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Preferential attachment drives the evolution of many complex networks. Its analytical studies mostly consider
the simplest case of a network that grows uniformly in time despite the accelerating growth of many real
networks. Motivated by the observation that the average degree growth of nodes is time invariant in empirical
network data, we study the degree dynamics in the relevant class of network models where preferential
attachment is combined with heterogeneous node fitness and aging. We propose an analytical framework based
on the time invariance of the studied systems and show that it is self-consistent only for two special network
growth forms: the uniform and the exponential network growth. Conversely, the breaking of such time invariance
explains the winner-takes-all effect in some model settings, revealing the connection between the Bose-Einstein
condensation in the Bianconi-Barabási model and similar gelation in superlinear preferential attachment. Aging
is necessary to reproduce realistic node degree growth curves and can prevent the winner-takes-all effect under
weak conditions. Our results are verified by extensive numerical simulations.
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I. INTRODUCTION

The original work on the preferential attachment network
growth mechanism [1] has importantly contributed to the
formation of the interdisciplinary field of network science
[2,3]. Since then, preferential attachment-based network mod-
els have been used to model the evolution of a broad range
of networks, such as the World Wide Web [1,4], citation
networks [5,6], and social networks [7,8]. The most important
generalizations of the original preferential attachment model
are the inclusion of the node-specific fitness parameter [9] and
aging that suppresses the attractiveness of old nodes to new
links [10]. The basic preferential attachment mechanism, also
known as the rich-get-richer or the Matthews effect, dictates
that nodes attract new links at a rate that is proportional to
the degree that they already have. This microscopic mecha-
nism induces a positive feedback loop that results in a net-
work degree distribution that is power-law (scale-free) under
some model settings [11]. Similar broad degree distributions,
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though seldom of an ideal power-law shape, are found in many
real-world networks [7,12].

We build our work on the observation that in many real-
world networks, using citation networks as an example here,
the degree growth is time invariant: the average degree of
nodes of different ages has the same functional dependency
on node age regardless of when the nodes have entered the
network. This seemingly minor observation is actually not
trivial. First of all, preferential attachment models without ag-
ing are known to have a strong first-mover advantage: the first
nodes accumulate many more links than the nodes that enter
the network later [13]. We show that an accelerated network
growth, a feature that is common in real networks [14–16]
yet usually overlooked by network modeling, is an important
part of the interplay between preferential attachment and
the macroscopic degree growth patterns. In particular, of the
different growth forms that can be considered, the exponential
network growth is consistent with the time-invariant degree
growth.

To systematically explore the conditions under which a
time-invariant degree growth arises, we introduce a math-
ematical formalism for preferential attachment-based mod-
els, where exponential and linear network growth emerge
as the only possible solutions of an eigenvalue problem.
The new formalism also reveals the connection between the
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(a) (b)

FIG. 1. The average number of citations as a function of paper age for papers published in different time periods in (a) the APS data and
(b) the DBLP data. Papers are grouped by their publication year. The insets show how the number of papers in each data set grows with time.
Note that the main plots use the log-log scale and the insets use the linear-log scale.

Bose-Einstein condensation [17] in the Bianconi-Barabási
model [9] and a similar gelation phenomenon seen in the
superlinear preferential attachment [18]. Aging [5,10] is nec-
essary to recover realistic degree growth curves that are slower
than exponential (e.g., power functions).

The paper is organized as follows. In Sec. II, we present
our empirical findings in real data and show the motivation for
our study. In Sec. III, we introduce relevant network models,
study their analytical properties, and introduce a mathematical
framework for growing networks with time-invariant degree
growth. In Sec. IV, we generate synthetic networks with dif-
ferent parameters to evaluate our analytical results. In Sec. V,
we conclude with some discussions and point to potential
future work.

