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ABSTRACT
Two theoretical quandaries involving transmission spectra of gas-giant exoplanets are
elucidated. When computing the transit radius as a function of wavelength, one needs to
specify a reference transit radius corresponding to a reference pressure. Mathematically, the
reference transit radius is a constant of integration that originates from evaluating an integral
for the transit depth. Physically, its interpretation has been debated in the literature. Jordán
& Espinoza suggested that the optical depth is discontinuous across, and infinite below, the
reference transit radius. Bétrémieux & Swain interpreted the spherical surface located at the
reference transit radius to represent the boundary associated with an opaque cloud deck. It is
demonstrated that continuous functions for the optical depth may be found. The optical depth
below and at the reference transit radius need not take on special or divergent values. In the
limit of a spatially uniform grey cloud with constant opacity, the transit chord with optical
depth of the order of unity mimics the presence of a ‘cloud top’. While the surface located at
the reference pressure may mimic the presence of grey clouds, it is more natural to include
the effects of these clouds as part of the opacity function because the cloud opacity may be
computed from first principles. It is unclear how this mimicry extends to non-grey clouds
comprising small particles.

Key words: planets and satellites: atmospheres.

1 IN T RO D U C T I O N

An exoplanet transiting its star produces an obscuring disc corre-
sponding to some transit radius, which is generally a function of
wavelength. This transit radius corresponds to a sightline from the
observer to the star that is a chord (in the mathematical sense),
with an optical depth of the order of unity, passing through the
exoplanetary atmosphere. In the limit of an isothermal transit chord
and constant acceleration due to gravity, the transit radius is (Fortney
2005; Lecavelier des Etangs et al. 2008; de Wit & Seager 2013; Heng
et al. 2015; Bétrémieux & Swain 2017; Heng & Kitzmann 2017;
Jordán & Espinoza 2018)

R = R0 + H [γ + E1(τ0) + ln τ0] , (1)

where R0 is a reference transit radius, H is the isothermal pressure
scale height, γ is the Euler–Mascheroni constant, τ 0 is the optical
depth corresponding to the reference transit radius and E1(τ 0) is the
exponential integral of first order (e.g. Abramowitz & Stegun 1970;
Arfken & Weber 1995)

E1(τ0) ≡
∫ ∞

1
y−1e−yτ0 dy, (2)

� E-mail: kevin.heng@csh.unibe.ch

which has the mathematical property that

lim
τ0→∞

E1(τ0) = 0. (3)

Mathematically, R0 is a constant of integration that results from
evaluating an integral. Its physical interpretation has been debated
in the literature. The goal of the current study is to elucidate two
quandaries involving the physical interpretation of R0 and provide
possible resolutions to these quandaries.

1.1 Quandary 1: is the optical depth discontinuous across the
reference transit radius?

The first quandary concerns whether the reference transit radius
corresponds to a special physical location within the exoplanet,
across which the optical depth is discontinuous. Consider only gas-
giant exoplanets without rocky surfaces such that a discontinuity
associated with the interface between the atmosphere and rocky
surface cannot be claimed.

Heng & Kitzmann (2017) reasoned that the reference optical
depth (τ 0) does not need to take on any particular value, but one
may choose a value of R0 such that τ 0 � 1. Such a choice implies
that the E1(τ 0) term in equation (1) must vanish. The obscuring disc
has the area (de Wit & Seager 2013; Bétrémieux & Swain 2017;
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Reference transit radius interpretations 3379

Heng & Kitzmann 2017),

πR2 = πR2
0 + A (R0, ∞) , (4)

where πR2
0 is the area of the secondary obscuring disc correspond-

ing to the reference transit radius, A(R0, ∞) is the area of a thin
annulus defined by (Brown 2001)

A (r1, r2) =
∫ r2

r1

(
1 − e−τ

)
2πr dr, (5)

τ (r) is the optical depth and r is the radial coordinate.
Jordán & Espinoza (2018) offered an alternative explanation

motivated by equation 3 of de Wit & Seager (2013) as a starting
point. They reasoned that, since

