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Abstract

The methods listed in the title are compared by means of a simulation study and a
real world application. The aspects compared in the simulations are: The performance
of the tests of the different methods for the dimension of the cointegrating space and
the quality of the estimated cointegrating space. It turns out that the subspace algo-
rithm method, formulated in the state space framework and thus applicable for ARMA
processes, performs at least comparable to the Johansen procedure and both perform sig-
nificantly better than Bierens’ method.
The real world application is an investigation of the long-run properties of the neoclassical
growth model for Austria. It turns out that the results do not fully support the theoretical
predictions and that they are very versatile across the employed methods. The degree of
versatility depends strongly upon the number of variables. For the case of 6 variables and
about 100 observations huge differences occur, which lead us to conclude that the results
of this typical situation in the applied literature should be interpreted with more caution
than is commonly done.
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1 Introduction

The majority of cointegration studies is performed in the context of the vector autoregressive

(VAR) model using the methods developed over the years by Johansen, see his monograph

(Johansen, 1995) for a detailed description. Johansen derives the maximum likelihood esti-

mate for Gaussian cointegrated VAR processes. Within this framework a variety of questions,

e.g. testing for hypotheses on the cointegrating vectors, the extension to higher integration

orders, have also been addressed, contributing further to the popularity of the method.

Several authors have analyzed the behavior of Johansen’s method an a VAR approximation in

case the data are generated by a vector ARMA process, see e.g. Saikkonen (1992) or Saikko-

nen and Luukkonen (1997). These authors show that, if the lag length of the autoregressive

approximation is increased sufficiently with the sample size, consistency of the method carries

over to the (vector) ARMA case. This result is essentially a generalization of the result of

Said and Dickey (1984) concerning the applicability of the augmented Dickey-Fuller tests to

ARMA processes to the multivariate case.

The available asymptotic results may however not be the best guide for the finite sample sen-

sitivity of the Johansen procedure to the fact that the data may be generated by an ARMA

processes. It is thus interesting to see whether some of the methods developed explicitly

for ARMA processes deliver, for small samples at least, better results, in terms of e.g. the

performance of the respective tests for cointegration, than the Johansen procedure. If this

is the case, then the results obtained by applying these other methods can be used at least

to back-up or cast doubt on results obtained by applying the Johansen procedure. Given

that the additional results are confirmative, one can proceed in the econometric analysis as

usual, i.e. one can continue to use well developed VAR techniques (like testing hypotheses

on the cointegrating space or testing for exogeneity). If not, then one should resort directly

to ARMA based techniques. Note that we only focus on the presence of ARMA errors in the

DGP, and neglect other important issues in model specification like outliers, heteroskedastic-

ity, non-normality or structural breaks.

In this paper we compare the results obtained by applying the Johansen procedure with the

results obtained from two procedures designed explicitly for ARMA processes. The compari-

son is both by means of simulations and by comparing the results obtained with the various

methods in a real world application. The two methods that we use for comparison are Bierens’
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(1997) nonparametric cointegration analysis and the subspace algorithm cointegration anal-

ysis put forward in Bauer and Wagner (2002a). We choose these two methods out of the

menu of available methods for cointegration analysis in the context of ARMA processes (see

e.g. Boswijk et al., 1999, Phillips, 1991, 1995 or Yap and Reinsel, 1995), because of their

low computational load, compared to e.g. the nonlinear optimization problem that has to

be solved in pseudo ML estimation for ARMA processes. Their low computational load is

however the only common feature between the two methods. Bierens’ method, due to its

nonparametric nature, abstains from estimating the parameters of the underlying rational

process and delivers only estimates of the cointegrating space and a test for its dimension.

Subspace algorithm cointegration analysis on the other hand delivers estimates of all param-

eters. It does so, however, in two respects different from usual in the literature. First, it is

based and formulated in the state space framework and secondly it uses subspace algorithms

(see the description in Section 2.3). In a series of papers Bauer and Wagner (2002a-d) develop

the structure theory of cointegrated state space models, as well as estimators and tests. The

state space framework is an equivalent way to represent ARMA processes that turns out to

have some advantages for cointegration analysis, in terms of e.g. simplicity of the represen-

tation especially for higher order integrated systems (see Bauer and Wagner, 2002b). By

applying subspace algorithms it is possible to estimate all parameters in a computationally

extremely cheap way by performing OLS regressions and singular value decompositions. In

Bauer and Wagner (2002a) one of these algorithms, which have up to now only been used in

a stationary context and which originate in the engineering literature, has been modified to

obtain consistent estimates also in the I(1) case.

We compare the results, as already indicated above, on simulated ARMA data and on a

real world application (see the next paragraph). In the simulations we are interested in two

aspects. First the performance of the tests corresponding to the different applied methods.

There are in total 9 different tests: 6 subspace, 2 Johansen and 1 Bierens. The performance

measure employed is the acceptance frequency of the correct dimension of the cointegrating

space as a result of the testing sequence. The second issue investigated is the quality of the

estimated cointegrating space. As a measure of quality we employ the Hausdorff distance (for

a definition see Section 3) between the estimated and the true cointegrating space. The results

are mixed. For the simulated 2-dimensional ARMA processes for small samples the subspace

algorithm cointegration analysis shows better performance (in terms of e.g. the tests) and
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for the 3-dimensional processes the Johansen procedure on a VAR approximation leads in

many cases to better test results for small samples. The estimated cointegrating spaces are

essentially equally well estimated by these two methods. Across all simulations the Bierens

method shows the worst performance, both for the tests and the cointegrating spaces.

The real world application is an investigation of the long-run implications of the neoclassical

one-sector growth model for the Austrian economy. This model has under some assump-

tions, see Section 4, clear implications concerning cointegration. None of the methods lends

support to the full predictions of the theoretical model, but the even more interesting obser-

vation in our context is the fact that the methods lead to quite versatile results, especially

concerning the estimated cointegrating spaces (measured by the mutual Hausdorff distances

between the cointegrating spaces estimated with the different methods and the distances to

the theoretically formulated cointegrating spaces). If one investigates in a bivariate set-up

the consumption-output relation the results, at least for the estimated cointegrating space,

become more similar between the methods. Thus, from the application we observe that for

the usual sample size of about 100 observations the variability of results across different meth-

ods depends strongly upon the number of variables. For 5 or 6 variables the differences are

enormous. Hence, the results of these exercises typical in the literature should probably be

interpreted with more caution than is common practice. In the appendix a couple of further

results like stability of the cointegrating space and detailed hypotheses testing results on the

cointegrating space are reported.

The paper is organized as follows: In Section 2 the applied methods are discussed, where only

the subspace algorithm cointegration analysis is presented in detail. In Section 3 the results

of the simulation study are presented. In Section 4 the application to the neoclassical growth

model is discussed and Section 5 briefly summarizes and concludes. In the appendix some

additional empirical results derived from further investigations of the application discussed

in Section 4 are presented.

2 A Description of the Applied Econometric Methods

In this section we describe the applied methods. The descriptions of Johansen’s and Bierens’

method are very sketchy, as especially the first method is most widely known and used

throughout the profession and also the second method has been described at various places.

Thus, for these two methods only the main arguments will briefly be summarized to set the
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stage. For the third method, the subspace algorithm cointegration analysis, the description is

more detailed. There are, we think, two main reasons for doing so: First of all, this method is

formulated in the state space framework. The state space framework offers an equivalent and

alternative way for representing ARMA processes, which turns out to be very convenient for

cointegration analysis (see e.g. Bauer and Wagner, 2002b). Despite its potential advantages,

it is not in widespread use in the cointegration literature, from which we conclude that a few

comments on this framework might be interesting for some readers unacquainted with this

approach. After that, we describe the method (developed in Bauer and Wagner, 2002a). Both

the estimation of the system matrices and the tests for the cointegrating rank are discussed.

As subspace algorithm are hardly used in an econometric context, contrary to their increased

usage in the control and engineering literature, it might also be interesting to present the

ideas of these algorithms in some detail as well. The idea of this type of algorithms is simple,

however the description turns out to require some space. Note at this point only the fact that

with the investigated adapted subspace algorithm it is possible to estimate the parameters

of cointegrated vector ARMA models by OLS regressions and singular value decompositions.

Readers acquainted with some or all of the methods can skip the respective subsections

without loss.

2.1 Johansen VAR Cointegration Analysis

The method developed and extended in a variety of ways by Johansen over a couple of years

and nicely summarized in his monograph (Johansen, 1995) is the workhorse in cointegration

analysis and therefore constitutes a natural benchmark to compare other methods with. As

just mentioned above, we abstain from yet another description of the method and only want

to describe the basic set-up and a few issues relevant for our study.

Johansen’s approach is developed in the context of the I(1) vector autoregressive model.

