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Abstract

In Jann (2019) I provided some reflections on influence functions for linear regression

(with an application to regression adjustment). Based on an analogy to variance esti-

mation in the generalized method of moments (GMM), I extend the discussion in this

paper to maximum-likelihood models such as logistic regression and then provide in-

fluence functions for a variety of treatment e↵ect estimators such as inverse-probability

weighting (IPW), regression adjustment (RA), inverse-probability weighted regression

adjustment (IPWRA), exact matching (EM), Mahalanobis distance matching (MD),

and entropy balancing (EB). The goal of this exercise is to provide a framework for

standard error estimation in all these estimators.
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1 Introduction

Influence functions are awesome because they can be used for standard error estimation.

Loosely speaking, an influence function quantifies how a statistic changes, once a small

amount of data mass is added at a certain point in the probability distribution on which the

statistic is based (see Hampel, 1974, who established the concept).1 From a more applied

perspective, an influence function provides an approximation of the “e↵ect” of an observation

on a statistic computed from the data.

It has been shown that, asymptotically, the sampling variance of a statistic is equal to the

sampling variance of the mean of its influence function (see, e.g., Hampel et al., 1986, p. 85,

Staudte and Sheather, 1990, p. 79–81, Deville, 1999). That is, once you know the influence

function, you get the standard errors for free. Furthermore, if you have a series of di↵erent

statistics, whatever they may be, and you know the influence function for each of them, you

can simply estimate the joint variance matrix across all statistics by computing the variance

matrix of the influence functions. This is extremely useful because it allows you to freely

combine estimates from di↵erent models and subpopulations and conduct whatever tests

you like. Finally, influence functions are fully compatible with Taylor-linearized variance

estimation for complex surveys.

The challenge, of course, is to derive the influence functions. In the statistical literature

there are many examples, but (1) you have to find them and (2) you have to understand

them (the latter I typically find harder then the former). Furthermore, it might be that you

are interested in an estimator for which no one ever worked out the influence function. It

may thus be good to know how to do this.

In this paper I first show how the generalized method of moments (GMM) provides a

framework that makes it relatively easy to derive influence functions, also for people who

are not trained statisticians (like me). I also show the close connection between GMM

and maximum-likelihood estimation and illustrate how influence functions can be obtained

for arbitrary maximum-likelihood models, even without knowing any math. In the second

1Influence functions are extensively used in robust statistics, see, e.g., Hampel et al. (1986).
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part I then discuss influence functions for a variety of treatment e↵ect estimators under

the conditional independence assumption, such as inverse-probability weighting, regression

adjustment, matching, and entropy balancing. My ultimate goal is to develop standard error

estimation methods to be implemented in Stata command kmatch (Jann, 2017).

2 Using GMM to derive influence functions

2.1 General approach

It appears that the generalized method of moments (GMM) – or, in fact, just the method of

moments (MM), as I will only consider cases that are exactly identified (that is, models in

which the number of moment conditions equals the number of parameters) – can be helpful

to derive influence functions. Drawing on the exposition in the Stata manual (see [R] gmm;

for a textbook exposition see, e.g., Cameron and Trivedi, 2005), GMM can be described as

a procedure to find estimate ✓̂ that solves the following system of moment equations

E(X0
iui(✓)) = 0

with

Xi =

2

6666664

xi1 0 . . . 0

0 xi2 . . . 0
...

...
. . .

...

0 0 . . . xiq

3

7777775
and ui(✓) =

2

6666664

ui1(✓1)

ui2(✓2)
...

uiq(✓q)

3

7777775
and ✓ =

2

6666664

✓1

✓2
...

✓q

3

7777775

where xij is a 1⇥ kj vector of predictors, ✓j is a kj ⇥ 1 vector of parameters, and uij(✓j) is

a (scalar) residual or error term associated with moment equation j.2 The total number of

parameters in the system is k =
Pq

j=1 kj, which is also the total number of predictors in an

exactly identified model (typically including a constant in each equation). An alternative,

2I do not make a distinction between instruments zij and predictors xij because in the cases I will consider

the two are the same.
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slightly more flexible representation of GMM uses hi(Xi; ✓) in place of X0
iui(✓) such that the

optimization problem can be written as

E(hi(Xi; ✓)) = 0 with hi(Xi; ✓) =

2

6666664

hi1(xi1; ✓1)

hi2(xi2; ✓2)
...

hiq(xiq; ✓q)

3

7777775

where each moment equation hij(xij; ✓j) = x0
iuij(✓j) is a kj⇥1 vector of moment conditions. I

will use this alternative representation in this paper as I find it somewhat easier to handle and

because not all estimators discussed below can be written in the error-term representation.

In an exactly identified GMM model, where GMM’s weighting matrix has no impact, the

(robust) k ⇥ k variance matrix of ✓̂ is estimated as

bV (✓̂) =
1

N

⇣
G(✓̂)�1

⌘ 1

N

NX

i=1

hi(Xi; ✓̂)hi(Xi; ✓̂)
0

!⇣
G(✓̂)�1

⌘0

where the inner part of the equation is the moment covariance matrix and

G(✓̂) = � 1

N

NX

i=1

@hi(Xi; ✓)

@✓0

����
✓=✓̂

is the Jacobian matrix of the moment equations.3 Now, for the same model, let �i(✓̂) be

a k ⇥ 1 vector of observation i’s values of the influence function for ✓̂.4 According to the

literature on influence functions,

V̂ (✓̂) =
1

N

 
1

N

NX

i=1

�i(✓̂)�i(✓̂)
0

!

is a consistent estimate of the variance matrix of ✓̂. Rearranging bV (✓̂) from GMM to

V̂ (✓̂) =
1

N

 
1

N

NX

i=1

⇣
G(✓̂)�1hi(Xi; ✓̂)

⌘⇣
G(✓̂)�1hi(Xi; ✓̂)

⌘0
!

3To be precise, G(✓̂) is an estimate of the negative of the expectation of the Jacobian matrix evaluated

at ✓ = ✓̂. Deviating from [R] gmm, I define G(✓̂) as the negative of the Jacobian. The sign does not matter

for GMM’s variance matrix, but it does for influence functions.

4To be precise, �i(✓̂) is an empirical evaluation of the influence function for ✓̂ by replacing unknown

parameters with sample estimates. I will use this meaning throughout the paper.
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suggests that we can derive the influence function as

�i(✓̂) = G(✓̂)�1hi(Xi; ✓̂) (1)

Defined in this way, the variance matrix computed from the influence function will be iden-

tical to the variance matrix computed by GMM.5

Example

As a simple example and proof of concept, consider a standard (single-equation) linear

regression model

yi = xi� + ✏i

In this case, the residual is ui(�) = yi � xi� such that hi(xi; �) = x0
i(yi � xi�). Since

@hi(xi; �)/@�0 = �x0
ixi, we have

G(�̂) =
1

N

NX

i=1

x0
ixi

and, hence,

�i(�̂) =

 
1

N

NX

i=1

x0
ixi

!�1

x0
i(yi � xi�̂) (2)

This is equivalent to the expression for the influence function of linear regression given in

Jann (2019; also see Kahn, 2015; jayk, 2015).

2.2 Constructing influence functions recursively

In models with multiple moment equations, the computation of G(✓̂) is not particularly

convenient. However, we can piece things together equation by equation. Let

Glj = � 1

N

NX

i=1

@hil(xil; ✓l)

@✓0j

����
✓=✓̂

5In an over-identified model, where the number of moment condition is larger than the number of param-

eters, the influence function would be

�i(✓̂) =
n
G(✓̂)0WG(✓̂)

o�1
G(✓̂)0Whi(Xi; ✓̂)

where W is GMM’s weight matrix. This is not new; see Newey and McFadden (1994, 2148–2149).
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which is typically easy to compute without looping over observations using cross products.

We can then assemble G(✓̂) as

G(✓̂) =

2

6666664

G11 G12 . . . G1q

G21 G22 . . . G2q

...
...

. . .
...

Gq1 Gq2 . . . Gqq

3

7777775

Note that Glj will be 0 if equation l is first-order independent from equation j, that is, if

parameters from equation j do not directly appear in equation l (this will be true for all

elements above the diagonal if the moment equations are arranged in an order such that

earlier equations do not depend on later equations, which is always possible in a recursive

system). This also means that influence functions for selected elements of ✓ can be con-

structed recursively without having to evaluate the complete inverse of G(✓̂). For example,

in a two-equation system

hi(Xi; ✓) =

2

4hi1(xi1; ✓1)

hi2(xi2; ✓2)

3

5 such that G(✓̂) =

2

4G11 0

G21 G22

3

5

we can obtain the influence functions for ✓̂1 and ✓̂2 sequentially as

�i(✓̂1) = G
�1
11 hi1(xi1; ✓̂1) (3)

and

�i(✓̂2) = G
�1
22

⇣
hi2(xi2; ✓̂2) + (�G21)�i(✓̂1)

⌘
(4)

This shows that the influence function for ✓̂2 has two components: a first component that is

equal to the influence function we would get if ✓1 was assumed fixed, plus a correction term

accounting for the fact that ✓1 is estimated. The correction term is simply a transformation

of the influence function for ✓̂1, where the transformation is determined by the (average)
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“e↵ect” of ✓̂1 on ✓̂2 (i.e. the expectation of the derivative of hi2(xi2; ✓̂2) by ✓̂1). Likewise, in

a three-equation system

hi(Xi; ✓) =

2

6664

hi1(xi1; ✓1)

hi2(xi2; ✓2)

hi3(xi3; ✓3)

3

7775
such that G(✓̂) =

2

6664

G11 0 0

G21 G22 0

0 G32 G33

3

7775

the influence function for ✓̂3 can be written as

�i(✓̂3) = G
�1
33

⇣
hi3(xi3; ✓̂3) + (�G32)�i(✓̂2)

⌘
(5)

with �i(✓̂2) as in Equation 4 (and �i(✓̂1) as in Equation 3). This nicely illustrates how the

correction terms propagate throughout the recursive system.

2.3 Application to logistic regression

Consider a logistic regression of di 2 {0, 1} on predictors xi (including a constant). The

model is defined as

Pr(di = 1|xi) = pi =
exp(xi�)

1 + exp(xi�)

Parameters � can be estimated using GMM by setting the moment equation to

hi(xi; �) = x0
i(di � pi) = x0

i

✓
di �

exp(xi�)

1 + exp(xi�)

◆

Since
@hi(xi; �̂)

@�̂0
= �x0

ip̂i(1� p̂i)xi

the influence function is given as

�i(�̂) =

 
1

N

NX

i=1

x0
ip̂i(1� p̂i)xi

!�1

x0
i(di � p̂i) with p̂i =

exp(xi�̂)

(1 + exp(xi�̂)
(6)

This is easy to compute, as is illustrated in the following example (using some rearrangement

such that the influence function can be computed for all observations in a single line):
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. sysuse auto, clear
(1978 Automobile Data)

. logit foreign price weight

(output omitted )

. mata:
mata (type end to exit)

: N = st_nobs()

: D = st_data(.,"foreign")

: X = st_data(.,"price weight"), J(N, 1, 1)

: b = st_matrix("e(b)")'

: p = invlogit(X * b)

: h = X :* (D :- p)

: Ginv = invsym(cross(X, (p :* (1 :- p)), X) / N)

: IF = h * Ginv'

: b, mean(IF)', sqrt(diagonal(variance(IF) / N))
1 2 3

1 .0009295971 3.05631e-13 .0002562202
2 -.0058785402 -1.81294e-12 .0016624897
3 9.000473365 2.47677e-09 2.852253138

: end

By design, the mean of the influence function across all observations is zero, which is true

in the example apart from roundo↵ error (see the second column in the matrix displayed

in the above output). For the standard errors of the logit coe�cients, we get values of

SE(�̂1) = .0002562, SE(�̂2) = .0016625, and SE(�̂3) = 2.852253. These are exactly the

values returned by logit with the robust option:

. logit foreign price weight, nolog robust

Logistic regression Number of obs = 74
Wald chi2(2) = 13.29
Prob > chi2 = 0.0013

Log pseudolikelihood = -17.976341 Pseudo R2 = 0.6008

Robust
foreign Coef. Std. Err. z P>|z| [95% Conf. Interval]

price .0009296 .0002562 3.63 0.000 .0004274 .0014318
weight -.0058785 .0016625 -3.54 0.000 -.009137 -.0026201
_cons 9.000473 2.852253 3.16 0.002 3.41016 14.59079
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We could also employ gmm to estimate the model. Note that moment equations have to be

specified using the error-term notation in gmm, that is, we have to split hi(xi; �) = x0
i(di�pi)

into a (scalar) residual term ui(�) = (di � pi) and vector of instruments xi (to which gmm

will automatically add a constant). In our example, the command then looks as follows:

. gmm (foreign - invlogit({xb:price weight} + {b0})), ///
> instruments(price weight) nolog

Final GMM criterion Q(b) = 2.50e-30

note: model is exactly identified

GMM estimation

Number of parameters = 3
Number of moments = 3
Initial weight matrix: Unadjusted Number of obs = 74
GMM weight matrix: Robust

Robust
Coef. Std. Err. z P>|z| [95% Conf. Interval]

price .0009296 .0002545 3.65 0.000 .0004308 .0014284
weight -.0058785 .0016512 -3.56 0.000 -.0091149 -.0026422

/b0 9.000473 2.832916 3.18 0.001 3.448059 14.55289

Instruments for equation 1: price weight _cons

The standard errors reported by gmm are slightly di↵erent from the standard errors based

on the influence function. This is just a scaling issue: gmm divides by N instead of N � 1

when computing the moment covariance matrix. Therefore, standard errors by gmm di↵er

by a factor of
p

N/(N � 1). To obtain the same result as gmm simply multiply the influence

function or the resulting standard errors by
p
(N � 1)/N :

. mata:
mata (type end to exit)

: sqrt(diagonal(variance(IF * sqrt((N-1)/N)) / N)),
> sqrt(diagonal(variance(IF) / N)) * sqrt((N-1)/N)

1 2

1 .0002544831 .0002544831
2 .0016512185 .0016512185
3 2.832915606 2.832915606
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: end

2.4 Application to (other) maximum-likelihood models

Logistic regression is typically estimated by the maximum likelihood (ML) method, but there

is a close connection between GMM and ML. While GMM solves the moment conditions

1

N

NX

i=1

hi(Xi; ✓) = 0

ML solves
1

N

NX

i=1

@`i(✓)

@✓
= 0

where `i(✓) is observation i’s contribution to the log likelihood. For logistic regression

@`i(✓)/@✓ is equal to x0
i(di�pi), such that ML and GMM lead to the same result if the GMM

moment equation is defined as hi(Xi; ✓) = x0
i(di � pi) with pi = exp(xi✓)/(1 + exp(xi✓)).

