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Abstract: This article provides a review of the saddlepoint approximation for a M-statistic of a
sample of nonnegative random variables with fixed sum. The sample vector follows the multinomial,
the multivariate hypergeometric, the multivariate Polya or the Dirichlet distributions. The main
objective is to provide a complete presentation in terms of a single and unambiguous notation of
the common mathematical framework of these four situations: the simplex sample space and the
underlying general urn model. Some important applications are reviewed and special attention is
given to recent applications to models of circular data. Some novel applications are developed and
studied numerically.
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1. Introduction

The topic of this article is a saddlepoint approximation to the distribution of the M-statistic Tn,
precisely Tn(Y1, . . . , Yn), which is the implicit solution with respect to (w.r.t.) t of

n

∑
j=1

ξ j(Yj; t) = 0, (1)

where the function ξ j: R+×R→ R is continuous (thus measurable), decreasing in its second argument,
for j = 1, . . . , n, R+ = [0, ∞), and where the random variables Y1, . . . , Yn are nonnegative, dependent
and satisfy ∑n

j=1 Yj = k, for some fixed k > 0. Decreasing is meant in the strict sense. The sample
vector (Y1, . . . , Yn) takes values in a simplex. It is often referred to as compositional data, by referring
to the situation where Yj represents the number of units of the jth category, for j = 1, . . . , n, given n
possible categories (see e.g., [1]). When (Y1, . . . , Yn) follows the multinomial distribution, it is also
referred to as categorical data. We consider three discrete and one continuous joint distributions for
(Y1, . . . , Yn) and relate these multivariate distributions to three general urn sampling schemes that are
given, e.g., in [2].
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The derivation of the saddlepoint approximation to the distribution of Tn relies on the
distributional equivalence

(Y1, . . . , Yn) ∼
(
(X1, . . . , Xn)

∣∣∣ n

∑
j=1

Xj = k

)
, (2)

which means that (Y1, . . . , Yn) has the conditional distribution of (X1, . . . , Xn) given ∑n
j=1 Xj = k.

The nonnegative random variables X1, . . . , Xn form a conditional triangular array in the sense that,
conditionally on their sum, they are independent and their individual distributions may depend on
n. We refer to Equation (2) as the conditional representation of (Y1, . . . , Yn) in terms of (X1, . . . , Xn).
The computation of the distribution of Tn, as function of the dependent random variables Y1, . . . , Yn,
is generally difficult. It is however simplified by replacing these dependent random variables
by the triangular array random variables X1, . . . , Xn, in the same order, conditional on their sum.
Gatto and Jammalamadaka [3] extended the saddlepoint approximation for tail probabilities of
Skovgaard [4] to M-statistics and used the conditional representation in Equation (2) to derive
saddlepoint approximations for important classes of nonparametric tests, such as tests based
on spacings, two-sample tests based on spacing-frequencies and various tests based on ranks.
The application of this conditional saddlepoint approximation to the computation of quantiles can be
found in [5]. Further applications can be found in [6,7].

This article presents the conditional saddlepoint approximation from the general perspective of the
urn sampling model. Four cases of the of conditional representations given in Equation (2) are related
to the urn model: the joint multinomial in terms of Poisson random variables conditional on their sum
(M-P), the joint multivariate hypergeometric in terms of binomial random variables conditional on their
sum (MH-B), the joint multivariate Polya in terms of negative binomial random variables conditional on
their sum (MP-NB) and the joint Dirichlet in terms of gamma random variables conditional on their sum
(D-G). New applications or examples are given and tested numerically. Various previous applications of
the conditional saddlepoint approximation are reviewed. Two other general references on conditional
saddlepoint approximations are found in [8] (Chapter 4 and Section 12.5) and [9]. This article completes
these references in various ways. It provides a concise and complete presentation of the conditional
saddlepoint approximation for M-statistics (that includes an approximation to quantiles). It updates the
previous reviews by presenting additional recent important examples. It gives a general reformulation
with a consistent and homogeneous notation, that corresponds to a single underlying mathematical
model (viz., the urn model and the simplex sample space). It includes new important examples and
new numerical comparisons. The numerical illustrations are given for: the distribution of an estimator
of the entropy that relates to the urn model, the power of the likelihood ratio test, the distribution of the
insurer’s total claim amount and the null distribution of a test for symmetry of Dirichlet’s distribution.