πR2 = A (0, ∞) = A (0, R0) + A (R0, ∞) , (6)

and one necessarily needs to have

A (0, R0) =
∫ R0

0

(
1 − e−τ

)
2πr dr = πR2

0, (7)

this implies that the atmosphere immediately below the reference
transit radius must possess large optical depths. Specifically, they
remarked that, ‘R0 satisfies the condition of being a radius below
which the planet is fully opaque’. This quoted statement contains a
footnote that states, ‘If R0 is not chosen to be at an optically thick
region (i.e. a region where τ → ∞), then it is not possible to write
A(0, R0) = πR2

0’.
At face value, it seems challenging to reconcile these two

viewpoints. Equation (7) indeed trivially integrates to yield πR2
0

if one allows τ → ∞ within the integrand. However, if one asserts
that the optical depth needs to be a continuous function, then
this implies that τ 0 � 1 and the E1(τ 0) term in equation (1) is
permanently absent.1 In order to assert that τ → ∞ and retain the
E1(τ 0) term in equation (1), one has to assume that the optical depth
is a discontinuous, piecewise function,

τ =
{

τ0e(R0−r)/H r ≥ R0

∞ 0 ≤ r < R0,
(8)

which one may argue lacks generality. In the absence of a rocky
surface, the physical origin of this discontinuity is unclear.

The first goal of the present study is to reconcile these viewpoints
and demonstrate that the optical depth need not be discontinuous
across R0. In the limit of constant opacity, one may demonstrate
that A(0, R0) 	 πR2

0 for any value of τ 0.

1.2 Quandary 2: does the reference transit radius correspond
to an opaque cloud deck?

The spherical surface associated with R0 has previously been
interpreted by Bétrémieux & Swain (2017, 2018) to represent
the boundary associated with an opaque (optically thick) cloud
deck. Furthermore, Bétrémieux & Swain (2017, 2018) claim that
variations of equation (1), as derived by Lecavelier des Etangs et al.
(2008) and de Wit & Seager (2013), are valid only for describing
cloud-free atmospheres. For example, the abstract of Bétrémieux
& Swain (2017) states, ‘Although the formalism of Lecavelier
des Etangs et al. is extremely useful to understand what shapes
transmission spectra of exoplanets, it does not include the effects
of a sharp change in flux with altitude generally associated with

1The final equation in Jordán & Espinoza (2018) is an expression for πR2

that contains this E1(τ 0) term.

surfaces and optically thick clouds’. As another example, section
2.6 of Bétrémieux & Swain (2018) states, ‘Until recently, the
few analytical formalisms (Lecavelier des Etangs et al. 2008; de
Wit & Seager 2013) attempting to explain what shapes exoplanet
transmission spectra could only do so for clear atmospheres’.

When computing the transmission spectrum, one needs to spec-
ify the cross-section or opacity (cross-section per unit mass) as
a function of wavelength, temperature and pressure. Physically,
the opacity function includes contributions from the extinction
(absorption and scattering) of radiation by atoms, ions, molecules
and aerosols/hazes/clouds, whether in the form of spectral lines
or a continuum. These contributions are weighted by their relative
abundances (i.e. mass or volume mixing ratios). Sources of spectral
continua include collision-induced absorption and Rayleigh scat-
tering.

The shape of the continuum due to extinction by clouds depends
on the size of the constituent particles. A cloud particle is small
or large only in comparison to the wavelength of radiation it is
absorbing or scattering. Let the radius of a spherical cloud particle
be rcloud and the wavelength be λ. When 2πrcloud/λ 
 1 (small
particle), one is in the limit of Rayleigh scattering. When 2πrcloud/λ
� 1 (large particle), the opacity is roughly constant and the cloud
is ‘grey’. These are the principles of Mie theory (Mie 1908), which
is more than a century old. (See e.g. Pierrehumbert 2010; Kitzmann
& Heng 2018 for modern renditions of it.)

