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Abstract

We derive analytic, closed form, numerically stable solutions for the total flux received from a spherical planet,
moon, or star during an occultation if the specific intensity map of the body is expressed as a sum of spherical
harmonics. Our expressions are valid to arbitrary degree and may be computed recursively for speed. The
formalism we develop here applies to the computation of stellar transit light curves, planetary secondary eclipse
light curves, and planet–planet/planet–moon occultation light curves, as well as thermal (rotational) phase curves.
In this paper, we also introduce starry, an open-source package written in C++ and wrapped in Python that
computes these light curves. The algorithm in starry is six orders of magnitude faster than direct numerical
integration and several orders of magnitude more precise. starry also computes analytic derivatives of the light
curves with respect to all input parameters for use in gradient-based optimization and inference, such as
Hamiltonian Monte Carlo (HMC), allowing users to quickly and efficiently fit observed light curves to infer
properties of a celestial body’s surface map. (Please see https://github.com/rodluger/starry, https://rodluger.
github.io/starry/, and https://doi.org/10.5281/zenodo.1312286).
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1. Introduction

Our understanding of the surface of Earth and the other
planets in our solar system starts with the creation of maps.
Mapping the colors, compositions, and surface features gives
us an understanding of the geological, hydrological, and
meteorological processes at play that are the basis of planetary
science, including comparative planetology. With the discovery
of planets orbiting other stars, cartography becomes a
formidable task: these planets are too distant to resolve their
surfaces into maps as we do for our own planetary suite. One
way to overcome this drawback is to utilize the time
dependence of unresolved, disk-integrated light from planetary
bodies: both rotational variability (Russell 1906; Lacis & Fix
1972; Cowan & Agol 2008; Oakley & Cash 2009) and
occultations (Williams et al. 2006; Rauscher et al. 2007) yield
the opportunity to constrain the presence of static variations in
the surface features of exoplanets.

The first application of time-dependent mapping to exopla-
nets was carried out in the infrared with the hot Jupiter HD
189733b using both phase variations and secondary eclipses of
the exoplanet (Knutson et al. 2007; de Wit et al. 2012; Majeau
et al. 2012). These yielded crude constraints on the monopole
and dipole components of the thermal emission from the thick,
windy atmosphere of this giant planet. Since then, phase-curve
and/or secondary eclipse measurements have been made for
hundreds of other exoplanets (e.g., Shabram et al. 2016; Jansen
& Kipping 2017; Adams & Laughlin 2018) and have allowed
for the measurements of their average albedos and, in some
cases, higher order spatial features such as hotspot offsets.
Given its unprecedented photometric precision in the thermal
infrared, the upcoming James Webb Space Telescope (JWST) is

expected to dramatically push the boundaries of what can be
inferred from these observations, potentially leading to the
construction of de facto surface maps of planets in short orbital
periods (Beichman et al. 2014; Schlawin et al. 2018). Future
mission concepts such as the Large UV Optical Infrared
telescope (LUVOIR) and the Origins Space Telescope (OST)
will likewise open doors for the mapping technique, extending
it to the study of exoplanets with solid or even liquid surfaces
(e.g., Kawahara & Fujii 2010, 2011; Cowan et al. 2012, 2013;
Fujii & Kawahara 2012; Cowan & Fujii 2017; Fujii et al. 2017;
Berdyugina & Kuhn 2017; Luger et al. 2017). Future direct
imaging telescopes should also enable eclipse mapping from
mutual transits of binary planets or planet–moon systems
(Cabrera & Schneider 2007), in analogy with mutual events
viewed in the solar system (Brinkmann 1973; Vermilion et al.
1974; Herzog & Beebe 1975; Brinkmann 1976; Reinsch 1994;
Young et al. 1999, 2001; Livengood et al. 2011).
As we prepare to perform these observations, it is essential