Mirakhmedov et al. [10] used the three well-known conditional representations M-P, MH-B
and MP-NB with the Edgeworth approximation. The Edgeworth is however not a large deviations
approximation. Edgeworth approximations to small tail probabilities are usually less accurate than
saddlepoint approximations. Butler and Sutton [11] proposed a particular saddlepoint approximation
that exploits the conditional representation in Equation (2). It implies that, for all intervals
I1, . . . , In ⊂ R+,

P[Y1 ∈ I1, . . . , Yn ∈ In] = P

[
n

∑
j=1

Xj = k
∣∣∣X1 ∈ I1, . . . , Xn ∈ In

]
P[X1 ∈ I1, . . . , Xn ∈ In]

P
[
∑n

j=1 Xj = k
] .
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Then, the conditional probability above is approximated by a saddlepoint approximation for
independent and truncated random variables. This method allows approximating the distribution
of Mn = maxj=1,...,n Yj, for example, but does not allow approximating the distribution of the
M-statistic in Equation (1). Note that, for the case where (Y1, . . . , Yn) follows the multinomial
distribution, given in Equation (3), Good [12] proposed a specific saddlepoint approximation
for Mn.

This article has the following structure. Section 2 presents the four conditional representations,
in Sections 2.1 and 2.3. They are related to urn sampling schemes in Section 2.2. The three first
conditional representations, namely M-P, MH-B and MP-NB, are for counting random variables.
The fourth conditional representation is D-G and holds for positive random variables. Section 3
summarizes the conditional saddlepoint approximation for a M-statistics given another one:
Sections 3.1 and 3.2 are for tail probabilities and Section 3.3 for quantiles. Then, Section 4 provides
new applications and numerical studies for this saddlepoint approximation and briefly reviews other
important existing applications. Some final remarks are given in Section 5.

Regarding notation, we define N = {0, 1, . . .}, N∗ = N\{0}, R+ = [0, ∞) as already defined and
R∗+ = R+\{0}. The Pochhammer symbol is defined by

(x)k = x · . . . · (x− k + 1), ∀x ∈ R, k ∈ N∗.

The binomial coefficient is defined by

(
x
k

)
=


0, if k = −1,−2, . . . ,

1, if k = 0,
(x)k

k! , if k = 1, 2, . . . ,

∀x ∈ R.

The indicator function of the statement A is defined by

I{A} =
{

0, if A is false,

1, if A is true.

Let n ∈ {2, 3, . . .}. A (n − 1)-simplex is the (n − 1)-dimensional polytope determined by the
convex hull of its n vertices. We consider only the symmetric simplex. It is obtained by defining the jth
vertex vj = (v0, . . . , vn−1) by

vi =

{
x, if i = j,

0, otherwise,
for i = 0, . . . , n− 1,

for any desired size x ∈ R∗+ and for j = 0, . . . , n− 1. This representation corresponds to the set

∆n−1
x = {(x1, . . . , xn) ∈ Rn

+ | x1 + . . . + xn = x}.

We define also by

∆̈n−1
k = ∆n−1

k ∩Nn = {(k1, . . . , kn) ∈ Nn | k1 + . . . + kn = k}

the integer (n− 1)-simplex of size k ∈ N∗.
We denote by X ∼ Y the fact that the two random elements X and Y have same distribution.

The same symbol is used for the asymptotic equivalence.
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2. Four Conditional Representations and Their Urn Sampling Interpretations

This section reviews four multivariate distributions for which the conditional representation in
Equation (2) holds and relates them to a common urn model. Although these results are classical
and can be retrieved perhaps separately in the literature, the contribution of this section must be
sought in the single and unambiguous mathematical reformulation: of the multivariate distributions,
of their conditional representations and of their urn model. The same notation is used for saddlepoint
approximation in Section 3 and for the examples in Section 4. The first three models are presented in
Section 2.1 and are related to the three urn sampling schemes in Section 2.2. In these three models,
(Y1, . . . , Yn) takes values in ∆̈n−1

k , for k ∈ N∗. Section 2.3 presents a fourth multivariate model where
(Y1, . . . , Yn) takes values in ∆n−1

k , for k ∈ R∗+, and for which an asymptotic relation with one of the urn
sampling models holds.

2.1. Three Conditional Representations for Counting Random Variables

The next three multivariate distributions allow for the conditional representation in Equation (2)
and relate to the three urn sampling schemes of Section 2.2.

