kaposi’s

sarcoma-associated herpesvirus, Epstein-Barr virus, or papilloma-

virus have evolved a conserved strategy to ensure genome

segregation during mitotic division that involves tethering

episomal viral genomes to mitotic chromosomes using virus-

encoded proteins (reviewed in [12]). How can Theileria, as a large

and complex eukaryotic syncytium, persist in a continuously

dividing host cell? Early microscopic observations have provided

first clues for an involvement of the host cell mitotic apparatus

[13]. However, the kinetics and molecular mechanism underlying

the interaction between the schizont and its host cell during mitosis

have not yet been investigated in detail.

The regulation of mitosis and cytokinesis involves a range of

mitotic kinases, motor proteins, and MT structures that undergo

extensive reorganization to coordinate diverse functions such as

chromosome segregation and cell division. In line with their

multiple functions, regulatory proteins are subject to extensive

spatio-temporal regulation, translocating between different struc-

tures where they fulfill specific functions. The mitotic spindle, which

forms during early mitosis, consists of astral and interpolar MTs as

well as kinetochore fibers that attach to condensed chromosomes.

Cells are only allowed to exit mitosis when all chromosomes are

correctly aligned on the mitotic spindle. At this point, Cdk1/cyclin

B is inactivated, and during the ensuing anaphase, kinetochore MTs

shorten to deliver the sister chromatids towards the poles. In the

zone between the separating sets of sister chromatids (spindle

midzone), a specialized structure, the central spindle, forms,

consisting of bundles of antiparallel MTs with overlapping plus

ends. By recruiting a specific set of regulatory proteins, including

mitotic kinases such as Polo-like kinase 1 (Plk1) and Aurora B, as

well as activators of the RhoA GTPase, the central spindle provides

an important signaling platform that determines the plane of

cleavage furrow formation and cytokinesis. For detailed information

on central spindle assembly and cytokinesis, the reader is referred to

recent reviews [14–16].

Plk1 has a broad range of functions during different stages of

cell division and is subject to complex spatial and temporal control

(reviewed in [17–19]). Plk1 is degraded at the end of M phase and

protein levels remain low during G1. Levels increase when cells

enter S phase, accumulating strongly during G2. As the cell

prepares for mitosis, Plk1 can be found localized to centrosomes

and a first accumulation at centromeres can be observed. Upon

progression through prometaphase and metaphase, Plk1 associates

with spindle poles and kinetochores. The choice of Plk1 docking

partners is regulated by Cdk1 [20], and upon Cdk1 inactivation at

anaphase, Plk1 is released from kinetochores and recruited to the

newly forming central spindle. Finally, during cytokinesis, Plk1 is

found localized to the midbody. By phosphorylating different

interacting partners, Plk1 contributes to a number of events linked

to cytokinesis such as contractile ring formation and cleavage

furrow ingression [17,21–23]. The application of RNAi-mediated

Plk1 knock-down or Plk1 inhibition using dominant negative

mutants proved highly valuable to dissect the early functions of

Plk1 in mitosis. However, important new insights into the role of

Plk1 during cytokinesis only became possible with the recent

development of specific chemical tools that allow the rapid and

complete inactivation of Plk1 at precise time-points during mitosis,

and without interfering with earlier functions [24–27]. Armed with

these new tools, we analyzed how the Theileria schizont interacts

first with the mitotic spindle and subsequently with the central

spindle during host cell M phase. We show that the parasite

establishes a close interaction with both structures and found that

its association with the central spindle depends on catalytically

active Plk1. The latter associates with the schizont surface in a

biphasic manner and recruitment is negatively regulated by host

cell Cdk1.

Results

The Theileria Schizont Interacts with De Novo
Synthesized Astral and Spindle Midzone MTs

To monitor the interaction of the schizont with de novo

synthesized MTs, T. annulata-transformed cells were exposed to

nocodazole, a drug that inhibits MT polymerization. After 16 h of

treatment, mitotic cells lacking MTs were arrested in prometa-

phase because of spindle checkpoint activation. Within minutes of

nocodazole removal, new bundles of MTs formed that aligned

closely with the parasite surface, stained with anti-TaSP1, a

commonly used schizont surface marker (Figure 1A) [28]. The

appearance of multiple small MT asters early upon nocodazole

release is most likely not due to parasite-induced MT nucleation as

such asters could also be observed in uninfected bovine control

cells (Figure S1A). At metaphase, the parasite was found oriented

symmetrically towards both spindle poles, straddling the chromo-

somes assembled in the metaphase plate. At anaphase, spindle

midzone MTs, located between the separating sister chromatids,

were aligned longitudinally along large sections of the parasite as

dense MT bundles (Figure 1B). As the cleavage furrow ingressed,

central spindle MTs, including those associated with the parasite,

Author Summary

As part of their survival tactics, intracellular parasites often
resort to cunning mechanisms to manipulate the cells they
inhabit. Theileria, an important and particularly artful
parasite of cattle in the tropics, transforms parasitized
cells (that is, it induces continuous proliferation and
protection from apoptosis—a state reminiscent of tumor
cells). As a large, strictly intracellular syncytium, the
transforming Theileria schizont cannot exit from the
infected cell to invade other target cells. How then does
the parasite ensure that each daughter cell, generated
upon host cell division, remains infected and transformed?
Our data show that the parasite co-opts the mitotic
apparatus of the host cell and Plk1, a host protein kinase
with a central regulatory role in mitosis and cytokinesis. As
the host cell enters mitosis, the schizont binds to the
microtubules that emanate symmetrically from the two
spindle poles. This microtubule binding positions the
schizont so that it spans the equatorial region of the
mitotic cell where host cell chromosomes assemble. Then,
as sister chromatids start to separate, the schizont
associates with Plk1 and the central spindle that assembles
between the separating chromosomes, with the activity of
Plk1 presumably coordinating progression through mitosis
with proper schizont positioning. This alignment with the
central spindle positions the schizont to be included in the
plane of cell division at the onset of cytokinesis, thus
ensuring faithful passage of a Theileria schizont on to each
daughter cell.

Theileria Co-opts the Host Cell Mitotic Apparatus

PLoS Biology | www.plosbiology.org 2 September 2010 | Volume 8 | Issue 9 | e1000499



became compacted and, during cytokinesis, both chromosome sets

and the parasite were equally distributed between the two

daughter cells (Figure 1C). TaC12 cells are of macrophage origin

and in order to allow a morphological comparison, different stages

of mitosis/cytokinesis as observed in a bovine control cell line of

macrophage origin (BoMac) or cells that no longer contain the

parasite are presented in Figure S1B and C.

The accumulation of host cell MT bundles at the schizont surface

does not require bipolar spindles as it could also be observed in cells

treated with monastrol, a small-molecule inhibitor of the mitotic

kinesin Eg5 that induces the formation of monopolar half-spindles

(Figure S2) [29]. In monastrol-treated cells the parasite is less mobile

compared to untreated cells, facilitating live imaging of MT

interactions with the parasite surface. A kymograph analysis

suggested that host cell astral MT bundles appear to be stably

associated with the schizont surface (Figure S2).

Biphasic Cell-Cycle Dependent Recruitment of Host Plk1
to the Schizont Surface

In previous work, we demonstrated that T. parva and T. annulata

can aggregate the host cell kinases IKK1 and IKK2 at its surface,

Figure 1. Theileria schizont interaction with mitotic and spindle midzone MTs. (A) T. annulata-transformed cells were arrested in
prometaphase by treatment with nocodazole (Noc; top panels). Upon removal of nocodazole, MT polymerization was monitored by
immunofluorescence microscopy (IFM) for up to 120 min. Cells were stained with antibodies directed against the schizont surface marker TaSP1
and a-tubulin; DNA was stained with DAPI; ‘‘merge’’ represents an overlay of the images. Noc, nocodazole; ‘‘washout’’ indicates removal of
nocodazole. (B, C) Unsynchronized T. annulata-transformed cells undergoing anaphase and telophase/cytokinesis. The panel labeled ‘‘magnif’’
represents a magnification of the midbody region of the dividing cell shown in (C). Scale bars represent 5 mm.
doi:10.1371/journal.pbio.1000499.g001

Theileria Co-opts the Host Cell Mitotic Apparatus
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activating a signaling pathway that promotes survival of the

transformed host cell [30]. Using immunofluorescence microsco-

py, we investigated whether this might also apply to mitotic

kinases. In unsynchronized cultures of T. annulata-transformed

cells, Plk1 was found to localize to the surface of the schizont in

approximately 30% of cells. This was most striking in cells in G2

and also in cells undergoing anaphase (Figure 2A). Intriguingly,

during prometaphase and metaphase, Plk1 was consistently absent

from the schizont surface. The association of Plk1 with the parasite

during different phases of the cell cycle is presented in Figure S3.