that we have robust models of exoplanet light curves so that we
may reliably infer the surface maps that generated them.
Because the features that we seek will likely be close to the
limit of detectability, exoplanet mapping is necessarily a
probabilistic problem, requiring a careful statistical approach
capable of characterizing the uncertainty on the inferred map.
Recently, Farr et al. (2018) introducedexocartographer, a
Bayesian model for inferring surface maps and rotation states
of exoplanets directly imaged in reflected light. In a similar but
complementary vein, Louden & Kreidberg (2018) presented
spiderman, a fast code to model phase curves and secondary
eclipses of exoplanets, which the authors show is fast enough
to be used in Markov Chain Monte Carlo (MCMC) runs for
general mapping problems. However, both algorithms, along
with all others in the literature to date, rely on numerical
integration methods to compute the flux received from the
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planet during occultation. In addition to the potential loss of
precision due to the approximations they employ, numerical
algorithms are typically much slower than an analytic
approach, should it exist. During the writing of this paper,
Haggard & Cowan (2018) derived analytic solutions to the
phase-curve problem, demonstrating that an exoplanet’s phase
curve can be computed exactly in both thermal and reflected
light if its map is expressed as a sum of spherical harmonics.
Here we present an algorithm to compute analytic occulta-

tion light curves of stars, planets, or moons of arbitrary
complexity if the surface map of the occulted body is expressed
in the spherical harmonic basis. Our algorithm generalizes the
Mandel & Agol (2002), Giménez (2006), and Pál (2012)
analytic transit formulae to model eclipses and occultations of
bodies with arbitrary, non-radially symmetric surface maps or
stars with limb darkening of arbitrary order. For radially
symmetric, second-degree maps, our expressions reduce to the
Mandel & Agol (2002) quadratic limb-darkening transit model;
in the limit of zero occultor size or large impact parameter, they
reduce to the expressions of Haggard & Cowan (2018) for
thermal phase curves.
This paper is organized as follows. In Section 2, we discuss the

real spherical harmonics and introduce our mathematical
formalism for dealing with spherical harmonic surface maps. In
Section 3, we discuss how to compute analytic thermal phase
curves and occultation light curves for these surface maps. In

Table 1
Symbols used in this Paper

Symbol Definition Reference

Alm Legendre function normalization Equation (44)
A Change-of-basis matrix: Ylms to Green’s

polynomials
Equation (14)

A1 Change-of-basis matrix: Ylms to polynomials Section 2.3
A2 Change-of-basis matrix: polynomials to

Green’s polynomials
Section 2.3

i u v, , Vieta’s formula coefficient Equation (75)
b Impact parameter in units of occulted body’s

radius
Section 3

Blm
jk Spherical harmonic normalization Equation (47)

c· cos(·)
Cpq
k Expansion coefficient for z x y,( ) Equation (49)

Dl Rotation matrix for the complex spherical
harmonics of degree l

Equation (56)

D  Exterior derivative Equation (29)
E (·) Complete elliptic integral of the second kind Equation (65)
F Total flux seen by observer Equation (35)
 Function of b and r Equation(76)
F2 1 Generalized hypergeometric function Equation (80)
F2 1̃ Regularized hypergeometric function Equation (91)

g̃ Green’s basis Equation (11)
g Vector in the basis g̃
Gn Anti-exterior derivative of the nth term in the

Green’s basis
Equation (34)

u v, Occultation integral Equation (68)
i Dummy index
I Specific intensity, I x y,( ) Equation (3)

v Occultation integral Equation (77)
j Dummy index

v Occultation integral Equation (77)
k Elliptic parameter Equation (64)

Dummy index
kc k1 2- Appendix D.2.3
K (·) Complete Elliptic integral of the first kind Equation (65)

u v, Occultation integral Equation (77)
l Spherical harmonic degree Equation (6)

u v
t
,

( ) Occultation integral Equation (77)

m Spherical harmonic order Equation (6)
n Surface map vector index, n=l2 + l + m Equation (5)
p Dummy index
P̄ Normalized associated Legendre function Equation (43)
p̃ Polynomial basis Equation (7)
p Vector in the basis p̃
P Cartesian axis-angle rotation matrix Equation (59)
 Primitive integral along perimeter of occultor Equation (31)
q Dummy index
Q Cartesian Euler angle rotation matrix Equation (60)
 Primitive integral along perimeter of occul-

ted body
Equation (32)

r Occultor radius in units of occulted body’s
radius

Section 3

r Phase-curve solution vector Equation (19)
R Rotation matrix for the real spherical

harmonics
Equation (58)