A spatially uniform cloud consisting of large particles may be
represented by a constant opacity. A simple thought experiment will
illustrate that, even in this scenario, the cloud naturally produces
a boundary that is automatically achieved by radiative transfer.
This is because, at each wavelength, the transmission spectrum
picks out the τ ∼ 1 transit chord (where τ is the chord optical
depth). Assuming that a radial pressure gradient exists within the
atmosphere, the transit chord corresponds to a ‘cloud top’ pressure
of (Heng 2016)

P = 0.56g

κ

√
H

2πR
, (9)

where g is the acceleration due to gravity and κ is the opacity. Even
though the opacity is constant, the cloud is optically thin at lower
pressures or higher altitudes and exerts a negligible influence on
the spectrum. It is the same radiative transfer principle for why one
observes an edge to the Sun, even though no sharp boundary exists.
This thought experiment suggests that as long as an opacity function
may be specified in the formula for the transit radius, the formula
may be used to model cloudy atmospheres, contrary to the claim of
Bétrémieux & Swain (2017, 2018).

The second goal of the present study is to demonstrate that it
is not necessary to impose a boundary associated with an opaque
cloud via the reference transit radius, even though it is possible for
the surface associated with R0 to mimic the effects of a grey cloud
deck. Such mimicry does not straightforwardly extend to non-grey
clouds consisting of small particles.

2 O PTI CAL DEPTHS FROM POLY TROPES

It is useful to visualize the gas-giant exoplanet as consisting of
two regions. The region corresponding to 0 ≤ r ≤ R0 is referred
to as the ‘interior’ of the exoplanet and it encompasses the vast
majority of its mass. The region corresponding to r ≥ R0 is referred
to as the ‘atmosphere’ of the exoplanet and the mass enclosed is
negligible. The demarcation between the two regions is not meant
to be sharp. A different set of approximations is applied to each
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region. The ideal gas law is expected to be a good approximation
within the atmosphere, but it breaks down deeper into the interior
as the pressure increases.

Within the interior of the exoplanet, the solutions to the Lane–
Emden equation are used to describe the mass density profile,
ρ(r) (chapter 4 of Chandrasekhar 1967). Analytical solutions to
the Lane–Emden equation exist for polytropes with indices of 0,
1, and 5. The current study examines only the first two cases,
which correspond to the simplest assumption (constant ρ) and a
reasonable approximation for hydrogen–helium mixtures at high
pressures (e.g. fig. 2 of Stevenson 1982). Upon specifying ρ(r), one
may then evaluate the optical depth,

τ =
∫

ρκ dr. (10)

Since the opacity function for 0 ≤ r ≤ R0 cannot be easily specified
because of poorly known physics (e.g. Stevenson 1982; Guillot
2005; Valencia et al. 2013), κ is assumed to be constant in this
study.

2.1 Polytrope of index 0

A polytrope of index 0 corresponds to a constant mass density, ρ

(chapter 4 of Chandrasekhar 1967). While this approximation lacks
physical realism, it serves as a mathematical prelude to the more
realistic case of a polytrope of index 1. Furthermore, one may argue
that assuming a constant ρ is no worse than assuming a constant
optical depth for 0 ≤ r ≤ R0, i.e. equation (8).

By demanding that τ = τ 0 at r = R0, one obtains

τ = τc

(
1 − r

R0

)
+ τ0, (11)

where τ c ≡ρκR0. At r = 0, one obtains an optical depth of τ c + τ 0. It
is important to emphasize that τ 0 is the ‘zero-point’ for the optical
depth, whereas τ c is the difference in optical depth between the
centre of the exoplanet and r = R0. It is analogous to the distinction
between displacement and distance. Thus, we expect τ c to be large,
but no assumption needs to be made on τ 0. Demanding that τ c≫1
is the same as assuming

lmfp ≪ R0, (12)

where lmfp = 1/ρκ is the photon mean free path. The optical depth
is neither discontinuous nor constant, as it goes from a value of τ c

at the centre of the exoplanet to τ 0 at r = R0 by construction (as a
boundary condition).

It follows that

A (0, R0) = πR2
0 + 2πR2

0

τ 2
c

e−τ0
(
1 − τc − e−τc

)

	 πR2
0 − 2πR2

0

τc
e−τ0 .