Plk1 was not detectable in cells in G1. During G2, when Plk1 is

abundantly expressed, prominent labeling of the schizont surface

could be observed, coinciding with the time at which Plk1 started

to accumulate at host cell centromeres. Binding to the schizont was

maintained until nuclear accumulation of cyclin B1 and nuclear

envelope breakdown became apparent during prophase (unpub-

lished data). Once cells reached prometaphase and metaphase,

Plk1 localized predominantly to the spindle poles and kinetochores

but was not associated with the schizont. With the onset of

anaphase, Plk1 re-accumulated on the parasite surface. In cells

progressing to telophase, Plk1 association with the parasite was

largely restricted to the section of the schizont that is incorporated

into the central spindle.

To analyze Plk1 recruitment to the parasite surface in more

detail, we used different synchronization protocols. The different

synchronization strategies used in this study are depicted

schematically in Figure S4A. In a first set of experiments,

Theileria-infected cells were synchronized in early S phase using a

thymidine block. Cells were released from the arrest and Plk1

association with the schizont monitored by immunofluorescence

microscopy as cells progressed towards G2 and M phase (Figure

S5). The percentage of cells containing Plk1-binding schizonts

increased progressively as they advanced through G2 and then

decreased as they entered mitosis. Progression into M phase was

monitored by immunoblot analysis of lysates, prepared at each

time point, using antibodies specific for phospho-histone H3.

Immunoblot analysis also showed that reduced association of

Plk1 with the parasite as cells proceeded into mitosis was not due

to declining Plk1 levels as these continued to increase during the

course of the experiment. In cells synchronized in prometaphase

by treatment with nocodazole, Plk1 could not be detected on the

parasite (Figure 2B, left panels) confirming our observation made

in unsynchronized cultures. The lack of Plk1 binding could not

be attributed to the lack of MTs as identical observations were

made in cells synchronized in prometaphase by treatment with

monastrol (Figure 2B, right panels).

We next defined at which stage after metaphase the Plk1-

parasite interaction was reinstated. By blocking the degradation of

cyclin B using the proteasomal inhibitor MG132, inactivation of

the Cdk1/cyclin B complex can be prevented, thus synchronizing

cells in a metaphase-like state (see scheme Figure S4A) [26]. To

follow progression through anaphase, telophase and exit from M

phase, the degradation of cyclin B1 and securin, and the

disappearance of the phospho-histone H3 epitope was monitored

by immunoblot. Consistent with earlier observations, no parasite-

associated Plk1 could be detected in metaphase-arrested cells

(Figure 2C). Upon release from metaphase arrest, Plk1 associated

with the parasite surface as soon as anaphase started. Binding was

lost as cells completed cytokinesis and entered interphase/G1.

The capacity to induce transformation of the mammalian host

cell is restricted to the schizont stage of Theileria and host cell

proliferation ceases when the schizont differentiates to the next

life cycle stage in a process called merogony [31,32]. Figure S4B

provides an overview of the mammalian stages of the Theileria life

cycle. Merogony can also be induced in vitro by exposure to heat

shock [31] or treatment with chloramphenicol [33]. Merogony is

an asynchronous stochastic process that occurs in individual cells

over a period of 4 to 10 d. Upon induction, the number of cells

harboring parasites expressing the differentiation marker

TamR1 gradually increased, reaching up to 45%. This was

accompanied by a pronounced reduction in the number of cells

expressing Plk1, including cells containing the transforming

schizont with Plk1 located to its surface (from typically 30% in

normal cultures to ,10%). The reduction in the number of cells

expressing Plk1 likely reflects cell cycle arrest in G1 or G0. As

parasites proceeded into merogony, they lost the capacity to bind

Plk1 (Figure S6). In 13% of the cells, scattered, but weak, Plk1

binding to parasites in early stages of differentiation could still be

observed (an example is shown in Figure S6, middle row). No

Plk1 binding could be detected when parasites had completed

differentiation.

Taken together, these data show that host cell Plk1 interacts

with the surface of the parasite in a biphasic manner and that this

is restricted to the transforming stage of the life cycle.

Plk1 Binding to the Schizont Surface Is Modulated by
Cdk1 and Does Not Require Plk1 Catalytic Activity

The pattern of Plk1 binding to the schizont surface correlated

inversely with the spectrum of Cdk1/cyclin B activity. While

Cdk1-mediated phosphorylation can create docking sites for

Plk1 [34,35], in other cases Cdk1 prevents binding. Plk1 can

also ‘‘self-prime’’, however, and the choice of Plk1 docking

partners through the course of mitosis and cytokinesis is thus

controlled by the activation state of Cdk1 and that of Plk1 itself

[20,36,37].

Cdk1 activity is required to maintain the mitotic state.

Unscheduled inactivation of Cdk1 during mitosis induces a

cytokinesis-like process that takes place before chromosome

alignment and proper chromatid segregation has occurred (Figure

S4A) [38]. As shown in Figure 2B, Plk1 is not associated with the

schizont in Theileria-transformed cells synchronized in prometa-

phase. Blocking Cdk1 activity by treatment with the chemical

inhibitor RO-3306, however, induced the immediate accumula-

tion of Plk1 on the schizont surface (Figure 3A and B). This also

occurred in the presence of nocodazole, indicating that Plk1

recruitment to the parasite surface does not require mitotic MTs.

In both cases, the association induced by Cdk1 inhibition was

transient and downregulated within 30 min.

As Plk1 binding to substrates can result from self-priming

[20,36], we investigated the requirement of Plk1 catalytic

activity for Plk1 binding to the parasite surface in more detail.

TaC12 cells synchronized in S-phase were released from

thymidine block and cultured in the presence or absence of the

specific Plk1 inhibitor BI-2536 [39,40] at concentrations from

100 nM up to 1 mM. In agreement with the described role of

Plk1 in early mitosis [27,39–42], cells released from S-phase in

the presence of BI-2536 accumulated in G2/M and underwent

prometaphase-like mitotic arrest, whereas control cells pro-

gressed through mitosis into G1 (shown for BI-2536 at 100 nM;

Figure 4A). Accumulation in prometaphase upon BI-2536

treatment was also observed in unsynchronized TaC12 cultures

(Figure S7A). In BI-2536 cells that were still in G2, Plk1 was

readily detected at the parasite surface, and this was even more

marked at higher doses of BI-2536 (Figure 4B). In agreement

with our observations described above, Plk1 association with

the parasite was strongly reduced in those cells that had

arrested in ‘‘prometaphase’’ (Figure 4C and D). When Cdk1

was inhibited in cells arrested in ‘‘prometaphase,’’ Plk1

Theileria Co-opts the Host Cell Mitotic Apparatus
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Figure 2. Biphasic recruitment of host Plk1 to the schizont surface. (A) T. annulata-transformed cells were stained with anti-Plk1, anti-TaSP1,
and DAPI and analyzed by IFM. Cell cycle stages are indicated. Arrowhead indicates the position of the parasite. (B) Cells arrested in prometaphase by
treatment with nocodazole (left panels) or monastrol (right panels) and analyzed by IFM using antibodies to Plk1, TaSP1 and a-tubulin. Arrowheads
indicate the position of the parasite. (C) Cells were released from MG132-mediated metaphase arrest and the percentage of cells containing parasites
with surface-bound Plk1 was determined by IFM (n$100 cells/sample). M neg.: metaphase cells, parasite Plk1-negative; A neg.: anaphase cells,
parasite Plk1-negatve; A/T pos.: Ana- & Telophase cells, parasite Plk1-positive; C/G1 neg.: cells in cytokinesis or G1, parasite Plk1-negative. Progression
through M phase was monitored by immunoblot analysis using antibodies as indicated. HDAC1 (histone deacetylase 1) and a-tubulin were used as
loading controls. Scale bars represent 5 mm.
doi:10.1371/journal.pbio.1000499.g002

Theileria Co-opts the Host Cell Mitotic Apparatus
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immediately reaccumulated at the parasite surface; this also

occurred when BI-2536 was added at concentrations as high as

1 mM (Figure 4C and D). In the presence of BI-2536, Plk1

interaction with the parasite could still be detected in the

majority of the cells after 30 min, whereas Plk1 was absent

from the parasite in cells treated only with Cdk1 inhibitor at

that time point (Figure 4C). Importantly, in the presence of BI-

2536, the pronounced ectopic cleavage furrow formation

observed upon Cdk1 inhibition was inhibited (Figure S7F),

confirming the reported role for Plk1 in regulating furrow

ingression (see also below and Figure S12) [21,22,24–27].