Rl Rotation matrix for the real spherical harmo-
nics of degree l

Equation(55)

s· sin(·)
s Occultation light curve solution vector Equation (19)
u Dummy index
u u,1 2 Quadratic limb-darkening coefficients Equation (37)
u Unit vector corresponding to the axis of

rotation
Appendix C.2

Table 1
(Continued)

Symbol Definition Reference

U Complex to real spherical harmonics transform
matrix

Equation (57)

v Dummy index
x Cartesian coordinate Equation (2)
y Cartesian coordinate Equation (2)
Yl m, Spherical harmonic of degree l and order m Equation (42)
ỹ Spherical harmonic basis Equation (4)
y Vector in the basis ỹ
z Cartesian coordinate, z x y1 2 2= - - Equation (2)

α Euler angle (ẑ rotation) Appendix C.1
β Euler angle ( ŷ rotation) Appendix C.1
γ Euler angle (ẑ rotation) Appendix C.1
Γ Gamma function
δ Function of b and r Equation (71)
θ Spherical harmonic polar angle Equation (1)
θ Rotation angle Appendix C.2
Θ Heaviside step function Equation (63)
κ Angular position of occultor/occulted inter-

section point
Equation (72)

λ Angular position of occultor/occulted inter-
section point

Equation (25)

Λ Mandel & Agol (2002) function Equation (63)
μ l−m Equation (8)
μ Limb-darkening radial parameter Equation (37)
ν l+m Equation (8)

,P(· ·) Complete elliptic integral of the third kind Equation (65)
f Spherical harmonic azimuthal angle Equation (1)
f Angular position of occultor/occulted inter-

section point
Equation (24)

j Dummy integration variable
ω Angular position of occultor Equation (23)
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Section 4, we introduce our light curve code, starry, and
discuss how to use it to compute full light curves for systems of
exoplanets and other celestial bodies. We present important
caveats in Section 5 and conclude in Section 6. Most of the math,
including the derivations of the analytic expressions for the light
curves, is folded into the appendices. For convenience, throughout
the paper, we provide links to the Python7 code to reproduce all
of the figures, as well as links to Jupyter8 notebooks containing
proofs and derivations of the principal equations. Finally, Table 1
lists all of the symbols used in the paper, with references to the
equations defining them.

2. Surface Maps

In this section, we discuss the mathematical framework we use
to express, manipulate, and rotate spherical harmonic surface
maps. We also introduce two bases, along with corresponding
transformations, that will come in handy when computing light
curves in Section 3: the polynomial basis and Green’s basis.
Although it is convenient to express a surface map as a set of
spherical harmonic coefficients, we will see that it is much easier
to integrate the map if we first transform to the appropriate basis.

2.1. Spherical Harmonics

The orthonormal real spherical harmonics Y ,lm q f( ) of
degree l 0 and order m l l,Î -[ ] with the Condon–Shortley

phase factor (e.g., Varshalovich et al. 1988) are defined in
spherical coordinates as

Y
P m m

P m m
,

cos cos 0

cos sin 0,
1lm

lm

l m


q f

q f
q f

=
<

⎧⎨⎩( )
¯ ( ) ( )
¯ ( ) (∣ ∣ )

( )
∣ ∣

where Plm¯ are the normalized associated Legendre functions
(Equation (43)). On the surface of the unit sphere, we have

x
y
z

sin cos
sin sin
cos , 2

q f
q f
q

=
=
= ( )

where θis the inclination angle and fis the azimuthal angle
(ISO convention). The observer is located along the z-axis at
z = ¥ such that the projected disk of the body sits at the
origin of the xy plane with x̂ to the right and ŷ up. Rewriting
Equation (1) in terms of x, y, and z leads to expressions that are
simply polynomials of these variables, a fact we will heavily
exploit below when computing their integrals. We derive the
polynomimal representation of the spherical harmonics in
Appendix A. The spherical harmonics up to degree l=5 are
shown in Figure 1.

2.2. Surface Map Vectors

Any physical surface map of a celestial body can be
expanded in terms of the real spherical harmonics defined in
the previous section. For convenience, in this paper we
represent a surface map as a vector y of spherical harmonic
coefficients such that the specific intensity at the point x y,( )

Figure 1. The real spherical harmonics up to degree l=5 computed from Equation (1). In these plots, the x-axis points to the right, the y-axis points up, and the z-axis
points out of the page. (See the animation at https://github.com/rodluger/starry/blob/v0.2.2/tex/figures/ylms.gif. Source code for the animation available at
Python).