II. EMPIRICAL EVIDENCE

We begin by studying the growth patterns in real data sets.
We use two citation networks in particular: the American
Physical Society (APS) citation network (available from [19]),
and the computer science citation network extracted by Tang
et al. [20] (available from [21]), originally indexed by the
DBLP (digital bibliography & library project) computer sci-
ence bibliography website [22]. The APS data set comprises
564 517 papers published in the APS journals from 1893 to
2015 and 6 715 562 citations among them. The DBLP data set
comprises 3 272 991 computer science papers published from
1936 to 2016 and 8 466 859 citations among them. The paper
publication dates are available with the time resolution of one
day and one year for the APS and the DBLP data, respectively.
In the network representation, a citation between two papers
corresponds to a directed link between two network nodes.
The node out-degree is determined at the moment when the
paper together with its list of references is published. By
contrast, the node in-degree gradually grows from the initial
zero value. In terms of growth, we thus focus here on node
in-degree.

In Fig. 1, we group the nodes by their publication date
and plot the average in-degree as a function of the node age

separately for nodes originating from different periods. The
average paper out-degree is now much higher than it was
50 or more years ago. To limit the impact of this effect, we
focus on the time period 1965–1995 during which the average
out-degree of papers changed little (see the Appendix). Albeit
the individual curves correspond to papers whose publication
dates differ by up to 30 years, their shapes are strikingly
similar. For the APS, we see various curves collapsing onto
each other. This indicates that the manner in which the papers’
average number of citations grow with paper age is time
invariant. While the curves’ shapes are more complex for the
DBLP data, they are still time invariant for paper age less
than approximately 20 years. In particular, old nodes do not
have an advantage over the new ones, compared with Fig. 2 in
which the early-mover advantage is forceful and, in turn, the
growth of node degree is strongly determined by the time in
which a node appears. These results show that the in-degree

FIG. 2. The expected degree growth curves of three nodes which
join the network at different times (with the same fitness value) in the
Bianconi-Barabási model.
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growth function k is time invariant—it can be written as a
function of the node age τ regardless of the node’s appearance
time.

The panels of Fig. 1 further feature insets showing the
evolution of the overall network size (measured by the number
of nodes). They both point at an approximately exponential
growth of the network size s with time t , s = exp(αt ). Being
nonlinear to the physical time t , the network size s can be
seen as the system time driven by the arrival of new nodes.
The nonlinear relationship between s and t is, however, not
considered in the original preferential attachment models.
In this paper, we fill this gap and make a clear distinction
between them.

III. TIME-INVARIANT DEGREE GROWTH IN
NETWORK MODELS

While the described real data sets are represented with di-
rected networks, we focus here on undirected network models
which attract more general interest than directed ones. The
behavior of these two classes of models is often similar.

A. The Bianconi-Barabási model

Before proceeding to more general considerations, we ad-
dress here specifically the Bianconi-Barabási model [9] where
preferential attachment is complemented with node fitness.
The attractiveness of node i to new links thus has the form
kiηi, where ki and ηi are the node degree and the node fitness,
respectively. Fitness [23] is an intrinsic property of a node.
Nodes with higher fitness are more likely to attract links, thus
their degrees tend to grow faster. Node fitness is typically
drawn from some probabilistic distribution ρ(η) whose shape
is an important constituent of the network model. At the micro
level, ρ(η) allows nodes of the same age to grow at different
rates. At the macro level, ρ(η) affects the broadness of the
resulting degree distribution [9]. For real data, the aim can be
to determine node fitness values that best correspond to the
observed data [24,25].

The average degree growth in the Bianconi-Barabási model
has been shown [9] to follow a power function,

ki(s, si, ηi ) ∼ (s/si )
β(ηi ), (1)

where si is the system time (network size) when node i has
appeared, s is the current system time, and the exponent β is a
function of node fitness [for the basic model version, β(ηi ) ∼
ηi]. As shown in Fig. 2, such degree growth is clearly not
invariant under the shift of the system time s. If, motivated by
the exponential network growth size demonstrated in Fig. 1,
we assume that s = eαt , Eq. (1) is converted to

ki(t, ti, ηi ) ∼ eαβ(ηi )(t−ti ), (2)

where ti is the physical time when node i has appeared and
t is the physical observation time. This form is indeed time
invariant as it depends on the node age τi := t − ti with no
additional dependence on the node appearance time ti.