• Multinomial—conditional Poisson (M-P)
Let Xj ∼ Poisson(qpj), i.e., Poisson distributed with parameter qpj, for j = 1, . . . , n,
be independent, where (p1, . . . , pn) ∈ ∆n−1

1 and q ∈ R∗+. Then, the conditional representation in
Equation (2) holds with (Y1, . . . , Yn) ∼Multinomial(k; p1, . . . , pn), for k ∈ N∗, that is, with

P[Y1 = k1, . . . , Yn = kn] =

(
k

k1 . . . kn

)
pk1

1 . . . pkn
n , (3)

∀(k1, . . . , kn) ∈ ∆̈n−1
k , which is the multinomial distribution. Thus, k = ∑n

j=1 k j.
• Multivariate hypergeometric—conditional binomial (MH-B)

Let Xj ∼ Binomial(mj, q), i.e., binomial distributed with mj trials and elementary probability
q, for j = 1, . . . , n, be independent, where (m1, . . . , mn) ∈ ∆̈n−1

z , z = ∑n
j=1 mj and

q ∈ (0, 1). Then, the conditional representation in Equation (2) holds with (Y1, . . . , Yn) ∼
Multi-Hypergeometric(k; m1, . . . , mn), for k ∈ N∗, that is with

P[Y1 = k1, . . . , Yn = kn] =
∏n

j=1 (
mj
kj
)

(z
k)

, (4)

for k j = 0, . . . , mj, for j = 1, . . . , n, and k = ∑n
j=1 k j ≤ z, which is the multivariate hypergeometric

distribution. Thus, (k1, . . . , kn) ∈ ∆̈n−1
k ∩ ([0, m1]× . . .× [0, mn]).

• Multivariate Polya—conditional negative binomial (MP-NB)
Let Xj ∼ Negative-Binomial(mj, q), i.e.

P[Xj = l] =
(

l + mj − 1
l

)
qmj(1− q)l , for l = 0, 1, . . . ,

for j = 1, . . . , n, be independent, where (m1, . . . , mn) ∈ ∆n−1
u , for some u ∈ R∗+, and q ∈ (0, 1).

Thus, u = ∑n
j=1 mj. Then, the conditional representation in Equation (2) holds with (Y1, . . . , Yn) ∼

Multi-Polya(k; m1, . . . , mn), for k ∈ N∗, that is with

P[Y1 = k1, . . . , Yn = kn] =
∏n

j=1 (
mj+kj−1

kj
)

(u+k−1
k )

, (5)

∀(k1, . . . , kn) ∈ ∆̈n−1
k , which is the multivariate Polya distribution. Thus, k = ∑n

j=1 k j.
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We end this section with three remarks of general interest. We first note that in these three
situations the conditional representation in Equation (2) holds independently of the choice of q,
in R∗+ for the M-P and in (0, 1) for the MH-B and MP-NB representations. This independence can be
understood from fact that, in all three cases, ∑n

j=1 Xj is a sufficient statistic for q. This is a consequence
of the factorization theorem of sufficient statistics.

We can see that each one of the three conditional representations have an interpretation in terms
of mixture models. For example, consider the independent random variables Xj ∼ Poisson(qpj),
for j = 1, . . . , n, where (p1, . . . , pn) ∈ ∆n−1

1 and q ∈ R∗+. Then, ∀k1, . . . , kn ∈ N, for k = ∑n
j=1 k j and

K = ∑n
j=1 Xj,

P[X1 = k1, . . . , Xn−1 = kn−1] =
∞

∑
kn=0

P[X1 = k1, . . . , Xn−1 = kn−1, Xn = kn]

=
∞

∑
kn=0

(
k

k1 . . . kn−1 kn

)
pk1

1 . . . pkn−1
n−1 pkn

n e−q qk

k!
. (6)

Thus, (X1, . . . , Xn−1) follows the countable mixture distribution given by multinomial
probabilities with Poisson mixing probabilities. Moreover,

∞

∑
kn=0

P[X1 = k1, . . . , Xn−1 = kn−1, Xn = kn] =
∞

∑
kn=0

P[X1 = k1, . . . , Xn−1 = kn−1, Xn = kn | K = k]P[K = k]

=
∞

∑
kn=0

P[X1 = k1, . . . , Xn−1 = kn−1 | K = k]P[K = k]. (7)

By equating the multinomial and the Poisson probabilities of Equation (6) to the two probabilities
of Equation (7), for any summand, we obtain the M-P conditional representation.