Depending on the definition of hi(Xi; ✓), however, GMM and ML may also di↵er. A

prominent example is the probit model. If the moment equation, as would be intuitive,

is defined as hi(Xi; ✓) = x0
i(di � pi) = x0

i(di � �(xi✓)), where �() is the standard normal

distribution function, then GMM yields slightly di↵erent results than probit. This is because

the first derivative of the log likelihood of the probit model is not equal to x0
i(di � �(xi✓)).

A more complicated moment equation has to be used for GMM to produce the same result

as probit, namely

hi(Xi; ✓) = x0
i

✓
di
�(xi✓)

�(xi✓)
� (1� di)

�(xi✓)

1� �(xi✓)

◆

where �() is the standard normal density function (see Drukker, 2014).

From a general perspective, GMM will be consistent with ML if hi(Xi; ✓) corresponds to

the gradient vector of the maximum-likelihood model (the vector of first derivatives of the

log likelihood). In this case, G(✓) corresponds to the information matrix, the negative of the

expectation of the Hessian (the matrix of second derivatives of the log likelihood). That is,

�̂(✓̂) =

 
NX

i=1

�@`i(✓̂)

@✓̂@✓̂0

!�1
@`i(✓̂)

@✓̂
(7)
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where `i(✓) is again observation i’s contribution to the log likelihood.

In maximum likelihood estimation, the inverse of the observed information matrix (di-

vided by N) is typically used as the default (non-robust) estimate of the variance matrix

(method vce(oim) in Stata; see [R] vce option). Hence, instead of working out the details

for each model, we can simply use the default (non-robust, model-based) variance matrix

returned by the estimation command (multiplied by N), together with equation-level scores

computed by predict (multiplied by xi to obtain parameter-levels scores), to compute the

influence function. For logistic regression, this would go as follows:

. sysuse auto, clear
(1978 Automobile Data)

. logit foreign price weight

(output omitted )

. predict sc, score

. mata:
mata (type end to exit)

: N = st_nobs()

: X = st_data(.,"price weight"), J(N, 1, 1)

: b = st_matrix("e(b)")'

: h = X :* st_data(.,"sc")

: Ginv = st_matrix("e(V)") * N

: IF = h * Ginv'

: b, mean(IF)', sqrt(diagonal(variance(IF) / N))
1 2 3

1 .0009295971 -1.63677e-12 .0002562202
2 -.0058785402 -3.26293e-11 .0016624897
3 9.000473365 8.98807e-08 2.852253109

: end

Results are the same as above (apart from roundo↵ error). The same procedure can be used

for other models, such as probit:

. sysuse auto, clear
(1978 Automobile Data)

. probit foreign price weight, nolog

(output omitted )
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. predict sc, score

. mata:
mata (type end to exit)

: N = st_nobs()

: X = st_data(.,"price weight"), J(N, 1, 1)

: b = st_matrix("e(b)")'

: h = X :* st_data(.,"sc")

: Ginv = st_matrix("e(V)") * N

: IF = h * Ginv'

: b, mean(IF)', sqrt(diagonal(variance(IF) / N))
1 2 3

1 .0005169548 2.60476e-12 .0001247663
2 -.0032380468 -1.56645e-11 .0007976984
3 4.921935132 2.54878e-08 1.411308829

: end

. probit foreign price weight, nolog robust

Probit regression Number of obs = 74
Wald chi2(2) = 17.71
Prob > chi2 = 0.0001

Log pseudolikelihood = -18.006571 Pseudo R2 = 0.6001

Robust
foreign Coef. Std. Err. z P>|z| [95% Conf. Interval]

price .000517 .0001248 4.14 0.000 .0002724 .0007615
weight -.003238 .0007977 -4.06 0.000 -.0048015 -.0016746
_cons 4.921935 1.411309 3.49 0.000 2.155821 7.68805

We see that the influence function successfully reproduces the robust standard errors reported

by probit. The procedure also works for models with ancillary parameters or multiple-

equations, although the code gets slightly more complicated because there are multiple score

variables. Here is an example for the ordered probit model:

. webuse fullauto, clear
(Automobile Models)

. oprobit rep77 foreign length mpg

(output omitted )

. keep if e(sample)

13



(8 observations deleted)

. predict sc*, score

. mata:
mata (type end to exit)

: N = st_nobs()

: X = st_data(.,"foreign length mpg")

: b = st_matrix("e(b)")'

: u = st_data(.,"sc*")

: h = X :* u[,1], u[|1,2 \ .,.|]

: Ginv = st_matrix("e(V)") * N

: IF = h * Ginv'

: b, mean(IF)', sqrt(diagonal(variance(IF) / N))
1 2 3

1 1.704860532 -3.84566e-07 .4504827633
2 .0468675272 -1.65855e-08 .0128720281
3 .1304559141 -4.31039e-08 .0432849128
4 10.15890352 -4.09244e-06 3.256835182
5 11.21002954 -4.11106e-06 3.229300565
6 12.54560994 -4.15534e-06 3.272299618
7 13.98059347 -4.21373e-06 3.387610162

: end

. oprobit rep77 foreign length mpg, nolog robust

Ordered probit regression Number of obs = 66
Wald chi2(3) = 26.86
Prob > chi2 = 0.0000

Log pseudolikelihood = -78.020025 Pseudo R2 = 0.1321

Robust
rep77 Coef. Std. Err. z P>|z| [95% Conf. Interval]

foreign 1.704861 .4504827 3.78 0.000 .8219306 2.58779
length .0468675 .012872 3.64 0.000 .0216388 .0720962

mpg .1304559 .0432849 3.01 0.003 .0456191 .2152928

/cut1 10.1589 3.256835 3.775625 16.54218
/cut2 11.21003 3.2293 4.880718 17.53934
/cut3 12.54561 3.272299 6.132022 18.9592
/cut4 13.98059 3.38761 7.341001 20.62019

Likewise, here is an example for the multinomial logit model:

. webuse sysdsn1, clear

14



(Health insurance data)

. mlogit insure age male nonwhite i.site

(output omitted )

. keep if e(sample)
(29 observations deleted)

. predict sc*, score

. mata:
mata (type end to exit)

: N = st_nobs()

: X = st_data(.,"age male nonwhite i.site"), J(N, 1, 1)

: b = st_matrix("e(b)")'

: u = st_data(.,"sc*")

: h = X :* u[,1], X :* u[,2], X :* u[,3]

: Ginv = st_matrix("e(V)") * N

: IF = h * Ginv'

: select((b, mean(IF)', sqrt(diagonal(variance(IF) / N))), b:!=0)
1 2 3

1 -.0117449879 -1.08926e-10 .0061442367
2 .5616934289 1.00903e-08 .2036455151
3 .9747767878 -9.27211e-09 .2382791848
4 .1130358552 -1.10819e-08 .2120257922
5 -.5879879357 -1.12641e-08 .2312904752
6 .2697126985 1.53193e-08 .3268667528
7 -.0077961365 -7.14357e-12 .0109023022
8 .4518496351 1.58174e-08 .3614143078
9 .217058946 -2.42229e-09 .4246704968
10 -1.211562719 -1.81485e-08 .4807049716
11 -.2078123246 -1.20144e-08 .3611922444
12 -1.286942952 2.09729e-09 .599982016

: end

. mlogit insure age male nonwhite i.site, nolog robust

Multinomial logistic regression Number of obs = 615
Wald chi2(10) = 37.40
Prob > chi2 = 0.0000

Log pseudolikelihood = -534.36165 Pseudo R2 = 0.0387

Robust
insure Coef. Std. Err. z P>|z| [95% Conf. Interval]

Indemnity (base outcome)

Prepaid
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age -.011745 .0061442 -1.91 0.056 -.0237875 .0002975
male .5616934 .2036455 2.76 0.006 .1625556 .9608313

nonwhite .9747768 .2382792 4.09 0.000 .5077582 1.441795

site
2 .1130359 .2120258 0.53 0.594 -.3025271 .5285988
3 -.5879879 .2312905 -2.54 0.011 -1.041309 -.1346669

_cons .2697127 .3268668 0.83 0.409 -.3709344 .9103598

Uninsure
age -.0077961 .0109023 -0.72 0.475 -.0291643 .013572
male .4518496 .3614143 1.25 0.211 -.2565094 1.160209

nonwhite .2170589 .4246705 0.51 0.609 -.6152799 1.049398

site
2 -1.211563 .480705 -2.52 0.012 -2.153727 -.2693983
3 -.2078123 .3611922 -0.58 0.565 -.9157361 .5001115

_cons -1.286943 .599982 -2.14 0.032 -2.462886 -.1109998

Again, standard errors obtained from the influence functions are identical to the robust

standard errors returned by the maximum-likelihood command.

The fact that influence functions can be obtained in this way for maximum-likelihood

models may be good to know. In fact, Stata’s svy prefix command (see [SVY] svy) does

something very similar. It is, however, of not much use to me here because I am interested

in other models that can not be handled in this way.

3 Influence functions for treatment e↵ect estimators

3.1 Estimands

Let di be a treatment indicator, where di = 1 denotes that some treatment was received

or some intervention has been administered, and di = 0 denotes the absence of treatment.

In causal inference, we are interested in the e↵ect that treatment D has on outcome Y . If

we just compare the observed outcomes of those who received treatment and those who did

not, we may be misguided, because treatment assignment could have been selective (unless

treatment has been randomized). Conceptually, we are therefore interested in potential
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outcomes y1i (the outcome that would be observed under treatment) and y0i (the outcome

that would be observed without treatment), and define the treatment e↵ect for unit i as

the di↵erence between the two, �i = y1i � y0i . We cannot, however, observe both potential

outcomes at the same time. In particular, y0i remains unobserved for those who received

treatment, and y1i remains unobserved for those who did not receive treatment. We thus

need a credible strategy to “impute” these values. Furthermore, we typically do not focus

on treatment e↵ects for individual units, but some aggregate such as their average in a given

population.6

In particular, three di↵erent treatment e↵ect estimands are often of interest. The (un-

conditional) average treatment e↵ect (ATE), average treatment e↵ect on the treated (ATT),

and the average treatment e↵ect on the untreated (ATC). Let p = Pr(D = 1) be the (un-

conditional) treatment probability and let

⌘11 = E(Y 1|D = 1) ⌘10 = E(Y 1|D = 0) ⌘1 = E(Y 1) = p ⌘11 + (1� p)⌘10

⌘01 = E(Y 0|D = 1) ⌘00 = E(Y 0|D = 0) ⌘0 = E(Y 0) = p ⌘01 + (1� p)⌘00

Then the ATT (�1) and the ATC (�0) are

�1 = E(Y 1 � Y 0|D = 1) = E(Y 1|D = 1)� E(Y 0|D = 1) = ⌘11 � ⌘01

�0 = E(Y 1 � Y 0|D = 0) = E(Y 1|D = 0)� E(Y 0|D = 0) = ⌘10 � ⌘00

Furthermore, the ATT (�) is

� = E(Y 1 � Y 0) = E(Y 1)� E(Y 0) = ⌘1 � ⌘0

= p ⌘11 + (1� p)⌘10 � (p ⌘01 + (1� p)⌘00)

= p(⌘11 � ⌘01) + (1� p)(⌘10 � ⌘00)

= p �1 + (1� p)�0

6For a textbook exposition on the potential outcomes framework and the estimation of treatment e↵ects,

see Morgan and Winship (2015). Other prominent references are, for example, Imbens and Rubin (2015);

Angrist and Pischke (2009); Imbens and Wooldridge (2009).
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Estimation of p (the unconditional treatment probability), ⌘11 (the observed outcome mean

among treated), and ⌘00 (the observed outcome mean among untreated) is typically unprob-

lematic, as all necessary information is observed. The challenge in causal inference is to

find good estimates for the counterfactual potential outcome means ⌘01 (the mean outcome

among treated had they not been treated) and ⌘10 (the mean outcome among untreated had

they been treated).