We thus see that the Bianconi-Barabási model produces
a time-invariant degree growth if and only if the number
of nodes grows exponentially with time. There is, however,
still an important difference between the growth produced by

Eq. (2) and the real data observations in Fig 1. While the
former is of an exponential kind, the nearly linear curves
in Fig. 1 (log-log scale) suggest a power-law growth, much
slower than the exponential growth. To resolve this disagree-
ment, we proceed to more general preferential attachment
models with fitness and aging [5] where the aging effect
causes a slowdown of the degree growth.

B. General preferential attachment with fitness and aging

The general model that we aim to study has three main
contributing factors: node degree as a classical amplifier
that can be introduced by various mechanisms such as the
reference-copying process [26], node fitness as a reflection
of intrinsic differences between the nodes, and aging as a
mechanism that reflects the natural preference for new nodes
and, at the same time, limits the strong bias towards old
nodes. The product of fitness and aging has also been referred
to as “relevance” in past literature [5]. The probability that
node i attracts a new link is usually assumed in the form
�i ∼ kiηiR(τi ), where τi is the age of node i (in physical time)
and R(τi ) is typically a decreasing function which represents
the gradual loss of the node’s “relevance” and contributes to
an eventual saturation of the degree growth. It is convenient
to set R(0) = 1 so that aging begins to influence the degree
dynamics only later during each node’s lifetime. Node fitness
values are drawn from the distribution ρ(η) which does not
change with time. The number of nodes is assumed to grow
exponentially with time, s = exp(αt ).

The continuum approximation for the degree evolution
[10] replaces the stochastic evolution of each node’s degree
with the average rate of its increase, dki/ds = m�i(s), where
m is the average number of new links created by a new node.
Assuming that each new node creates one link to an already
existing node, we obtain

dki

ds
= ki(s)ηiR(τi )

Z (s)
, (3)

where Z (s) := ∑
j k j (s)η jR(τ j ). It is convenient here to

switch to the physical time t where the rate equation has the
form

dki

dt
= αeαt kiηiR(τi )

Z (t )
. (4)

When t is large, the discrete sum in Z (t ) can be approximated
with the double integral of the product kiηiR(τi ) for all nodes,
first over all possible node ages τ and then over all possible
fitness values η,

Z (t ) ≈
∫

dη ρ(η)η
∫ t

0
dτk(τ, η)R(τ )αeα(t−τ ). (5)

Since the network size grows exponentially, there are more
nodes with smaller ages in the network, thus the density term
αeα(t−τ ) is used when integrating over node ages τ . Denoting

lim
t→∞

∫
dηρ(η)η

∫ t

0
dτk(τ, η)R(τ )e−ατ = θ,

we can write Z (t ) = αeαtθ . Equation (4) now simplifies to the
form

dki

dτi
= ki(τi )ηiR(τi )

θ
, (6)
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where we also used τi = t − ti and replaced the derivative
with respect to t by the derivative with respect to τ . The
solution of this differential equation has the form

ki(τi, ηi ) = exp[ηir(τi )/θ ], (7)

with r(τ ) := ∫ τ

0 R(t )dt . Since r(0) = 0, k(0) = 1 as ex-
pected. Different aging functions now lead to different
forms of the degree growth k. In particular, the aging func-
tion R(τ ) = (τ + 1)−1 leads to a power-law degree growth
k(τ, η) = τ η/θ that can approximate the average degree
growth in empirical data. In any case, Eq. (7) shows that
this model together with the assumption of an exponentially
growing network size produces time-invariant degree growth.

After the term αeαt introduced in Eq. (4) by the acceler-
ating network growth being canceled with the same term in
Z (t ), the implied differential equation for the degree growth,
Eq. (6), is the same as when the uniform network growth
(s = t) is assumed [5]. In contrast to Ref. [5] where the nor-
malization term

∑
j k jη jR(τ ) converges only if R(τ ) decays

sufficiently fast (faster than 1/τ ), we do not have a similar
constraint here, as the exponential growth introduces the term
e−ατ in θ ; this ensures convergence even when R(τ ) decays
no faster than 1/τ , for instance, as in Ref. [27].