7 The term “Python” is linked to code hosted on GitHub that will reproduce
each of the figures throughout this paper.
8 The term “Jupyter” is linked to Jupyter notebooks that contain proofs and
derivations of the principal equations in this paper.
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may be written as

y yI x y x y, , , 3T=( ) ˜ ( ) ( )

where ỹ is the spherical harmonic basis, arranged in increasing
degree and order:

y Y Y Y Y Y

Y Y Y Y , 4

0,0 1, 1 1,0 1,1 2, 2

2, 1 2,0 2,1 2,2
T

= - -

- 
˜ (

) ( )

where Y Y x y,l m l m, ,= ( ) are given by Equation (50). For
reference, in this basis the coefficient of the spherical harmonic
Yl m, is located at the index

n l l m 52= + + ( )

of the vector y. Conversely, the coefficient at index n of y
corresponds to the spherical harmonic of degree and order
given by

l n

m n n n , 62

=
= - -

⌊ ⌋
⌊ ⌋ ⌊ ⌋ ( )

where ⌊·⌋ is the floor function.

2.3. Change of Basis

In order to compute the occultation light curve for a body
with a given surface map y, it is convenient to first find its
polynomial representation p, which we express as a vector of
coefficients in the polynomial basis p̃:

p

p
x y

x y z

x z y x xz xy yz y

even

odd

1 7

n

2 2

2 2

1
2

1
2

T

n

n
=

=

m n

m n- -



⎪

⎪

⎧
⎨
⎩

˜

˜ ( ) ( )

(Jupyter), where

l m
l m, 8

m
n
= -
= + ( )

with l and m given by Equation (6). To find p given y, we
introduce the change-of-basis matrix A1, which transforms
a vector in the spherical harmonic basis ỹ to the polynomial
basis p̃:

p A y. 91= ( )

The columns of A1 are simply the polynomial vectors
corresponding to each of the spherical harmonics in
Equation (4); see Appendix B for details. As before, the

specific intensity at the point x y,( ) may be computed as

p p

p A y

I x y,

. 101

T

T

=

=

( ) ˜
˜ ( )

As we will see in the next section, integrating the surface
map over the disk of the body is easier if we apply one final
transformation to our input vector, rotating it into what we will
refer to as Green’s basis, g̃:

(Jupyter), where the values of l, m, μ, and ν are given by
Equations (6) and (8). Given a polynomial vector p, the
corresponding vector in Green’s basis, g, can be found by
performing another change-of-basis operation:

g A p, 122= ( )

where the columns of the matrix A2 are the Green’s vectors
corresponding to each of the polynomial terms in Equation (7);
see Appendix B for details.
Note that we can also transform directly from the spherical

harmonic basis to Green’s basis:

g A A y
A y, 13

2 1=
= ( )

where

A A A 142 1º ( )

is the full change-of-basis matrix. For completeness, we again
note that the specific intensity at a point on a map described by
the spherical harmonic vector y can be written

g g

g A y

I x y x y

x y

, ,

, . 15

T

T

=

=

( ) ˜ ( )
˜ ( ) ( )

2.4. Rotation of Surface Maps

Defining a map as a vector of spherical harmonic coefficients
makes it straightforward to compute the projection of the map
under arbitrary rotations of the body via a rotation matrix R:

y R y, 16¢ = ( )

where y¢ are the spherical harmonic coefficients of the rotated
map. In Appendix C, we derive expressions for R in terms of
the Euler angles α, β, and γ, as well as in terms of an angle θ

and an arbitrary axis of rotation u. Follow the link next to
Figure 1 to view an animation of the spherical harmonics
rotating about the y-axis, computed from Equation (16).

g

g

x y

z l m

x yz l

z x x x y l

z x y x y x y

x z y x xz xy yz y

even

1, 0

3 odd, 1, even

4 odd, 1, odd

otherwise

1 2 3 3 2 3 11

n
l

l l l

2

2

2

3 1 3 2

3

2

3

2

3

2

2 2

2 2

5
2

1
2

5
2

3
2

1
2

1
2

T

n

n m
n m

=

= =
=

- + + =

- -

= -

m

m m m

+

-

- - -

- - +

m n

m n m n m n- - - + - -



⎧

⎨

⎪⎪⎪

⎩

⎪⎪⎪ ( )
˜

( )