We also note that that the three distributions of X1, . . . , Xn (before conditioning) correspond to
the three distributions of the (a, b, 0) class. The probability distribution {pn}n≥0 belongs to the (a, b, 0)
class, if it satisfies the recurrence relation pn = (a + b/n)pn−1, for n = 1, 2, . . . and for some a, b ∈ R
(see, e.g., Section 6.5 of [13]).

2.2. Three Associated Urn Sampling Schemes

The three multivariate distributions presented in the previous section provide probability models
for three sampling schemes: sampling with replacement, sampling without replacement and Polya’s
sampling. These three sampling schemes are reunited in a single general urn sampling model by
Ivchenko and Ivanov [14] (see also [2]). Consider an urn containing balls with the n different colors
C1, . . . , Cn. At the beginning, the urn contains: aj,0 ∈ N balls of color Cj, for j = 1, . . . , n. Each single ball
is drawn equiprobably from the urn. Immediately after the lth draw of a ball of color Cj, aj,l−1 ∈ N∗
is updated by aj,l ∈ N; this holds for l = 1, 2, . . . and j = 1, . . . , n. Three updating mechanisms are
presented in the next paragraph. Thus, immediately after drawing k j balls of color Cj, for j = 1, . . . , n,
and therefore just after a total of k = ∑n

j=1 k j draws, the urn contains aj,kj
balls of color Cj, for j = 1, . . . , n.

The updated sampling probability of color Cj is thus

p(k1,...,kn)
j =

(
n

∑
j=1

aj,kj

)−1

aj,kj
, for j = 1, . . . , n,

provided ∑n
j=1 aj,kj

> 0. The random count Yj represents the number of randomly drawn balls of color
Cj, this for j = 1, . . . , n, after a fixed total number of draws k = ∑n

j=1 Yj ∈ N∗. Define by z = ∑n
j=1 aj,0

the initial total number of balls in the urn.
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We are interested in the distribution of the M-statistic Tn viz. Tn(Y1, . . . , Yn) defined in Equation (1),
under the three following sampling schemes.

• Sampling with replacement and M-P representation
Sampling with replacement from the urn is obtained by setting

aj,l = aj,0, for l = 1, 2, . . . and j = 1, . . . , n.

Thus, p(k1,...,kn)
j , for j = 1, . . . , n, do not depend on k1, . . . , kn and the multinomial distribution in

Equation (3) holds with rational pj = p(k1,...,kn)
j = aj,0/z, for j = 1, . . . , n. Thus, (Y1, . . . , Yn) takes

values in ∆̈n−1
k and the M-P representation holds.

• Sampling without replacement and MH-B representation
Sampling without replacement from the urn is obtained by setting

aj,l =

{
aj,l−1 − 1 = aj,0 − l, if l ≤ aj,0,

0, if l > aj,0,
for l = 1, 2, . . . and j = 1, . . . , n.

Assume that k j ≤ aj,0 balls of color Cj have been drawn, for j = 1, . . . , n. The probability of

drawing a ball of color Cj in the next draw is p(k1,...,kn)
j = (aj,0 − k j)/(z− k), if k < z, and it is

undefined, if k = z, for j = 1, . . . , n. The multivariate hypergeometric distribution in Equation (4)
holds with mj = aj,0, for j = 1, . . . , n, and z equal to the parameter z of the present section. Thus,
(Y1, . . . , Yn) takes values in ∆̈n−1

k ∩ ([0, a1,0]× . . .× [0, an,0]) and the MH-B representation holds.
• Polya’s sampling and MP-NB representation

Polya’s sampling scheme is obtained by setting

aj,l = aj,l−1 + r = aj,0 + lr, for l = 1, 2, . . . and j = 1, . . . , n, (8)

where r ∈ N∗. (Allowing for r = 0 would result in sampling with replacement and allowing for
r = −1 would result in sampling without replacement, which are already presented.) Assume that
k j balls of color Cj have been drawn, for j = 1, . . . , n. The probability of drawing a ball of color Cj

in the next draw is p(k1,...,kn)
j = (aj,0 + k jr)/(z + kr), for j = 1, . . . , n. In this case, the multivariate

Polya distribution in Equation (5) holds with rational mj = aj,0/r, for j = 1, . . . , n, and rational
u = z/r. Thus, (Y1, . . . , Yn) takes values in ∆̈n−1

k and the MP-NB representation holds.