Assuming normality for the innovations εt, maximum likelihood estimates for all parameters

and likelihood ratio tests for the dimension of the cointegrating space are derived. The

estimation problem is formulated in the error correction representation, which is, ignoring

deterministic components for notational simplicity, given by

∆yt = αβ′yt−1 + Γ1∆yt−1 + . . .+ Γp−1∆yt−p+1 + εt

where yt ∈ R
s is the time series observed for t = 1, . . . , T , α, β ∈ R

s×r, Γi ∈ R
s×s and εt is

i.i.d. normally distributed with variance matrix Σ. The columns of the matrix β ∈ R
s×r, with
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0 ≤ r ≤ s, span the cointegrating space. As is well known, estimation and testing proceeds

by first regressing ∆yt and yt−1 on the lagged differences and then the residual moment

matrices of these two regressions are the input in a generalized eigenvalue problem. Hence,

the cointegration testing problem is based on the canonical correlations between ∆yt and yt−1

corrected for the short-run dynamics. The estimate for the r-dimensional cointegrating space

is given by the canonical variates, i.e. the corresponding generalized eigenvectors, to the r

largest canonical correlations.

The approach has been extended in many directions. See e.g. Boswijk et al. (1999) for

an overview and a simulation study of the effects of relaxing the assumption of normality.

In case that the innovations are not normally distributed, the approach can be extended to

account for the non-normality both in the estimation and in the testing step, see also Lucas

(1998). More interesting for our study are however the available results concerning robustness

of the Johansen approach to ARMA data generating processes. As already mentioned in

the introduction, Saikkonen (1992), see also Saikkonen and Luukkonen (1997), shows that

the method applied to an autoregressive approximation, where the lag length is growing

sufficiently with the sample size, results in consistent estimates of all parameters. Furthermore

also the null distribution of the test statistics remains unchanged compared to the case that the

DGP is indeed a VAR process. Wagner (1999) shows that the cointegrating space is estimated

consistently for ARMA date generating processes even in a fixed order VAR approximation, in

this case however no distributional results are available. These robustness results with respect

to ARMA DGPs, notwithstanding the formulation in the popular VAR framework, form, to

our understanding, one additional important basis for the popularity of the method. However,

the asymptotic results are not necessarily a guarantee for good finite sample approximation

properties. Hence, it may be interesting to compare the results concerning cointegration

obtained with the Johansen procedure, based on a VAR approximation, with the results

obtained from methods that are designed for ARMA processes, which is done in the simulation

study presented in Section 3.

2.2 Bierens Nonparametric Cointegration Analysis

The method developed by Bierens (1995, 1997a, 1997b) is developed to test for cointegration in

I(1) ARMA processes. The method only aims at testing for the dimension of the cointegrating

space and at obtaining an estimate of the basis of the cointegrating space. No other parameters
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of the underlying data generating process are estimated. For detailed descriptions of the

method the reader is referred to the metnioned papers of Bierens. Here we only want to briefly

present the main idea of the approach. Let {Fk, k = 1, 2, . . .} be a sequence of functions on
[0, 1] that satisfy

∫ 1
0 Fk(z)dz = 0 and

∫ 1
0 Fj(z)Fk(z)dz = 0 for j �= k. In particular two choices

are proposed by Bierens, namely Fk(z) = cos(2kπz) and Fk(z) = cos(2kπ(1 − 1
2T )), where

T denotes again the sample size. These choices of the function sequence Fk maximize the

power function of the resulting test. The second variant, Fk(z) = cos(2kπ(1− 1
2T )), makes the

cointegration test invariant with respect to the presence of deterministic trends in the data.

Based on the above function sequences, next define for an observed time series yt, t = 1, . . . , T

the quantity

Mk(y) =
1
T

T∑
t=1

Fk(
t

T
)yt

Now, if yt is I(1), it can be shown that Mk(y) is Op(T 1/2). For both, the first differences

∆yt and for stationary linear combinations, β′yt, say, it holds that MK(∆y) and Mk(β′y)

are Op(T−1/2). This difference in the orders of magnitude between the stationary and the

nonstationary directions is exploited in the construction of the test statistics.

In order to perform the test, a generalized eigenvalue problem invoking weighted sums of

products of Mk(y) and of Mk(∆y) has to be solved. Besides the test for the dimension of

the cointegrating space, Bierens proposes also an estimate for its dimension. The estimates

of a basis of the cointegrating space are obtained as generalized eigenvectors of a second

generalized eigenvalue problem that involves only weighted sums of products Mk(y).

2.3 Subspace Algorithm Cointegration Analysis

In this subsection we describe and discuss the subspace algorithm cointegration analysis intro-

duced in Bauer and Wagner (2002a).1 The state space framework is an equivalent framework

of representing and modelling (vector) ARMA processes, that is not widely used in the coin-

tegration literature, despite some convenient features. Thus, we think that a relatively more

detailed description of the approach might be helpful to some readers. The underlying struc-

ture theory (including the development of a canonical form, a parameterization and their

topological properties) is developed in Bauer and Wagner (2002b) for the class of ARMA

processes with unit roots with integer integration orders at any point on the unit circle. The
1For details including proofs concerning the proposed method see Bauer and Wagner (2002a). A very

detailed description of all computational aspects is also contained in Bauer and Wagner (2002e).
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discussed estimation method for the I(1) case rests upon these general results.

For a detailed discussion of the state space framework see e.g. Aoki (1990) or Hannan and

Deistler (1988). If yt follows an ARMA process, then a minimal state space representation of

the following form exists:
xt+1 = Axt +Kεt
yt = Cxt + Eεt

(1)

where yt denotes the s-dimensional output series observed for t = 1, . . . , T . εt denotes an s-

dimensional white noise sequence. A ∈ R
n×n, K ∈ R

n×s, C ∈ R
s×n, E ∈ R

s×s, E nonsingular,

and xt ∈ R
n denotes the n-dimensional unobserved state sequence. The noise sequence εt is

assumed to be a strict martingale difference sequence, the precise conditions are formulated

in Bauer and Wagner (2002a). Minimality refers to the fact that there exists no other state

space representation with a smaller state dimension, and it is the state space analogue to

left coprimeness. We restrict ourselves to systems that are strictly minimum-phase, i.e. to

systems where the eigenvalues of (A − KE−1C) are smaller than 1 in absolute value. The

eigenvalues of A determine the integration properties of the solution yt of the state space

equations. This can directly be seen by solving the state space equations, assuming x0 = 0

for notational simplicity:

yt = Eεt +
t−1∑
j=1

CAj−1Kεt−j

The sum of the matrix products CAj−1K converges if and only if all eigenvalues of A are

smaller than one in absolute value, eigenvalues on the unit circle correspond to (seasonal)

integration of yt. It is shown in Bauer and Wagner (2002b) that the process yt is I(1) if and

only if the eigenvalues of A are either smaller than one in absolute value or equal to one,

with Jordan blocks all of size equal to one.2 In this case, the system can equivalently also be

written, after a suitable coordinate change in the state, as:

yt =
[
C1 Cst

]
xt + εt (2)[

xt+1,1

xt+1,st

]
=

[
Ic 0
0 Ast

] [
xt,1

xt,st

]
+

[
K1

Kst

]
εt (3)

where xt,1 ∈ R
c denotes the nonstationary part of the state and xt,st ∈ R

n−c denotes the

stationary part of the state and xt =
[
x′t,1, x′t,st

]′. By c we denote the number of common
2It can be shown that also for higher integration orders the eigenvalue structure of A in a minimal represen-

tation determines the integration structure of yt, as well as that of xt. For instance it can be shown that the
integration order corresponding to any unit root equals the length of the longest Jordan chain corresponding
to the respective eigenvalue of A on the unit circle.
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trends. In a minimal state space representation, c common trends are present in both the

state and the observations. It can easily be shown (see Bauer and Wagner, 2002a) that for

a minimal state space representation c ≤ s has to hold, irrespective of the system order n.

From the structure of the state space representation one obtains,

yt = C1xt,1 + Cstxt,st + Eεt
= C1K1

∑t−1
j=1 εt−j + kst(z)εt

(4)

where kst(z) = E+zCst(In−c−Ast)−1Kst. Due to the fact that all eigenvalues of Ast are inside

the unit circle, kst(z) is a stable transfer function. z is used to denote both the backward

shift operator as well as a complex variable. Thus, the above representation (4) coincides

with Granger’s, with the first term corresponding to the common trends.

It is clear that in the above representation only the product C1K1 is identified. The number

of common trends present in yt is given by the rank of C1K1, which is less or equal to s.3 In

a minimal representation the ranks of both C1 and K1 are equal to c. Now it immediately

follows, that if r denotes the number of cointegrating relationships for yt, the equality c = s−r
holds and c is – as already stated – the number of common trends present in both the state xt

and the observations yt. This relationship just shows from a state space perspective the well

known fact that for I(1) processes the sum of the number of common trends and the number

of cointegrating relationships is equal to the dimension of yt.

To achieve identification of C1K1 further restrictions have to be imposed on the system

representation. In the canonical form presented in Bauer and Wagner (2002b), this is achieved

by choosing C1 to be part of an orthonormal matrix, i.e. C1 ∈ R
s×c and C ′

1C1 = Ic is

assumed.4 Therefore there exists a matrix C⊥
1 with (C

⊥
1 )

′C⊥
1 = Ir and (C⊥

1 )
′C1 = 0, i.e.

C⊥
1 spans the orthogonal complement of C1. By pre-multiplying equation (4) with (C⊥

1 )
′,

it immediately follows that the columns of C⊥
1 span the cointegrating space of dimension r.