C. Time invariance of the degree growth as a required property

We have shown that the model introduced in Ref. [5]
produces time-invariant degree growth when the network
size grows uniformly or exponentially. We now proceed by
showing that the uniform and exponential network growths
are in fact the only two cases that are consistent with the
time-invariant degree growth. To this end, we introduce a
mathematical formalism for growing networks with the time-
invariant degree growth as a fundamental assumption, but
without an assumption on the network growth form in the first
place.

To achieve a time-invariant degree growth for node attrac-
tiveness �i ∼ kiηiR(τi ), the differential equation of the degree
growth function must take the form

dki

dτi
= ckiηiR(τi ), (8)

where c > 0 is a positive constant. The resulting degree
growth function is

ki(τi, ηi ) = ecηir(τi ), (9)

where r(τ ) := ∫ τ

0 R(t )dt . By recognizing c = 1/θ , we re-
cover Eq. (7) as in the old formalism, hence the new formalism
is consistent with the old one.

Now, for a given fitness distribution ρ(η), we introduce
function h(τ ) as the average degree growth of a node at age τ :

h(τ ) = c
∫

dηρ(η)ηk(τ, η)R(τ ). (10)

We further introduce function g(t ) as the derivative of the
network size s with respect to the physical time t , g(t ) =
ds/dt . Hence g(t ) is the rate at which new nodes arrive in
the system. Since each node is assumed to create one link,
g(t ) is also the total degree increase of all existing nodes at
time t . Considering the asymptotic behavior (t → ∞) of the

network growth, we can now write g as the convolution of h
and g itself:

g(t ) =
∫ t

0
dτh(τ )g(t − τ ). (11)

Here we have the number of new links on the left side and
the same quantity, expressed through degree increase of the
existing nodes, on the right side. Note so far we have not
assumed any functional form of g.

Equation (11) is the core of our formalism. It describes
a linear time-invariant (LTI) system H [28] whose impulse
response function is h. Its input function happens to be the
same as its output function,

g = Hg. (12)

In other words, g is the eigenfunction of the LTI operator H
and thus it is of the exponential form g(t ) ∼ eσ t , where σ ∈ R
because g is real. The eigenvalues of H can be given by the
Laplace transform of the impulse response h,

ĥ(σ ) = L{h(τ )} =
∫ ∞

0
h(τ )e−στ dτ. (13)

In Eq. (12), the corresponding eigenvalue of g is exactly 1. We
can thus get the exponential growth rate of the network, σ , by
solving

ĥ(σ ) = 1. (14)

When σ > 0, we recover the exponential growth of network
size s(t ) = eσ t/σ , which is analogous to s(t ) = eαt imposed
by hand in the previous sections. When σ = 0, we have
g(t ) = 1, which implies the linear network growth s(t ) = t as
in Ref. [5]. When σ < 0, the model is still in principle valid
but outside the scope of this study, since it means that as time
progresses, fewer and fewer nodes join the network.

D. Breaking of the time invariance

The time invariance of the system as a whole is broken
when ĥ(σ ) = 1 does not have a solution. To explain this, we
start with the formalism of the Bianconi-Barabási model [9]
where �i ∼ ηiki and no aging is present. The time-invariant
degree growth function is thus a special case of Eq. (9), where
r(τ ) ≡ τ , i.e.,

ki(τi, ηi ) = ecηiτi . (15)

One can realize that the constant c is merely a time scaler
and is free of choice here, so for simplicity we let c = 1. The
impulse response can be written as

h(τ ) =
∫

dηρ(η)ηeητ . (16)

Solving

ĥ(σ ) = L{h(τ )} =
∫

dη ρ(η)
η

σ − η
= 1 (17)

gives us the exponential growth rate of the network σ . Since
the degree growth rate of every node must not surpass the
growth rate of the entire network, we have an additional
constraint, σ � ηmax, where ηmax is the maximum fitness.