A variety of estimators for this problem have been proposed in the literature under the

so called conditional independence assumption

(Y 1, Y 0) ?? D |X

where X is a vector of covariates. Prominent examples are matching, inverse-probability

weighting, or regression adjustment. Essentially, these estimators assume that, within the

strata defined by the unique values ofX, treatmentD is random. Therefore, these estimators

can be seen as di↵erent variants of an attempt to stratify on X when estimating ⌘01 and ⌘10.

Some of the estimators do so indirectly by controlling for X in a treatment assignment model

(modeling e↵ects of X on D), others control for X directly in the outcome model (modeling

e↵ects ofX on Y ), and some of the estimators do both. Below I will derive influence functions

for a variety of these estimators.

3.2 Inverse-probability weighting

Average treatment e↵ect on the treated (ATT)

First consider the inverse-probability weighting (IPW) estimator of the average treatment

e↵ect on the treated (ATT). Three quantities are of interest: The mean outcome in the

treatment group, ⌘̂11, the (counterfactual) potential outcome mean without treatment in the

treatment group, ⌘̂01, and the di↵erence between these two quantities, �̂1 (the estimate of the

ATT). The IPW approach estimates these quantities as follows:

⌘̂11 =
1P
i di

X

i

diyi ⌘̂01 =
1P
i !̂

0
i

X

i

!̂0
i yi �̂1 = ⌘̂11 � ⌘̂01
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where di is a treatment indicator (1 for the treated, 0 for controls) and !̂0
i is as described

below. Since ⌘̂11 is a simple mean, its influence function is trivial:

�i(⌘̂
1
1) =

NP
i di

(yi � ⌘̂11) (8)

Furthermore, the influence function for the ATT is given as

�i(�̂
1) = �i(⌘̂

1
1)� �i(⌘̂

0
1) (9)

The derivation of �i(⌘̂01) is more challenging. The potential outcome mean ⌘̂01 is estimated

by taking a reweighted average of the outcome values in the control group. The weights

are derived in a way such that the reweighted control group looks as similar as possible to

the treatment group in terms of the distribution of covariates. More specifically, define the

weights as

!̂0
i = (1� di)

p̂i
1� p̂i

=

8
><

>:

0 if di = 1

p̂i/(1� p̂i) if di = 0

with the propensity score p̂i estimated using logistic regression such that

p̂i =
exp(xi�̂)

1 + exp(xi�̂)

where xi is 1⇥ k vector of predictors (including a constant).7 Formulating the estimator for

✓ = (�0, ⌘01)
0 as a GMM problem yields the moment equations

hi(Xi; ✓)) =

2

4hi1(xi; �)

hi2(1; ⌘01)

3

5 =

2

4x
0
i(di � pi)

!0
i (yi � ⌘01)

3

5

where pi = exp(xi�)/(1 + exp(xi�)) and !0
i = (1� di) pi/(1� pi). Since

@pi
@�0 = pi(1� pi)xi

@!0
i

@�0 = (1� di)
pi

1� pi
xi = !0

i xi

7An alternative would be to use a probit model. In this case, the definition hi1(xi;�) and the definition

of p, as well as the derivatives of hi1(xi;�) and hi2(1;�) with respect to � have to be replaced. The general

structure of the solution, however, remains the same.
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we get

G(✓̂) =
1

N

NX

i=1

2

4 x0
ip̂i(1� p̂i)xi 0

�!̂0
i (yi � ⌘̂01)xi !̂0

i

3

5

Hence, based on the recursive expression in Equation 4, we can write the influence function

for ⌘̂01 as

�i(⌘̂
0
1) =

NP
i !̂

0
i

⇣
!̂0
i (yi � ⌘̂01)�G21G

�1
11 x

0
i(di � p̂i)

⌘
(10)

where

G21 =
1

N

NX

i=1

�!̂0
i (yi � ⌘̂01)xi and G11 =

1

N

NX

i=1

x0
ip̂i(1� p̂i)xi

Example:

. sysuse auto, clear
(1978 Automobile Data)

. logit foreign price weight

(output omitted )

. mata:
mata (type end to exit)

: N = st_nobs()

: D = st_data(.,"foreign")

: X = st_data(.,"price weight"), J(N, 1, 1)

: Y = st_data(.,"mpg")

: // compute IF of eta01
: b = st_matrix("e(b)")'

: p = invlogit(X * b)

: h1 = X :* (D - p)

: G11inv = invsym(cross(X, p :* (1 :- p), X) / N)

: w0 = p :/ (1 :- p) :* !D

: eta01 = mean(Y, w0)

: h2 = w0 :* (Y :- eta01)

: G21 = colsum(-h2 :* X) / N

: IF_eta01 = N/sum(w0) * (h2 - h1 * G11inv' * G21')

: // compute IF for eta11
: eta11 = mean(Y, D)

: IF_eta11 = N/sum(D) * D :* (Y :- eta11)

: // compute IF for ATT
: ATT = eta11 - eta01

: IF_ATT = IF_eta11 - IF_eta01
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: // display results (point estimate, mean of IF, standard error)
: (ATT, eta11, eta01)', mean((IF_ATT, IF_eta11, IF_eta01))',
> sqrt(diagonal(variance((IF_ATT, IF_eta11, IF_eta01)) / N)) * sqrt((N-1)/N)

1 2 3

1 -4.855450742 -9.79714e-10 2.114228039
2 24.77272727 -6.54131e-16 1.377102927
3 29.62817801 9.79714e-10 1.77167096

: end

We can compare the results to teffects:

. teffects ipw (mpg) (foreign price weight), nolog atet

Treatment-effects estimation Number of obs = 74
Estimator : inverse-probability weights
Outcome model : weighted mean
Treatment model: logit

Robust
mpg Coef. Std. Err. z P>|z| [95% Conf. Interval]

ATET
foreign

(Foreign
vs

Domestic) -4.855451 2.114228 -2.30 0.022 -8.999262 -.7116399

POmean
foreign

Domestic 29.62818 1.771671 16.72 0.000 26.15577 33.10059

The results are identical (note that ⌘̂11 is not shown in the output of teffects).

Average treatment e↵ect on the untreated (ATC)

The influence function for the average treatment e↵ect on the untreated (ATC) can be

obtained analogously. The following three quantities are of interest:

⌘̂10 =
1P
i !̂

1
i

X

i

!̂1
i yi ⌘̂00 =

1P
i(1� di)

X

i

(1� di)yi �̂0 = ⌘̂10 � ⌘̂00
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where the weights !̂1
i are defined as

!̂1
i = di

1� p̂i
p̂i

=

8
><

>:

(1� p̂i)/p̂i if di = 1

0 if di = 0

To compute the influence function for ⌘̂10, replace the moment equation hi2(1; ⌘01) in the above

discussion by

hi2(1; ⌘
1
0) = !1

i (yi � ⌘10)

such that

G(✓̂) =
1

N

NX

i=1

2

4x
0
ip̂i(1� p̂i)xi 0

!̂1
i (yi � ⌘̂10)xi !̂1

i

3

5

The influence function for ⌘̂10 then is

�i(⌘̂
1
0) =

NP
i !̂

1
i

⇣
!̂1
i (yi � ⌘̂10)�G21G

�1
11 x

0
i(di � p̂i)

⌘
(11)

with

G21 =
1

N

NX

i=1

!̂1
i (yi � ⌘̂10)xi and G11 =

1

N

NX

i=1

x0
ip̂i(1� p̂i)xi

The computation goes as follows (reusing some results from above):

. mata:
mata (type end to exit)

: // compute IF of eta10
: w1 = (1 :- p) :/ p :* D

: eta10 = mean(Y, w1)

: h2 = w1 :* (Y :- eta10)

: G21 = colsum(h2 :* X) / N

: IF_eta10 = N/sum(w1) * (h2 - h1 * G11inv' * G21')

: // compute IF for eta00 and ATC
: eta00 = mean(Y, !D)

: IF_eta00 = N/sum(!D) * !D :* (Y :- eta00)

: // compute IF for ATC
: ATC = eta10 - eta00

: IF_ATC = IF_eta10 - IF_eta00

: // display results (point estimate, mean of IF, standard error)
: (ATC, eta10, eta00)', mean((IF_ATC, IF_eta10, IF_eta00))',
> sqrt(diagonal(variance((IF_ATC, IF_eta10, IF_eta00)) / N)) * sqrt((N-1)/N)
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1 2 3

1 2.996205655 -6.63793e-10 2.072139979
2 22.82312873 -6.63792e-10 2.157750915
3 19.82692308 2.80556e-16 .6514214963

: end

We can confirm the results for the ATC using teffects by flipping treatment and control,

although note that the ATC will have a wrong sign:

. teffects ipw (mpg) (foreign price weight), nolog atet tlevel(0)

Treatment-effects estimation Number of obs = 74
Estimator : inverse-probability weights
Outcome model : weighted mean
Treatment model: logit

Robust
mpg Coef. Std. Err. z P>|z| [95% Conf. Interval]

ATET
foreign

(Domestic
vs

Foreign) -2.996206 2.07214 -1.45 0.148 -7.057525 1.065114

POmean
foreign

Foreign 22.82313 2.157751 10.58 0.000 18.59401 27.05224

Average treatment e↵ect (ATE)

Finally, the average treatment e↵ect (ATE) is defined as

ATE = Pr(D = 1)ATT+ Pr(D = 0)ATC

and can be estimated as

�̂ = p̂ �̂1 + (1� p̂)�̂0 = p̂(⌘̂11 � ⌘̂01) + (1� p̂)(⌘̂10 � ⌘̂00)

were p̂ = 1
N

PN
i=1 di. If the treatment probability Pr(D = 1) is assumed fixed, then the

influence function for the ATE would simply be:

�i(�̂) = p̂�i(�̂
1) + (1� p̂)�i(�̂

0) = p̂(�i(⌘̂
1
1)� �i(⌘̂

0
1)) + (1� p̂)(�i(⌘̂

1
0)� �i(⌘̂

0
0))
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Typically, however, we would want to account for the additional uncertainty due to the

variability of the group sizes in our estimate. The influence function for the treatment

probability is

�i(p̂) = di � p̂

Using the chain rule (see Jann, 2019), we get

�i(�̂) = p̂�i(�̂
1) + (1� p̂)�i(�̂

0) + (�̂1 � �̂0)(di � p̂) (12)

= p̂(�i(⌘̂
1
1)� �i(⌘̂

0
1)) + (1� p̂)(�i(⌘̂

1
0)� �i(⌘̂

0
0)) + ((⌘̂11 � ⌘̂01)� (⌘̂10 � ⌘̂00))(di � p̂)

Continuing the above example, the results for the ATE are as follows:

. mata:
mata (type end to exit)

: p = sum(D) / N

: ATE = p * ATT + (1 - p) * ATC

: IF_ATE = p * IF_ATT :+ (1 - p) * IF_ATC :+ (ATT - ATC) * (D :- p)

: ATE, mean(IF_ATE), sqrt(variance(IF_ATE) / N) * sqrt((N-1)/N)
1 2 3

1 .6619294285 -7.57715e-10 1.825943322

: end

Once again, we can compare our results to teffects:

. teffects ipw (mpg) (foreign price weight), nolog

Treatment-effects estimation Number of obs = 74
Estimator : inverse-probability weights
Outcome model : weighted mean
Treatment model: logit

Robust
mpg Coef. Std. Err. z P>|z| [95% Conf. Interval]

ATE
foreign

(Foreign
vs

Domestic) .5362646 1.71922 0.31 0.755 -2.833344 3.905873

POmean
foreign
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Domestic 23.55664 1.241046 18.98 0.000 21.12423 25.98904

Surprisingly, neither the estimate for the ATE, nor the standard error are exactly the same.