Note that due to the block-diagonal set-up (due to the use of the Jordan normal form) the

stationary part, kst(z) can be investigated independently of the nonstationary part. Thus,

for the stationary part any developed canonical representation can be chosen.

After having briefly discussed the set-up, let us now turn to a description of the estimation

approach. Subspace algorithms, up to now only used for stationary processes, originated
3This reflects once again the fact that at most s stochastic trends can be present in yt.
4These restrictions are not sufficient for identifiability in the general case and some further restrictions are

needed. However, the additional restrictions are not relevant for the present setting and thus we refer to Bauer
and Wagner (2002b) for details. The asymptotically stationary part can be parameterized using any of the
known parameterizations for stationary processes, like echelon parameters.
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in the engineering literature in the 1980ies and provide a computationally cheap alternative

to e.g. (pseudo) maximum likelihood estimation procedures. In the subspace algorithm as

described below, first estimates of the unobservable state xt are obtained and then estimates

of the system matrices are obtained. This is different to e.g. ML estimation, where first

estimates of the system matrices are obtained and based on these an estimate of the state is

obtained.

The basic idea of subspace algorithms lies in the interpretation of the state, it can be shown

that the best linear prediction of yt+j given yt, . . . , y1 and x1 is given by CAjxt. Thus,

the state is a basis for the predictor space for the whole future of yt, i.e. for yt+j , j ≥ 0
and is contained in the past of the time series, yt−j , j ≥ 1. This fact is exploited in the
construction of the algorithm as follows. Choose two integers f and p, both larger or equal

than n, and define Y +
t,f = [y

′
t, y

′
t+1, . . . , y

′
t+f−1]

′ and Y −
t,p = [y

′
t−1, y

′
t−2, . . . , y

′
t−p]

′. Further

let E+
t,f = [ε

′
t, ε

′
t+1, . . . , ε

′
t+f−1]

′. Let Of = [C ′, A′C ′, . . . , (Af−1)′C ′]′ and Kp = [K, (A −
KE−1C)K, . . . , (A−KE−1C)p−1K]. Finally define Ef as the matrix, whose i-th block row is

equal to the matrix [CAi−1K, · · · , CK,E, 0]. Then it follows from the system equations (1),
that

Y +
t,f = OfKpY

−
t,p +Of (A−KE−1C)pxt−p + EfE

+
t,f

Noting that for p→ ∞ the term (A−KE−1C)p vanishes, the above observations lead to the

following procedure:

1) In a first step regress Y +
t,f on Y

−
t,p to obtain an estimate β̂f,p of OfKp.5

2) Typically β̂f,p has full rank, whereas OfKp has rank n for f, p ≥ n, where n again

denotes the true system order. Thus, for an appropriate estimate of n, n̂ say (see below

for one way of obtaining a consistent order estimate), approximate β̂f,p by a rank n

approximation with decomposition Ôf K̂p.

3) Use the derived estimate K̂p to obtain an estimate of the state x̂t = K̂pY
−
t,p.

4) Given the estimated state, the system equations (1) can be used to obtain estimates

(Â, K̂, Ĉ, Ê) of the system matrices (A,K,C,E) via OLS regressions.

The rank n approximation in step 2 of the procedure outlined above is not performed on β̂f,p,

but is based on a singular value decomposition (SVD) of a transformed matrix Ŵ+
f β̂f,pŴ

−
p .

5The construction of the variables Y +
t,f and Y −

t,p implies that the sample range in the regressions is t =
p + 1, . . . , T − f + 1. We denote the effective sample size by Tf,p = T − f − p + 1.
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Variants of existing subspace algorithms differ i.a. in their choice of respective weighting

matrices. In the employed algorithm they are given by Ŵ+
f = (Γ̂

+
f )

−1/2 and Ŵ−
p = (Γ̂−p )1/2,

where Γ̂+
f =

1
T−f−p+1

∑T−f
t=p+1 Y

+
t,f (Y

+
t,f )

′ and Γ̂−p = 1
T−f−p+1

∑T−f
t=p+1 Y

−
t,p(Y

−
t,p)

′. Thus, in this

algorithm the canonical correlations between Y +
t,f and Y

−
t,p are estimated. Fix n for the mo-

ment, then the SVD is decomposed in two parts:

Ŵ+
f β̂f,pŴ

−
p = Û Σ̂V̂ ′ = ÛnΣ̂nV̂

′
n + R̂

where Ûn ∈ R
fs×n, V̂n ∈ R

ps×n and Σ̂n ∈ R
n×n. Here Σ̂n = diag(σ̂1, . . . , σ̂n) contains the n

dominant singular values ordered decreasing in size, i.e. 1 ≥ σ̂1 ≥ . . . ≥ σ̂n > 0. The matrices

Ûn and V̂n contain the corresponding left and right singular vectors. The remaining singular

values and vectors are attributed to R̂ and are neglected. The rank n approximation of β̂f,p is

now given by Ôf K̂p = [(Ŵ+
f )

−1Ûn][Σ̂nV̂
′
n(Ŵ

−
p )−1] and thus K̂p = Σ̂nV̂

′
n(Ŵ

−
p )−1. Concerning

now finally the choice of n, an order estimation criterion is based on the size of the first

neglected singular value in Σ̂. This rests (as the other arguments above, for details see Bauer

and Wagner, 2002a) upon the asymptotic argument that in Σ̂ = diag(σ̂1, . . . , σ̂min(f,p)s) for a

system of order n, the n largest singular values have positive limits and the remaining singular

values converge to 0. Hence, a consistent order estimate, n̂ say, is obtained by minimizing

the following criterion SV C:

n̂ = argmin1≤n<min(f,p)×sSV C(n) = argmin1≤n<min(f,p)×s(σ̂
2
n+1 + 2nsHT /T ) (5)

Here HT > 0, HT /T → 0 denotes a penalty term, which determines the asymptotic properties

of the estimated order.

This standard algorithm (consistent for stationary processes) as just described, has to be

adapted in order to result in consistent estimates also for I(1) processes. The modification

is necessary to separate the stationary and the nonstationary components of yt in order

to establish consistency for the stationary part of the transfer function, kst(z). However,

a description of the standard version of the algorithm is useful and necessary, as for the

adapted version estimates of C1 obtained from the standard algorithm are employed. For

correctly specified c, the standard subspace estimate Ĉ1 of C1 is super-consistent. Let, as

before denote by r the true cointegrating rank6, then c = s − r common trends drive the

system. Denote with ˆ̄C = [Ĉ1, Ĉ
⊥
1 ]

′, where Ĉ⊥
1 ∈ R

s×r, Ĉ ′
1Ĉ

⊥
1 = 0 and (Ĉ⊥

1 )
′Ĉ⊥

1 = Ir.

6Tests for the cointegrating rank will be presented after the discussion of the adapted subspace algorithm.

11



Define a new weighting matrix, with ⊗ denoting the Kronecker product, ˆW+
f,C1

= [(I ⊗
ˆ̄C) 1

Tf,p

∑T
t=1 Y

+
t,f (Y

+
t,f )

′(I ⊗ ˆ̄C)′]−1/2(I ⊗ ˆ̄C), using again the Cholesky decomposition as the
square root of a matrix. In combination with the modified weighting matrix also the estimate

for K̂p has to be modified. For any choice of weighting matrices, the estimated matrix K̂p =

Σ̂nV̂
′
n(Ŵ

−
p )−1 can alternatively be written as K̂p = Û ′

nŴ
+
f β̂f,p. Now, if the modified weighting

matrix ˆW+
f,C1

is used, the corresponding matrix of left singular vectors Ûn has to be changed

to Ûn,c, where

Ûn,c =
[

Ic 0c×(n−c)

0(fs−c)×c Û(2, 2)

]
,

which provides the required separation of the non-stationary components from the stationary

components. Û(2, 2) denotes the (2, 2)-block of the matrix Ûn.7 Thus, under the assumption

of a correctly specified number of common trends, c, the subspace procedure can be modified

as follows:

1) Perform steps 1) to 4) of the standard subspace algorithm as described above.

2) Use the estimate Ĉ1 to construct the modified weighting matrix ˆW+
f,C1
.

3) Generate the adapted estimate of K̂p,C1 = Û
′
n,c

ˆW+
f,C1

β̂f,p.

4) Use the adapted estimate K̂p,C1 to obtain the adapted estimate of the state vector

x̂t,C1 = K̂p,C1Y
−
t,p.

5) Use, as in item 4) of the standard algorithm, the system equations, to obtain estimates

(ÂC1 , K̂C1 , ĈC1 , ÊC1) of the system matrices via OLS regressions.

For stationary processes, i.e. when r = s and thus c = 0, the adapted procedure coincides

with the standard procedure. Note that both, the initial estimate Ĉ⊥
1 obtained from the

standard algorithm, as well as Ĉ⊥
C1,1 are consistent estimates of the cointegrating space. Note

also that the above OLS approach can be modified to a reduced rank regression in order to

incorporate the integration structure also in the estimation of A, for details on this reduced

rank regression approach see again Bauer and Wagner (2002a).