022309-4
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Since ĥ(σ ) is a decreasing function of σ , the maximum
value of ĥ(σ ) is achieved at σ = ηmax. However, for some
fitness distributions [an example being ρ(η) = (λ + 1)(1 −
η)λ where η ∈ [0, 1] and λ > 1], ĥ(ηmax) is still smaller than
1, which is required by Eq. (14), and consequently, ĥ(σ ) = 1
does not have a solution. When such fitness distributions
are taken, the node with the leading fitness will eventually
attract almost all edges (a “winner-takes-all” effect). The
network growth is thus asymptotically approached by the
maximum degree growth, i.e., g ∼ kmax, and, in the case of
the Bianconi-Barabási model, g(t ) ∼ eηmaxt . This situation has
been intensively studied in Ref. [17], where the authors have
approached the problem using the formalism used to study
the Bose-Einstein condensation, and the critical parameter
λBE = 1 when the condensation arises can be obtained. In
fact, by mapping fitness η to energy ε at temperature T with
η = e−ε/T , one can realize that our Eq. (17) is equivalent to
Eq. (10) in Ref. [17].

With our formalism, we can also address other cases in
which a similar gelation phenomenon arises, for instance,
the superlinear preferential attachment �i ∼ kγ

i with γ > 1,
where eventually a single node connects to nearly all other
nodes [18]. This can be seen from the fact that the time-
invariant degree growth function

k(τ ) = [(1 − γ )cτ + 1]1/(1−γ ), (18)

resulting from the differential equation dk/dτ = ckγ with
γ > 1 and k(0) = 1, displays a finite-time divergence at τ =
[c(γ − 1)]−1. As a result, ĥ(σ ) = ∫ ∞

0 k(τ )e−στ dτ does not
converge for any real value σ , hence ĥ(σ ) = 1 lacks a solution
in R.

Similar breaking of the time invariance does not occur in
the presence of aging where limτ→∞ R(τ ) = 0. To prove this,
we first examine the convergence of ĥ(σ ),

ĥ(σ ) = L{h(τ )} = L
{

c
∫

dηρ(η)ηk(τ, η)R(τ )

}
. (19)

Using the linearity of the Laplace transform L, we can rewrite
the equation above as

ĥ(σ ) = c
∫

dηρ(η)ηL{k(τ, η)R(τ )}. (20)

Hence, ĥ(σ ) converges if L{k(τ, η)R(τ )} converges for all η.
This condition can further reduce to solely the convergence
of L{k(τ, ηmax)}, where ηmax is the maximum fitness, since (i)
k(τ, ηmax) � k(τ, η) for all η, and (ii) the aging function R(τ )
is decreasing. Recalling Eq. (9), we have

L{k(τ, ηmax)} =
∫ ∞

0
ecηmaxr(τ )e−στ dτ. (21)

We thus examine the ratio

ecηmaxr(τ+1)−σ (τ+1)

ecηmaxr(τ )−στ
= ecηmax[r(τ+1)−r(τ )]e−σ . (22)

When taking the limit τ → ∞, since r′(τ ) = R(τ ) and
limτ→∞ R(τ ) = 0, we see that ecηmax[r(τ+1)−r(τ )] approaches

1. Therefore the examined ratio is less than 1 when σ >

0, which guarantees the convergence of L{k(τ, ηmax)} and,
consequently, of ĥ(σ ). Since ĥ(σ ) is a continuous monotonic
function of σ in the range (0,∞), there is always one solution
of ĥ(σ ) = 1.