˜ ( ) ( )
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3. Computing Light Curves

3.1. Rotational Phase Curves

Consider a body of unit radius centered at the origin, with an
observer located along the z-axis at z = ¥. The body has a
surface map given by the spherical harmonic vector y viewed at
an orientation specified by the rotation matrix R, such that the
specific intensity at a point x y,( ) on the surface is

y R y

p A R y

I x y x y

x y

, ,

, , 171

T

T

=

=

( ) ˜ ( )
˜ ( ) ( )

where p̃ is the polynomial basis and A1 is the corresponding
change-of-basis matrix (Section 2.3). The total flux radiated
in the direction of the observer is obtained by integrating
the specific intensity over a region S of the projected disk of
the body:

p A R y

r A R y

F I x y dS

x y dS

,

,

, 18

1

1

T

T

=

=

=

∯
∯

( )

˜ ( )

( )

where A1, R, and y are constant, and r is a column vector
whose nth component is given by

r p x y dS, . 19n nº ∯ ˜ ( ) ( )

When the entire disk of the body is visible (i.e., when no
occultation is occurring), this may be written

r p x y dy dx,

even, even

even, even

0 otherwise.

20

n x

x
n1

1

1

1

2 2 2

2 2

1

2

1

2

2

2

4
1
2 4

1
2

4

4
1
4 4

1
4

4

ò ò=

=

m n

p m n

- - -

+

G + G +

G +

G + G +

G +

- -

m n

m n

m n

m n

+

+

⎧

⎨
⎪⎪⎪

⎩
⎪⎪⎪

( ) ( )
( )
( ) ( )

( )

˜ ( )

( )

where Γ(·) is the gamma function (Jupyter). Equation (18)
may be used to analytically compute the rotational (thermal)
phase curve of a body with an arbitrary surface map. Since r
and A1 are independent of the map coefficients or its
orientation, these may be precomputed for computational
efficiency.

We note, finally, that a form of this solution was very
recently found by Haggard & Cowan (2018); a special case of
their equations for phase curves in reflected light yields analytic
expressions for thermal phase curves of spherical harmonics.

3.2. Occultation Light Curves

As we showed earlier, the specific intensity at a point x y,( )
on the surface of a body described by the map y and the
rotation matrix R can also be written as

y R y

g A R y

I x y x y

x y

, ,

, , 21

T

T

=

=

( ) ˜ ( )
˜ ( ) ( )

where g̃ is Green’s basis and A is the full change-of-basis
matrix (Section 2.3). As before, the total flux radiated in the

direction of the observer is obtained by integrating the specific
intensity over a region S of the projected disk of the body:

g A R y

F I x y dS

x y dS

,

, . 22T

=

=

∯
∯

( )

˜ ( ) ( )

This time, suppose the body is occulted by another body of
radius r centered at the point x y,o o( ), so that the surface S over
which the integral is taken is a function of r, xo, and yo. In
general, the integral in Equation (22) is difficult (and often
impossible) to compute directly. One way to simplify the
problem is to first perform a rotation through an angle

y x
2

arctan 2 , 23o ow
p

= - ( ) ( )

about the z-axis (u 0, 0, 1= [ ]) so that the occultor lies along the
y+ -axis, with its center located a distance b x yo o

2 2= + from
the origin (see Figure 2). In this rotated frame, the limits of
integration (the two points of intersection between the occultor
and the occulted body, should they exist) are symmetric about
the y-axis. If we define 2, 2f p pÎ -[ ] as the angular position
of the right-hand side intersection point relative to the occultor
center, measured counterclockwise from the x+ direction,
the arc of the occultor that overlaps the occulted body extends
from p f- to 2p f+ (see Figure 2). Similarly, defining

2, 2l p pÎ -[ ] as the angular position of the same point
relative to the origin, the arc of the portion of the occulted body
that is visible during the occultation extends from p l- to
2p l+ (see Figure 2). For future reference, it can be shown that

r b r

b r

arcsin 1 1

1
24

r b

br

1

2

2

2 2


f =

- < < +

-p

- -⎧
⎨⎪
⎩⎪

( ) ∣ ∣
( )