In the above discussion, the number of common trends is assumed to be known or correctly

specified. In order to make the approach useful, we next need to discuss tests for the number

of common trends. There are two possibilities to construct tests. One idea is to base tests
7From a theoretical point of view, to achieve consistency only the (2,1)-block of the matrix Ûn has to be

replaced by a 0-block.
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Test Nr. I II III IV
Test Stat. T re(µ̂c) T

∑c
i=1 re(µ̂i) Tabs(µ̂c) T

∑c
i=1 abs(µ̂i)

Table 1: The 4 tests based on the eigenvalues µ̂ of the matrix ÂC1 − In. Under the null
hypothesis of c common trends, the first c columns of the standard subspace estimate of C
are chosen as C1 and used for the construction of the modified weighting matrix ˆW+

f,C1
. re

denotes the real part of a (possibly) complex number and abs denotes the absolute value.
Critical values for the tests are given in Bauer and Wagner (2002e).

on the estimated singular values in Σ̂ noting that the first c singular values converge to 1,

whereas the other singular values have limits smaller than 1 (and 0 respectively). See Bauer

and Wagner (2000, 2002a) for a description, an application and a performance evaluation of

this test.8 Similarly in spirit to the order estimation criterion, where a distinction has to be

made between singular values significantly different from zero, an estimate of the number of

common trends can be obtained by determining the number of singular values statistically

not distinguishable from 1. The results from this approach in combination with sub-sequent

testing are often found to have good performance, however the properties depend upon the

chosen penalty term, for details see Bauer and Wagner (2002a).

The other idea is to base tests on the eigenvalues of Â, remembering that in the I(1) case

the number of common trends equals the number of eigenvalues of A equal to 1. In fact we

base the tests on the eigenvalues of the matrix Â− In and compare their magnitude with 0.

The reason for doing this is that in this formulation the asymptotic distribution is directly of

the standard integral of Brownian motions type. Corresponding tests for the null hypothesis

of c common trends can either be based on the c-th largest eigenvalue alone or on the c

largest eigenvalues, furthermore one can also use the real parts of the estimated eigenvalues

or their absolute values. This leads to 4 different tests, see Table 1. The number of common

trends c is determined in a recursive testing sequence, usually starting with an initial null

of a maximal possible number of common trends s. Note that in each step of the sequence

the system has to be re-estimated using the matrix Ĉ1 from the standard algorithm with the

number of columns corresponding to the number of common trends under the null hypothesis

at this step of the sequence.

Two more tests are discussed in Bauer and Wagner (2002d), where the Johansen procedure
8The drawback of this approach is that the singular value based test depends upon nuisance parameters.

Therefore in this study this test is not investigated further.
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is replicated on the estimated state x̂t. Note again that the state follows an AR(1) equation.

Hence, the Johansen procedure is very simple in that case and just amounts to a computation

of the canonical correlations between ∆̂xt and x̂t−1. Thus, for the n-dimensional state, the null

hypothesis of c common trends can also be tested by performing a Johansen cointegration test

on the state equation with the null hypothesis of (n − c) linearly independent cointegrating

relationships. This observation gives rise to two additional tests, replicating the Johansen

trace test (test number V) and the Johansen max test (test number VI). Again the testing is

performed sequentially, where a difference to a standard Johansen application in a VAR model

is that after each step of the testing sequence the system has to be re-estimated, compare the

description of the sequence for tests I to IV.

3 A Simulation Study

In this section we compare the performance of the described methods on simulated ARMA(1,1)

processes for sample sizes T = 100, 200, 300, 400 and 1000. We investigate two aspects, the

acceptance frequencies of the correct decisions for the dimension of the cointegrating spaces

of the discussed tests and the approximation quality of the estimated cointegrating spaces to

the true cointegrating spaces.

The lag order of an autoregressive approximation of the ARMA processes that is needed in

the Johansen procedure is determined by minimizing AIC. The indices f, p required in the

subspace algorithm are chosen to equal twice these values, see Bauer and Wagner (2002a) for

a discussion on this choice. Note at this point that the results for the Johansen procedure

depend upon the fact how well a (low order) VAR can approximate the underlying ARMA

model. This depends upon the zeros of the transfer function, i.e. upon the zeros of det b(z)

in an ARMA representation or equivalently upon the eigenvalues of (A−KE−1C) in a state

space representation. More precisely, the closer the roots of det b(z) are to the unit circle,

equivalently the closer the eigenvalues of (A−KE−1C) are to the unit circle, the more lags

have to be included in a VAR approximation in order to approximate the underlying transfer

function well. The minimum absolute value of the roots of det b(z) is henceforth denoted by

ρ0.

With respect to the tests we compare in total 9 different tests (6 subspace, 2 Johansen, 1

Bierens) and are interested in the relative performance of these tests depending upon the

sample size and upon the extent of autocorrelation of the errors. All test results reported,
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present acceptance frequencies of the correct dimension of the cointegrating space, with each

step of the test sequence carried out at a nominal size of 5%.

The estimation of the cointegrating space itself is a prime issue in cointegration analysis and

the properties of methods of cointegration analysis in concern to the estimation of the coin-

tegrating space are clearly very important. All methods, the subspace algorithm, Bierens’

method and the Johansen approach estimate the cointegrating space at rate T , however in

small samples the approximation may still be poor. Hence, to investigate this issue we com-

pute the Hausdorff distance between the true and the estimated cointegrating spaces. The

Hausdorff distance is defined as follows: Let M and N denote two linear subspaces of R
s,

then the Hausdorff distance dH(M,N) is given by

dH(M,N) = max( sup
x∈M,‖x‖=1

‖ (I −Q)x ‖, sup
x∈N,‖x‖=1

‖ (I − P )x ‖)

where Q denotes the orthogonal projection onto N , P the orthogonal projection onto M and

‖ x ‖ denotes the Euclidean norm on R
s. The Hausdorff distance is between 0 and 1, and

is equal to 1 for instance for spaces of different dimensions. The investigation concerning

the Hausdorff distance is separated from the testing problem, i.e. the Hausdorff distance

is computed between the correct number of estimated cointegrating vectors and the true

cointegrating space. Note that the Hausdorff distance is equal to one for spaces of different

dimensions. Four different Hausdorff distances are computed: The distance between the

initial subspace estimate and the true cointegrating space, the distance between the adapted

subspace estimate and the true cointegrating space, the distance between the VAR Johansen

estimate and the true cointegrating space and the distance between the Bierens estimate and

the true cointegrating space. The results are displayed in graphical form, we plot densities over

the replications of the log Hausdorff distances. The logarithm is taken to increase variability,

as due to consistency for all methods the estimated cointegrating spaces approach the true

cointegrating spaces and hence the Hausdorff distances tend to 0.

Additional results concerning e.g. the minimizing values of the information criteria, the results

of the order estimation, or descriptive statistics concerning the distributions of the Hausdorff

distances are available upon request.9 The MATLAB code used in producing these results can

be obtained from the author. Note finally that in the simulations the processes are all started

with zero initial values and that the results are based upon 5000 replications.
9In Bauer and Wagner (2002e) furthermore the forecasting performance of cointegrated systems estimated

with the presented subspace algorithm is discussed.
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1 2 3 4 5 6 7 8
γ1 -0.8 -0.5 -0.2 0 0.2 0.5 0.8 1
γ2 -0.8 -0.5 -0.2 0 0.2 0.5 0.8 0.8
ρ0 1.25 2 5 - 5 2 1.25 1

Table 2: Parameter values γ1 and γ2 used in the simulations. ρo denotes the minimum
absolute value of the roots of det b(z).

3.1 2-dimensional systems

The first set of models is adopted from Hargreaves (1994) and consists of 2-dimensional

ARMA(2,1) systems with one cointegrating vector given by (1,−3).
[
1 −2

−1 3

] [
y1t

y2t

]
=

[
u1t

u2t

]
=

[
1.5 0
0 0.5

] [
u1t−1

u2t−1

]
+

+
[ −0.5 0
0 0

] [
u1t−2

u2t−2

]
+

[
ε1t

ε2t

]
+

[
γ1 0
0 γ2

] [
ε1t−1

ε2t−1

]
(6)

The parameter values for γi in the MA polynomials can be seen in Table 2. Note that in-

creasing values of γi correspond to increasing autocorrelation in the MA errors. The εt are

i.i.d. normally distributed with variance 2 and covariance 1/2. The first point investigated

is the test performance. In Table 3 the acceptance frequencies for the correct dimension of

the cointegrating space are displayed for all systems and all sample sizes. There is strong

evidence (mainly for the smaller sample sizes) that the test performance depends upon the

correlation in the moving average errors of the process. For systems 1 to 8, with the corre-

sponding parameters γi increasing monotonously, for T = 100 the following behavior occurs:

The acceptance frequency of the subspace tests I to IV is increasing with γi, and is close to the

95 % from system 3 onwards. For systems 1 and 2 the subspace tests V and VI, replicating

Johansen’s procedure on the state equation, and the Johansen procedure applied on a VAR

approximation have better performance, with the best performance given by the subspace

Johansen type tests. From system 3 onwards, including the pure autoregressive system 4,

the eigenvalue based subspace tests show the best performance. With larger positive values

of γi the performance of the Johansen procedure and even more the performance of the sub-

space tests V and VI deteriorates. This effect is present not only for T = 100 but also for