2.3. A Conditional Representation for Positive Random Variables and Its Urn Sampling Interpretation

This section presents a fourth model that allows for the conditional representation in Equation (2).
It is the Dirichlet distribution and it has a steady state interpretation in terms of Polya’s urn. Now,
the dependent random variables Y1, . . . , Yn take values in R+ and cannot yet be considered as counts
of the urn model of Section 2.2.
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• Dirichlet—conditional gamma (D-G)
Let Xj ∼ Gamma(aj, q), with density qaj e−qxxaj−1/Γ(aj), ∀x > 0, for j = 1, . . . , n, be independent,
where a1, . . . , an and q ∈ R∗+. Then, the conditional representation in Equation (2) holds with
(Y1, . . . , Yn) ∼ k(Ȳ1, . . . , Ȳn), where (Ȳ1, . . . , Ȳn) is Dirichlet distributed with density

P[Ȳ1 ∈ (y1, y1 + dy1), . . . , Ȳn ∈ (yn, yn + dyn)] =
Γ(a1 + . . . + an)

Γ(a1) . . . Γ(an)
ya1−1

1 . . . yan−1
n dy1 . . . dyn, (9)

∀(y1, . . . , yn) ∈ int ∆n−1
1 and for dyn = −(dy1 + . . . + dyn−1), which is denoted (Ȳ1, . . . , Ȳn) ∼

Dirichlet(a1, . . . , an).

The validity of Equation (2) does not depend on the parameter q ∈ R∗+ of the gamma distribution.
This independence follows from the factorization theorem of sufficient statistics.

The Dirichlet distribution represents the steady state of Polya’s urn sampling scheme, viz. of the
multivariate Polya distribution given in Section 2.2.

• Polya’s sampling and D-G representation
Precisely, immediately after drawing a ball of color Cj, it is replaced together with r ∈ N∗
new balls of same color Cj, this for j = 1, . . . , n, cf. Equation (8). If we let the total number
of draws k go to infinity, then the vector of the proportions of the n drawn colors follows the
Dirichlet(a1,0/r, . . . , an,0/r) distribution, viz.

1
k
(Y1, . . . , Yn)

d−→ (Ȳ1, . . . , Ȳn), as k→ ∞, (10)

where (Ȳ1, . . . , Ȳn) has the Dirichlet distribution in Equation (9) with aj = aj,0/r, for j = 1, . . . , n.
Thus, if (Y1, . . . , Yn) follows the multivariate Polya distribution in Equation (5), taking values in
∆̈n−1

k , then it is approximatively distributed as k(Ȳ1, . . . , Ȳn), taking values in ∆n−1
k .

To see Equation (10), let (k1, . . . , kn) ∈ ∆̈n−1
k . The multivariate Polya probability in Equation (5)

can be re-expressed as

P[Y1 = k1, . . . , Yn = kn] =
Γ(u)

∏n
j=1 Γ(mj)

Γ(1 + k)
Γ(u + k)

n

∏
j=1

Γ(mj + k j)

Γ(1 + k j)
.

It follows from Stirling’s formula that Γ(x + z1)/Γ(x + z2) ∼ xz1−z2 , as x → ∞, ∀z1, z2 ∈ R.
Consequently,

P[Y1 = k1, . . . , Yn = kn] ∼ c1(k)
n

∏
j=1

k
mj−1
j ∼ c2(k)

n

∏
j=1

y
mj−1
j = c2(k)

n

∏
j=1

y
aj,0

r −1
j , as k→ ∞,

for some positive constants c1(k) and c2(k) depending on k and for yj = limk→∞ k j/k,
for j = 1, . . . , n.

3. Conditional Saddlepoint Approximation for M-Statistics

The saddlepoint method, viz. method of steepest descent, allows approximating integrals of the
form

∫
ρ f (z)eνg(z)dz, for large values of ν > 0, where f : C→ C and g: C→ C are analytic functions