(Jupyter) and

r b r

b r

arcsin 1 1

1
25

r b

b

1

2

2

2 2


l =

- < < +

-p

- +⎧
⎨⎪
⎩⎪

( ) ∣ ∣
( )

(Jupyter). The case b r1 - corresponds to an occultation
during which the occultor is fully within the planet disk, so no
points of intersection exist. In this case, we define f such that
the arc from p f- to 2p f+ spans the entire circumference
of the occultor, and define λ such that the arc from p l- to
2p l+ spans the entire circumference of the occulted body.
Note that if b r1 + , no occultation occurs, and the flux can
be computed as in Section 3.1, while if b r 1 - , the entire
disk of the body is occulted, and the total flux is zero.
The second trick we employ to solve Equation (22) is to use

Green’s theorem to express the surface integral of g̃n as the line
integral of a vector function Gn along the boundary of the
same surface (Pál 2012). Defining the “solution” column
vector

s g x y dS, , 26T Tº ∯ ˜ ( ) ( )
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we can write its nth component as

G rs g x y dS x y d, , , 27n n n= =∯ ∮˜ ( ) ( ) · ( )

where G x yx y G x y G x y, , ,n nx ny= +( ) ( ) ˆ ( ) ˆ is chosen such
that

D G g x y, . 28n n = ˜ ( ) ( )

The operation D Gn denotes the exterior derivative of Gn. In
two-dimensional Cartesian coordinates, it is given by

D G
dG

dx

dG

dy
. 29n

ny nx º - ( )

Thus, in order to compute sn in Equation (27), we must
(1) apply a rotation to our map y to align the occultor with the

y+ -axis, (2) find a vector function Gn whose exterior derivative

is the nth component of the vector basis g̃ (Equation (11)), and
(3) integrate it along the boundary of the visible portion of the
occulted body’s surface. In general, for an occultation
involving two bodies, this boundary consists of two arcs: a
segment of the circle bounding the occultor (thick red curve in
Figure 2), and a segment of the circle bounding the occulted
body (thick black curve in Figure 2). If we happen to know
Gn, the integral in Equation (27) is just

G Gs , 30n n n = -( ) ( ) ( )

where, as in Pál (2012), we define the primitive integrals

G G rc b rs c

G rc b rs s rd

,

, 31

n ny

nx

2
 ò

j

= +

- +
p f

p f
j j j

j j j

-

+( ) [ ( )

( ) ] ( )

and

G G c s c G c s s d, , , 32n ny nx

2
 ò j= -

p l

p l
j j j j j j

-

+
( ) [ ( ) ( ) ] ( )

where we defined c cosjºj and s sinjºj , and we used the
fact that along the arc of a circle,

r x yd rs d rc d . 33j j= - +j jˆ ˆ ( )

In Equations (31) and (32), Gn( ) is the line integral along the
arc of the occultor of radius r, and Gn( ) is the line integral
along the arc of the occulted body of radius one.
As cumbersome as Green’s basis (Equation (11)) may

appear, the reason we introduced it is that its anti-exterior
derivatives are conveniently simple. It can be easily shown that
one possible solution to Equation (28) is

G

y

x y

x

x

y

x y

x y

y x l m

x z l

x yz l

x y z

,

even

1, 0

odd, 1, even

odd, 1, odd

otherwise,

34

n

z

z

l

l

1

3 1

2 3

3 3

3

2
2 2

3

2

3
2

1
2

n

n m
n m

=
- + = =

=
=

-
-

-

-

m n

m n

+

- -

⎧

⎨

⎪⎪⎪

⎩

⎪⎪⎪

( )

ˆ

( ˆ ˆ)

ˆ
ˆ

ˆ
( )

( )

where l and m are given by Equation (6), and μ and ν are given
by Equation (8) (Jupyter).9 Solving the occultation problem is
therefore a matter of evaluating the primitive integrals of Gn

(Equations (31) and (32)). The solutions are in general tedious,
but they are all analytic, involving sines, cosines, and complete
elliptic integrals. In Appendix D, we derive recurrence relations
to quickly compute these. We note, in particular, that the
solutions all involve complete elliptic integrals of the same
argument, so that the elliptic integrals need only be evaluated
once for a map of arbitrary degree, greatly improving the
evaluation speed and the scalability of the problem to high
order. In practice, we find that the stability in the evaluation of
these expressions is improved by using a rapidly converging
series expansion for occultors of large and small radii.