This is because teffects computes the ATE in a direct way using weights equivalent to

1+ !̂1
i + !̂0

i instead of applying the above formula. That is, teffects computes the ATE as

a weighted mean di↵erence using weights 1 + (1� p̂i)/p̂i = 1/p̂i in the treatment group and

weights 1+ p̂i/(1� p̂i) = 1/(1� p̂i) in the control group. The result would be the same as in

the indirect approach above if
P

i !̂
1 was equal to the size of the control group and

P
i !̂

0

was equal to the size of the treatment group, but this only holds approximately in a finite

sample. In terms of GMM, the ATE estimator employed by teffects can be written as

hi(Xi; ✓)) =

2

6664

hi1(xi; �)

hi2(1; ⌘0)

hi3(1; ⌘1)

3

7775
=

2

6664

x0
i(di � pi)

!̃0
i (yi � ⌘0)

!̃1
i (yi � ⌘1)

3

7775

with !̃0
i = (1� di)/(1� pi) and !̃1

i = di/pi such that the influence functions are

�i(⌘̂
0) =

N
P

i
ˆ̃!0
i

⇣
ˆ̃!0
i (yi � ⌘̂0)�G21G

�1
11 x

0
i(di � pi)

⌘
(13)

�i(⌘̂
1) =

N
P

i
ˆ̃!1
i

⇣
ˆ̃!1
i (yi � ⌘̂1)�G31G

�1
11 x

0
i(di � pi)

⌘
(14)

with

G21 =
1

N

NX

i=1

� ˆ̃!0
i (yi � ⌘̂0)p̂ixi and G31 =

1

N

NX

i=1

ˆ̃!1
i (yi � ⌘̂1)(1� p̂i)xi

and G11 as above. The ATE is then defined as �̂ = ⌘̂1 � ⌘̂0 with influence function

�i(�̂) = �i(⌘̂
1)� �i(⌘̂

0) (15)

Using these formulas, we can replicate the results by teffects as follows:

. sysuse auto, clear
(1978 Automobile Data)

. logit foreign price weight

(output omitted )
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. mata:
mata (type end to exit)

: N = st_nobs()

: D = st_data(.,"foreign")

: X = st_data(.,"price weight"), J(N, 1, 1)

: Y = st_data(.,"mpg")

: // compute influence function for eta0
: b = st_matrix("e(b)")'

: p = invlogit(X * b)

: h1 = X :* (D - p)

: G11inv = invsym(cross(X, p :* (1 :- p), X) / N)

: w0 = !D :/ (1 :- p)

: eta0 = mean(Y, w0)

: h2 = w0 :* (Y :- eta0)

: G21 = colsum(-h2 :* p :* X) / N

: IF_eta0 = N/sum(w0) * (h2 - h1 * G11inv' * G21')

: // compute influence function for eta1
: w1 = D :/ p

: eta1 = mean(Y, w1)

: h3 = w1 :* (Y :- eta1)

: G31 = colsum(h3 :* (1 :- p) :* X) / N

: IF_eta1 = N/sum(w1) * (h3 - h1 * G11inv' * G31')

: // compute influence function for ATE
: ATE = eta1 - eta0

: IF_ATE = IF_eta1 - IF_eta0

: // display results (point estimate, mean of IF, standard error)
: (ATE, eta1, eta0)', mean((IF_ATE, IF_eta1, IF_eta0))',
> sqrt(diagonal(variance((IF_ATE, IF_eta1, IF_eta0)) / N)) * sqrt((N-1)/N)

1 2 3

1 .5362645719 -1.56794e-09 1.719219768
2 24.09290314 -3.24039e-10 1.454267747
3 23.55663857 1.24390e-09 1.241046052

: end
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3.3 Regression adjustment

Average treatment e↵ect on the treated (ATT)

In regression adjustment, the estimator for the average treatment e↵ect on the treated (ATT)

is defined as

�̂1 = ⌘̂11 � ⌘̂01

with

⌘̂11 =
1P
i di

X

i

diyi and ⌘̂01 =
1P
i di

X

i

di(yi � zi�̂0)

where �̂0 is estimated by regressing Y on predictors Z in the control group. The GMM

representation for ✓ = (�0
0, ⌘

0
1)

0 is

hi(Xi; ✓) =

2

4hi1(zi; �0)

hi2(1; ⌘01)

3

5 =

2

4z
0
i(1� di)(yi � zi�0)

di(zi�0 � ⌘01)

3

5

such that

G(✓̂) =
1

N

NX

i=1

2

4z
0
i(1� di)zi 0

�dizi di

3

5

Based on Equation 4, this lead to the following influence function:

�i(⌘̂
0
1) =

NP
i di

⇣
di(zi�̂0 � ⌘̂01)�G21G

�1
11 z

0
i(1� di)(yi � zi�̂0)

⌘
(16)

with

G21 =
1

N

NX

i=1

�dizi and G11 =
1

N

NX

i=1

z0i(1� di)zi

Example:

. sysuse auto, clear
(1978 Automobile Data)

. regress mpg price weight if foreign==0

(output omitted )

. mata:
mata (type end to exit)

: N = st_nobs()

: D = st_data(.,"foreign")

: Z = st_data(.,"price weight"), J(N, 1, 1)
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: Y = st_data(.,"mpg")

: // compute IF for eta01
: g0 = st_matrix("e(b)")'

: Zg0 = Z * g0

: h1 = Z :* !D :* (Y - Zg0)

: G11inv = invsym(cross(Z, !D, Z) / N)

: eta01 = mean(Zg0, D)

: h2 = D :* (Zg0 :- eta01)

: G21 = colsum(-D :* Z) / N

: IF_eta01 = N/sum(D) * (h2 - h1 * G11inv' * G21')

: // compute IF for eta11
: eta11 = mean(Y, D)

: IF_eta11 = N/sum(D) * D :* (Y :- eta11)

: // compute IF for ATT
: ATT = eta11 - eta01

: IF_ATT = IF_eta11 - IF_eta01

: // display results (point estimate, mean of IF, standard error)
: (ATT, eta11, eta01)', mean((IF_ATT, IF_eta11, IF_eta01))',
> sqrt(diagonal(variance((IF_ATT, IF_eta11, IF_eta01)) / N)) * sqrt((N-1)/N)

1 2 3

1 -1.820520622 1.52956e-15 1.41055613
2 24.77272727 -6.54131e-16 1.377102927
3 26.59324789 -2.25795e-15 1.00111591

: end

. teffects ra (mpg price weight) (foreign), nolog atet

Treatment-effects estimation Number of obs = 74
Estimator : regression adjustment
Outcome model : linear
Treatment model: none

Robust
mpg Coef. Std. Err. z P>|z| [95% Conf. Interval]

ATET
foreign

(Foreign
vs

Domestic) -1.820521 1.410556 -1.29 0.197 -4.58516 .9441185

POmean
foreign
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Domestic 26.59325 1.001116 26.56 0.000 24.6311 28.5554

Results are the same as computed by teffects.

Average treatment e↵ect on the untreated (ATC)

The regression adjustment estimator for the average treatment e↵ect on the untreated (ATC)

is the reverse: estimate a regression in the treatment group and then make out-of-sample

predictions in the control group to obtain ⌘̂10. Therefore,

hi(Xi; ✓) =

2

4hi1(zi; �1)

hi2(1; ⌘10)

3

5 =

2

4 z0idi(yi � zi�1)

(1� di)(zi�1 � ⌘10)

3

5

such that

G(✓̂) =
1

N

NX

i=1

2

4 z0idizi 0

(di � 1)zi 1� di

3

5

and, hence,

�i(⌘̂
1
0) =

NP
i(1� di)

⇣
(1� di)(zi�̂1 � ⌘̂10))�G21G

�1
11 z

0
idi(yi � zi�̂1)

⌘
(17)

with

G21 =
1

N

NX

i=1

(di � 1)zi and G11 =
1

N

NX

i=1

z0idizi

Example:

. regress mpg price weight if foreign==1

(output omitted )

. mata:
mata (type end to exit)

: // compute IF for eta01
: g1 = st_matrix("e(b)")'

: Zg1 = Z * g1

: h1 = Z :* D :* (Y - Zg1)

: G11inv = invsym(cross(Z, D, Z) / N)

: eta10 = mean(Zg1, !D)

: h2 = !D :* (Zg1 :- eta10)

: G21 = colsum(- !D :* Z) / N
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: IF_eta10 = N/sum(!D) * (h2 - h1 * G11inv' * G21')

: // compute IF for eta00
: eta00 = mean(Y, !D)

: IF_eta00 = N/sum(!D) * !D :* (Y :- eta00)

: // compute IF for ATC
: ATC = eta10 - eta00

: IF_ATC = IF_eta10 - IF_eta00

: // display results (point estimate, mean of IF, standard error)
: (ATC, eta10, eta00)', mean((IF_ATC, IF_eta10, IF_eta00))',
> sqrt(diagonal(variance((IF_ATC, IF_eta10, IF_eta00)) / N)) * sqrt((N-1)/N)

1 2 3

1 -3.726390889 -9.64094e-15 4.555759314
2 16.10053219 -9.34472e-15 4.622990113
3 19.82692308 2.80556e-16 .6514214963

: end

. teffects ra (mpg price weight) (foreign), nolog atet tlevel(0) // = ATC * -1

Treatment-effects estimation Number of obs = 74
Estimator : regression adjustment
Outcome model : linear
Treatment model: none

Robust
mpg Coef. Std. Err. z P>|z| [95% Conf. Interval]

ATET
foreign

(Domestic
vs

Foreign) 3.726391 4.555759 0.82 0.413 -5.202733 12.65552

POmean
foreign

Foreign 16.10053 4.62299 3.48 0.000 7.039638 25.16143

Average treatment e↵ect (ATE)

Finally, the influence function for the ATE can be computed in the usual way (see page 23):

. mata:
mata (type end to exit)

: p = sum(D) / N
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: ATE = p * ATT + (1 - p) * ATC

: IF_ATE = p * IF_ATT :+ (1 - p) * IF_ATC :+ (ATT - ATC) * (D :- p)

: ATE, mean(IF_ATE), sqrt(variance(IF_ATE) / N) * sqrt((N-1)/N)
1 2 3

1 -3.15978081 -6.75361e-15 3.281466003

: end

. teffects ra (mpg price weight) (foreign), nolog

Treatment-effects estimation Number of obs = 74
Estimator : regression adjustment
Outcome model : linear
Treatment model: none

Robust
mpg Coef. Std. Err. z P>|z| [95% Conf. Interval]

ATE
foreign

(Foreign
vs

Domestic) -3.159781 3.281466 -0.96 0.336 -9.591336 3.271774

POmean
foreign

Domestic 21.83853 .727837 30.00 0.000 20.412 23.26507

3.4 Inverse-probability-weighted regression adjustment

Average treatment e↵ect on the treated (ATT)

In inverse-probability-weighted regression adjustment, the estimator for the average treat-

ment e↵ect on the treated (ATT) is defined as

�̂1 = ⌘̂11 � ⌘̂01

with

⌘̂11 =
1P
i di

X

i

diyi and ⌘̂01 =
1P
i di

X

i

di(yi � zi�̂0)

where �̂0 is estimated by regressing Y on Z in the control group while applying weights !̂0
i

that have been estimated as explained above for inverse probability weighting (again, probit
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could be used as an alternative, which would require that we replace some of the expressions

below), that is

!̂0
i = (1� di)

p̂i
1� p̂i

with p̂i =
exp(xi�̂)

1 + exp(xi�̂)

The GMM problem for ✓ = (�0, �0
0, ⌘

0
1)

0 then is

hi(Xi; ✓) =

2

6664

hi1(xi; �)

hi2(zi; �0)

hi3(1; ⌘01)

3

7775
=

2
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x0
i(di � pi)

z0i!
0
i (yi � zi�0)

di(zi�0 � ⌘01)

3

7775

such that
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2
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ip̂i(1� p̂i)xi 0 0

�z0i!̂
0
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0
i zi 0

0 �dizi di

3

7775

Using the recursive formula in Equation 5, this leads to the following influence function:

(18)�i(⌘̂
0
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i di
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1

N

NX

i=1
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1

N
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�z0i!̂
0
i (yi � zi�̂0)xi
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1

N

NX

i=1

z0i!̂
0
i zi G11 =

1

N

NX

i=1

x0
ip̂i(1� p̂i)xi

The computation goes as follows:

. sysuse auto, clear
(1978 Automobile Data)

. mata:
mata (type end to exit)

: Dnm = "foreign"; Xnm = "price weight"

: Ynm = "mpg" ; Znm = "price weight turn"

: N = st_nobs()

: D = st_data(., Dnm); X = st_data(., Xnm), J(N, 1, 1)

: Y = st_data(., Ynm); Z = st_data(., Znm), J(N, 1, 1)

: // estimate logit and create weights
: stata("quietly logit " + Dnm + " " + Xnm)
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: p = invlogit(X * st_matrix("e(b)")')

: w0 = p :/ (1 :- p) :* !D

: st_store(., st_addvar("double", "w0"), w0)

: // estimate regression model
: stata("quietly regress " + Ynm + " " + Znm + " if " + Dnm + "==0 [iw=w0]")

: Zg0 = Z * st_matrix("e(b)")'

: // compute IF for eta01
: h1 = X :* (D - p)

: G11inv = invsym(cross(X, p :* (1 :- p), X) / N)

: h2 = Z :* w0 :* (Y :- Zg0)

: G21 = cross(-h2, X) / N

: G22inv = invsym(cross(Z, w0, Z) / N)

: eta01 = mean(Zg0, D)

: h3 = D :* (Zg0 :- eta01)

: G32 = colsum(-D :* Z) / N

: IF_eta01 = N/sum(D) * (h3 - (h2 - h1 * G11inv' * G21') * G22inv' * G32')

: // compute IF for eta11
: eta11 = mean(Y, D)

: IF_eta11 = N/sum(D) * D :* (Y :- eta11)

: // compute IF for ATT
: ATT = eta11 - eta01

: IF_ATT = IF_eta11 - IF_eta01

: // display results (point estimate, mean of IF, standard error)
: (ATT, eta11, eta01)', mean((IF_ATT, IF_eta11, IF_eta01))',
> sqrt(diagonal(variance((IF_ATT, IF_eta11, IF_eta01)) / N)) * sqrt((N-1)/N)

1 2 3

1 -.5761314967 2.97997e-10 1.252534622
2 24.77272727 -6.54131e-16 1.377102927
3 25.34885877 -2.97997e-10 .9753013655

: end

The results from teffects are identical:

. teffects ipwra (mpg price weight turn) (foreign price weight), atet

Iteration 0: EE criterion = 8.949e-23
Iteration 1: EE criterion = 5.694e-29

Treatment-effects estimation Number of obs = 74
Estimator : IPW regression adjustment
Outcome model : linear
Treatment model: logit
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Robust
mpg Coef. Std. Err. z P>|z| [95% Conf. Interval]