E. Degree distributions

To conclude the analytical study of the model, we now
derive its degree distribution which will be used in the fol-
lowing section to compare with numerical simulations. Let
P(K � k, t ) denote the probability that a node has degree at
least k at time t . Since the fitness distribution does not change
with time, P(K � k, t ) can be written as

P(K � k, t ) =
∑

η n(K � k, t, η)

s
, (23)

where n(K � k, t, η) represents the number of nodes with
fitness η that have degree at least k at time t , and s is the
network size which we assume to have the exponential form
s = exp(αt ). Since for a given η, the relation between k and
τ is monotonous and independent of t [recalling Eq. (9)], we
can write τ as a function of k,

τ (k, η) = r−1

(
log k

cη

)
. (24)

Equation (23) can then be rewritten using the “mean-field”
approximation [29,30] as

P(K � k, t ) =
∫

dηρ(η)eα

[
t−r−1

(
log k
cη

)]
eαt

(25)

when the network is large enough, in particular in the limit
t → ∞. The only time-dependent term eαt cancels out and
we obtain

P(K � k) =
∫

dηρ(η)e−αr−1
(

log k
cη

)
. (26)

A stationary degree distribution P(k) thus exists:

P(k) ≈ P(K � k) − P(K � k + 1). (27)

IV. SIMULATIONS

To validate our analysis and the formalism proposed in
the last section, we grow synthetic networks with three major
questions in mind:

(i) whether the time-invariant degree growth is consistent
with the exponential network growth with the exponent σ as
predicted in Eq. (14),

(ii) whether the winner-takes-all effect takes place when
Eq. (14) lacks a solution, and

(iii) whether the model produces degree distributions
given by Eq. (26).

In our simulations, we do not directly control the network
size growth. Instead, the growth curve is left to be observed
and compared with the model’s analytical prediction. Syn-
thetic networks have initially six nodes with degree one each.
Time runs in short time steps of size t = 0.02 to limit the
effects of time discretization. The degree increase of each
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(a) (b)

(c) (d)

FIG. 3. Simulation results for the degree distributions and the network growth, and their comparisons with analytical results: (a) linear
preferential attachment where dk/dt ∼ k as in the BA model; (b) superlinear preferential attachment where dk/dt ∼ k1.2; (c) Bianconi-
Barabási model where dk/dt ∼ kη and the fitness distribution is ρ(η) ∼ (1 − η)2.5; and (d) preferential attachment with fitness and aging
where dk/dt ∼ kηR(τ ), the fitness distribution is ρ(η) ∼ (1 − η)2.5, and the aging function is R(τ ) = 1/(τ + 1)0.9.

node is drawn from the Poisson distribution with the mean
increase given by Eq. (8). A new node with degree one is
added to the network whenever the degree of an existing node
is increased by one. In this way, we effectively enforce the
time invariance of the degree growth and have the possibility
to observe the emergent network growth.

Results

Simulation results shown in the insets of Fig. 3 demonstrate
that the emerging network growth in all cases eventually
matches the theoretical prediction. When Eq. (14) has a
solution σ , the network size exhibits an exponential growth
with the exponent σ [Figs. 3(a) and 3(b)]. In the case of the
Bose-Einstein condensation, the network size grows with the
exponent ηmax [Fig. 3(c)]. Figure 3(b) shows the superlinear
preferential attachment which results in a network growth that
is not exponentially bounded and can be approximated by the
theoretical maximum degree growth curve k = [5/(5 − t )]5

which follows from Eq. (18) for γ = 1.2. As a result, the
network size approaches infinity when t = 5 (indicated with
the vertical dashed line).

An important signature of the winner-takes-all effect is
that the maximum degree eventually dominates the network
growth, taking a fixed fraction of the network size. In our
formalism, this happens when Eq. (14) lacks a solution,
in the case of the superlinear preferential attachment [Fig.
3(b)] as well as in the Bianconi-Barabási model when the
Bose-Einstein condensation occurs [17], i.e., λ � λBE = 1
[Fig. 3(c)]. As we have proven, in the presence of a dimin-
ishing aging function, there can be no winner-takes-all effect
although λ > λBE [Fig. 3(d)].