We also determined whether Plk1 recruitment to the parasite

during normal anaphase required Plk1 activity. In the presence of

BI-2536, cells released from metaphase arrest entered anaphase

but failed to undergo furrow ingression. In these cells, Plk1 was

found associated with the parasite surface (Figure 4E).

In further control experiments, BI-2536 was found to exert the

same inhibitory effects in TaC12 cells as described in other

systems; this included failure to maintain bipolar spindles (Figure

S7B and C), cytokinetic failure (not shown), and the accumulation

of binucleate cells (Figure S7D and E).

Although residual Plk1 activity can never be completely

excluded, our findings indicate that Plk1 docking to the parasite

surface can occur in the presence of Plk1 inhibitor concentrations

that potently block several physiological functions of Plk1 in the

cell. Together, these data indicate that Cdk1 negatively regulates

Plk1 association with the schizont surface and that Plk1 binding

does not appear to require catalytic activity.

Plk1 Binds to the Theileria Schizont via Its Polo-Box
Domain

To determine which region of Plk1 is responsible for binding to

the schizont surface, different myc-tagged forms of Plk1 were

transiently expressed in T. annulata-transformed cells. Immunoflu-

orescence analysis showed that myc-tagged Plk1 localized to the

parasite surface (Figure 5). When the N-terminal kinase domain

(KDom) and the C-terminal Polo-box domain (PBD) were

expressed separately, only the latter showed binding. H538 and

K540 are important residues in the PBD that are required for

phospho-ligand binding [35,43]. Mutation of these residues to

alanine completely abrogated PBD binding to the parasite,

indicating that a functional PBD with an intact phosphopeptide

recognition domain is required for Plk1 interaction with the

parasite. To exclude the potential participation of endogenous

Plk1 in the creation of PBD docking sites on the parasite surface,

cells transfected with PBD constructs were treated with BI-2536

(Figure 6). Inhibition of Plk1 activity did not interfere with myc-

PBD, myc-PBDH538A/K540A, or kinase dead full-length Plk1 (myc-

Plk1K82R) binding. This was also observed when doses as high as

1 mM were used (Figure S8), confirming that recruitment is, in all

likelihood, independent of Plk1 activity.

The Schizont Recruits Host Cell Central Spindles to Its
Surface in a Plk1-Dependent Manner

Plk1 is closely involved in central spindle function and in

helping to determine the site of contractile ring assembly and

Figure 3. Cdk1 modulates Plk1 binding to the schizont surface. Cells arrested in prometaphase by nocodazole treatment were washed and
immediately exposed to the Cdk1 inhibitor RO-3306, and Plk1 binding to the schizont surface was analyzed by IFM using antibodies to Plk1 (inverse
gray/red), anti-TaSP1 (green), and anti-a-tubulin. (A) Time-course analysis showing the percentage of cells harboring parasites with surface-bound
Plk1 following treatment with Cdk1 inhibitor in the presence (RO-3306 + Noc) or absence (RO-3306) of nocodazole. Control cells were released from
nocodazole block in the presence of DMSO (control). Data represent the mean of three experiments (n = 150 cells/sample), and error bars indicate
standard deviation (SD). (B) Cells treated with the Cdk1 inhibitor RO-3306 in the presence of nocodazole (10 min). Scale bars represent 5 mm.
doi:10.1371/journal.pbio.1000499.g003

Theileria Co-opts the Host Cell Mitotic Apparatus
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furrow ingression, ultimately resulting in cytokinesis (see reviews

[14,15] and references therein). To test to what extent the schizont

is linked to these processes, precocious anaphase and cytokinesis-

like contractility were induced in prometaphase-arrested cells by

Cdk1 inhibition. As cells proceeded to ‘‘anaphase’’, de novo

synthesized MTs assembled as central spindle-like structures at the

schizont surface (Figure 7A). Even though normal sister chromatid

separation did not take place, cells attempted cleavage (Figure S9).

RhoA, the main regulator of actin dynamics, was found to

accumulate at the cell cortex in a narrow zone in the immediate

vicinity of the parasite (Figure 7B). Interestingly, cleavage furrows

occurred almost invariably at sites where MT bundles had

assembled on the parasite surface (Figure 7C, Figure S9), and

the position of host cell chromosomes had little or no influence on

this process. These findings indicate that by forming a foundation

for Plk1-enrichment and MT polymerization the schizont may

help focus MT-associated cytokinesis signals known to stimulate

contractile ring assembly and furrow ingression.

Prompted by the findings above, we analyzed the central

spindle-like structures associated with the parasite in more detail.

In bona fide central spindles, anti-tubulin antibodies do not label

the zone where antiparallel MT bundles overlap, most likely

because of epitope masking caused by the accumulation of central

spindle components such as PRC1, centralspindlin, and the

chromosomal passenger complex [15]. PRC1 is a major substrate

of Plk1 that accumulates in the midzone during anaphase where it

participates in central spindle MT bundling. Aurora B, a member

of the chromosomal passenger complex, and Plk1 both translocate

from kinetochores to the central spindle. There, Plk1 is recruited

by PRC1 [20] and Mklp2 [36] and contributes to anaphase

spindle elongation and the regulation of cytokinesis [21,22,24–27].

To avoid potential side effects caused by nocodazole treatment

and chemical inhibition of Cdk1, experiments were carried out

using cells synchronized in metaphase by MG132, as these possess

an intact mitotic spindle and undergo normal anaphase. In

addition, to exclude the possibility that colocalization of the central

spindle-like structures with the parasite surface merely occurred by

apposition induced by furrow contraction, we made use of the

myosin II inhibitor blebbistatin, which blocks contraction of the

cleavage furrow without affecting mitosis or assembly of the

contractile ring [44]. Upon removal of MG132, cells progressed to

anaphase and central spindle-like structures assembled on the

parasite (Figure 8). The midzone components Plk1, Aurora B,

PRC1, and Cyk-4/MgcRacGAP all localized to the centre of

parasite-associated central spindle-like structures (arrowheads).

Cyk-4/MgcRacGAP is a RhoGAP and member of the central-

spindlin complex, which is required for central spindle assembly

and also recruits the RhoGEF Ect2 to the central spindle (see

review [15] and references therein; [21,22]). Similar observations

were made with cells in which precocious anaphase was induced

by Cdk1 inhibition (Figure S10). Together, our findings indicate

that the central spindle-like structures assembling at the surface of

the schizont resemble bona fide central spindles.

We next tested whether central spindle association with the

parasite surface is dependent on Plk1 catalytic activity. In cells

released from metaphase in the presence BI-2536, central spindle

Figure 4. Plk1 binding to the parasite surface does not require Plk1 catalytic activity. (A) Unsynchronized or S phase-synchronized
cultures of T. annulata-infected cells were analyzed by flow cytometry (left panels). Synchronized cultures (thymidine) were released for 20 h with
either DMSO (control) or 100 nM BI-2536 (BI-2536). 2N, G1 phase; 4N, G2/M phase. (B) Representative micrographs of TaC12 cells in S phase arrest (S
phase) or G2 phase cells that were released from S phase for 15 h in the presence of DMSO (control) or 1 mM BI-2536 (BI-2536). Arrowhead indicates
the position of the parasite. Cells were stained for Plk1 and TaSP1 and analyzed by IFM; DNA was stained with DAPI. (C) S phase-synchronized TaC12
cells were released in the presence of nocodazole (Noc) or 1 mM BI-2536 (BI-2536), and prometaphase-arrested cells were harvested after 15 h.
Nocodazole-blocked prometaphase cells were washed and released with Cdk1 inhibitor (RO-3306); cells that arrested in prometaphase by BI-2536
treatment were additionally treated with Cdk1 inhibitor (BI + RO). Cells were analyzed by IFM after 10 min incubation with Cdk1 inhibitor.
Arrowheads indicate the position of the parasite. (D) The fluorescence intensity of Plk1 staining at the parasite surface and in the host cell cytoplasm
was measured at multiple locations in TaC12 cells; each dot represents the ratio of the average parasite surface and cytoplasmic Plk1 level of an
individual cell. The following cells were analyzed: cells arrested in S phase by thymidine treatment (S phase), G2 phase cells released for 15 h from
thymidine block in the presence of DMSO (control) or BI-2536 (100 nM BI, 1 mM BI), and cells that arrested in prometaphase upon release from
thymidine block in the presence of nocodazole (Noc) or BI-2536 (100 nM BI, 1 mM BI); nocodazole was removed by washing and arrested cells
subsequently treated with Cdk1 inhibitor alone (RO-3306) or Cdk1 and Plk1 inhibitors (RO +100 nM BI, RO +1 mM BI) for 10 or 30 min. Fifteen cells
were analyzed per sample and time point; horizontal red lines represent the average fluorescence intensity of each population; dashed line indicates
a ratio of 1.0; tb, thymidine block. (E) Cells synchronously released from MG132-induced metaphase arrest were treated with 1 mM BI-2536, 15 min
upon release, and analyzed by IFM. Scale bars represent 5 mm.
doi:10.1371/journal.pbio.1000499.g004

Figure 5. Plk1 binds to the Theileria schizont via its polo-box
domain. T. annulata-infected cells were transfected with plasmids
encoding myc-tagged versions of full-length Plk1 (myc-Plk1), Plk1
kinase domain (myc-KDom), Polo-box domain (myc-PBD, wild type), or
H538A/K540A mutant PBD (myc-PBD H538A/K540A) and analyzed by
IFM using anti-myc and anti-TaSP1 antibodies. Scale bar represents
5 mm.
doi:10.1371/journal.pbio.1000499.g005
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formation at the parasite surface was strongly reduced. Instead,

central spindles formed in the centre of the cell, independent of the

position of the parasite (Figure 9). Plk1 did not localize to the

middle section of the central spindles (Figure 9A, filled

arrowheads) in BI-2536-treated cells but, as observed before,

accumulated on the parasite surface (Figure 9A, open arrowheads).