in a domain containing the path ρ and its deformations. Let z0 be point where the real part of g
is the highest. It is a saddlepoint of the surface given by the real part of g. For large values of ν,
the value of the integral is accurately approximated as follows. First, restrict ρ to a small neighborhood
of z0. Second, deform ρ such that it crosses z0 and so that the real part of g decreases fast to −∞,
when descending from z0 down to the endpoints of the deformed ρ. This is the path of steepest
descent. The final step is the term-by-term integration, within the neighborhood of z0, of an asymptotic
expansion of the integrand around z0. Two references are [15,16].
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This method yields approximations to densities or tail probabilities of various random variables
such as estimators or test statistics. The sample size n takes the role of the asymptotic parameter ν and
the relative error of the saddlepoint approximation vanishes at rate n−1, as n→ ∞. Unlike normal or
Edgeworth approximations, saddlepoint approximations are valid at any fixed point (not depending
on n) of the support of the distribution. They are thus large deviations techniques. For these two
reasons, they provide accurate approximations to small tail probabilities, in fact even for small values
of n. The saddlepoint approximation was introduced into statistics by Daniels [17], for approximating
density functions. Lugannani and Rice [18] provided a formula for tail probabilities (see also [19]).

Saddlepoint approximations for conditional distributions were proposed by: Skovgaard [4] for
the distribution of a sample mean given another mean; Wang [20] for the distribution of a mean given
a nonlinear function of another mean; and Jing and Robinson [21] for the distribution of a nonlinear
function of a mean given a nonlinear function of another mean. Kolassa [22] derived higher order
terms to the conditional saddlepoint approximation of a sample mean given another mean, by using
a different expansion to an integral appearing [4]. DiCiccio [23] provided a different approximation,
which is however restricted to the exponential class of distributions.

Some survey articles are [24–27]. General references are [8,28–30].
The saddlepoint approximation to conditional distribution of Skovgaard [4] is re-expressed for

the M-statistic defined in Equation (1) by [3]. This is summarized in Section 3.1. A modification for the
lattice case is given in Section 3.2. A method for computing quantiles is given in Section 3.3.

3.1. Approximation to the Distribution

Consider n absolutely continuous and independent random variables X1, . . . , Xn and the
M-statistic (S1,n, S2,n) viz. (S1,n(X1, . . . , Xn), S2,n(X1, . . . , Xn)), which is the solution w.r.t. (s1, s2) of

n

∑
j=1

(
ψ1,j(Xj; s1, s2)

ψ2,j(Xj; s2)

)
= 0, (11)

where ψ1,j: R3 → R is a continuous function that is decreasing in its second argument and ψ2,j: R2 → R
is a continuous function that is decreasing in its second argument, for j = 1, . . . , n. The joint cumulant
generating function (c.g.f.) of the summands in Equation (11) is given by

Kn(v; s) =
n

∑
j=1

logE[exp{v1ψ1,j(Xj; s1, s2) + v2ψ2,j(Xj; s2)}], (12)

where v = (v1, v2) ∈ R2 and s = (s1, s2) ∈ R2. Define also K2n(v2; s2) = Kn((0, v2); (0, s2)).
The first computational step is to find the saddlepoint α = (α1, α2) ∈ R2, which is the solution
w.r.t. v = (v1, v2) of

∂

∂v
Kn(v; s) = 0, (13)

and the “marginal saddlepoint” β ∈ R, which is the solution w.r.t. v2 of

∂

∂v2
K2n(v2; s2) = 0. (14)
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Next, define

K′′n (v; s) =
∂2

∂v∂v>
Kn(v; s), K′′2,n(v2; s2) =

∂2

∂v2
2

K2n(v2; s2),

ρ(s) = sgn(α1){2[K2n(β; s2)− Kn(α; s)]}
1
2 and σ(s) = α1

(
det K′′n (α; s)
K′′2,n(β; s2)

) 1
2

. (15)

With these quantities, we obtain the saddlepoint approximation

Pn(s1 | s2) = 1−Φ ◦ ρ(s) + φ ◦ ρ(s)
(

1
σ(s)

− 1
ρ(s)

)
, (16)

where φ and Φ are the standard normal density and distribution function. Then,

P[S1,n ≥ s1 | S2,n = s2] = Pn(s1 | s2){1 + O(n−1)}, as n→ ∞. (17)

Thus, the saddlepoint approximation in Equation (16) possesses a vanishing relative error and at
any value of the argument s1, that is, over large deviations regions.

By selecting X1, . . . , Xn from any one of the four conditional representations, M-P, MH-B,
of MP-NB of Section 2.1 or D-G of Section 2.3, and by setting ψ1,j(x; s1, s2) = ξ j(x; s1) and ψ2,j(x; s2) =

x− s2, for j = 1, . . . , n, we obtain

P[Tn ≥ t] = Pn

(
t
∣∣∣ k
n

)
{1 + O(n−1)}, as n→ ∞, (18)

for Tn defined in Equation (1).
Precisely, it follows from the conditional representation in Equation (2) that

Tn(Y1, . . . , Yn) ∼
(

S1,n(X1, . . . , Xn)
∣∣∣S2,n(X1, . . . , Xn) =

k
n

)
.