ATET
foreign

(Foreign
vs

Domestic) -.5761315 1.252535 -0.46 0.646 -3.031054 1.878791

POmean
foreign

Domestic 25.34886 .9753014 25.99 0.000 23.4373 27.26041

Average treatment e↵ect on the untreated (ATC)

For the ATC, we have to flip some things around. The GMM problem is

hi(Xi; ✓) =

2
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3
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(19)

with
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1

N
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Example (reusing some results from above):

. mata:
mata (type end to exit)
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: // create new weights
: w1 = (1 :- p) :/ p :* D

: st_store(., st_addvar("double", "w1"), w1)

: // estimate regression model
: stata("quietly regress " + Ynm + " " + Znm + " if " + Dnm + "==1 [iw=w1]")

: Zg1 = Z * st_matrix("e(b)")'

: // compute IF for eta10
: h1 = X :* (D - p)

: G11inv = invsym(cross(X, p :* (1 :- p), X) / N)

: h2 = Z :* w1 :* (Y :- Zg1)

: G21 = cross(h2, X) / N

: G22inv = invsym(cross(Z, w1, Z) / N)

: eta10 = mean(Zg1, !D)

: h3 = !D :* (Zg1 :- eta10)

: G32 = colsum(- !D :* Z) / N

: IF_eta10 = N/sum(!D) * (h3 - (h2 - h1 * G11inv' * G21') * G22inv' * G32')

: // compute IF for eta00
: eta00 = mean(Y, !D)

: IF_eta00 = N/sum(!D) * !D :* (Y :- eta00)

: // compute IF for ATC
: ATC = eta10 - eta00

: IF_ATC = IF_eta10 - IF_eta00

: // display results (point estimate, mean of IF, standard error)
: (ATC, eta10, eta00)', mean((IF_ATC, IF_eta10, IF_eta00))',
> sqrt(diagonal(variance((IF_ATC, IF_eta10, IF_eta00)) / N)) * sqrt((N-1)/N)

1 2 3

1 -13.18882902 -7.10303e-10 4.424288376
2 6.638094059 -7.10302e-10 4.641527713
3 19.82692308 2.80556e-16 .6514214963

: end

Confirm result using teffects (the treatment e↵ect will have a wrong sign):

. teffects ipwra (mpg price weight turn) (foreign price weight), nolog atet ///
> tlevel(0)

Treatment-effects estimation Number of obs = 74
Estimator : IPW regression adjustment
Outcome model : linear
Treatment model: logit

Robust
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mpg Coef. Std. Err. z P>|z| [95% Conf. Interval]

ATET
foreign

(Domestic
vs

Foreign) 13.18883 4.424288 2.98 0.003 4.517383 21.86027

POmean
foreign

Foreign 6.638094 4.641528 1.43 0.153 -2.459133 15.73532

Average treatment e↵ect (ATE)

Finally, the influence function for the ATE as usual (see page 23):

. mata:
mata (type end to exit)

: p = sum(D) / N

: ATE = p * ATT + (1 - p) * ATC

: IF_ATE = p * IF_ATT :+ (1 - p) * IF_ATC :+ (ATT - ATC) * (D :- p)

: ATE, mean(IF_ATE), sqrt(variance(IF_ATE) / N) * sqrt((N-1)/N)
1 2 3

1 -9.439108133 -4.10538e-10 3.169776549

: end

. teffects ipwra (mpg price weight turn) (foreign price weight), nolog

Treatment-effects estimation Number of obs = 74
Estimator : IPW regression adjustment
Outcome model : linear
Treatment model: logit

Robust
mpg Coef. Std. Err. z P>|z| [95% Conf. Interval]

ATE
foreign

(Foreign
vs

Domestic) -9.011602 3.937762 -2.29 0.022 -16.72947 -1.293731

POmean
foreign

Domestic 22.03224 .755597 29.16 0.000 20.5513 23.51318
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As in the case of the IPW estimator, results from teffects are somewhat di↵erent because

the ATE is computed di↵erently. The estimator employed by teffects can be written as

hi(Xi; ✓) =

2
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with !̃0
i = (1� di)/(1� pi) and !̃1

i = di/pi such that the influence functions are
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and G11 as above. Using these formulas, the ATE by teffects can be reproduced:

. sysuse auto, clear
(1978 Automobile Data)

. mata:
mata (type end to exit)

: Dnm = "foreign"; Xnm = "price weight"

: Ynm = "mpg" ; Znm = "price weight turn"

: N = st_nobs()

: D = st_data(., Dnm); X = st_data(., Xnm), J(N, 1, 1)

: Y = st_data(., Ynm); Z = st_data(., Znm), J(N, 1, 1)
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: // estimate logit and create weights
: stata("quietly logit " + Dnm + " " + Xnm)

: p = invlogit(X * st_matrix("e(b)")')

: w0 = !D :/ (1 :- p)

: w1 = D :/ p

: st_store(., st_addvar("double", "w0"), w0)

: st_store(., st_addvar("double", "w1"), w1)

: // estimate regression models
: stata("quietly regress " + Ynm + " " + Znm + " if " + Dnm + "==0 [iw=w0]")

: Zg0 = Z * st_matrix("e(b)")'

: stata("quietly regress " + Ynm + " " + Znm + " if " + Dnm + "==1 [iw=w1]")

: Zg1 = Z * st_matrix("e(b)")'

: // compute IF for eta0
: h1 = X :* (D - p)

: G11inv = invsym(cross(X, p :* (1 :- p), X) / N)

: h2 = Z :* w0 :* (Y :- Zg0)

: G21 = cross(-h2, p, X) / N

: G22inv = invsym(cross(Z, w0, Z) / N)

: eta0 = mean(Zg0)

: h3 = Zg0 :- eta0

: G32 = colsum(-Z) / N

: IF_eta0 = h3 - (h2 - h1 * G11inv' * G21') * G22inv' * G32'

: // compute IF for eta1
: h4 = Z :* w1 :* (Y :- Zg1)

: G41 = cross(h4, 1 :- p, X) / N

: G44inv = invsym(cross(Z, w1, Z) / N)

: eta1 = mean(Zg1)

: h5 = Zg1 :- eta1

: G54 = colsum(-Z) / N

: IF_eta1 = h5 - (h4 - h1 * G11inv' * G41') * G44inv' * G54'

: // compute IF for ATT
: ATT = eta1 - eta0

: IF_ATT = IF_eta1 - IF_eta0

: // display results (point estimate, mean of IF, standard error)
: (ATT, eta1, eta0)', mean((IF_ATT, IF_eta1, IF_eta0))',
> sqrt(diagonal(variance((IF_ATT, IF_eta1, IF_eta0)) / N)) * sqrt((N-1)/N)

1 2 3

1 -9.011601549 -6.78057e-10 3.937761567
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2 13.02063846 -7.04676e-10 4.099591451
3 22.03224001 -2.66192e-11 .7555969982

: end

3.5 Exact matching

Exact matching stratifies the data based on unique patterns of the predictor values and

then computes the outcome di↵erence between treated and controls within each stratum

(as long as the stratum contains observations from both groups). The treatment e↵ect is

then estimated as a stratum-size weighted average of the stratum-specific di↵erences. In the

following I will only focus on the ATT; results for the ATC (and, consequently, the ATE)

can be obtained analogously.

Let J be the number of strata and let xi be a 1 ⇥ J indicator vector that identifies the

stratum to which observation i belongs (that is, element j of xi is equal to 1 if observations

i belongs to stratum j, all other elements are 0). Exact matching can then be viewed as an

inverse-probability weighting (IPW) estimator with a logit model of treatment status di on

xi (without constant), such that the GMM problem for ⌘01 is
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where pi = exp(xi�)/(1 + exp(xi�)) and !0
i = (1� di) pi/(1� pi). Hence
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Let ⌦i be the set of observations in observation i’s stratum. Since xi is an indicator vector,

the influence function for ⌘01 can then be simplified to

�i(⌘̂
0
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NP
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!
(22)

where p̂i is the within stratum treatment probability. We see that the influence function has

two components: a main component that is equal to the influence function of the weighted
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mean of Y in the control group assuming the weights as fixed, plus an adjustment term

accounting for the fact that the weights are estimated.

Alternatively, exact matching can also be viewed as a regression adjustment (RA) esti-

mator based on a fixed-e↵ects regression of yi on indicator vector zi (without constant; zi is

defined in the same way as xi above), such that
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and, hence,
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Let ŷ0i = zi�̂0 be the estimate of the the potential outcome without treatment for observation

i (which is equal to the mean of Y among the controls in ⌦i). The influence function for ⌘01

can then be written as:
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Again there are two components: a main component that is equal to the influence function

we would get if we compute ⌘̂01 as mean of ŷ0i in the treatment group assuming ŷ0i as fixed,

and a correction term that adjusts for the fact that ŷ0i is estimated.

Note that ti =
P

j2⌦i
di is the number of treatment cases in observation i’s stratum,

and ci =
P

j2⌦i
(1 � di) is the number of control cases in the stratum. Furthermore, since

P
i !̂

0
i =

P
i di, p̂i = ti/(ti + ci), !̂0

i = 0 if di = 1 and !̂0
i = ti/ci if di = 0, and, hence,

P
j2⌦i

p̂j(1� p̂j) = (ti+ci)p̂i(1� p̂i) = tici/(ti+ci) as well as
P

j2⌦i
!̂0
j (yj� ⌘̂01) = ti(ŷ0i � ⌘̂01),

we see that Equation 22 can be transformed into Equation 23 after some rearrangement.

That is, both approaches, the IPW representation and the RA representation of ex-

act matching, lead to the same result. In terms of computation, however, the regression-

adjustment representation (Equation 23) is somewhat more convenient. Example:

. sysuse nlsw88, clear
(NLSW, 1988 extract)
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. keep if union<. & grade<. & race<. & wage<.
(370 observations deleted)

. // genedate a stratum id

. sort grade race

. by grade race: generate sid = (_n==1)

. replace sid = sum(sid)
(1,875 real changes made)

. // count number of observations within stratum

. sort sid

. by sid: generate T = sum(union)

. by sid: replace T = T[_N] // size of treatment group within stratum
(1755 real changes made)

. by sid: generate C = sum(union==0)

. by sid: replace C = C[_N] // size of control group within stratum
(1823 real changes made)

. // exclude strata that have insufficient treatment variability (with default

. // settings, teffect requires at least 3 treated and 3 controls per stratum)

. keep if T>=3 & C>=3
(44 observations deleted)

. // compute within-stratum outcome averages in control group

. by sid: generate double y0 = sum(wage*(union==0))

. by sid: replace y0 = y0[_N] / C
(1832 real changes made)

. mata:
mata (type end to exit)

: N = st_nobs()

: D = st_data(.,"union")

: Y = st_data(.,"wage")

: T = st_data(.,"T")

: C = st_data(.,"C")

: y0 = st_data(.,"y0")

: // compute IF for eta01
: eta01 = mean(y0, D)

: IF_eta01 = N/sum(D) * (D :* (y0 :- eta01) + T :/ C :* !D :* (Y - y0))

: // compute IF for eta11
: eta11 = mean(Y, D)

: IF_eta11 = N/sum(D) * D :* (Y :- eta11)

: // compute IF for ATT
: ATT = eta11 - eta01

: IF_ATT = IF_eta11 - IF_eta01

: // display results (point estimate, mean of IF, standard error)
: (ATT, eta11, eta01)', mean((IF_ATT, IF_eta11, IF_eta01))',
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> sqrt(diagonal(variance((IF_ATT, IF_eta11, IF_eta01)) / N))
1 2 3

1 1.177104006 2.43570e-16 .2221082085
2 8.729361226 7.14933e-16 .1970700505
3 7.55225722 4.58804e-16 .1543704822

: end

The resulting standard error for the ATT is very close, at least in this example, to what

teffects reports, even though teffects uses a di↵erent estimation methodology (which is

based on Abadie and Imbens, 2006; see [TE] te↵ects nnmatch):

. teffects nnmatch (wage) (union), ematch(grade race) atet

Treatment-effects estimation Number of obs = 1,832
Estimator : nearest-neighbor matching Matches: requested = 1
Outcome model : matching min = 3
Distance metric: Mahalanobis max = 453

AI Robust
wage Coef. Std. Err. z P>|z| [95% Conf. Interval]

ATET
union

(union
vs

nonunion) 1.177104 .2216018 5.31 0.000 .7427725 1.611435

3.6 Mahalanobis distance matching

Think of Mahalanobis distance matching as a GMM estimator similar to the regression-

adjustment representation of exact matching. Order the observations such that i = 1, . . . , t

indexes the observations in the treatment group and i = t + 1, . . . , t + c indexes the obser-

vations in the control group, where t is the size of the treatment group and c is the size

of the control group. Matching produces a potential outcome estimate ŷ0j , j = 1, . . . , t, for

each observation in the treatment group by taking a weighted average of the outcomes in the

control group, where weight !0
ji denotes the weight that control i receives in the computation

of ŷ0j (the weight will be zero for observations in the treatment group and also for observa-
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tions in the control group, that have not been used as matches for treatment observation j).

Assuming the matching configuration (i.e. the weights !0
ij) as fixed, the moment equations

of the GMM problem for ⌘01 can then be written as

hi(1; ✓) =

2

6666666664

hi1(1; y01)

hi2(1; y02)
...

hit(1; y0t )

hi(t+1)(1; ⌘01)

3

7777777775

=

2

6666666664

!0
i1(yi � y01)

!0
i2(yi � y02)

...