T = 200 and marginally for T = 300. It is worth noting that even for system 4, the pure

AR process, the performance of the subspace tests I to IV is better than the Johansen results
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System Sample Subspace Tests I to VI Johansen Tests Bierens
1 100 0.421 0.421 0.409 0.409 0.870 0.855 0.824 0.807 0.834

200 0.533 0.533 0.521 0.521 0.908 0.897 0.883 0.862 0.935
300 0.553 0.553 0.542 0.542 0.899 0.885 0.882 0.861 0.923
400 0.579 0.579 0.566 0.566 0.898 0.888 0.896 0.877 0.924
1000 0.750 0.750 0.742 0.742 0.953 0.945 0.906 0.893 0.928

2 100 0.884 0.884 0.880 0.880 0.990 0.994 0.903 0.894 0.606
200 0.930 0.930 0.925 0.925 0.998 0.998 0.946 0.934 0.732
300 0.928 0.928 0.922 0.922 1.000 1.000 0.943 0.931 0.808
400 0.948 0.948 0.943 0.943 0.999 0.998 0.947 0.935 0.862
1000 0.944 0.944 0.941 0.941 1.000 1.000 0.947 0.941 0.937

3 100 0.945 0.943 0.936 0.935 0.841 0.948 0.887 0.880 0.426
200 0.946 0.946 0.941 0.941 0.995 0.997 0.930 0.927 0.561
300 0.963 0.963 0.960 0.960 0.999 0.999 0.949 0.939 0.637
400 0.964 0.964 0.963 0.963 0.999 0.999 0.955 0.942 0.707
1000 0.950 0.950 0.943 0.943 0.999 0.999 0.952 0.937 0.866

4 100 0.963 0.964 0.951 0.950 0.714 0.873 0.869 0.858 0.364
200 0.966 0.966 0.963 0.963 0.999 1.000 0.948 0.936 0.467
300 0.977 0.977 0.970 0.970 0.997 0.997 0.944 0.937 0.567
400 0.969 0.969 0.965 0.965 0.998 0.997 0.954 0.949 0.605
1000 0.946 0.946 0.942 0.942 1.000 1.000 0.943 0.937 0.804

5 100 0.962 0.963 0.960 0.962 0.608 0.802 0.827 0.815 0.340
200 0.968 0.968 0.965 0.965 0.993 0.996 0.935 0.925 0.431
300 0.962 0.961 0.960 0.960 0.996 0.995 0.946 0.939 0.500
400 0.961 0.961 0.957 0.957 0.999 0.999 0.951 0.943 0.525
1000 0.948 0.948 0.943 0.943 0.999 0.999 0.949 0.939 0.733

6 100 0.946 0.956 0.944 0.952 0.509 0.702 0.725 0.719 0.282
200 0.963 0.963 0.962 0.962 0.985 0.989 0.927 0.912 0.349
300 0.957 0.958 0.957 0.958 0.987 0.990 0.955 0.948 0.425
400 0.942 0.942 0.940 0.940 0.991 0.993 0.939 0.924 0.428
1000 0.955 0.955 0.949 0.949 0.998 0.997 0.956 0.939 0.626

7 100 0.959 0.957 0.956 0.960 0.324 0.528 0.590 0.577 0.241
200 0.964 0.965 0.959 0.961 0.959 0.973 0.877 0.876 0.269
300 0.949 0.949 0.948 0.949 0.959 0.967 0.937 0.925 0.344
400 0.947 0.948 0.947 0.947 0.969 0.978 0.949 0.936 0.388
1000 0.955 0.955 0.950 0.950 0.989 0.993 0.955 0.948 0.545

8 100 0.955 0.955 0.954 0.960 0.258 0.464 0.562 0.553 0.232
200 0.976 0.976 0.971 0.971 0.971 0.985 0.886 0.881 0.301
300 0.971 0.969 0.966 0.966 0.960 0.963 0.937 0.928 0.329
400 0.953 0.952 0.954 0.953 0.946 0.955 0.950 0.941 0.381
1000 0.954 0.952 0.951 0.951 0.958 0.972 0.958 0.954 0.546

Table 3: Frequencies of correct decisions of the 9 discussed tests for cointegration for all 8
systems and all sample sizes T = 100, . . . , 400 and 1000. The subspace tests are ordered as
indicated in the text. The Johansen VAR based tests are ordered as first the trace and second
the max test. The individual steps of the testing sequences are carried out at 5 % nominal
size.
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for T = 100.10 The performance of Bierens’ test is deteriorating strongly from system 1 to

system 8. From system 3 or 4 onwards even for T = 1000 the results are quite bad, and the

acceptance frequency is far off the 95 % value.

From the 2-dimensional systems we thus conclude that the subspace tests I to IV are out-

performing the Johansen VAR results for systems with no or positive autocorrelation of the

MA errors. Tests V and VI have deteriorating performance for increasing autocorrelation, a

feature that is to a lesser extent shared by Johansen’s procedure.

In Figures 1 and 2 we display the densities of the log Hausdorff distances between the

true and the estimated cointegrating spaces. As indicated already above, four distances are

computed. The results can be summarized as follows: Except for system 1 it turns out that the

performance of the subspace estimates and the Johansen VAR estimate of the cointegrating

space are of roughly the same quality. The Bierens estimates are worse throughout, and are

therefore seen to be placed right of the other densities in the pictures. For system 1 the

Johansen procedure dominates the other approaches and it is remarkable that for this system

the initial subspace estimate of the cointegrating space is better than the adapted estimate.

For the other systems the adapted estimate is only slightly better than the initial estimate,

and for the bigger sample sizes there is basically no difference between the initial and the

adapted estimates.

3.2 3-dimensional systems

Also 3-dimensional ARMA(2,1) processes with a 2-dimensional cointegrating space have been

simulated: 
 1 1 0
1 0 1
1 1 3





 y1t

y2t

y3t


 =


 u1t

u2t

u3t


 =


 0.8 0 0
0 1.2 0
0 0 1.5





 u1t−1

u2t−1

u3t−1


+

+


 0 0 0
0 −0.7 0
0 0 −0.5





 u1t−2

u2t−2

u3t−2


+


 ε1t

ε2t

ε3t


+


 γ1 0 0
0 γ2 0
0 0 γ3





 ε1t−1

ε2t−1

ε3t−1


 (7)

Again the εt are i.i.d. normally distributed.11 The cointegrating space is equal to the space of

the spanned by the first two rows of the first matrix in the above equation. The parameters
10Note at this point that all test results are based on asymptotic tables, where no small sample correction

has been performed for any of the tests.

11The covariance matrix is given by


 0.47 0.20 0.18

0.20 0.32 0.27
0.18 0.27 0.30


 and is taken from Saikkonen and Luukkonnen

(1997).
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Figure 1: Density plots of Log Hausdorff distances between true and estimated cointegrating
spaces for systems 1 to 4. Ordered from system 1 to 4 along columns and along rows for
T = 100, . . . , 400. The solid lines correspond to the initial subspace estimates, the dotted
lines correspond to the adapted subspace estimates, the dash-dotted lines correspond to the
Johansen estimates derived from a VAR approximation and the dashed lines correspond to
the Bierens estimates.
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Figure 2: Density plots of Log Hausdorff distances between true and estimated cointegrating
spaces for systems 5 to 8. Ordered from system 5 to 8 along columns and along rows for
T = 100, . . . , 400. The solid lines correspond to the initial subspace estimates, the dotted
lines correspond to the adapted subspace estimates, the dash-dotted lines correspond to the
Johansen estimates derived from a VAR approximation and the dashed lines correspond to
the Bierens estimates.

20



1 2 3 4 5 6
γ1 -1 -0.5 0 0.6 0.8 1
γ2 -0.9 -0.5 0 0.6 0.8 0.9
γ3 -0.9 -0.5 0 0.6 0.8 0.9
ρ0 1 2 - 1.66 1.25 1

Table 4: Parameter values γ1, γ2 and γ3 used in the simulations. ρ0 denotes the minimum
absolute value of the roots of det b(z).

γi used in the simulations are given in Table 4.

The test results presented in Table 5 are comparable to the results obtained with the 2-

dimensional processes. Look at T = 100 first: For system 1 with the most negative parameters

γi, the Johansen procedure and the Johansen type subspace tests (V and VI) outperform the

other tests. For system 2, the subspace tests I to VI all lead to correct decisions in around 65

% of the replications, whereas Johansen’s tests lead to a correct decision in only about 55 %

of the replications. From system 3 onwards for this sample size the subspace tests are inferior

to the Johansen results, which remain at roughly the same level for the rest of the systems.

For T ≥ 200 all subspace tests as well as the Johansen tests exhibit good performance, with
some variability across the tests for T = 200. The Bierens procedure on the other hand

delivers inacceptable results even for T = 1000, with the exception of system 1, where for

T = 200, . . . , 400 in around 70 % of the replications the correct decision is made. Further

investigation of the results of Bierens’ procedure shows that across most of the replications a

too small number of cointegrating relationships is decided for.

Hence we note that for these 3-dimensional systems, the test performance of the Johansen

procedure on these VAR approximations is not outperformed by the subspace cointegration

tests, and both approaches are significantly better than the Bierens method. The latter

exhibits a strong tendency to deliver a too low dimensional cointegrating space.