(13)

A more illuminating way to write the preceding equation is

A (0, R0)

πR2
0

	 1 − 2lmfp

R0
e−τ0 . (14)

The correction terms are small if τ c≫1 or lmfp≪R0. Thus,
A(0, R0) 	 πR2

0 for any value of τ 0.

2.2 Polytrope of index 1

The mass density profile is (chapter 4 of Chandrasekhar 1967)

ρ = ρc sin x

x
, (15)

where ρc is the mass density at r = 0, x ≡ πr/R and R is the
radius of the exoplanet. By construction, ρ = 0 when r = R.
The corresponding pressure profile is (chapter 4 of Chandrasekhar
1967)

P = W1GM2

R4

(
ρ

ρc

)2

, (16)

where G is the gravitational constant and M is the mass of the
exoplanet. The constant W1 = 0.392699 is taken from table 4 (page
96) of chapter 4 of Chandrasekhar (1967). When r = R0 and x = x0

≡ πR0/R, the reference mass density and pressure are

ρ0 = ρc sin x0

x0
, P0 = W1GM2

R4

(
sin x0

x0

)2

. (17)

Since the profiles of mass density and pressure need to join smoothly
to the ideal gas law at r = R0, one may solve for the temperature at
the reference transit radius,

T0 = W1GM2

RρcR4

(
sin x0

x0

)
, (18)

whereR is the specific gas constant. This exercise demonstrates that
if the interior structure of an exoplanet is a priori known, then the
conditions at the reference transit radius are completely specified.

By again imposing the boundary condition that τ = τ 0 at r = R0,
one obtains

τ = τc

(
1 − S

S0

)
+ τ0, (19)

where the trigonometric integral is

S ≡
∫ x

0

sin x ′

x ′ dx ′. (20)

The optical depth between the centre of the exoplanet and the
reference transit radius is τ c ≡ ρcκRS0/π . The quantity,

S0 ≡ S (x0) , (21)

depends on the chosen value of R0/R. Similar to a polytrope of index
0, demanding that τ c ≫ 1 is the same as assuming

lmfp ≪ R0S0

π
, (22)

where lmfp = 1/ρcκ is the photon mean free path at the centre of
the exoplanet and is thus expected to be very small. No assumption
is made on τ 0. At r = 0, the optical depth is again τ c + τ 0 and τ 0

serves as its ‘zero-point’ as before.
It follows that

A (0, R0)

πR2
0

= 1 − F e−τ0 , (23)

where the correction factor involves the integral,

F ≡ 2

π2

(
R0

R

)2 ∫ πR0/R

0
xeτc(S/S0−1) dx. (24)

Since we expect R0/R ∼ 1, it suffices to numerically evaluate F for
R0/R = 1 as a function of τ c (Fig. 1). When R0/R = 1, one obtains
S0 ≈ 1.852 but in order to evaluate the integral accurately S0 needs
to be numerically computed to machine precision. It is important
to note that the correction to A(0, R0)/πR2

0 = 1 is F e−τ0 . With τ 0

= 1, the correction is about 0.37F; choices of τ 0 ∼ 1–10 will make
the correction even smaller (Fig. 1).

Fig. 1 shows that the corrections to A(0, R0)/πR2
0 = 1 become

� 1 per cent for τ 0 = 1 when τ c � 104. It is worth estimating
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Figure 1. Correction factor to the projected area of the spherical exoplanet
at r = R0 for a polytrope of index 1 (see the text for definition of F) as a
function of the optical depth difference between the exoplanet centre and
reference transit radius. The assumption of R0/R = 1 has been made; other
choices (e.g. R0/R = 0.95) yield similar outcomes. The τ 0 = 0 curve isolates
the effect of F.

conservative values for τ c,

τc ∼ 108

(
ρc

1 g cm−3

κ

0.05 cm2 g−1

P

1 bar

R0

RJ

)
, (25)

where RJ = 7.1492 × 109 cm is the radius of Jupiter. The order-of-
magnitude estimate of the opacity, as well as its linear dependence
on pressure, is taken from Guillot (2005) and is broadly consistent
with the more detailed calculations of Valencia et al. (2013) and
Freedman et al. (2014) for P = 1 bar and T ∼ 1000 K. The actual
values for ρc and the opacity are likely to be higher.