!0
it(yi � y0t )

di
⇣Pt

j=1 y
0
j1{i=j} � ⌘01

⌘

3

7777777775

where 1{a} is the indicator function (equal to 1 if a is true and 0 else), such that

G(✓̂) =
1

N

NX

i=1

2

6666666664

!0
i1 0 . . . 0 0

0 !0
i2 . . . 0 0

...
...

. . .
...

...

0 0 . . . !0
it 0

�di1{i=1} �di1{i=2} . . . �di1{i=t} di

3

7777777775

Assume that the matching weights !0
ij are normalized such that

P
i !

0
ij = 1. The influence

function for ⌘01 can then be written as

�i(⌘̂
0
1) =

NP
i di

 
di(ŷ

0
i � ⌘̂01) +

tX

j=1

!0
ij(yi � ŷ0j )

!
(24)

=
NP
i di

 
di(ŷ

0
i � ⌘̂01) + !0

i

 
yi �

1

!0
i

tX

j=1

!0
ij ŷ

0
j

!!

where !0
i =

Pt
j=1 !

0
ij is the overall matching weight of observation i. Example:8

. clear all

. local ss string scalar

8The example uses 3-nearest-neighbor matching (with replacement), and the data has no ties so that each

treatment observations is matched to exactly 3 controls. The weights !ij are therefore always equal to 1/3

(or zero). For situations in which the number of matches varies, for example because there are ties, or if

using radius or kernel matching, the code would have to be adapted.
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. mata:
mata (type end to exit)

: void IF_ATT(`ss' Dnm, `ss' Ynm)
> {
> N = st_nobs()
> D = st_data(., Dnm)
> Y = st_data(., Ynm)
> y0 = st_data(., "PO")
> IDs = st_data(., "ID1 ID2 ID3")
> ATTte = st_matrix("e(b)")
> V_ATTte = st_matrix("e(V)")
> // compute IF for eta11
> wr = J(N,1,0) // sum_j w_ij (y_i - y0_j)
> for (i=1; i<=N; i++) {
> if (D[i]) continue
> for (j=1; j<=N; j++) {
> if (!D[j]) continue
> if (anyof(IDs[j,],i)) {
> wi = 1/cols(IDs) // weight of control i with respect to j
> wr[i] = wr[i] + wi * (Y[i] - y0[j])
> }
> }
> }
> eta01 = mean(y0, D)
> IF_eta01 = N/sum(D) * (D :* (y0 :- eta01) + wr)
> // compute IF for eta11
> eta11 = mean(Y, D)
> IF_eta11 = N/sum(D) * D :* (Y :- eta11)
> // compute IF for ATT
> ATT = eta11 - eta01
> IF_ATT = IF_eta11 - IF_eta01
> assert (reldif(ATT, ATTte)<1e-12)
> // Results
> b = (ATT, eta11, eta01)
> V = variance((IF_ATT, IF_eta11, IF_eta01))/N
> b', mean((IF_ATT, IF_eta11, IF_eta01))', sqrt(diagonal(V))
> b = (ATTte, b)
> V = blockdiag(V_ATTte, V)
> st_rclear()
> st_matrix("b", b)
> st_matrix("V", V)
> cstripe = (J(1,4,"") \ ("ATTte", "ATT", "eta11", "eta01"))'
> st_matrixcolstripe("b", cstripe)
> st_matrixcolstripe("V", cstripe)
> st_matrixrowstripe("V", cstripe)
> }

: end

. sysuse auto, clear
(1978 Automobile Data)

. teffects nnmatch (mpg price weight) (foreign), atet nn(3) generate(ID*)
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Treatment-effects estimation Number of obs = 74
Estimator : nearest-neighbor matching Matches: requested = 3
Outcome model : matching min = 3
Distance metric: Mahalanobis max = 3

AI Robust
mpg Coef. Std. Err. z P>|z| [95% Conf. Interval]

ATET
foreign

(Foreign
vs

Domestic) -.969697 1.50149 -0.65 0.518 -3.912564 1.97317

. predict double PO, po

. mata: IF_ATT("foreign", "mpg")
1 2 3

1 -.9696969697 2.84457e-15 1.37343757
2 24.77272727 -6.54131e-16 1.386503056
3 25.74242424 -3.44169e-15 1.234977925

Results are quite di↵erent from what teffects returns, but this is not overly surprising since

teffects uses a di↵erent methodology to compute the standard errors and the sample is

very small. To see whether our approach provides valid results, we can run some simulations:

. program mysim, eclass
1. syntax [, n(int 100) ]
2. drop _all
3. set obs `n'
4. matrix C = (1, .5, 1)
5. drawnorm X1 X2, corr(C) cstorage(lower) double
6. gen byte D = ((X1 + X2)/10 + rnormal())>.3
7. gen double Y = 1 + .2*X1 + .3*X2 + D*(.5 + .4*X1 + .3*X2) + ///

> rnormal(0, exp(0 + .2*X1))
8. teffects nnmatch (Y X1 X2) (D), atet nn(3) generate(ID*)
9. predict double PO, po

10. mata: IF_ATT("D", "Y")
11. eret post b V
12. eret local cmd "mysim"
13. end

. simulate _b _se, reps(10000) nodots nolegend: mysim

. su _b*

Variable Obs Mean Std. Dev. Min Max

_b_ATTte 10,000 .6214599 .2722596 -.4402424 1.739156
_b_ATT 10,000 .6214599 .2722596 -.4402424 1.739156
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_b_eta11 10,000 1.674874 .2402745 .7907771 2.581279
_b_eta01 10,000 1.053414 .1882419 .3131391 1.996144

. su _se*

Variable Obs Mean Std. Dev. Min Max

_se_ATTte 10,000 .2674574 .0339971 .1697307 .4596234
_se_ATT 10,000 .261992 .0337009 .1664717 .4178433

_se_eta11 10,000 .2372465 .033139 .1418522 .4035607
_se_eta01 10,000 .1749407 .0284664 .104253 .3978903

. corr _se_ATTte _se_ATT
(obs=10,000)

_se_AT~e _se_ATT

_se_ATTte 1.0000
_se_ATT 0.9489 1.0000

This might be an idealized example (no ties, well-behaved continuous data), but the results

do not look too bad. The standard errors based on Equation 24 capture the sampling

variance of the ATT and ⌘̂01 pretty well, despite the small sample size of N = 100. However,

there is still some bias: For the ATT, the standard deviation across simulations is .27226,

the average of the standard error estimate is .261992 (bias of �3.77 percent); for ⌘̂01, the

observed standard deviation is .188242 and the average standard error is .174941 (bias of

�7.07 percent). The performance of teffetcs appears to be a bit better (the bias in the

standard error estimate for the ATT from teffetcs is �1.76 percent).

The reason for the remaining bias in Equation 24 is that the matching configuration

is treated as fixed. If the X variables are random, some additional uncertainty will occur

because the matching solution will vary from sample to sample. Such variability in the

matching solution will result in additional variability of ŷ0i if there is variance in the Y

values among potential matches. Possibly, standard error estimation could be improved by

using a second matching algorithm to look for potential replacement matches in the local

neighborhood of a control (by matching controls on controls) and then somehow incorporate

the variability of these Y values into the influence function (in the spirit of the procedure

by Abadie and Imbens, 2006), but I leave this open for further research.
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3.7 Bias-adjusted Mahalanobis distance matching

Bias-adjusted Mahalanobis distance matching is like Mahalanobis distance matching followed

by regression adjustment. Again treating the matching configuration (i.e. the weights !0
ji)

as fixed, the GMM problem can be written as

hi(1; ✓) =

2

6666666666664

hi0(zi; �0)

hi1(1; y01)

hi2(1; y02)
...

hit(1; y0t )
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3

7777777777775

=

2

6666666666664
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such that
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and ŷ0j =
P

i !
0
ij(yi + (zj � zi)�̂0). Example:

. clear all

. local ss string scalar

. mata:
mata (type end to exit)

: void IF_ATT(`ss' Dnm, `ss' Ynm, `ss' Znm)
> {
> N = st_nobs()
> D = st_data(., Dnm)
> Y = st_data(., Ynm)
> IDs = st_data(., "ID1 ID2 ID3")
> Z = st_data(.,Znm), J(N,1,1)
> ATTte = st_matrix("e(b)")
> V_ATTte = st_matrix("e(V)")
> // obtain matching weights
> w0 = J(N,1,0)
> for (i=1; i<=N; i++) {
> if (D[i]) continue
> for (j=1; j<=N; j++) {
> if (!D[j]) continue
> if (anyof(IDs[j,],i)) {
> wi = 1/cols(IDs) // weight of control i with respect to j
> w0[i] = w0[i] + wi
> }
> }
> }
> // compute RA coefficients
> st_store(., st_addvar("double", "w0"), w0)
> stata("quietly regress " + Ynm + " " + Znm + " [aw=w0]")
> g0 = st_matrix("e(b)")'
> // compute IF_g0
> G11inv = invsym(cross(Z, w0, Z) / N)
> IF_g0 = w0 :* (Y :- Z*g0) :* Z * G11inv'
> // compute y0 and z0
> y0 = J(N,1,0)
> z0 = J(N,cols(Z),0)
> for (j=1; j<=N; j++) {
> if (!D[j]) continue
> y0[j] = sum(Y[IDs[j,]] + (Z[j,] :- Z[IDs[j,],])*g0) / cols(IDs)
> z0[j,] = colsum(Z[IDs[j,],]) / cols(IDs)
> }
> // compute correction term
> wr = J(N,1,0)
> for (i=1; i<=N; i++) {
> if (D[i]) continue
> for (j=1; j<=N; j++) {
> if (!D[j]) continue
> if (anyof(IDs[j,],i)) {
> wi = 1/cols(IDs) // weight of control i with respect to j
> wr[i] = wr[i] + wi * (Y[i] + (Z[j,] - Z[i,])*g0 - y0[j])
> }
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> wr[i] = wr[i] + IF_g0[i,] * (Z[j,] - z0[j,])'/N
> }
> }
> // compute IF for eta11
> eta01 = mean(y0, D)
> IF_eta01 = N/sum(D) * (D :* (y0 :- eta01) + wr)
> // compute IF for eta11
> eta11 = mean(Y, D)
> IF_eta11 = N/sum(D) * D :* (Y :- eta11)
> // compute IF for ATT
> ATT = eta11 - eta01
> IF_ATT = IF_eta11 - IF_eta01
> assert (reldif(ATT, ATTte)<1e-12)
> // Results
> b = (ATT, eta11, eta01)
> V = variance((IF_ATT, IF_eta11, IF_eta01))/N
> b', mean((IF_ATT, IF_eta11, IF_eta01))', sqrt(diagonal(V))
> b = (ATTte, b)
> V = blockdiag(V_ATTte, V)
> st_rclear()
> st_matrix("b", b)
> st_matrix("V", V)
> cstripe = (J(1,4,"") \ ("ATTte", "ATT", "eta11", "eta01"))'
> st_matrixcolstripe("b", cstripe)
> st_matrixcolstripe("V", cstripe)
> st_matrixrowstripe("V", cstripe)
> }

: end

. sysuse auto, clear
(1978 Automobile Data)

. teffects nnmatch (mpg price weight) (foreign), atet nn(3) ///
> biasadj(price weight) generate(ID*)

Treatment-effects estimation Number of obs = 74
Estimator : nearest-neighbor matching Matches: requested = 3
Outcome model : matching min = 3
Distance metric: Mahalanobis max = 3

AI Robust
mpg Coef. Std. Err. z P>|z| [95% Conf. Interval]

ATET
foreign

(Foreign
vs

Domestic) -2.057838 1.48609 -1.38 0.166 -4.970521 .8548451

. mata: IF_ATT("foreign", "mpg", "price weight")
1 2 3

1 -2.057838086 -1.76736e-15 1.568344364
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2 24.77272727 -6.54131e-16 1.386503056
3 26.83056536 1.13273e-15 1.284358244

The resulting standard error for the ATT is in a similar range as the standard error returned

by teffects. To evaluate the estimator we can again run some simulations:

. program mysim, eclass
1. syntax [, n(int 100) ]
2. drop _all
3. set obs `n'
4. matrix C = (1, .5, 1)
5. drawnorm X1 X2, corr(C) cstorage(lower) double
6. gen byte D = ((X1 + X2)/10 + rnormal())>.3
7. gen double Y = 1 + .2*X1 + .3*X2 + D*(.5 + .4*X1 + .3*X2) + ///

> rnormal(0, exp(0 + .2*X1))
8. teffects nnmatch (Y X1 X2) (D), atet nn(3) biasadj(X1 X2) generate(ID*)
9. mata: IF_ATT("D", "Y", "X1 X2")

10. eret post b V
11. eret local cmd "mysim"
12. end

. simulate _b _se, reps(10000) nodots nolegend: mysim

. su _b*

Variable Obs Mean Std. Dev. Min Max

_b_ATTte 10,000 .601353 .2707446 -.4625704 1.730218
_b_ATT 10,000 .601353 .2707446 -.4625704 1.730218

_b_eta11 10,000 1.674874 .2402745 .7907771 2.581279
_b_eta01 10,000 1.073521 .1966577 .3090912 2.0711

. su _se*

Variable Obs Mean Std. Dev. Min Max

_se_ATTte 10,000 .2635178 .0340952 .1667601 .4544649
_se_ATT 10,000 .260089 .0351009 .1623164 .4307056

_se_eta11 10,000 .2372465 .033139 .1418522 .4035607
_se_eta01 10,000 .1830322 .0320217 .1047215 .4163064

. corr _se_ATTte _se_ATT
(obs=10,000)

_se_AT~e _se_ATT

_se_ATTte 1.0000
_se_ATT 0.9450 1.0000

Results are similar to matching without bias adjustment. For the ATT, the standard error

estimate based on Equation 25 has a bias of �3.94 percent; for the standard error of ⌘̂01
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the bias is �6.93 percent. The performance of teffetcs is somewhat better with a bias of

�2.67 percent for the ATT.