The second issue investigated is again the quality of the estimation of the cointegrating space,

see Figure 3. Again the Bierens procedure performs worse than either the subspace estimates

of the Johansen VAR estimates for all systems and sample sizes. The other two methods yield

again quite comparable results. It has to be noted that for the two systems with negative

γi’s, the Johansen procedure performs best. For systems 3 to 6 with γi ≥ 0 the performance
of the Johansen and the subspace algorithm estimates are again comparable, where in some

cases a slightly better performance of the Johansen procedure is observed.
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System Sample Subspace Tests I to VI Johansen Tests Bierens
1 100 0.757 0.758 0.746 0.746 0.861 0.944 0.893 0.882 0.378

200 0.818 0.818 0.812 0.812 0.967 0.966 0.917 0.903 0.714
300 0.869 0.869 0.864 0.864 0.982 0.982 0.928 0.916 0.702
400 0.882 0.882 0.877 0.877 0.989 0.988 0.907 0.895 0.720
1000 0.957 0.957 0.951 0.951 0.999 0.999 0.944 0.937 0.525

2 100 0.645 0.651 0.641 0.642 0.637 0.702 0.575 0.543 0.041
200 0.863 0.864 0.857 0.856 0.892 0.945 0.928 0.911 0.043
300 0.901 0.901 0.896 0.896 0.970 0.993 0.942 0.932 0.056
400 0.930 0.930 0.923 0.923 0.999 1.000 0.939 0.931 0.047
1000 0.946 0.946 0.941 0.941 1.000 1.000 0.955 0.944 0.145

3 100 0.722 0.740 0.758 0.762 0.454 0.634 0.883 0.870 0.026
200 0.960 0.965 0.962 0.961 0.979 0.995 0.973 0.969 0.044
300 0.977 0.977 0.976 0.976 0.997 0.996 0.977 0.972 0.069
400 0.975 0.975 0.974 0.974 0.999 1.000 0.979 0.978 0.122
1000 0.981 0.981 0.976 0.976 1.000 1.000 0.979 0.974 0.248

4 100 0.343 0.477 0.408 0.507 0.500 0.726 0.887 0.863 0.013
200 0.817 0.834 0.817 0.822 0.999 0.998 0.938 0.924 0.034
300 0.905 0.905 0.902 0.902 0.995 0.996 0.943 0.930 0.043
400 0.924 0.923 0.914 0.914 0.995 0.999 0.942 0.934 0.048
1000 0.947 0.947 0.943 0.943 1.000 0.999 0.951 0.939 0.121

5 100 0.417 0.594 0.492 0.640 0.232 0.396 0.754 0.712 0.018
200 0.982 0.982 0.981 0.981 0.984 0.996 0.950 0.942 0.022
300 0.992 0.992 0.992 0.992 0.995 0.994 0.982 0.978 0.035
400 0.983 0.982 0.982 0.980 0.992 0.993 0.984 0.980 0.040
1000 0.993 0.993 0.991 0.991 0.996 1.000 0.990 0.986 0.087

6 100 0.302 0.494 0.374 0.541 0.466 0.639 0.824 0.784 0.009
200 0.960 0.967 0.956 0.960 0.985 0.997 0.950 0.940 0.020
300 0.968 0.968 0.963 0.963 0.998 0.997 0.953 0.942 0.028
400 0.942 0.942 0.939 0.939 0.997 0.998 0.956 0.947 0.031
1000 0.931 0.932 0.923 0.924 0.984 0.988 0.931 0.923 0.094

Table 5: Frequencies of correct decisions of the 9 discussed tests for cointegration for all 6
systems and all sample sizes T = 100, . . . , 400 and 1000. The subspace tests are ordered as
indicated in the text. The Johansen VAR based tests are ordered as first the trace and second
the max test. The individual steps of the testing sequences are carried out at 5 % nominal
size.
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The results are different for the systems with negative coefficients γi and especially for

system 1 with a unit root in the moving average polynomial. For these systems, the subspace

estimates are worse than the Johansen estimate. One reason for this may of course be the

fact that the subspace algorithm is not designed for systems with unit roots in the moving

average polynomial, as the strict minimum phase assumption is used in the consistency proofs.

Hence, some problems could have been expected for the systems with a (near) unit root in the

moving average polynomial. It is however remarkable that the tests, based on the eigenvalues

of the estimated system matrix Â, seem to be unaffected.

4 An Application: The Neoclassical Growth Model

In this section we apply the discussed methods for cointegration analysis to investigate the

long-run properties of the Austrian economy through the mirror of the (stochastic) one-sector

neoclassical growth model.12 The one-sector neoclassical growth model is one of the most

widely used models in empirical macroeconomics, see King, Plosser and Rebelo (1988) for an

early discussion. This exercise serves two purposes: The first is to see whether the results

obtained by applying the different methods are as versatile as those obtained on simulated

data, or maybe even more versatile. The second point, mainly relegated to the appendix is to

re-assess in detail the long-run growth properties of the Austrian economy. This updates in

a certain sense an earlier study undertaken by Kunst and Neusser (1990). In the Appendix

additional empirical results, concerning the data, the cointegrating space, and the stability

of the results are collected. In a separate subsection we focus in a bivariate analysis on the

consumption-output, or consumption-GDP, relationship, which is another prime candidate

for a cointegrating relationship.

As in Kunst and Neusser (1990) the set of variables consists of the following (seasonally

adjusted) real variables: GDP, labelled also output, private consumption, gross investment,

exports, total wage sum and the (ex-post) real interest rate. The frequency of observations is

quarterly and the time range is from 1977(IV) to 1998(III). For this set of variables, the un-

derlying model has some clear predictions concerning cointegration: Although (the logarithm

of) technical progress is assumed to be an I(1) process, the log consumption-output ratio

(CR), the log investment-output ratio (IR), the log wage sum-output ratio (WR) and the real
12The computations reported in this section and in the appendix have been performed using MATLAB, EVIEWS,

EASYREG and CATS.

24



interest rate are predicted to be stationary on theoretical grounds. Exports are included in

the variable set to account for the fact that Austria is a small open economy, with export

shares in the 1990ies at above 50 % of GDP.13 The first step in the analysis is to perform

unit root tests on the individual series. These lead us to conclude that all series except for

the real interest rate can be sufficiently well described as random walks (integrated of order

1) with drifts, see also Figure 6 in the appendix.

Before proceeding to a multivariate cointegration analysis, let us first inspect the great ra-

tios, i.e. CR, IR and WR, predicted to be stationary by the theory, graphically in Figure 4.

Graphical inspection leads us to tentatively conclude stationarity of CR, nonstationarity of

1978 1981 1984 1987 1990 1993 1996
-0.585

-0.580

-0.575

-0.570

-0.565

-0.560

-0.555

-0.550

-0.545

-0.540

1978 1981 1984 1987 1990 1993 1996
-1.560

-1.520

-1.480

-1.440

-1.400

-1.360

-1.320

1978 1981 1984 1987 1990 1993 1996
-0.675

-0.666

-0.657

-0.648

-0.639

-0.630

-0.621

-0.612

-0.603

-0.594

Figure 4: Starting from left this figure displays the log consumption-output ratio (CR), the
log investment-output ratio (IR) and the log wage sum-output ratio (WR).

IR and an unclear picture for WR. Also for the real interest rate, see again Figure 6 in the

Appendix, the decision is not completely clear. Graphical analysis is followed by statistical

analysis, of course: Unit root tests are performed on these great ratios (and on the real inter-

est rate), as a direct device of testing for cointegration. The results of these tests are quite in

line with the graphical impression: Stationarity of CR, nonstationarity of IR and both WR

and the real interest rate are borderline cases, where the test results are sensitive with respect

to the specification of the test equation.

Concerning the investment-output ratio, during the first half of the 1980ies a strong decline

in investment activity can be observed, most likely triggered by the oil-shock in 1979, 1980.

Then, from about 1985 to 1991 investment expanded. During the years 1991 to 1993 the
13King et al. (1991) augment the basic model to include money and prices. In that context the additional

cointegrating relationships that are predicted by the theoretical model are a cointegrating relationship between
nominal interest rates and inflation and a cointegrating relationship between real balances, output and nominal
interest rates.
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Thresh. I II III IV V VI Trace Max Bierens
3 0 0 0 0 3 3 3 2 0/3

Table 6: Test results for the dimension of the cointegrating space in the 6 variable system.
For Bierens’ method both the test and the estimation result are presented.

effects of the last recession observed in Austria can be seen clearly.

The fall of WR since 1995 has already come to the attention of Austrian macroeconometric

modellers, and causes problems in finding a stable wage equation. Since about 1995 wage

growth is smaller than GDP growth in Austria, reflecting a possible change in the Austrian

wage setting behavior or a change of other institutional characteristics present on the Aus-

trian labor market. However, structural stability tests lead to the conclusion of no structural

change, this may stem from the fact that the possible changepoint is at the very end of the

sample, thus the power of these tests is rather low.