Fig. 2 shows four examples of hot Jovian transmission spectra,
where the absolute transit depths are typically ∼10−3; also shown
are two choices for τ 0, which is generally a function of wavelength.
The spectral features are typically ∼10−4 variations in the relative
transit depth corresponding to ∼ 10 per cent variations in πR2. A
desired property is for the correction to A(0, R0)/πR2

0 = 1 to be
much smaller than these variations in πR2. Fig. 1 shows that with
τ c = 108, one already has F < 10−3. Therefore, F e−τ0 
 1 inde-
pendent of the value of τ 0 and the correction to A(0, R0)/πR2

0 = 1
is negligible in the sense that it is much smaller than the variations
in the relative transit depth associated with spectral features.

The optical depth increases smoothly from a value of τ c at the
centre of the exoplanet to its boundary-condition value of τ 0 at the
reference transit radius. It is neither constant within 0 ≤ r ≤ R0 nor
discontinuous at r = R0.

3 TRANSIT RADIUS FORMULA W ITH
DIFFERENT EXPRESSIONS FOR GRAV ITY

Equation (1) is derived by solving for h = A(R0, ∞)/2πR0 and
inserting it into R = R0 + h. Evaluating

A (R0, ∞) =
∫ ∞

R0

(
1 − e−τ

)
2πr dr (26)

requires that one elucidates the relationship between τ and r. Within
the atmosphere, assuming the ideal gas law and hydrostatic balance
yields

ln

(
τ

τ0

)
= −

∫ r

R0

mg

kBT
dr, (27)

Figure 2. Top panel: Synthetic transmission spectra adopting parameter
values from WASP-17b (see the text). Two of these spectra assume R0 =
1.709RJ and P0 = 8 bar; one of them is cloud free, while the other assumes
a grey cloud with a constant opacity of 0.01 cm2 g−1 corresponding to a
transit chord located at 0.9 mbar. The third spectrum uses R0 = 1.968RJ

and P0 = 0.9 mbar to mimic a transit chord with grey clouds. The fourth
spectrum includes non-grey clouds via Mie theory (see the text). Bottom
panel: Corresponding profiles of τ 0 involving only the water opacity.

where m is the mean molecular mass, kB is the Boltzmann constant,
and T is the temperature. Evaluating the integral requires that one
specifies g(r).

There are three different ways of expressing the acceleration
due to gravity: constant g, constant exoplanet mass (g ∝ 1/r2), or
constant bulk density (g ∝ r). Consider a gas-giant exoplanet where
R0 ∼ RJ. If P0 ∼ 10 bar and the infrared photosphere is located at ∼1
mbar, then the atmosphere is ∼10 pressure scale heights thick. Since
H/R ∼ 0.01 (with H = kBT/mg being the pressure scale height),
this means that the atmosphere is ∼0.1RJ thick. In the constant
exoplanet mass or bulk density approximations, this implies that
the acceleration due to gravity is changing by ∼ 10 per cent within
the atmosphere, which provides the motivation for investigating
these three ways of deriving τ (r).

In the standard derivation where g is assumed to be constant, one
obtains the usual expression for hydrostatic equilibrium,

ln

(
τ

τ0

)
= R0 − r

H
. (28)

One recovers equation S.4 of de Wit & Seager (2013), equation 20
of Bétrémieux & Swain (2017), or equation 8 of Heng & Kitzmann
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(2017),

h = H

∫ τ0

0

1 − e−τ

τ

[
1 + H

R0
ln
( τ0

τ

)]
dτ

	 H [γ + E1 (τ0) + ln τ0] ,

(29)

where the second, approximate equality holds if one assumes the
term involving the logarithm in the integrand to be smaller by a
factor of H/R0 and is hence dropped, which allows the integral to
be evaluated analytically.