Figure 2. Geometry of the occultation problem. The occulted body is centered
at the origin and has unit radius, while the occultor is centered at x y,o o( ) and
has radius r. The observer is located at z = ¥. We first rotate the two bodies
about the origin through an angle y x2 arctan 2 ,o ow p= - ( ) so the problem is
symmetric about the y-axis. In this frame, the occultor is located at b0,( ),
where b x yo o

2 2= + is the impact parameter. The arc of the occultor that
overlaps the occulted body (thick red curve) now extends from p f- to
2p f+ , measured from the center of the occultor. The arc of the occulted body
that is visible during the occultation (thick black curve) extends from p l- to
2p l+ , measured from the origin. These are the curves along which the
primitive integrals (Equations (31) and (32)) are evaluated. The angles f and λ
are given by Equations (24) and (25) and extend from 2p- to 2p . When the
occultor is completely within the disk of the occulted body, we define
f=λ=π/2 (Python).

9 It is important to note that our definition of Green’s basis (Equation (11)) is
by no means unique. Rather, we imposed solutions of the form G xx y zn

i j k= ˆ
and G yx y zn

i j k= ˆ and used Equation (28) to find each of the terms in the basis,
choosing i, j, and k to ensure the basis was complete.
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3.3. Summary

Here we briefly summarize how to analytically compute the
flux during an occultation of a body whose specific intensity
profile is described by a sum of spherical harmonics. The first
step is to compute the change-of-basis matrix A (Section 2.3) to
convert our vector of spherical harmonic coefficients to a vector
of polynomial coefficients in Green’s basis (Equation (11)).
Since A is constant, this matrix can be precomputed for speed.

Then, given a body of unit radius with a surface map described
by the vector of spherical harmonic coefficients y (Equation (4)),
occulted by another body of radius r centered at the point x y,o o( ),
and viewed by an observer located at z = ¥, we must:

1. compute the rotation matrix R to rotate the map to the
correct viewing orientation, which may be specified by
the Euler angles α, β, and γ (Appendix C.1) or by an axis
u and an angle θ (Appendix C.2);

2. compute the rotation matrix R¢ to rotate the map by an
angle ω about the z+ -axis (Equation (23)) so that the
center of the occultor is a distance b x yo o

2 2= + along
the y+ -axis from the center of the occulted body; and

3. compute the solution vector s (Equation (30)), with Gn( )
and Gn( ) given by the equations in Appendix D.2. Note
that s2 is special and must be computed separately
(Equation (62)).

Given these quantities, the total flux f during an occultation is
then just

s A R R yf . 35T= ¢ ( )

4. The STARRY Code Package

The starry code package provides code to analytically
compute light curves for celestial bodies using the formalism
developed in this paper. starry is coded entirely in C++ for
speed and wrapped in Python using pybind11 (Jakob et al.
2017) for quick and easy light curve calculations. The
code may be installed three different ways: using conda
(recommended),

conda install c conda forge starry- -
via pip,

pip install starry
or from source by cloning the GitHub repository,

git clone https://github.com/rodluger/starry.git
cd starry

.python setup py develop

There are two primary ways of interfacing with starry: via
the surface map class Map and via the celestial body system
class kepler.System. The former gives users the most
flexibility to create and manipulate surface maps and compute
their fluxes for a variety of applications, while the latter
provides an easy way to generate light curves for simple
Keplerian systems. Let us discuss the Map class first.