Identical results were obtained using a second, structurally

unrelated Plk1 inhibitor, BTO-1, indicating that the effects

observed with BI-2536 are not off-target effects (Figure S11A).

In Figure 9B, whole cells are displayed by maximum intensity

projection of confocal sections. MT staining confirms that, when

Plk1 was inhibited by BI-2536 or BTO-1, central spindle assembly

was not linked to the location of the parasite in the cytoplasm, and

central spindle MT bundles failed to associate with the parasite

surface. To facilitate monitoring the effect of Plk1 inhibition on the

relative position of parasite and central spindles in more detail,

cells were stained with an antibody that recognizes PRC1, an

intrinsic marker of central spindles (Figure S11B). Whereas central

spindles located at the parasite surface could be observed in .90%

of control cells, this was reduced to ,20% in cells treated with BI-

2536 or BTO-1 (Figure 9C), reflecting a marked decrease in the

parasite’s affinity for central spindles. Interestingly, BI-2536 did

not prevent the interaction of the schizont with mitotic spindle

MTs emerging from the spindle poles, and such interactions could

still be observed during anaphase. This indicates that Plk1 activity

is only required for interaction with the central spindle.

Interaction with Host Cell Astral and Central Spindles Is
Required for Schizont Segregation During Cytokinesis

Although our observations so far are consistent with the

hypothesis that schizont interaction with mitotic and central

spindle MTs is required for its distribution over the two daughter

cells—and thus for parasite maintenance, they do not provide

functional evidence to that extent.

During late anaphase, the schizont can still be found associated

to host cell MTs emanating from the spindle poles (see for instance

Figures 1B, 2A, and 8, 9), and in contrast to schizont interaction

with central spindle MTs, this process does not require Plk1

catalytic activity. We tested whether preventing the interaction of

the schizont with MTs emanating from the spindle poles or with

central spindle MTs interfered with schizont segregation during

cytokinesis. Treatment with nocodazole after the onset of

anaphase can result in the disassembly of astral MTs, whereas

midzone MTs remain differentially stable [45–47]. This allowed us

to separate the contribution of astral MTs in positioning the

parasite from that of central spindle MTs.

T. annulata-transformed TaC12 cells were released from

metaphase arrest for 60 min and then exposed for 20 min to

nocodazole. This resulted in the disassembly of astral MTs and the

parasite was found in close association with the central spindle

(Figure 10A, control + noc). As described [46], in the absence of

astral MTs, furrow ingression was often asymmetric as was also

reflected by the predominantly unilateral accumulation of RhoA

(Figure 10B). Whereas parasite division between the forming

daughter cells per se was not affected, the schizont was distributed

less evenly than in control cells. This was monitored by measuring

the distribution of parasite surface area on either side of the

cleavage furrow (Figure 10C).

When added during metaphase, BI-2536 (and other Plk1

inhibitors) potently block cleavage furrow ingression [22,24,26].

When Plk1 is inhibited as cells enter anaphase, however, central

spindle formation and cleavage furrow ingression can occur, but

cells fail to complete cytokinesis [27]. In TaC12 cells, these

conditions are met when BI-2536 is added 15 min after release

from MG-132-induced metaphase arrest (Figure S12). While BI-

2536 treatment prevented the ‘‘incorporation’’ of the parasite into

the central spindle, distribution between the forming daughter cells

occurred with the same efficiency as observed for control cells

(Figure 10A, BI-2636 and Figure 10C). Importantly, however, in

cells that did not contain astral spindle MTs, schizont segregation

was severely impeded when parasite-central spindle interaction

Figure 6. The binding of ectopically expressed Plk1 to the
parasite surface does not require Plk1 catalytic activity. T.
annulata-infected cells were transfected with plasmids encoding myc-
tagged versions of Polo-box domain (myc-PBD, wild type), H538A/
K540A mutant PBD (myc-PBD H538A/K540A), or catalytically inactive
Plk1 (myc-Plk1 K82R) and cultured in the presence or absence of BI-
2536 as indicated. Cells were analyzed by IFM using anti-myc and anti-
TaSP1 antibodies. Scale bar represents 5 mm.
doi:10.1371/journal.pbio.1000499.g006
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was blocked by BI-2536 treatment (BI-2536+ Noc), and in many

cases, the schizont remained completely sequestered on one side of

the cleavage furrow. These data strongly indicate that both astral

and central spindle MTs help facilitate parasite distribution

between the two daughter cells during cytokinesis.

Taken together, these findings underpin the notion that the

interaction with host cell astral and central spindle MTs is essential

for proper segregation over the two daughter cells.

Discussion

Coevolving with their hosts, intracellular pathogens have

developed a range of ways to use host cell MTs and their

associated signaling pathways to their own advantage [48]. This

ranges from MT-mediated viral transport in the cell [49,50] to

microtubular network restructuring by parasites like Toxoplasma,

which reside in a parasitophorous vacuole [51,52] or by

inhabitants of the cytosol like Trypanosoma cruzi [53,54] and

Theileria. Whereas T. cruzi utilizes host cell MTs to facilitate

invasion and establishment of the parasite inside the cytosol

[53,54], Theileria in addition evolved ways to usurp structures

involved in host cell mitosis and cytokinesis. Our findings reveal

interesting differences in the strategies used by transforming

viruses and Theileria to ensure persistence in continuously dividing

cells. Thus, while viruses either integrate into the host cell genome

or target mitotic chromosomes to guarantee long-term persistence

[12], the transforming protozoan Theileria, rather than engaging

chromosomes, evolved to single out the mitotic apparatus that

mediates chromosome segregation and cytokinesis. How the

parasite interacts with the host cell MTs or Plk1 during the

different stages of the cell cycle is presently not known. TaSE, a

protein reported to be secreted by the T. annulata schizont, was

recently described to co-localize in a punctate manner with host

cell MTs [55]. The pattern of schizont/MT interaction we

observed, however, clearly differs from that of TaSE. TaSP1 was

recently proposed to interact with MTs [56], but the functional

relevance is not yet clear.

Considering the multiple levels in space and time at which

individual regulator proteins participate in fine-tuning mitosis

and cytokinesis, commonly used approaches such as RNA

interference or the expression of dominant negative mutants

generally do not lend themselves well for studies on the later steps

of M phase as they often inhibit important earlier events. This

hurdle was eliminated by the recent development of specific small

molecule inhibitors [25–27,44,57] and we exploited the new

opportunities, created by these inhibitors, to investigate the

interaction of Theileria with host mitotic structures during different

stages of M phase.