This equivalence and Equation (17) give Equation (18).
The argument s2 of ψ1,j(x; s1, s2) is not considered here, but it is useful in one example in [3].
As mentioned, the justification of this saddlepoint approximation can be found in [4] and it

would be too long to reproduce it here. However, we can give a few general ideas. Let us consider
(U1, V1), . . . , (Un, Vn) independent and identically distributed (i.i.d.), absolutely continuous and with
joint c.g.f. K. Let (Ū, V̄) denote their sample mean. Then, the Fourier inversion and integration of the
joint density gives

P[V̄ ≥ v | Ū = u] =
( n

2πi

)2 ∫ c+i∞

c−i∞

∫ i∞

i∞
exp{n[K(s, t)− su− tv]}ds

dt
nt

,

for u, v ∈ R and c > 0. For the integral w.r.t. s, a standard saddlepoint approximation is
used. The resulting saddlepoint approximation is an integral w.r.t. t and, due to a singularity,
a modified saddlepoint approximation similar to the one in [18] must used to approximate this integral.
The generalization from the sample mean to the M-statistic in Equation (11) follows directly from

P[S1,n ≥ s1 | S2,n = s2] = P

[
n

∑
j=1

ψ1,j(Xj, s1, s2) ≥ 0
∣∣∣ n

∑
j=1

ψ2,j(Xj, s2) = 0

]
,

for s1, s2 ∈ R, which is due to the fact that ψ1,j and ψ2,j are decreasing in their second argument.
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3.2. Modifications for Discrete Statistics

A slight modification of this saddlepoint approximation for the case where Tn takes values in the
lattice {jδ/n}j∈Z, for some δ > 0, is obtained by replacing σ(s) in Equation (16) by

σ̈(s) = (1− exp{−δα1})
(

det K′′n (α; s)
K′′2n(β; s2)

) 1
2

. (19)

Moreover, the following continuity correction can be considered. For the lattice point s1, define
s̃1 = s1 − δ/(2n), s̃ = (s̃1, s2) and α̃ = (α̃1, α̃2) as the solution w.r.t. v of

∂

∂v
Kn(v; s̃) = 0.

Then, replace ρ(s) and σ(s) in Equation (16) by

ρ̃(s̃) = sgn(α̃1){2[K2n(β; s2)− Kn(α̃; s̃)]}
1
2 and σ̃(s̃) = 2 sinh

(
δ

2
α̃1

)(
det K′′n (α̃; s̃)
K′′2n(β; s2)

) 1
2

,

respectively. The justifications can be found in [4,19]. The relative error of these modified
approximations remains O(n−1).

3.3. Approximation to Quantiles

Define ζ(s) = ρ(s) + log{σ(s)/ρ(s)}/ρ(s), for ρ and σ defined in Equation (15).
An asymptotically equivalent version of the saddlepoint approximation in Equation (16) is given
by P∗n (s1 | s2) = 1− Φ ◦ ζ(s). This formula leads to a fast algorithm for approximating quantiles,
with same asymptotic error as the one entailed by exact inversion of the saddlepoint approximation.
The general idea of Wang [31] was adapted to the present situation by Gatto [5].

Let ε ∈ (0, 1). One starts with any reasonable approximation to the desired ε-quantile, for example
the normal one, given by

s(0)1 (ε) =
τ(s2)√

n
Φ(−1)(ε) + µ(s2),

where µ(s2) ' E[S1,n | S2,n = s2] and τ2(s2) ' nvar(S1,n | S2,n = s2).
Re-denote by α(s) the saddlepoint at s, viz. the solution of Equation (13) w.r.t. v. Denote

K̇n(v; s) = ∂/∂s Kn(v; s). One computes, for j = 0, 1,

s(j+1)
1 (ε) = s(j)

1 (ε) +
{Φ(−1)(ε)}2 − ζ2(s(j)(ε))

−2{K̇n(α(s(j)(ε)); s(j)(ε))}1
, (20)

where s(j)(ε) = (s(j)
1 (ε), s2). If s1(ε) denotes the exact ε-quantile, then

s(2)1 (ε) = s1(ε){1 + O(n−
3
2 )}, as n→ ∞.
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Moreover, if s̃1(ε) denotes the ε-quantile obtained by exact inversion of the saddlepoint
distribution, then s(2)1 (ε) = s̃1(ε){1 + O(n−3/2)}, as n → ∞. Therefore, stopping the iteration of
Equation (20) at j = 1 is sufficient in terms of asymptotic accuracy.