We are now ready to apply the discussed systems cointegration analysis methods. For the

Johansen procedure information criteria lead to an optimal lag length of 2 for a VAR model

and for the deterministic part an unrestricted intercept vector turns out to be the most ap-

propriate choice (after testing for the appropriate deterministic components). The results

concerning the dimension of the cointegrating space delivered by the nine different tests and

two estimates from the three different methods are given in Table 6. From the results one ob-

servation is quite striking: The subspace algorithm tests I to IV and the Bierens test all lead

to the conclusion of no cointegration, i.e. of 6 random walks driving the system. The other

tests, subspace V and VI, the Johansen trace test, as well as the subspace algorithm estimate

(labelled Thresh. in Table 6) and the Bierens estimate of the dimension of the cointegrating

space are equal to 3 and Johansen’s max test leads to a conclusion of a 2-dimensional coin-

tegrating space. A result of a 3-dimensional cointegrating space is in line with the univariate

investigations, no cointegration at all seems to be highly implausible. Thus, we first conclude

that the results obtained on real world data depend quite strongly on the method used. We

also conclude that for the small sample size and 6 variables the imprecise estimation of the

system matrices and hence the eigenvalues of A detrimentally influences the properties of the

subspace tests, at least for the eigenvalue based tests I to IV.

But not only the test results are quite differing between the methods, the differences be-

come even more striking when one looks at the estimated 3-dimensional cointegrating spaces
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Theor. Joh. Bie. Sub. Adap.
Theor. – 0.999 0.999 0.957 1
Joh. -0.001 – 0.807 0.965 0.985
Bie. -0.001 -0.215 – 0.779 0.850
Sub. -0.044 -0.035 -0.250 – 0.324
Adap. 0 -0.015 -0.016 -1.126 –

Table 7: Pairwise Hausdorff distances between the 3-dimensional theoretically predicted coin-
tegrating space spanned by CR, WR and the real interest rate and the 3-dimensional coin-
tegrating spaces estimated with the different methods. The upper half of the table displays
the Hausdorff distances, the lower half displays the logarithms of the Hausdorff distances.

themselves. In particular we compute in Table 7 the Hausdorff (and log Hausdorff) distances

between the estimates obtained from the different methods and also the distance to the 3-

dimensional space spanned by CR, WR and the real interest rate. This 3-dimensional space is

the theoretical space that is, from the univariate investigations, the most plausible candidate

to compare with, but the results are essentially unchanged if any other 3-dimensional subspace

from the theoretically predicted 4-dimensional cointegrating space is used in computing the

distances. The results are rather disillusioning. Not only are the distances to the theoretically

predicted space almost one, which might as well indicate a non-adequacy of the one-sector

neoclassical growth model to describe the Austrian economy, the results are also extremely

different between the methods. The Hausdorff distances differ between 0.324 and 0.985 for

the different methods. Noting again that one is the upper bound for the Hausdorff distance,

the variability of the results becomes evident, and raises some doubt about the approxima-

tion quality of cointegrating spaces for the sample sizes (about 100 observations) and system

dimensions (up to 5 or 6 variables) usually at hand in macroeconometric applications.

4.1 The Consumption-Output Relationship

In this subsection we take a look at the consumption-output (GDP) relationship, see also

Figure 5 below. This relationships is not only from the above discussed neoclassical growth

model a prime candidate for cointegration, also the permanent income hypothesis predicts a

long-run relationship between income and consumption. Of course GDP serves only as a proxy

for disposable income, which itself only serves as a proxy for the unobservable permanent

income. We investigate this bivariate example also to see the effect of the dimensionality

of the system on the differences in the outcome obtained from the employed methods and
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Thresh. I II III IV V VI Trace Max Bierens
1 1 1 1 1 1 1 1 1 2/2

Table 8: Test results for the dimension of the cointegrating space in the 2 variable system
GDP and consumption. For Bierens’ method both the test and the estimation result are
presented.

1977 1980 1983 1986 1989 1992 1995 1998
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13.0 beta‘  * yt

1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998
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0.84

0.85

0.86

0.87

short-run corrected

1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998
-0.020

-0.015

-0.010

-0.005

0.000

0.005
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0.015

Figure 5: The left plot shows log output (dotted line) and log consumption (solid line).
The right plot shows the estimated cointegrating relationship between the two obtained by
applying the Johansen methodology. The upper graph displays the actual disequilibrium (β′yt

in the notation of Section 2) and the lower graph displays the disequilibrium corrected for
the short-run effects, i.e. for the lagged differences.

to check whether in this low-dimensional example the differences are less pronounced. The

results concerning the dimension of the cointegrating space are presented in Table 8. The

VAR order is again equal to 2 and again an unconstrained constant is included in the VAR

model. The order estimated for the state space model is also equal to 2. All tests and the

threshold estimate of the dimension of the cointegrating space except for Bierens’ test lead

to the conclusion of the existence of a cointegrating relationship between the two variables.

The result obtained from Bierens’ method is implausible, with both the estimate and the

test leading to a conclusion of stationarity of both consumption and output. This stands in

clear contrast with the left picture in Figure 5. In the right picture of Figure 5 we display

the time series of the estimated cointegrating relationship obtained by applying the Johansen

procedure. With the variables ordered as GDP and consumption, the estimated cointegrating

vector is given by (1,−0.975). Quite similar results emerge for the subspace estimates of the
cointegrating relationship, which both coincide to be (1,−1.0461). Bierens’ estimate – for
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(1,−1) Joh. Bie. Sub./Adap.
(1,−1) – 0.013 0.206 0.023
Joh. -4.374 – 0.218 0.035
Bie. -1.580 -1.522 – 0.184
Sub. -3.794 -3.350 –1.694 –

Table 9: Pairwise Hausdorff distances between the theoretically predicted cointegrating space
(1,−1) and the 1-dimensional cointegrating spaces estimated with the different methods. The
upper half of the table displays the Hausdorff distances, and the lower half the logarithms of
the Hausdorff distances.

a 1-dimensional cointegrating space - is far off these estimates and given by (1,−1.533). In
Table 9 we display again the Hausdorff distances between the different estimates and also

to the theoretically expected cointegrating vector (1,−1). Compared to the 6-dimensional
example, here the results are much closer to each other and all results are also closer to the

theoretically specified cointegrating space (1,−1). Hence, as expected the dimensionality of
the problem has a big effect on the results obtained with the different methods and it has

also an effect on the extent to which the results obtained with the discussed methods differ.

5 Summary and Conclusions

In this paper we compare, both by means of simulations of ARMA processes and by a real

world application, the performance of the Johansen VAR method for cointegration analysis

with the performance of two methods developed to perform cointegration analysis for ARMA

processes. The simulations are performed to assess the finite sample robustness of the Jo-

hansen procedure with respect to ARMA data generating processes, which in turn allows to

assess the possibility to back-up results obtained by applying Johansen’s method with results

obtained from methods that are designed for ARMA data generating processes. These two

other methods are the nonparametric cointegration analysis of Bierens (1995, 1997a) and the

recently developed subspace algorithm cointegration analysis of Bauer and Wagner (2002a).

The subspace algorithm cointegration analysis is described in some detail, since it differs from

the usual approaches to cointegration analysis in two main aspects. Firstly, it is formulated in

the state space framework, which is an equivalent alternative to represent ARMA processes.

Secondly, it uses a modified version of a so called subspace algorithm. Subspace algorithms

are computationally cheap methods that enjoy increasing popularity in the engineering and

control literature. Since, both the state space framework and especially subspace algorithms
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are not widely usage in the cointegration literature, these aspects are described in some detail

in Section 2, where the applied methods are discussed.

Let us first discuss the evidence gathered via simulations. The simulations are performed

with 2- and 3-dimensional ARMA(2,1) processes for 100, . . . , 400 and 1000 observations. The

clearest message that emerges from the simulations is that Bierens’ nonparametric cointe-

gration analysis performs significantly worse than both Johansen’s method and the subspace

algorithm cointegration analysis. The correct decision frequencies are lower than for the other

two methods, and the Hausdorff distances of the cointegrating spaces estimated by Bierens’

procedure to the true cointegrating spaces are larger than for the other two methods. The

Johansen VAR procedure and the subspace procedure show relatively comparable behavior.

For the 2-dimensional systems and small sample sizes the best performing subspace tests

outperform the Johansen test results, for the 3-dimensional systems no small sample gain

in the test performance is obtained by applying the subspace procedure. Concerning the

Hausdorff distances, the results are quite similar for the two methods. This however is to a

certain extent expected, as for ARMA processes the cointegrating space depends only upon

the autoregressive part, see e.g. Deistler and Wagner (2000). Summarizing, we conclude that

the subspace procedure performs equally well and in some cases better than the Johansen

procedure on the simulated ARMA(2,1) systems. These results can only be seen as a first

investigation and more evidence on a larger variety of systems has to be gathered to better

understand the relative performance of the two methods.