3.8 Entropy balancing

Basic model

The original formal exposition on entropy balancing in Hainmueller (2012) is di�cult to

understand, at least in my opinion. In essence, however, entropy balancing is straightforward.

It looks for an estimate of ✓ = (↵, �0)0 such that

1
PN

i=1 !i

NX

i=1

!ix
0
i = µ and

NX

i=1

!i = t with !i = exp(↵ + xi�)

where µ is a (k � 1)⇥ 1 vector of target means, one for each variable, and t is a target sum

of weights. In terms of a GMM estimator, entropy balancing can be expressed as
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3
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where the first moment equation ensures that the sum of !i is equal to t. The influence

function for ✓̂ thus is

�✓̂
i = G(✓̂)�1hi(Xi; ✓̂)

with
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1

N

NX

i=1

2
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hi2(xi; �̂) �hi2(xi; �̂)xi
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where

!̂i = exp(↵̂ + xi�̂) = exp(↵̂) exp(xi�̂)

Note that G21 = 0 because
P

hi2(xi; �) is zero by definition (at least if the model converges).

Demonstration of entropy balancing using GMM:

. sysuse auto, clear
(1978 Automobile Data)

. // get target mean for price

. su price if foreign==1
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Variable Obs Mean Std. Dev. Min Max

price 22 6384.682 2621.915 3748 12990

. local m1 = r(mean)

. // get target mean for weight

. su weight if foreign==1

Variable Obs Mean Std. Dev. Min Max

weight 22 2315.909 433.0035 1760 3420

. local m2 = r(mean)

. // get target sum of weights

. quietly count if foreign==1

. local T = r(N)

. // get sample size (subsample to which entropy balancing will be applied)

. quietly count if foreign==0

. local N = r(N)

. // run GMM

. local w "exp({a} + {b1}*price + {b2}*weight)"

. gmm (`w' - `T'/`N') ///
> (`w'*(price - `m1')) ///
> (`w'*(weight - `m2')) ///
> if foreign==0, winitial(identity) nolog

Final GMM criterion Q(b) = 2.91e-31

note: model is exactly identified

GMM estimation

Number of parameters = 3
Number of moments = 3
Initial weight matrix: Identity Number of obs = 52
GMM weight matrix: Robust

Robust
Coef. Std. Err. z P>|z| [95% Conf. Interval]

/a 7.065282 1.978246 3.57 0.000 3.187992 10.94257
/b1 .000972 .000231 4.21 0.000 .0005193 .0014246
/b2 -.0052477 .0012756 -4.11 0.000 -.0077478 -.0027477

Instruments for equation 1: _cons
Instruments for equation 2: _cons
Instruments for equation 3: _cons

. // confirm that resulting weights do what they are supposed to do

. generate double w = exp(_b[/a] + _b[/b1]*price + _b[/b2]*weight) if e(sample)
(22 missing values generated)

. su price weight [aw=w] if foreign==0
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Variable Obs Weight Mean Std. Dev. Min Max

price 52 22 6384.682 4013.89 3291 15906
weight 52 22 2315.909 846.6718 1800 4840

. // computation if IFs

. gen byte domestic = (1-foreign)

. mata:
mata (type end to exit)

: m = (`m1', `m2')

: k = length(m)

: a = st_matrix("e(b)")[,1]

: b = st_matrix("e(b)")[,(2,3)]'

: N = `N'; T = `T'

: X = st_data(., "price weight", "domestic")

: // prepare weights and h(x,b)
: w = exp(a :+ X*b)

: ha = (w :- T/N)

: hb = w :* (X :- m)

: // compute G
: Ginv = luinv((-sum(w) , -colsum(w :* X) \
> colsum(hb)', -cross(X,hb) ) / N)

: // compute IF
: IF = (ha, hb) * Ginv'

: // display results (point estimate, mean of IF, standard error)
: (a, b')', mean((IF))', sqrt(diagonal(variance(IF) / N)) * sqrt((N-1)/N)

1 2 3

1 7.0652823 1.08033e-15 1.978245763
2 .0009719645 -1.02605e-19 .0002309577
3 -.0052477389 -5.89014e-20 .0012755569

: end

Average treatment e↵ect on the treated (ATT)

In causal inference we are typically interested in the standard error of a reweighted outcome

mean, but not the entropy balancing coe�cients per se. For the estimation of an ATT, define

the entropy balancing weights as

!0
i = (1� di) exp(↵ + xi�)
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such that

⌘01 =
1

PN
i=1 !

0
i

NX

i=1

!0
i yi

where yi is an outcome variable of interest. Furthermore, assume that the target means

µ are estimated from the observations in the treatment group and that the target sum of

weights is equal to the size of the treatment group, that is, t = pN , where p is the treatment

probability.9 Our interest lies in computing influence function for ⌘01 (as usual, the influence

functions for ⌘11 and the ATT can be computed separately in a second step). The GMM

problem for ⌘01 can be expressed as

hi(Xi; ✓) =

2

6666666664

hi1(xi;µ)

hi2(1; p)

hi3(1;↵)

hi4(xi; �)

hi5(1; ⌘01)

3

7777777775

=

2

6666666664

di(x0
i � µ)

di � p

!0
i �

(1�di)p
1�p

!0
i (x

0
i � µ)

!0
i (yi � ⌘01)

3

7777777775

with

G(✓̂) =
1

N

NX

i=1

2

6666666664

diIk 0 0 0 0

0 1 0 0 0

0 1�di
(1�p̂)2 �!̂0

i �!̂0
i xi 0

!̂iIk 0 hi4(xi; �̂) �hi4(xi; �̂)xi 0

0 0 hi5(1; ⌘̂01) �hi5(1; ⌘̂01)xi !̂0
i

3

7777777775

where Ik is the identity matrix of size k. Since
P

hi4(xi; �̂) = 0 and
P

hi5(1; ⌘̂01) = 0 by

definition, the influence function of ⌘̂01 can be written as

�i(⌘̂
0
1) =

NP
i !̂i

⇣
hi5(1; ⌘̂

0
1)�G54G

�1
44

⇣
hi4(xi; �̂)�G41G

�1
11 hi1(xi; µ̂)

⌘⌘
(26)

with

G54 =
1

N

NX

i=1

�hi5(1; ⌘̂
0
1)xi G41 =

1

N

NX

i=1

!̂0
i Ik

9Be aware that entropy balancing can also balance higher moments or even covariances between predictors.

I only focus on means here to keep the discussion simple. The extension to higher moments and covariances

is straightforward as these are just moment conditions on powers and interactions of the predictors.
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G44 =
1

N

NX

i=1

�hi4(xi; �̂)xi G11 =
1

N

NX

i=1

diIk

The computation goes as follows:

. sysuse auto, clear
(1978 Automobile Data)

. local w "(foreign==0) * exp({a} + {b1}*price + {b2}*weight)"

. gmm (foreign*(price - {m1})) ///
> (foreign*(weight - {m2})) ///
> (foreign - {p}) ///
> (`w' - (foreign==0)*{p}/(1-{p})) ///
> (`w'*(price - {m1})) ///
> (`w'*(weight - {m2})) ///
> (`w'*(mpg - {eta01})) ///
> , winitial(identity) nolog

Final GMM criterion Q(b) = 2.74e-31

note: model is exactly identified

GMM estimation

Number of parameters = 7
Number of moments = 7
Initial weight matrix: Identity Number of obs = 74
GMM weight matrix: Robust

Robust
Coef. Std. Err. z P>|z| [95% Conf. Interval]

/m1 6384.682 546.142 11.69 0.000 5314.263 7455.1
/m2 2315.909 90.19414 25.68 0.000 2139.132 2492.686
/p .2972973 .0531331 5.60 0.000 .1931583 .4014363
/a 7.065282 2.294704 3.08 0.002 2.567745 11.56282
/b1 .000972 .00036 2.70 0.007 .0002664 .0016775
/b2 -.0052477 .00178 -2.95 0.003 -.0087365 -.001759

/eta01 27.24295 1.494802 18.23 0.000 24.31319 30.1727

Instruments for equation 1: _cons
Instruments for equation 2: _cons
Instruments for equation 3: _cons
Instruments for equation 4: _cons
Instruments for equation 5: _cons
Instruments for equation 6: _cons
Instruments for equation 7: _cons

. mata:
mata (type end to exit)

: N = st_nobs()

: m = st_matrix("e(b)")[,(1,2)]

: k = length(m)
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: a = st_matrix("e(b)")[,4]

: b = st_matrix("e(b)")[,(5,6)]'

: eta01 = st_matrix("e(b)")[,7]

: X = st_data(., "price weight")

: D = st_data(., "foreign")

: Y = st_data(., "mpg")

: // compute IF for eta01
: w0 = !D :* exp(a :+ X*b)

: hm = D :* (X :- m)

: hb = w0 :* (X :- m)

: heta01 = w0 :* (Y :- eta01)

: G11inv = diag(J(k, 1, N/sum(D)))

: G41 = diag(J(k, 1, sum(w0))) / N

: G44inv = luinv(-cross(hb, X) / N)

: G54 = -colsum(heta01 :* X) / N

: IF_eta01 = N/sum(w0) * (heta01 - (hb - hm * G11inv' * G41') * G44inv' * G54')

: // compute IF for eta11
: eta11 = mean(Y, D)

: IF_eta11 = N/sum(D) * D :* (Y :- eta11)

: // compute IF for ATT
: ATT = eta11 - eta01

: IF_ATT = IF_eta11 - IF_eta01

: // display results (point estimate, mean of IF, standard error)
: (ATT, eta11, eta01)', mean((IF_ATT, IF_eta11, IF_eta01))',
> sqrt(diagonal(variance((IF_ATT, IF_eta11, IF_eta01)) / N)) * sqrt((N-1)/N)

1 2 3

1 -2.470218473 -1.84290e-15 1.74221528
2 24.77272727 -6.54131e-16 1.377102927
3 27.24294575 1.13889e-15 1.494801663

: end

Entropy balancing with regression adjustment

Even though entropy balancing perfectly balances the data, regression adjustment may make

sense to take account of additional covariates. Let zi be a vector of predictors (including a

constant) for the regression adjustment. In the control group, a weighted regression of Y on
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Z is run to determine regression coe�cients �, that are then used to estimate the potential

outcomes in the treatment group. In terms of GMM, the problem be written as

hi(Xi; ✓) =

2

6666666666664

hi1(xi;µ)

hi2(1; p)

hi3(1;↵)

hi4(xi; �)

hi5(zi; �0)

hi6(1; ⌘01)

3

7777777777775

=

2

6666666666664

di(x0
i � µ)

di � p

!0
i �

(1�di)p
1�p

!0
i (x

0
i � µ)

z0i!
0
i (yi � zi�0)

di(zi�0 � ⌘01)

3

7777777777775

such that

G(✓̂) =
1

N

NX

i=1

2

6666666666664

diIk 0 0 0 0 0

0 1 0 0 0 0

0 1�di
(1�p̂)2 �!̂0

i �!̂0
i xi 0 0

!̂0
i Ik 0 hi4(xi; �̂) �hi4(xi; �̂)xi 0 0

0 0 hi5(zi; �̂0) �hi5(zi; �̂0)xi z0i!̂
0
i zi 0

0 0 0 0 �dizi di

3

7777777777775

The influence function for ⌘01 thus is:

�i(⌘̂
0
1) =

NP
i di

⇣
hi6(1; ⌘̂

0
1)�G65G

�1
55

⇣
hi5(1; ⌘̂

0
1)�G54G

�1
44

⇣
hi4(xi; �̂)�G41G

�1
11 hi1(xi; µ̂)

⌘⌘⌘

(27)

with

G65 =
1

N

NX

i=1

�dizi G54 =
1

N

NX

i=1

�hi5(1; ⌘̂
0
1)xi G41 =

1

N

NX

i=1

!̂0
i Ik

G55 =
1

N

NX

i=1

z0i!̂
0
i zi G44 =

1

N

NX

i=1

�hi4(xi; �̂)xi G11 =
1

N

NX

i=1

diIk

Example:

. sysuse auto, clear
(1978 Automobile Data)

. local w "(foreign==0) * exp({a} + {b1}*price + {b2}*weight)"
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. local zg "({g1}*turn + {g0})"

. gmm (foreign*(price - {m1})) ///
> (foreign*(weight - {m2})) ///
> (foreign - {p}) ///
> (`w' - (foreign==0)*{p}/(1-{p})) ///
> (`w'*(price - {m1})) ///
> (`w'*(weight - {m2})) ///
> (turn*`w'*(mpg - `zg')) ///
> ( `w'*(mpg - `zg')) ///
> (foreign*(`zg' - {eta01})) ///
> , winitial(identity) nolog