4.1. Creating a Map

To begin using starry, execute the following in a Python
environment:

from starry import Map

A starry Map is a vector of spherical harmonic coefficients,
indexed by increasing degree and order, as in Equation (4). As
an example, we can create a map of spherical harmonics up to
degree l 5max = by typing

map=Map(lmax=5)

By default, the first coefficient (y0, the coefficient multiplying
the Y0,0 harmonic) is set to unity and all other coefficients are
set to zero. Importantly, maps in starry are normalized
such that the average disk-integrated intensity is equal to
the coefficient of the Y0,0 harmonic. By default, the
average amount of flux visible from an unocculted map is
therefore unity.
Say our surface map is given by the function

I x y Y Y x y

Y x y Y x y

, 2 ,
2 , , . 36

0,0 5, 3

5,0 5,4

= -
+ +

-( ) ( )
( ) ( ) ( )

To create this map, we set the corresponding coefficients by
direct assignment to the (l, m) indices of the Map instance:

map[5, -3]=-2
map[5, 0]=2
map[5, 4]=1

Users can also directly access the spherical harmonic vector y,
polynomial vector p, and Green’s polynomial vector g via the
read-only attributes Map.y, Map.p, and Map.g, respectively.
Once a map is instantiated, users may quickly visualize it by
calling

map.show()

or

map.animate()

where the editable attribute Map.axis defines the axis of
rotation for the animation. Rotation of this map about ŷ yields
the sequence shown in Figure 3.
Alternatively, users may provide a two-dimensional numpy

array of intensities on a latitude–longitude grid or the path to an
image file of the surface map on a latitude–longitude grid:

map.load_image(array)

or

map.load_image(“/path/to/image.jpg”)

In both cases, starry uses the map2alm() function of the
healpy package to find the expansion of the map in terms of
spherical harmonics. Keep in mind that if the image contains
very dark pixels (with RGB values close to zero), its spherical

Figure 3. Rotation of the map given by Equation (36) about ŷ (Python).
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harmonic expansion may lead to regions with negative specific
intensity, which is, of course, unphysical.

In Figure 4, we show a simplified two-color map of the
cloudless Earth and its corresponding starry instance for
l 10max = , rotated successively about ŷ.

4.2. Computing Rotational Phase Curves

Once a map is instantiated, it is easy to compute its rotational
phase curve, F:

F=map.� ux(theta=theta)

where theta is an array of angles (in degrees) for which to
compute the flux. Note that rotations performed by Map.flux
() are not cumulative; instead, all angles should be specified
relative to the original, unrotated map frame. As before, the
axis of rotation can be set via the Map.axis attribute. In the
top panel of Figure 5, we plot rotational phase curves for all
spherical harmonics up to lmax=6 for rotation about x̂ (blue
curves) and ŷ (orange curves). The small dots correspond to
phase curves computed by numerical evaluation of the flux
on an adaptive radial mesh (see Section 4.7). As discussed by
Cowan et al. (2013), harmonics with odd l 1> and those with
m<0 (not plotted) are in the null space and therefore do not
exhibit rotational phase variations when rotated about x̂ or ŷ.

As a second example, we can compute the rotational phase
curve of the simplified Earth model (Figure 4) for rotation
about ŷ (its actual spin axis) by executing

theta=np.linspace(0, 360, 100)
F=map.� ux(theta=theta)

The variable F is an array of flux values computed from
Equation (18); we plot this in Figure 6, alongside the rotational
phase curves due to each of the seven individual continents.
For more complex phase curves, such as those of planets on
inclined orbits, see Section 4.5.

4.3. Computing Occultation Light Curves

Occultation light curves are similarly easy to compute:

F=map.� ux(theta=theta, xo=xo,
yo=yo, ro=ro)

where theta is the same as above, and xo, yo, and ro are the
occultor parameters x( position, y position, and radius, all in
units of the occulted body’s radius), which may be either
scalars or arrays.

In the bottom panel of Figure 5, we plot occultation light
curves for the spherical harmonics with m 0 up to lmax=6.
The occultor has radius r=0.3 and moves at a constant speed
along the x direction at yo=0.25 (blue curves) and yo=0.75
(orange curves). The light curve of any body undergoing such
an occultation can be expressed as a weighted sum of these
light curves. Note that because the value of individual spherical
harmonics can be negative, an increase in the flux is visible at
certain points during the occultation; however, this would of
course not occur for any physical map constructed from a linear
combination of the spherical harmonics. Note also that unlike
in the case of rotational phase curves, there is no null space for
occultations, as all spherical harmonics (including those with
m<0, which are not shown) produce a flux signal during

Figure 4. A simplified two-color map of the cloudless Earth (top) and the corresponding 10th degree spherical harmonic expansion, rotated about ŷ (bottom;
Python).
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