Let us finally turn to the cointegration analysis of the neoclassical growth model. Two

messages can be reported: First of all, the results obtained by the different methods vary sig-

nificantly for the system with 6 variables and about 100 observations. This versatility occurs

both with respect to the test results for cointegration and also with respect to the estimated

cointegrating spaces. In the bivariate application of the methods to the consumption-output

relationship more similar results are found across methods. This sensitivity of results with re-

spect to the applied method should be taken more into account than is current practice. The

second message to be reported is that the neoclassical growth model does not fully describe

the long-run growth properties of the Austrian economy. The dimension of the estimated coin-

tegrating space does not correspond to the theoretical prediction and also the theoretically

specified cointegrating relationships are almost all not contained in the estimated cointegrat-

ing space. These result confirm to a certain extent previous findings. It is in this context
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important to note that the recursive analysis and stability testing for the cointegrating space

does not lead to find any tendency that the model becomes a more apt description of the

Austrian economy’s growth process over the past decade either.

Appendix: Additional Empirical Results

In this appendix we present additional empirical results concerning three items. The first is a discussion
of preprocessing the seasonally fluctuating raw data. Here we again discuss also univariate unit root
testing. The second is an investigation of the stability of the estimated cointegrating rank and space
and the third is hypothesis testing on the cointegrating space. The latter two items are mainly
discussed in terms of the Johansen methodology, as this is the most developed method. Compared to
that, e.g. for the subspace algorithm cointegration analysis no hypothesis testing on the cointegrating
space at all is available so far.

Raw Data, Seasonality and Unit Roots

The Austrian Institute for Economic Research provides real quarterly data classified according to
SNA79 for 1977(I) to 1998(III) at 1983 prices. The data are not seasonally adjusted and exhibit clear
seasonal variation, most strongly present in the investment series.14 In order to be able to perform a
standard I(1) cointegration analysis, hence the first issue to investigate is the presence of stochastic
seasonality. The test proposed by Hylleberg et al. (1990) is applied. The results can be summarized
as follows: For the logs of GDP, consumption, investment and wages all 4 seasonal unit roots seem to
be present. For the log of exports, the roots at ±1 cannot be rejected, and for the real interest rate
only the root at −1 cannot be rejected. To avoid problems of analyzing series that have been filtered
differently we decide to de-seasonalize all 6 series by applying the filter S(z) = (1 + z + z2 + z3)/4,
although strictly speaking only the 4 first mentioned series need to be filtered or annually averaged
in this way to extract all seasonal unit roots present. The de-seasonalized series are displayed in
Figure 6. The applied filter extracts (almost by construction) the observed seasonality reasonably
well. The seasonally adjusted series are rather smooth and show a clear trending behavior. The only
exception is the real interest rate, where, as expected, no trend seems to be visible, although from
about 1980 to 1993 the level of the series seems to be higher than before and afterwards.
The usual battery of unit root tests has been applied to the seasonally differenced series, like augmented
Dickey-Fuller, Phillips-Perron, Schmidt-Phillips, the KPSS test with the null of stationarity and also
the non-parametric cointegration test of Bierens applied to each series individually. The detailed
results are available upon request. The general picture that emerges confirms the quite clear graphical
evidence: All series except for the real interest rate seem to be reasonably well described as integrated
processes of order one with drift. The real interest rate, theoretically predicted to be stationary, turns
out to be a borderline case in the statistical analysis, where the results are sensitive with respect to
the precise specification of the test equation.

Stability of Cointegrating Rank and Space

In Section 4 it has been found that the cointegrating space is likely to be of dimension 3. Hence,
the full predictions of the neoclassical growth model of a 4-dimensional cointegrating space are not
supported. This finding is in line with previous studies of this model using Austrian data, the already
mentioned work by Kunst and Neusser (1990) and of Neusser (1991). Neusser (1991) argues, using
data from 1964(I) to 1989(IV), that the missing cointegrating relationship is possibly due to the fact
that his sample contains several years of reconstruction after World War II. However, we obtain the
same result also for our data starting only in 1977. The line of thought of some underlying disturbance

14The raw data as well as all testing results are available from the author upon request.
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Figure 6: The seasonally adjusted Austrian series, the first 5 series are in logs.

hindering the emergence of underlying long-run relationships might be extended to later periods by
noting that the Austrian economy was substantially regulated in certain sectors until a decade or so
ago. To investigate this question, a recursive analysis has been performed, in order to see whether
the dimension of the cointegrating space changes over time, with a possible tendency to increase. Due
to the relatively small sample we start this recursive estimation only in 1993(III), i.e. about a year
before Austria becomes a member of the European Union.
The recursive analysis is presented in the context of the VAR model and is based on the Johansen
cointegration analysis method. The results are graphically displayed in Figure 7. The different lines are
corresponding from top to bottom to the hypotheses that dim(β) ≤ i for i = 0, . . . , 5. If a line is above
the horizontal line at 1, this means that the corresponding hypothesis is rejected. The two graphics
corresponding to the so called Z-model (left) and the so called R-model (right) differ with respect to
the estimation of the short-run parameters. In the Z-model all the parameters are re-estimated for
each sample, whereas in the R-model the short-run parameters are considered fixed throughout, and
are only estimated for the full sample (see MALCOLM, Mosconi, 1998 for a description). The results
are slightly different for the two versions. In the left picture we see that during the years 1996 and 1997
the hypothesis that the cointegrating space is 2-dimensional is at the edge of being accepted during
several quarters. But, generally, for the last couple of years there is no tendency for the dimension of
the cointegrating space to increase. The R-model suggests this increase in dimension, from a 2-to a
3-dimensional space only emerging at the end of the sample period. Hence also in later periods and in
a sample that starts later than Neusser’s we do not find evidence for the 4-dimensional cointegrating
space predicted by the neoclassical growth model.
A second hypothesis investigated within the cointegrated VAR model is the possibility of a changing
cointegrating space. In Figure 8 we display the results of the recursive estimation of the spanned
cointegrating space. Here for both, the R- and the Z-model the stability of the space spanned by the
estimated cointegrating space cannot be rejected. Again the lines in this figure are normalized in such
a way that the critical value is 1, so that the hypothesis of stability is rejected if the lines reporting
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STABILITY OF THE COINTEGRATION RANK: THE Z-MODEL
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Figure 7: Stability of the dimension of the cointegrating space. The left plot corresponds to
the Z-model and the right plot corresponds to the R-model.
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Figure 8: Stability of the cointegrating space.
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Null hypothesis Distribution Test statistic
CR ∈ sp(β) χ2

3 9.10∗

IR ∈ sp(β) χ2
3 15.25∗

WR ∈ sp(β) χ2
3 5.46

R ∈ sp(β) χ2
3 4.29

{CR, IR} ∈ sp(β) χ2
6 42.73∗

{CR, WR} ∈ sp(β) χ2
6 31.86∗

{CR, R} ∈ sp(β) χ2
6 16.17∗

{IR, WR} ∈ sp(β) χ2
6 32.22∗

{IR, R} ∈ sp(β) χ2
6 18.64∗

{WR, R} ∈ sp(β) χ2
6 12.44

{CR, IR, WR} ∈ sp(β) χ2
9 56.87∗

{CR, IR, R} ∈ sp(β) χ2
9 52.75∗

{IR, WR, R} ∈ sp(β) χ2
9 47.25∗

sp(β) ∈ {CR, IR, WR, R} χ2
6 20.24∗

Table 10: Results of testing hypotheses on the cointegrating space. ∗ denotes rejection of the
null hypothesis at the 10 % critical level.

the (recursive) test statistics have values larger than 1.
There is thus no evidence in favor of instabilities concerning the cointegrating space, neither with
regard to the dimension, nor with regard to the subspace of the R

6 that the cointegrating space spans.
As indicated above, the validity of these arguments is limited by the small sample size on which the
recursive analysis is performed on. Further ongoing work will use other more elaborated methods to
detect instabilities in the cointegrating space. Tests to detect a structural change in the cointegrating
space are developed in Seo (1998), and tests for a continuous (smooth transition type) structural
change in the cointegration space are presented by Ripatti and Saikkonen (1998).

Testing Hypotheses on the Cointegrating Space

The final issue is testing hypotheses on the cointegrating space. Again the results are reported for the
Johansen method, as for the Bierens method hypothesis testing is less developed (and all formulated
hypotheses have been rejected) and no hypothesis testing is developed for subspace algorithm cointe-
gration analysis.
The tested hypotheses are whether any of the great ratios CR, IR, WR and the real interest rate,
or any pair or triple of these is contained in the estimated 3-dimensional cointegrating space. Fur-
thermore also the hypothesis that the estimated 3-dimensional cointegrating space is contained in the
theoretically predicted 4-dimensional space is tested. See Table 10 for the results. The results are
not always in line with the univariate results presented in the main text, e.g. it is surprising to see
the hypothesis that CR is contained in the cointegrating space rejected. After all, CR is the variable
that is most clearly found to be stationary if tested univariately. Rejection of IR is in accordance
with the univariate results. Two theoretical relationships are found to be contained in the estimated
cointegrating space, both individually and jointly, the wage sum output ratio and the real interest
rate. Hence, there is at least partial concordance between the univariate results, the systems results
and the theoretical predictions.
Two messages emerge: Firstly, there are substantial differences in the results obtained by single equa-
tion and systems approaches, which is a well known issue in econometrics. However, also the results
obtained by different (multivariate) methods differ to a great extent. Secondly, the applied methods
lead us to conclude that the long-run predictions of the neoclassical growth model are only partly
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reflected in the Austrian data. We observe no changes in that respect due to the deregulations and
Austria’s joining of the European Union.
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