Final GMM criterion Q(b) = 1.70e-30

note: model is exactly identified

GMM estimation

Number of parameters = 9
Number of moments = 9
Initial weight matrix: Identity Number of obs = 74
GMM weight matrix: Robust

Robust
Coef. Std. Err. z P>|z| [95% Conf. Interval]

/m1 6384.682 546.142 11.69 0.000 5314.263 7455.1
/m2 2315.909 90.19414 25.68 0.000 2139.132 2492.686
/p .2972973 .0531331 5.60 0.000 .1931583 .4014363
/a 7.065282 2.294704 3.08 0.002 2.567745 11.56282
/b1 .000972 .00036 2.70 0.007 .0002664 .0016775
/b2 -.0052477 .00178 -2.95 0.003 -.0087365 -.001759
/g1 -1.064548 .3057743 -3.48 0.000 -1.663855 -.4652416
/g0 66.38138 12.28574 5.40 0.000 42.30177 90.461

/eta01 28.68669 2.497824 11.48 0.000 23.79105 33.58234

Instruments for equation 1: _cons
Instruments for equation 2: _cons
Instruments for equation 3: _cons
Instruments for equation 4: _cons
Instruments for equation 5: _cons
Instruments for equation 6: _cons
Instruments for equation 7: _cons
Instruments for equation 8: _cons
Instruments for equation 9: _cons

. mata:
mata (type end to exit)

: N = st_nobs()

: m = st_matrix("e(b)")[,(1,2)]

: k = length(m)

: a = st_matrix("e(b)")[,4]

: b = st_matrix("e(b)")[,(5,6)]'
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: g = st_matrix("e(b)")[,(7,8)]'

: eta01 = st_matrix("e(b)")[,9]

: X = st_data(., "price weight")

: Z = st_data(., "turn"), J(N, 1, 1)

: D = st_data(., "foreign")

: Y = st_data(., "mpg")

: // compute IF for eta01
: w0 = !D :* exp(a :+ X*b)

: hm = D :* (X :- m)

: hb = w0 :* (X :- m)

: hg = Z :* w0 :* (Y :- Z*g)

: heta01 = D :* (Z*g :- eta01)

: G11inv = diag(J(k, 1, N/sum(D)))

: G41 = diag(J(k, 1, sum(w0))) / N

: G44inv = luinv(-cross(hb, X) / N)

: G54 = -cross(hg, X) / N

: G55inv = invsym(cross(Z, w0, Z) / N)

: G65 = colsum(-D :* Z) / N

: IF_eta01 = N/sum(D) * (heta01 - (hg - (hb - hm * G11inv' * G41') *
> G44inv' * G54') * G55inv' * G65')

: // compute IF for eta11
: eta11 = mean(Y, D)

: IF_eta11 = N/sum(D) * D :* (Y :- eta11)

: // compute IF for ATT
: ATT = eta11 - eta01

: IF_ATT = IF_eta11 - IF_eta01

: // display results (point estimate, mean of IF, standard error)
: (ATT, eta11, eta01)', mean((IF_ATT, IF_eta11, IF_eta01))',
> sqrt(diagonal(variance((IF_ATT, IF_eta11, IF_eta01)) / N)) * sqrt((N-1)/N)

1 2 3

1 -3.91396706 1.12002e-14 2.730144856
2 24.77272727 -6.54131e-16 1.377102927
3 28.68669433 -1.18986e-14 2.497824357

: end

If the predictors in the regression adjustment are identical to the entropy balancing covari-

ates, that is, if zi = xi for all i, then regression adjustment does not change the estimate of
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⌘01, nor does it change its standard error (this is related to the fact that entropy balancing

has doubly-robust property; see Zhao and Percival, 2017). Furthermore, the standard errors

from a regression adjustment estimator ignoring that the entropy-balancing weights !̂0
i have

been estimated will produce the same standard errors as the full influence function. That

is, if zi = xi, the influence function can be simplified to

�i(⌘̂
0
1) =

NP
i di

⇣
di(zi�̂0 � ⌘̂01)�G65G

�1
55 z

0
i!̂

0
i (yi � zi�̂0)

⌘

4 Sampling weights, subpopulation estimation, and

common support

Survey design

In applied situations, data may stem from a complex survey including sampling weights,

clustering, and stratification. Clustering and stratification can be handled while computing

the variance matrix from the influence functions using a standard survey estimator for the

mean (or the total, depending on the scaling of the influence functions). Sampling weights,

however, have to be taken into account in the computation of the components of the influence

functions. Sampling weights wi, with wi � 0 for all observations, can be added to the GMM

problem as follows:

Ew(hi(Xi; ✓)) =
1

W

NX

i=1

wihi(Xi; ✓) = 0

with

G(✓̂) = � 1

W

NX

i=1

wi
@hi(Xi; ✓)

@✓0

����
✓=✓̂

where W =
PN

i=1 wi such that

�i(✓̂) = wiG(✓̂)�1hi(Xi; ✓̂)

Here is an example using logistic regression with sampling weights:

. webuse nhanes2f, clear
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. logit highbp sex age [pw=finalwgt], nolog

Logistic regression Number of obs = 10,337
Wald chi2(2) = 1188.90
Prob > chi2 = 0.0000

Log pseudolikelihood = -68668339 Pseudo R2 = 0.1086

Robust
highbp Coef. Std. Err. z P>|z| [95% Conf. Interval]

sex -.597088 .0517069 -11.55 0.000 -.6984317 -.4957443
age .050979 .0015449 33.00 0.000 .0479512 .0540069

_cons -1.861826 .1084412 -17.17 0.000 -2.074367 -1.649285

. mata:
mata (type end to exit)

: N = st_nobs()

: D = st_data(.,"highbp")

: X = st_data(.,"sex age"), J(N, 1, 1)

: w = st_data(.,"finalwgt")

: W = sum(w)

: b = st_matrix("e(b)")'

: p = invlogit(X * b)

: h = X :* (D :- p)

: Ginv = invsym(cross(X, w :* (p :* (1 :- p)), X) / W)

: IF = w :* h * Ginv'

: b, mean(IF)', sqrt(colsum(IF:^2)/(W - W/N) / W)'
1 2 3

1 -.5970880093 -1.38760e-09 .0517069357
2 .0509790351 6.85179e-11 .0015448592
3 -1.861826094 -1.38651e-09 .108441192

: end

From a practical perspective, it may be convenient set the influence function to �i(✓̂)/wi, that

is, to leave the leading wi away, so that the standard errors can be estimated by applying a

mean estimator accounting for the survey design, including the weights (see [R] mean). Here

is an example using logistic regression with a fully-fledged complex survey design (reusing

some results from above):

. quietly svyset psuid [pweight=finalwgt], strata(stratid)
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. svy: logit highbp sex age
(running logit on estimation sample)

Survey: Logistic regression

Number of strata = 31 Number of obs = 10,337
Number of PSUs = 62 Population size = 117,023,659

Design df = 31
F( 2, 30) = 544.16
Prob > F = 0.0000

Linearized
highbp Coef. Std. Err. t P>|t| [95% Conf. Interval]

sex -.597088 .0569272 -10.49 0.000 -.7131919 -.4809841
age .050979 .001578 32.31 0.000 .0477606 .0541974

_cons -1.861826 .1422783 -13.09 0.000 -2.152005 -1.571648

. quietly generate double IF1 = .

. quietly generate double IF2 = .

. quietly generate double IF3 = .

. mata:
mata (type end to exit)

: IF = h * Ginv' // omit weights

: st_store(.,tokens("IF1 IF2 IF3"), IF)

: end

. svy: mean IF1 IF2 IF3
(running mean on estimation sample)

Survey: Mean estimation

Number of strata = 31 Number of obs = 10,337
Number of PSUs = 62 Population size = 117,023,659

Design df = 31

Linearized
Mean Std. Err. [95% Conf. Interval]

IF1 -1.23e-13 .0569272 -.1161039 .1161039
IF2 6.06e-15 .001578 -.0032184 .0032184
IF3 -1.23e-13 .1422783 -.2901786 .2901786

We see that the standard errors from svy:mean applied to the influence functions are identical

to the standard errors from svy:logit.
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Subpopulation estimation

When working with survey data, we may be interested in an analysis of a subpopulation and

want to account for the fact that the subpopulation size is not fixed. To do so, simply multiply

the moment equations by the subpopulation indicator, that is, use hs
i (Xi; ✓̂) = sihi(Xi; ✓̂) in

place of hi(Xi; ✓̂) in the GMM problem. Example:

. webuse nhanes2f, clear

. quietly svyset psuid [pweight=finalwgt], strata(stratid)

. generate byte subpop = (sex==2) // females

. svy, subpop(subpop): logit highbp age
(running logit on estimation sample)

Survey: Logistic regression

Number of strata = 31 Number of obs = 10,337
Number of PSUs = 62 Population size = 117,023,659

Subpop. no. obs = 5,428
Subpop. size = 60,901,624
Design df = 31
F( 1, 31) = 580.65
Prob > F = 0.0000

Linearized
highbp Coef. Std. Err. t P>|t| [95% Conf. Interval]

age .0665089 .0027601 24.10 0.000 .0608797 .0721382
_cons -3.785541 .1335468 -28.35 0.000 -4.057912 -3.51317

. quietly generate double IF1 = 0

. quietly generate double IF2 = 0

. mata:
mata (type end to exit)

: D = st_data(.,"highbp")

: X = st_data(.,"age"), J(rows(D), 1, 1)

: s = st_data(.,"subpop")

: w = st_data(.,"finalwgt")

: W = sum(w)

: b = st_matrix("e(b)")'

: p = invlogit(X * b)

: h = s :* X :* (D :- p)

: Ginv = invsym(cross(X, w :* s :* (p :* (1 :- p)), X) / W)

: IF = h * Ginv'
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: st_store(.,tokens("IF1 IF2"), IF)

: end

. svy: mean IF1 IF2
(running mean on estimation sample)

Survey: Mean estimation

Number of strata = 31 Number of obs = 10,337
Number of PSUs = 62 Population size = 117,023,659

Design df = 31

Linearized
Mean Std. Err. [95% Conf. Interval]

IF1 1.26e-11 .0027601 -.0056292 .0056292
IF2 -7.26e-10 .1335468 -.2723706 .2723705

A alternative, possibly more convenient approach may be to do all computations using only

the observations of the subpopulation (and set the influence function to zero for all other

observations). In this case, however, one has to be careful to rescale the influence function by

the relative size of the subpopulation. An easier approach is to divide the influence function

by the subpopulation size and then use the total command instead of mean to compute the

standard errors (see [R] total). Example (reusing some results from above):

. quietly replace IF1 = 0

. quietly replace IF2 = 0

. mata:
mata (type end to exit)

: D = st_data(.,"highbp", "subpop")

: X = st_data(.,"age", "subpop"), J(rows(D), 1, 1)

: w = st_data(.,"finalwgt", "subpop")

: W = sum(w)

: p = invlogit(X * b)

: h = X :* (D :- p)

: Ginv = invsym(cross(X, w :* (p :* (1 :- p)), X) / W)

: IF = (h * Ginv') / W

: st_store(.,tokens("IF1 IF2"), "subpop", IF)

: end

. svy, subpop(subpop): total IF1 IF2
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(running total on estimation sample)

Survey: Total estimation

Number of strata = 31 Number of obs = 10,337
Number of PSUs = 62 Population size = 117,023,659

Subpop. no. obs = 5,428
Subpop. size = 60,901,624
Design df = 31

Linearized
Total Std. Err. [95% Conf. Interval]

IF1 1.26e-11 .0027601 -.0056292 .0056292
IF2 -7.26e-10 .1335468 -.2723706 .2723705

Common support

Related to subpopulation estimation is the problem that some observations may be excluded

from the treatment e↵ect estimation because they are outside of the common support. For

example, when computing an ATT in exact matching, caliper matching, or kernel matching,

some observations from the treatment group may be excluded because no matching controls

can be found for them. Intuitively, we may treat such a situation as a subpopulation es-

timation problem and use the approach above, restricting si to the subsample within the

common support. However, note that in this way the common support indicator is treated

as exogenous, which may not be appropriate. A more refined approach would treat the

common support indicator as endogenous and then define the influence function accordingly.

Further research will be needed to work out these details.

5 Conclusions

As has been illustrated in this paper, GMM provides a powerful and flexible framework for

deriving influence functions. The framework has been successfully applied to a variety of

treatment e↵ect estimators. Some remaining issues are as follows.
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• The influence functions for matching estimators presented in this paper make some

simplifying assumptions. In particular, the matching configuration is assumed fixed.

This may not bias the standard error estimates to badly in situations where multi-

ple matches are used (e.g. nearest-neighbor matching with multiple neighbors, kernel

matching). In 1-nearest-neighbor matching, however, the bias may be severe. It would

be worthwhile to try to find an improved expression for the influence function that

solves this problem.

• Propensity-score matching (PSM) has not been considered in this paper. Deriving the

influence functions for PSM is more di�cult than for Mahalanobis distance match-

ing because the propensity score is estimated, which will a↵ect the standard errors.

Ignoring this fact leads to standard error estimates that are conservative.

• Some matching estimators restrict the sample to a region of common support. Sub-

population estimation may be a solution to this problem, but refined approaches could

possibly be developed.
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