Cdk1 Regulates Interaction of Plk1 with the Schizont
The biphasic pattern and the way in which Plk1 interacts with

the parasite surface are intriguing. Plk1 binding to the parasite can

Figure 7. Upon induction of precocious cell division, cleavage
furrows form in the immediate vicinity of the parasite. (A) T.
annulata-transformed cells were synchronized in prometaphase by
treatment with nocodazole. Upon nocodazole washout, precocious cell
division was induced using RO-3306. After 20 min of treatment, newly
formed microtubules were visualized by a-tubulin staining and the

parasite was detected by anti-TaSP1. (B) RO-3306-induced RhoA
accumulation and cleavage furrow formation are influenced by the
position of the schizont. Cells synchronized in prometaphase as in (A)
were treated for 20 min with either RO-3306 or solvent only (control)
upon nocodazole washout. (C) The position of the parasite in cells
undergoing cleavage furrow formation was monitored by IFM 30 min
after RO-3306 induction shown in (A) and (B). Bars represent the
percentage of cells in which the schizont was included in the cleavage
furrow. Data represent the mean of three experiments with n = 60 cells/
sample; error bars indicate SD. Scale bars represent 5 mm, and DNA was
stained with DAPI.
doi:10.1371/journal.pbio.1000499.g007
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first be observed during host cell G2 as the cell prepares for

mitosis. During early mitosis, when Cdk1 becomes fully activated,

Plk1 dissociates from the parasite surface to re-accumulate at the

onset of anaphase, when Cdk1 is inactivated by the anaphase

promoting complex/cyclosome. The inverse correlation between

Cdk1 activity and Plk1 interaction with the schizont and the fact

that pharmacological inhibition of Cdk1 induces rapid binding of

Plk1 to the parasite clearly point toward Cdk1 as a negative

regulator. This is reminiscent of Cdk1’s known role as a spatio-

temporal regulator of Plk1. Depending on the cell cycle stage,

location, and kinase substrate, Cdk1 can either create Plk1 binding

sites or prevent Plk1 binding (reviewed in [17]). For instance, it has

been shown that, in metaphase, Cdk1 prevents Plk1 binding to

PRC1 by phosphorylating a site adjacent to the Plk1 docking site

[20]; this block is lifted upon Cdk1 inactivation at anaphase. By

analogy, it would be possible that Cdk1-mediated phosphorylation

of the parasite surface prevents Plk1 from docking. Mammalian

Plk1 lacks Cdk1 phosphorylation sites, and a direct modification of

Plk1 by Cdk1 can therefore be excluded. It is also conceivable that

Plk1 binding to the parasite involves one or more additional

proteins, of host or parasite origin, forming a complex that can

only bind in the absence of Cdk1 activity.

Transfection experiments revealed that Plk1 binds to the

schizont through its PBD. Catalytically inactive Plk1 and the

PBD alone both bound to the parasite in cells treated with BI-

2536, confirming that Plk1 itself is, in all likelihood, not the

priming kinase. This is underpinned by the finding that, in the

presence of either BI-2536 or BTO-1, increased—rather than

reduced—Plk1 binding to the parasite could be observed. Similar

results were obtained using a third, unrelated Plk1 inhibitor. On

the other hand, PBD mutants lacking H538/K540, required for

electrostatic interactions with the negative charges of phospho-S/

T groups, did not bind to the schizont surface, indicative of the

involvement of a phosphate group in Plk1 docking. The fact that

neither Plk1 nor Cdk1 appear to function as the priming kinase

points toward the involvement of another serine/threonine kinase.

Although unusual, this is not without precedent; for instance,

calmodulin-dependent kinase has been shown to create Plk1

binding sites in meiosis [58–60]. Alternatively, it is conceivable

that Plk1 binds to a moiety that mimics a Plk1 binding site, which

is only accessible when Cdk1 is inactive. Plk1 binding to a

substrate without priming phosphorylation has been observed in

Drosophila for Polo binding to the MT-associated protein Map205;

in this case the PBD was found to be required, but not sufficient,

for interaction [61]. The nature of the schizont surface protein that

provides a docking site for Plk1 is presently not known.

Considering the complexity of the interactions between parasite

and host cell during mitosis, the participation of several schizont

proteins is plausible, and experiments are presently underway to

address this topic.

Figure 8. The schizont recruits host cell central spindles to its surface. Cells released for 80 min from MG132-induced metaphase arrest in
the presence of the myosin II inhibitor blebbistatin (to prevent furrow ingression) were stained for central spindle proteins (arrowheads) as indicated;
microtubules were stained using anti-a-tubulin; DNA was stained with DAPI. Scale bars represent 5 mm.
doi:10.1371/journal.pbio.1000499.g008
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Parasite-Central Spindle Interactions
While many aspects of central spindle assembly are still enigmatic,

a picture is emerging, indicating that central spindles show a high

degree of self-organization (see review [15] and references therein). It

has been shown that the combined presence of PRC1, centralspin-

dlin, and the chromosomal passenger complex suffices to induce the

robust bundling of central spindle MTs. All three complexes

required for self-organization can be detected in parasite-associated

central spindles. The fact that central spindles can be detected at the

parasite surface within a very short time after induction of precocious

anaphase (within 10 to 20 min of Cdk1 inactivation) suggests that

central spindles either assemble in situ or interact with the schizont

immediately after they are formed. In cells in which furrow

ingression was blocked by treatment with the myosin II inhibitor

blebbistatin, newly formed central spindles were found almost

invariably in association with the parasite surface. When Plk1 was

inhibited, however, central spindles assembled independently of the

position of the schizont. Parasite interaction with astral spindle MTs

emanating from the spindle poles, on the other hand, was clearly not

affected. Astral spindle MTs have themselves been implicated in

central spindle assembly (see reviews [15,62,63] and references

therein). One plausible explanation could therefore also be that a

subpopulation of MTs emanating from the spindle poles form stable

interactions with the parasite surface where they subsequently self-

organize into central spindles in a Plk1-dependent manner.

Whichever the mechanism, we propose that by interacting with

astral MTs emerging from both spindle poles, the schizont is

aligned strategically spanning across metaphase chromosomes

arranged at the equator of the cell. This interaction in all

likelihood also ensures that the parasite remains positioned

correctly as the chromosome masses separate during anaphase,

at which time a central section of the parasite interacts with

midzone MTs that form the central spindle in preparation of the

ensuing cytokinesis.

Cleavage Furrow Formation
MTs have been reported to be the main structural constituent of

the spindle apparatus required for induction of cell cleavage [64].

Figure 9. Recruitment of central spindles, but not astral MTs, to the parasite surface requires catalytically active Plk1. The effect of
Plk1 inhibition on parasite-central spindle association was monitored by IFM in cells released (80 min) from MG132-induced metaphase arrest. (A)
Cells were released from metaphase arrest in the presence of blebbistatin and BI-2536 and stained for Plk1, a-tubulin, and TaSP1. Open arrowheads:
parasite-associated Plk1; filled arrowheads: central spindles lacking Plk1. (B) Cells were released from metaphase arrest in the presence of blebbistatin
only (control, left panels), blebbistatin and BI-2536 (BI-2536, middle panels), or blebbistatin and BTO-1 (BTO-1, right panels), and stained for a-tubulin
and TaSP1. Whole cells are displayed by maximum intensity projection of confocal sections. Arrowheads indicate the position of the central spindle.
(C) Cells were released from metaphase arrest in the presence of blebbistatin only, blebbistatin and BI-2536, or blebbistatin and BTO-1. Cells in
anaphase and telophase were monitored by IFM for central spindle association with the parasite based on staining of PRC1 and a parasite surface
marker. Data represent the mean of three experiments 6 SD with n = 100 cells/sample; n.d., not determined (includes all cells in anaphase or
telophase that could not be classified). Scale bars represent 5 mm.
doi:10.1371/journal.pbio.1000499.g009
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The formation of a contractile ring required for cytokinesis

depends on the focused localization of myosin II at the cortex of

the cell and coordinated activation of the small GTPase RhoA.

Astral MTs contribute by spatially coordinating cortical myosin

recruitment generating a region of high contractility at the cell

equator [65–67], and together with central spindle MTs, they

localize RhoA to the cell cortex [68]. The central spindle is

thought to provide the platform for RhoA activation. Once

recruited to PRC1, Plk1 acts to promote the localization of the

RhoGEF, Ect2, to the central spindle by phosphorylating Cyk-4

(MgcRacGAP), which functions as Ect2 anchor and activator.

This way, a signaling platform is created that triggers RhoA

activation in a narrow zone overlaying the central spindle [68–70],

regulating the onset of division [21,22]. In normally dividing

Theileria-transformed cells, the parasite is almost always found

symmetrically partitioned between the separating daughter cells

with its middle section ‘‘incorporated’’ into the central spindle and

the midbody. Despite its size, the presence of the parasite does not

appear to disturb cytokinesis. It is conceivable that by accumu-

lating host cell central spindles at its surface, containing the

signaling molecules required for RhoA activation, an uninterrupt-

ed interaction between the central spindle and cell cortex is

guaranteed allowing flawless furrow ingression at the equator of

the cell and unperturbed abscission.