For the degree distributions, the slopes of our theoreti-
cal results based on Eq. (26) match the synthetic results.
Depending on the parameters, some networks have power-
law-shaped, well-defined, long-tail degree distributions
[Fig. 3(d)]. For the superlinear preferential attachment [Fig.
3(b)], since the network growth is not exponential, Eq. (26)
does not apply and no stationary degree distribution is shown.
This is in line with the known conclusion that superlin-
ear preferential attachment networks lack an asymptotic sta-
tionary degree distribution [18]. In the case of the Bose-
Einstein condensation [Fig. 3(c)], there are some “winners”
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with large degree values, yet the slope of the estimated de-
gree distribution still matches the simulation result for low
degrees.

V. CONCLUSION

We provide here a comprehensive analysis of the effect
of the accelerating network growth on the resulting networks
created by various preferential attachment models. Such ac-
celerated growth, albeit common in real systems, is typically
neglected when analyzing network growth models. We find
that, instead of being an unnecessary nuisance, the form of
the network growth is an important component which together
with preferential attachment, fitness, and aging shapes the
network.

Building on the observation that the average node degree
growth in two different citation networks is time invariant,
we formulate a formalism which allows us to take the de-
gree growth time invariance as the first principle and study
the emerging network properties. The time invariance of the
degree growth is a natural property in networks that even-
tually reach “stationary” growth: their old and new nodes
are alike in the way their degree grows and saturates. We
use the formalism to show that only two forms of network
growth are compatible with the time-invariant degree growth:
a uniform growth that is assumed by most network models
and an exponential growth that is often found in real data. The
simultaneous presence of time-invariant degree growth and
an exponential network growth can be thus seen as empirical
confirmation of these two patterns being self-consistent in
growing networks with preferential attachment. The formal-
ism naturally connects various network growth settings that
have been previously studied separately: the Bose-Einstein
condensation in a model with preferential attachment and
fitness, a similar condensation in superlinear preferential at-
tachment, and the absence of such a condensation in the
presence of aging.

Several questions remain open for future research. The
exponential growth of the network size cannot be sustained
forever due to the limited number of potential nodes [31], so it
has to eventually slow down. Such a slowdown can be realized

by relaxing the model assumptions by, for instance, changing
the fitness distribution with time whilst still maintaining the
time-invariant degree growth. Another possibility is to relax
the time invariance of the degree growth by allowing the
parameter c in Eq. (8) to vary. The exact form of the resulting
network growth and its relation to the degree distribution are
also interesting to study.

We have based our observations on citation networks.
The studied model thus limits itself to no edge removal and
edge creation only at node arrival. Besides, its preferential
attachment process only considers local information of nodes,
such as degree, fitness, and aging. Lifting one or more of these
limitations would enable extensions of the model to work with
more general networks.
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APPENDIX: VARYING AVERAGE OUT-DEGREE IN
EMPIRICAL DATA

The growth of the average out-degree of papers with time
(see Fig. 4 for the results in the two studied data sets) can be
included in the model but it would come at the cost of increas-
ing the model complexity. Instead, we limited the impact of
the varying average out-degree on the empirical observations
presented in Fig. 1 by focusing on the period 1965–1995
during which the average out-degree changes relatively little.
One possible way to further limit such impact is to measure
the in-degree growth using a rescaled in-degree which divides
the number of new citations in year y by the average out-
degree in this year and sums the contributions from individual
years. Figure 5 shows that the rescaled in-degree yields time-
invariant growth patterns similar to those measured using the

(a) (b)

FIG. 4. The average out-degree of papers published in different years in (a) the APS data and (b) the DBLP data.
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(a) (b)

FIG. 5. The average number of citations as a function of the paper age, rescaled by the average out-degree in the years when the citations
were received. Papers are divided in three groups by their publication year.

simple in-degree. In particular, the average rescaled in-degree
k̃ in 10 years after publication are 1.04, 1.06, and 1.11 (APS),
and 1.99, 1.97, and 2.04 (DBLP), respectively, for the three

time periods shown in the figure. In comparison with Fig. 1,
the growth curves are power-law over a broader range of paper
age τ .
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