One could instead assume that g = GM/r2 with a constant M,
which yields

ln

(
τ

τ0

)
= R0

H0

(
R0

r
− 1

)
, (30)

where H0 ≡ kBT/mg0, g0 ≡ GM/R2
0 , and G is the gravitational

constant. It follows that

h = H0

∫ τ0

0

1 − e−τ

τ

[
1 + H0

R0
ln

(
τ

τ0

)]−3

dτ

	 H0 [γ + E1 (τ0) + ln τ0] .

(31)

Again, the integral may only be evaluated analytically if the ∼H0/R0

term within the integral is dropped.
Alternatively, one may assume the mass of the exoplanet to be

given by M = 4πρ̄r3/3, where ρ̄ is an average bulk mass density
that is assumed to be constant for r ≥ R0. This assumption yields
g = 4πGρ̄r/3, which yields

ln

(
τ

τ0

)
= R0

2H0

(
1 − r2

R2
0

)
. (32)

It follows that

h = H0

∫ τ0

0

1 − e−τ

τ
dτ

= H0 [γ + E1 (τ0) + ln τ0] ,

(33)

where we again have H0 ≡ kBT/mg0, but g0 ≡ GM0/R
2
0 and M0 is

the mass of the exoplanet enclosed by r = R0. There is no ∼H/R0 or
∼H0/R0 correction term to drop and the integral is evaluated exactly.

The constant g, g = GM/r2, and g = 4πGρ̄r/3 approaches yield
the same result for h and hence R, despite the different functional
forms for τ (r). This is a mathematical coincidence and arises only
because small correction terms in the integrand for A(R0, ∞) were
dropped in order to evaluate the integral analytically.

The optical depth may be constructed using equation (11) or (19)
for 0 ≤ r ≤ R0 and equations (28), (30), or (32) for r ≥ R0. For all six
combinations, the optical depth is continuous across the reference
transit radius and finite everywhere.

4 TR E ATM E N T O F C L O U D S I N
TRANSMISSION SPECTRA

4.1 Preamble

From equation 12 of Heng & Kitzmann (2017), the reference optical
depth within equation (1) is

τ0 = κP0

g

√
2πR0

H
. (34)

Note that equation 9 of de Wit & Seager (2013) expresses τ 0

(denoted by them as Aλ) in terms of a reference number density
and cross-section. Bétrémieux & Swain (2017) write τ 0 as τ s in
their equation 26, but do not explicitly provide an expression for it

beyond their equation 42. The normalization degeneracy (Benneke
& Seager 2012; Griffith 2014; Heng & Kitzmann 2017; Fisher
& Heng 2018), which is the three-way degeneracy between R0,
P0, and κ (which contains the relative abundances of atoms and
molecules) is not explored in detail by either de Wit & Seager
(2013) or Bétrémieux & Swain (2017).

The wavelength-, temperature-, and pressure-dependent opacity
function is

κ = Xcloud
σcloud

m
+

∑
i

κiXi

mi

m
. (35)

The sum is over all of the atoms, ions, and molecules in the
atmosphere. The opacity of each species is denoted by κ i. The
volume mixing ratio of each species is Xi; it is worth noting
that the mass mixing ratio is Ximi/m, where mi is the mass of
each species. The cloud volume mixing ratio and cross-section are
denoted by Xcloud and σ cloud, respectively. In the current study, the
only molecule considered is water as this suffices to construct the
necessary arguments.

Assuming a monodisperse cloud (i.e. particles of a single radius),
the cloud cross-section is

σcloud = Qπr2
cloud, (36)

where Q is the extinction efficiency. It may be computed using Mie
theory (e.g. Kitzmann & Heng 2018). Kitzmann & Heng (2018)
provide a convenient fitting function,

Q = Q1

Q0X−a + X0.2
, (37)

which is calibrated to full numerical calculations. The dimension-
less size parameter is given by X = 2πrcloud/λ. This fitting function
for Q smoothly connects the regimes of small (X 
 1; Rayleigh)
and large (X � 1) particles. As an illustration, I adopt the calibration
for forsterite (Mg2SiO4): Q0 = 11.95, Q1 = 4.16, and a = 4.05 (see
table 2 of Kitzmann & Heng 2018).