Abscission, the final event in cytokinesis leading to two separate

cells, involves vesicle transport and membrane fusion (reviewed in

[14]). The centralspindlin complex, found first at the central

spindle and subsequently at the midbody, regulates not only acto-

myosin ring contraction but also vesicle transport to the cleavage

furrow, required for abscission [71]. Our microscopic observations

show that, during telophase, a short central section of the parasite

is first trapped in the midbody as a narrow tube (see Figure 1C)

Figure 10. Interaction with host cell astral and central spindles is required for schizont segregation during cytokinesis. The
respective role of astral and central spindles for parasite positioning was tested by nocodazole treatment of anaphase host cells and IFM analysis.
Cells were released from metaphase arrest in the presence of control solvent DMSO (control) or BI-2536. After 60 min of release, cells were
additionally subjected to 10 mM nocodazole over a period of 20 min. (A) Cells were stained for a-tubulin and TaSP1 to determine the position of the
parasite relative to the central spindle and cleavage furrow. (B) Micrographs of cells displaying unilateral furrowing. Cells were treated as described in
(A) but stained for RhoA and the parasite surface marker TaSP1. DNA was stained with DAPI; scale bars represent 5 mm. (C) Cells were stained as in (A)
and microscopic z-stacks of whole cells were generated. Two-dimensional projections were generated to measure the area occupied by the parasite
on each side of the cleavage furrow. The ratio of both areas indicates the positioning, with 1.0 representing an equal distribution over the two
forming daughter cells. Data were obtained from three experiments with a total of 45 cells per condition. Significance was tested in a t test (one-
tailed, unpaired, unequal variance); ns, not significant; * p,1023; ** p,10214; *** p,10230.
doi:10.1371/journal.pbio.1000499.g010
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and is subsequently included in the process of abscission. It is not

known whether parasite-own structures provide specific cues in

preparation of its abscission or whether such signals derive from

the host cell. Whichever, once incorporated into the central

spindle/midbody, the parasite does not affect host cell central

spindle function or abscission, and from this point onward,

schizont cytokinesis appears to be a passive process that is largely

controlled by the host cell. This is supported by the fact that, in the

absence of host cell abscission, independent parasite division does

not take place.

In summary, we propose a two-step model for the division of

Theileria schizont between the separating daughter cells, involving

first the mitotic spindle and subsequently the central spindle

(Figure 11). As the host cell enters mitosis, the schizont binds newly

forming MTs that emanate symmetrically from the spindle poles,

allowing the schizont to position itself so that it spans the

equatorial region of the mitotic cell where host cell chromosomes

assemble during metaphase. This step is independent of Plk1

activity as it also takes place in the presence of potent Plk1

inhibitors. During anaphase, the schizont becomes closely

associated with central spindles assembling in the midzone

between the separating chromosomes. In contrast to the first step,

this interaction requires catalytically active Plk1. By ‘‘hijacking’’

the central spindle, an important spatial regulator of cleavage

furrow formation, the schizont is strategically positioned to be

included in the plane of cell division at each host cell cytokinesis,

without disturbing the process.

Thus, while different transforming viruses either integrate into

the host cell genome or target mitotic chromosomes to ensure

persistence [12], the transforming protozoan Theileria evolved to

single out the mitotic apparatus that mediates chromosome

separation and cytokinesis. Considering the schizont is strictly

intracellular [13] and its presence crucial for the constitutive

activation of the signaling pathways that drive proliferation and

protection against apoptosis (reviewed in [6,8]), we posit that this

process is essential, not only for parasite persistence but also for the

exponential expansion of the parasite population.

In a more general context, there is mounting evidence from

studies on protein-protein interactions that pathogens have

evolved to target host proteins that function as hubs (those

involved in many interactions) or bottlenecks (proteins central to

many pathways) [72]. In earlier work we provided evidence that

Theileria hijacks IKK, a central regulator of many NF-kB

activation pathways [30]. By scavenging Plk1, a key regulator of

mitosis, Theileria provides a second striking manifestation of this

evolutionary process.

Materials and Methods

Cell Culture and Transfections
Theileria annulata (TaC12)-infected macrophages were cultured

in Leibovitz 15 medium (Gibco) supplemented with 10% foetal

calf serum (FCS, Amimed), 10 mM Hepes pH 7.2 (Merck), 2 mM

L-glutamine (Gibco), 70 mM b-mercaptoethanol (Merck), and

antibiotics (Lonza). The SV40-transformed cell line of Theileria-

uninfected bovine macrophages (BoMac) was cultured in DMEM

Glutamax medium (Gibco) supplemented with 10% FCS and

antibiotics.

Plasmids encoding myc-tagged versions of human Plk1

(Figures 5, 6, and S8), including full-length wild-type Plk1, full-

length kinase dead Plk1 (K82R), wild-type kinase domain (aa 1–

330), wild-type PBD (aa 326–603), and mutant PBD (H538A/

K540A), were previously described [43]. Cells were transfected

using Lipofectamine 2000 (Invitrogen) following the manufactur-

er’s recommendations. TaC12 cells stably expressing mRFP-a-

tubulin (Figure S2) were transfected with the plasmid pmRFP-C1

(a kind gift by Daniel Gerlich, ETH Zürich) and selected using

2 mg/ml G418 (Alexis).

Synchronizations, Drug Treatments, and Western Blotting
Stocks of the inhibitors BI-2536 (a kind gift by Boehringer

Ingelheim, and partly purchased from Axon Medchem), BTO-1,

blebbistatin (Sigma) MG132, monastrol, and RO-3306 (Alexis)

were prepared in DMSO. DMSO was added at the appropriate

concentration to all control samples. Cells were washed in serum-

supplemented medium when transferred to another medium. To

test the binding of ectopically expressed versions of Plk1 in the

presence of Plk1 inhibitor, cells were treated with 100 nM

Figure 11. Schematic presentation of parasite interactions with astral and central spindle MTs during host M phase. Green depicts
Plk1 binding to the parasite and central spindles.
doi:10.1371/journal.pbio.1000499.g011
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(Figure 6) or 1 mM BI-2536 (Figure S8) immediately after

transfection and incubated for 8 h. For the MT re-polymerization

assay (Figure 1A), cells were arrested in prometaphase by

addition of 0.1 mg/ml nocodazole (Biotrend) for 16 h and

harvested by shake-off followed by 30 min treatment with

3 mg/ml nocodazole. These cells were then released in drug-free

medium for up to 120 min. For synchronous release from S

arrest, cells were treated with 4 mM thymidine (Sigma) for 24 h

and transferred into drug-free medium for up to 12 h (Figure S5).

To demonstrate the absence of Plk1 from the parasite surface

during early mitosis, cells were arrested in prometaphase by 16 h

treatment with 0.1 mg/ml nocodazole or 100 mM monastrol and

harvested by shake-off (Figure 2B). For the chemical induction of

precocious cytokinesis, cells were arrested in prometaphase by

16 h treatment with 0.1 mg/ml nocodazole, harvested by shake-

off, washed, and then treated with medium lacking nocodazole

but containing 10 mM RO-3306 for up to 60 min (Figures 3A,

7A–C, S9). Alternatively, prometaphase cells were kept in the

presence of nocodazole and treated with RO-3306 plus 3 mg/ml

nocodazole (Figure 3A, B). To test the requirement of Plk1

catalytic activity for its binding to the parasite surface as well as

the effect of Plk1 inhibition on ectopic furrowing (Figures 4B–D,

S7F), cells were synchronized in S phase by thymidine block (see

above), washed, and immediately treated with 0.1 mg/ml

nocodazole or BI-2536 (100 nM or 1 mM) for 15 h. Cells arrested

in prometaphase were collected by shake-off and fixed or washed

(nocodazole-blocked cells only) and treated with 10 mM RO-3306

or kept in the presence of BI-2536 and additionally subjected to

10 mM RO-3306 for 10–30 min.

To prevent cleavage furrow ingression, RO-3306-treatment was

done in the presence of 100 mM blebbistatin (Figure S10). For

synchronous release into anaphase, cells were arrested in

prometaphase with 0.1 mg/ml nocodazole, harvested by shake-

off, transferred into medium containing 20 mM MG132 for 2 h,

and finally released from metaphase arrest for 80 min in drug-free

medium (Figure 2C) or medium containing 100 mM blebbistatin

(Figures 8, 9A–C, S11A, B). For anaphase-specific inhibition of

Plk1, these cells were additionally treated with 100 nM or 1 mM

BI-2536 or 20 mM BTO-1 during washout (S12A), or 15 min after

MG132 washout (Figures 4E, 9A–C, S7D and E, S11A and B,

S12A–C). To investigate the role of astral and central spindle MTs

for parasite positioning (Figure 10A–C), cells were released from

metaphase arrest as described above in the presence of 100 nM

BI-2536 (added 15 min after MG132 washout) or inhibitor-free

medium. After 60 min release the medium was supplemented with

10 mM nocodazole and cells were incubated for 20 min at 37uC.

To test the effect of BI-2536 on spindle maintenance, metaphase-

synchronized cells were additionally treated with 100 nM BI-2536

for 160 min (Figure S7B and C).

For the elimination of the parasite from TaC12 cells (Figure

S1A and B), cultures were grown 4 d in the presence of 100 ng/ml

of the theilericidal drug BW720c [73]. Cells were then subjected to

a MT re-polymerization assay as described above. Chemical

induction of merogony (Figure S6) was done as previously

described [33]. Briefly, cells were cultivated in the presence or

absence of 50 mM chloramphenicol (Sigma) for 10 d.

Synchronous entry into M phase (Figure S5) and progression

from metaphase to anaphase (Figure 2C) were monitored by

immunoblot analysis of protein extracts prepared in RIPA buffer

(50 mM Tris-Hcl pH 7.5, 1% NP-40, 0.25% Na-deoxycholate,

150 mM NaCl, 1 mM EDTA, 1 mM PMSF, 16Roche Complete

protease inhibitor cocktail, 1 mM NaF, 1 mM Na3VO4). Primary

antibodies were mouse monoclonal anti-cyclin B1 (clone GNS-11,

Pharmingen), anti-Plk1 (clone 35–206, Calbiochem), anti-securin

(clone DCS-280, MBL), anti-a-tubulin (clone DM1A, Sigma), as

well as rabbit polyclonal anti-phospho-Ser10 histone H3 (Upstate)

and anti-histone deacetylase 1 (Santa Cruz).

Immunofluorescence Microscopy and Time-Lapse
Imaging

Interphase cells were grown on coverslips, and cells harvested

by mitotic shake-off were seeded on poly-L-lysine coated

coverslips (Sigma). Samples were fixed with 4% paraformalde-

hyde in PBS for 10 min at room temperature (for Aurora B, c-

myc, Plk1, TamR1, TaSP, and a-tubulin staining), with

methanol for 10 min at 220uC (for Cyk-4 and PRC1 staining)

or with 10% trichloroacetic acid on ice for 15 min (for RhoA

staining). Cells were subsequently permeabilized in 0.2% Triton

X-100 (prepared in PBS) for 10 min at room temperature.

Antibody incubations were done in PBS containing 10% heat-

inactivated FCS, DNA was stained with DAPI (Molecular

Probes), and cells were mounted using Glycergel (Dako).

Widefield microscopy was done on a Nikon Eclipse 80i

microscope equipped with a Retiga 2000R CCD camera

(Qimaging) using 606 and 1006 Plan Apo objectives (Nikon)

and Openlab 5 software (Improvision). For confocal microscopy,

a Leica TCS SP2 system was used, equipped with an acousto-

optical beam splitter, a 636 Plan Apo objective (Leica), and

Leica confocal software. Images were processed using Photoshop

(Adobe) or Imaris (Bitplane) software. To measure the distribu-

tion of the parasite in dividing cells after nocodazole wash-in

(Figure 10A–C), whole cells were stained for TaSP1/a-tubulin

and recorded using z-stacks. Two-dimensional projections were

generated and the parasite area on each side of the cleavage

furrow was measured using Openlab software.

The following antibodies were used: mouse monoclonal anti-

Aurora B (AIM-1, clone 6, BD Transduction Laboratories), anti-c-

myc (clone 9E-10, Santa Cruz), anti-Plk1 (clone 35–206,

Calbiochem), anti-Rho A (clone 26C4, Santa Cruz), anti-a-tubulin

(clone DM1A, Sigma) and 1C12, which detects the T. annulata

schizont surface (kindly provided by Brian Shiels, University of

Glasgow), as well as rabbit polyclonal anti-PRC1 (kindly provided

by Francis Barr, University of Liverpool), anti-TamR1 (Brian

Shiels, University of Glasgow) [74], and the schizont surface

marker anti-TaSP (kindly provided by Jabbar Ahmed, Borstel

Research Center) [28], goat polyclonal anti-Cyk-4 (MgcRacGAP,

Abcam), and rat monoclonal anti-a-tubulin (Abcam). Appropriate

(isotype-specific) secondary antibodies conjugated with either

Marina Blue, Alexa-Fluor 488, Alexa-Fluor 594, or Texas Red

(Molecular Probes) were used.

To generate kymographs of TaC12 cells stably expressing

mRFP-a-tubulin (Figure S2), cells were synchronized in prometa-

phase using monastrol (see above) and kept in the presence of the

drug during time-lapse imaging. Fluorescence was recorded at 30 s

intervals over a period of 20 min and kymographs were generated

from these data with a width of 5 pixels using NIS Elements

imaging software (Nikon). Immediately after imaging, cells were

fixed and stained (see above) to identify the position of the parasite

in the previously recorded cells. To determine the percentage of

cells displaying furrow ingression after release into anaphase in the

presence of 100 nM BI-2536 (S12A), cells were synchronized and

drug-treated as described above and observed by time-lapse

imaging in 10 min intervals over a period of 4 h. Time-lapse

imaging was done using a TE2000E-PFS microscope (Nikon)

equipped with a Plan Fluor 206, 606objective (Nikon), Orca ER

CCD camera (Hamamatsu), and incubation chamber (Life

Imaging Services).

Theileria Co-opts the Host Cell Mitotic Apparatus

PLoS Biology | www.plosbiology.org 15 September 2010 | Volume 8 | Issue 9 | e1000499



Flow Cytometry
To test the effect of BI-2536 on cell cycle progression of TaC12

cells (Figure S7A), unsynchronized cultures were cultured in the

presence of 100 nM BI-2536 or the equivalent volume of DMSO

for 20 h. To monitor the effect of Plk1 inhibition on progression of

M phase in TaC12 cells (Figure 4A), cultures were synchronized in

S phase as described above and released for 20 h in the presence

of 100 nM or 1 mM BI-2536. Cell suspensions were fixed in 80%

ethanol at 220uC o/n followed by treatment with 200 mg/ml

RNaseA in PBS at 37uC for 30 min. Finally, cells were stained in

DAPI staining solution (100 mM Tris-HCl, pH 7.5, 150 mM

NaCl, 1 mM CaCl2, 0.5 mM MgCl2, 0.1% NP-40, 3 mM DAPI),

and cellular DNA content was measured using a BD LSR II and

BD FACS Diva software (Becton-Dickinson).

Supporting Information

Figure S1 Microtubule repolymerization and spindle
midzones in unparasitized macrophages. (A) Cells from

which the parasite was eliminated by treatment with the

theilericidal compound BW720c were subjected to a microtubule

repolymerization assay. Samples were fixed and stained for a-

tubulin and the parasite surface protein TaSP1. The absence of

TaSP1 staining confirms that the parasite had been eliminated. (B)

Central spindles in BW720c-treated cells stained as in (A). (C)

Central spindle and midbody formation in transformed bovine

macrophages (BoMac) stained with anti-PRC1 and anti-a-tubulin.

DNA was stained with DAPI; scale bars represent 5 mm.

Found at: doi:10.1371/journal.pbio.1000499.s001 (1.78 MB TIF)

Figure S2 Mitotic microtubules are stably associated
with the parasite surface. (A) IFM micrograph of the

monastrol-treated cell observed by time-lapse imaging shown in

(B). The cell was fixed and stained with anti-a-tubulin and anti-

TaSP1 immediately after live imaging. Scale bar represents 5 mm.

(B) T. annulata-transformed TaC12 cells stably expressing mRFP-

a-tubulin were synchronized in prometaphase by monastrol

treatment and observed by time-lapse imaging in the presence of

the drug. The two left panels show the same frame of an image

sequence recorded in 30 s intervals over 20 min. Data from 40

frames were used to generate kymographs. White rectangles show

the regions chosen for the kymographs; p indicates the source used

for the kymograph of microtubules associated with the parasite

surface and c that for free microtubules. Results for c and p are

shown in the righthand panels. Data are representative for 12 cells

observed under identical conditions. Vertical bars represent 2 mm;

horizontal bars represent 10 min.

Found at: doi:10.1371/journal.pbio.1000499.s002 (0.81 MB TIF)

Figure S3 Plk1 association with the surface of the T.
annulata schizont during different stages of the cell
cycle. Plk1 recruitment to the parasite surface was analyzed by

immunofluorescence microscopy using anti-Plk1 and anti-TaSP1;

DNA was stained with DAPI. Closed arrowheads point at Plk1

binding to the schizont. Plk1 can also be detected on host cell

structures (open arrows) including centromeres/kinetochores

(Prometaph), spindle poles (Metaphase), central spindles (Ana-/

Teloph.), and midbody (Teloph./G1). Scale bar represents 5 mm.

Found at: doi:10.1371/journal.pbio.1000499.s003 (2.28 MB TIF)

Figure S4 Schematic representation of synchronization
experiments (A) and mammalian stages of the Theileria
life cycle (B). S, synthesis phase; G2, gap 2 phase; P, prophase;

PM, prometaphase; M, metaphase; A, anaphase; T, telophase; C,

cytokinesis; Cdk1, cyclin-dependent kinase 1.