It is worth noting that Mie theory specifies the wavelength depen-
dence of the cloud cross-section, but not its spatial dependence. The
latter is driven by poorly known details of the formation, evolution,
and interaction of the cloud with radiation hydrodynamics and
disequilibrium chemistry (Marley et al. 2013; Helling 2018). It
is possible to prescribe the spatial boundaries of the cloud deck in
a phenomenological manner, as has been implemented in the study
of the atmospheres of brown dwarfs (e.g. Burrows, Sudarsky &
Hubeny 2006; Burrows, Heng & Nampaisarn 2011). Over a limited
wavelength range and at low spectral resolution, such as by the
Hubble Space Telescope Wide Field Camera 3 (HST-WFC3), it has
been shown that the transmission spectrum probes a limited range
of pressures and the transit chord may be approximated as being
isobaric (Heng & Kitzmann 2017), rendering the spatial dependence
of the cloud cross-section a non-issue.

4.2 Transmission spectra

For clarity of discussion, the specific case study of WASP-17b is
used. Fisher & Heng (2018) have previously estimated that R0 =
1.709RJ at P0 = 8 bar based on the inference made by Heng (2016)
that the HST-STIS transit chord of WASP-17b is cloud free (see
also Fisher & Heng 2019). The surface gravity of WASP-17b is g =
316 cm s−2, while the stellar radius of WASP-17 is R� = 1.583 R�
(Southworth et al. 2012). A temperature of T = 1700 K is adopted,
which is roughly the retrieved transit chord temperature reported
by Fisher & Heng (2018) for WASP-17b (see their table 2). For
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illustration, I adopt XH2O = 10−3, which is not an uncommon value
for the retrieved volume mixing ratio of water (see fig. 29 of Fisher
& Heng 2018). With these numbers, H ≈ 2000 km and H/R0 ≈
0.02.

Fig. 2 shows a pair of transmission spectra with R0 = 1.709RJ

and P0 = 8 bar. One of these spectra adds a constant term of κcloud

= 0.01 cm2 g−1 to the opacity function in equation (35), which
represents a grey cloud comprising large particles. For a grey cloud,
the cloud cross-section and mixing ratio may be subsumed into
a single number. Even though this grey cloud is assumed to be
spatially uniform, it corresponds to a pressure of 0.9 mbar for the
transit chord using equation (9). One may mimic the effect of this
grey cloud by setting P0 = 0.9 mbar and using hydrostatic balance
to set the correct value of R0 that corresponds to this pressure (R0

= 1.968RJ), as shown in Fig. 2. It is important to note that it is the
E1(τ 0) term in equation (1) that allows for this mimicry.

There are two concerns with this mimicry. First, the value of
κcloud may be specified from first principles by specifying the cloud
particle radius and computing the extinction efficiency and cross-
section using Mie theory, whereas it is less clear how intrinsic cloud
properties may be related to R0. Secondly, the mimicry does not
extend to clouds comprising small particles. In Fig. 2, an example
is shown with rcloud = 0.01 μm and Xcloud = 10−16. This cloud
produces a non-flat spectral continuum between 0.8 and 1.3 μm. It
is difficult to see how such wavelength-dependent behaviour may
be specified from first principles via R0.

The reference transit radius and reference pressure are not inde-
pendent quantities. Rather, they specify a wavelength-independent
reference point within the exoplanet, analogous to the radiative–
convective boundary in gas giants. From a phenomenological point
of view, the role of a wavelength-independent R0(P0) is well
established in atmospheric retrievals (Fisher & Heng 2018). If one
needs to fit for a different value of R0 at each wavelength, then the
number of fitting parameters will always exceed the number of data
points.

5 IMPLICATIONS

There are several implications of the current study.

(i) The second footnote of Jordán & Espinoza (2018) may be
disregarded.

(ii) Equation (1) may be used without assuming τ 0 � 1 and the
E1(τ 0) term may be retained.

(iii) The E1(τ 0) term in equation (1) should not be used as a
proxy for a cloud deck.

(iv) Atmospheric retrievals should continue to fix the value of R0

or P0 and include the other quantity as a fitting parameter (Fisher &
Heng 2018), unless the interior structure of the exoplanet is a priori
known.
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