Found at: doi:10.1371/journal.pbio.1000499.s004 (1.47 MB TIF)

Figure S5 Monitoring Plk1 binding to the schizont in
cells released from S phase arrest. T. annulata-transformed

cells were synchronized in early S phase by thymidine block. At

the indicated times after release, cells were examined by IFM for

Plk1 binding to the parasite surface and lysates were prepared for

immunoblot analysis. Data are presented as the percentage of cells

containing parasites with surface-bound Plk1 in different cell cycle

stages as indicated (n = 200 cells/sample). Immunoblot: anti-Plk1

was used to follow the increase in Plk1 expression; anti-phospho-

Histone H3 (P-H3) was used to monitor entry into M phase; a-

tubulin (a-tub) was monitored as a loading control for both

supernatant and pellet of each lysate. Samples of time points 0–7 h

and 8–12 h were run on separate gels.

Found at: doi:10.1371/journal.pbio.1000499.s005 (0.38 MB TIF)

Figure S6 Plk1 binding to the parasite surface is
downregulated during merogony. Top panels: T. annulata-

transformed TaC12 cell in late G2 phase harboring a schizont

with Plk1 bound to its surface. The transforming schizont does not

express TamR1, a marker for merogony; parasite and host cell

nuclei were stained with DAPI. Middle panels: TaC12 cell

containing schizonts in two stages of differentiation: partial

merogony (closed arrow) and advanced merogony (open arrow);

cells were stained for expression of TamR1 and Plk1. Squared

areas are shown at higher magnification. Bottom panels: TaC12

cell containing a parasite in an advanced stage of merogony. Scale

bar represents 5 mm.

Found at: doi:10.1371/journal.pbio.1000499.s006 (2.12 MB TIF)

Figure S7 Effects of BI-2536 treatment on M phase
progression in T. annulata-transformed cells. (A) Unsyn-

chronized TaC12 cells (upper panel) or TaC12 cells cultured for

20 h in the presence of 100 nM BI-2536 (lower panel) were

analyzed by flow cytometry. 2N, G1 phase; 4N, G2/M phase. (B)

Metaphase-synchronized TaC12 cells were either kept in the

presence of proteasomal inhibitor (MG132) or additionally treated

with 100 nM BI-2536 (MG132 + BI-2536). Cells were harvested

after 160 min and bi-/monopolar spindles were quantified by

IFM; n.d. indicates cells that could not be classified; data represent

250 cells/sample. (C) Micrographs show representative T. annulata-

infected cells with bipolar metaphase plate (MG132) or collapsed

monopolar spindle (MG132 + BI-2536) that were quantified in (B).

Cells were stained for Plk1 and a-tubulin and analyzed by IFM.

DNA was stained with DAPI; arrowhead indicates the position of

the parasite; scale bar represents 5 mm. (D) Metaphase-synchro-

nized TaC12 cells synchronously released into anaphase and

treated with DMSO (control) or 100 nM BI-2536 (BI-2536) at

15 min of release. Cells were analyzed after 4 h by IFM and the

abundance of mononucleate and binucleate cells was determined

for both samples; data represent 250 cells/sample. (E) Micro-

graphs showing cells quantified in (D). Scale bar represents 10 mm.

(F) S phase-synchronized TaC12 cells were released in the

presence of nocodazole or 100 nM BI-2536 for 15 h and cells

arrested in prometaphase were harvested from both cultures.

Nocodazole-blocked prometaphase cells were either kept in the

presence of the drug (Noc) or washed and treated with Cdk1

inhibitor for 30 min (RO-3306). Prometaphase cells obtained

upon BI-2536 treatment were kept in the presence of 100 nM BI-

2536 and additionally treated with Cdk1 inhibitor for 30 min (RO

+ BI). Cells were stained for RhoA and the occurrence of ectopic

furrow ingression quantified (100 cells/sample) by IFM; DNA was

stained with DAPI; scale bar represents 5 mm.

Found at: doi:10.1371/journal.pbio.1000499.s007 (2.11 MB TIF)

Figure S8 Ectopically expressed Plk1 PBD and catalyt-
ically inactive Plk1 can associate with the parasite
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surface in the presence of high doses of the Plk1
inhibitor BI-2536. T. annulata-infected cells were transfected

with plasmids encoding myc-tagged versions of Polo-box domain

(myc-PBD, wild type), H538A/K540A mutant PBD (myc-PBD

H538A/K540A), or catalytically inactive Plk1 (myc-Plk1 K82R)

and cultured in the presence or absence of BI-2536 at a

concentration of 1 mM. Cells were analyzed by IFM using anti-

myc and anti-TaSP1 antibodies. Scale bar represents 5 mm.

Found at: doi:10.1371/journal.pbio.1000499.s008 (0.86 MB TIF)

Figure S9 Cleavage furrow ingression occurs at sites
where parasite-associated central spindle MTs assem-
ble. T. annulata-transformed cells were synchronized in prometa-

phase, washed, and precocious anaphase and premature cytoki-

nesis were induced by immediately blocking Cdk1 activity using

the specific inhibitor RO-3306 (30 min). The formation of central

spindles was monitored using anti-a-tubulin and anti-Plk1. The

parasite was visualized using anti-TaSP1. Scale bar represents

20 mm.

Found at: doi:10.1371/journal.pbio.1000499.s009 (1.07 MB TIF)

Figure S10 The Theileria schizont recruits central
spindles to its surface. T. annulata-transformed cells were

synchronized in prometaphase and precocious anaphase induced

by blocking Cdk1 using the inhibitor RO-3306. Cleavage furrow

contraction was prevented by treatment with the myosin II

inhibitor blebbistatin. Parasite-associated central spindles were

analyzed for the presence of central spindle-specific proteins such

as Plk1, Aurora B, Cyk-4, and PRC1 as indicated. MTs were

visualized using anti-a-tubulin, and the schizont was stained using

anti-TaSP1; in the lower panels, DNA was stained with DAPI.

Arrowhead indicates the position of the parasite. Scale bar

represents 5 mm.

Found at: doi:10.1371/journal.pbio.1000499.s010 (2.34 MB TIF)

Figure S11 Recruitment of central spindle, but not
astral, MTs to the parasite surface requires catalytically
active Plk1. (A) T. annulata-transformed TaC12 cells were

released for 80 min from metaphase arrest in the presence of

the Plk1 inhibitor BTO-1 or control solvent. Cleavage furrow

contraction was blocked by treatment with the myosin II inhibitor

blebbistatin. Anti-a-tubulin was used to identify central spindles

and parasite-associated MTs emanating from the spindle poles.

Open arrowheads point at Plk1 binding to the schizont surface;

closed arrowheads indicate central spindles lacking Plk1 in the

central section. (B) Representative micrographs of IFM stainings

that were used to quantitate the association of the parasite with

central spindles in control cells and cells treated with Plk1

inhibitors (histogram Figure 9C). Cells were stained for the central

spindle marker PRC1 and 1C12, a mouse monoclonal antibody

that detects the surface of T. annulata schizonts; DNA was stained

with DAPI. In cells treated with Plk1 inhibitor, the central spindle,

detected by its marker PRC1, is not associated with the parasite.

Scale bars represent 5 mm.

Found at: doi:10.1371/journal.pbio.1000499.s011 (1.65 MB TIF)

Figure S12 Effects of BI-2536 on furrow ingression in
TaC12 cells. (A) T. annulata-infected cells were synchronized in

metaphase using the proteasomal inhibitor MG132 and synchro-

nously released into anaphase. Cells were treated with DMSO

(control) or 100 nM BI-2536 (0 min) during MG132 washout;

alternatively, cells were first exposed to 100 nM BI-2536, 15 min

after MG132 washout (15 min). The histogram shows the

abundance of furrow ingression in cells monitored by time-lapse

imaging over a period of 4 h after MG132 washout. Additionally,

cells were harvested at 80 min after MG132 washout, fixed, and

analyzed by IFM (lower panel). Data are presented as the

percentage of cells showing cleavage furrow ingression (ingressed),

cells that lacked any furrow ingression (binucleation), or cells

showing collapsed monoplar spindles (monopolar); n.d. denotes

cells that could not be classified; data represent 200 cells/sample

(time-lapse) or 300 cells/sample (fixed). (B) Micrographs of cells in

anaphase or telophae obtained in (A) that were released in the

presence of DMSO (control) or 100 nM BI-2536. Cells were

stained for Plk1 as well as a-tubulin and analyzed by IFM; DNA

was stained with DAPI. (C) Micrographs of representative cells

obtained in (A). Cells were stained for RhoA and analyzed by

IFM; DNA was stained with DAPI. Scale bars represent 5 mm.

Found at: doi:10.1371/journal.pbio.1000499.s012 (1.87 MB TIF)
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