Consider the simple case ψ1,j(x; s1, s2) = g(x)− s1, for some continuous function g: R→ R. Then,
Equation (11) yields S1,n(X1, . . . , Xn) = n−1 ∑n

j=1 g(Xj). In this situation, the denominator of the ratio

in Equation (20) simplifies to 2{α(s(j)(ε))}1.

4. Applications

This section presents various examples that illustrate the relevance and accuracy of the conditional
saddlepoint approximation for M-statistics of Section 3 with the M-P, MH-B, MP-NB and D-G
representations of Section 2, respectively, in Sections 4.1–4.4. Important applications or examples from
previous articles are summarized and novel examples are developed. The common urn sampling model
of all examples is always put in the forefront. Many examples are studied numerically. The values
obtained by the saddlepoint approximation are always very close to the ones obtained by Monte Carlo
simulation. This section is however not a complete list of applications: further examples can be found,
e.g., in [8,9] (Chapter 4 and Section 12.5).

As mentioned, the accuracy of the saddlepoint approximation is assessed through comparisons
with simple Monte Carlo simulation. The following measures of accuracy for approximating the
distribution of the statistic Tn are considered. Let t > 0. The probabilities obtained by simulation
are considered as exact and denoted PE[Tn < t]. The probabilities obtained by the saddlepoint
approximation are denoted PS[Tn < t]. Then,

ae(t) = |PS[Tn < t]− PE[Tn < t]| = |PS[Tn ≥ t]− PE[Tn ≥ t]| (21)

denotes the absolute error and

re(t) =
|PS[Tn < t]− PE[Tn < t]|

min{PE[Tn < t], 1− PE[Tn < t]} =
|PS[Tn ≥ t]− PE[Tn ≥ t]|

min{PE[Tn ≥ t], 1− PE[Tn ≥ t]} (22)

denotes the absolute relative error.

4.1. Sampling with Replacement and M-P Representation

Three new illustrations of the saddlepoint approximation with the M-P representation are
presented. Example 1 considers the entropy of the coloration probabilities of the balls of the urn.
Numerical evaluations of the saddlepoint approximation to the distribution of the estimator of the
entropy are given. Example 2 concerns the likelihood ratio test for the null hypothesis of equality of the
coloration probabilities. The power under a particular alternative hypothesis is computed numerically.
Example 3 considers the insurer total claim amount when the individual claim settlement is delayed.
The saddlepoint approximation to the distribution of the total claim amount is analyzed numerically.
Example 4 reviews the application of the saddlepoint approximation to the bootstrap distribution of
the M-statistic in Equation (1).
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Example 1 (Entropy’s estimator under sampling with replacement). The mathematical study of entropy
began with Shannon [32], for the construction of a model for the transmission of information. In sampling
with replacement from the urn, the probability of drawing a ball of color Cj is fixed and given by pj = aj,0/z,
for j = 1, . . . , n. Define p = (p1, . . . , pn) ∈ ∆n−1

1 . The entropy of the coloration is given by

εn(p) = −
n

∑
j=1

pj log pj, (23)

where 0 log 0 = 0 is assumed. The entropy εn(p) is an appropriate measure of the uncertainty about the colors
of the drawn balls. Indeed, it satisfies the following properties. First, εn(p) takes its largest value log n for
p1 = . . . = pn = n−1. Second, if we consider the equivalent coloration C1, . . . , Cn, Cn+1 with probabilities
p1, . . . , pn and pn+1 = 0, respectively, then εn(p1, . . . , pn) = εn+1(p1, . . . , pn, pn+1). Theorem 1 on pp. 9–10
of [33] states that the only continuous function that satisfies these two properties plus another one related to
conditional entropy, has the form given in Equation (23) multiplied by a positive constant.

As in Section 2.2, Y1, . . . , Yn denotes the number of drawn balls for each of the n colors C1, . . . , Cn,
respectively, after k ∈ N∗ draws. Define

Tn(Y1, . . . , Yn) = εn

(
Y1

k
, . . . ,

Yn

k

)
= −

n

∑
j=1

Yj

k
log

Yj

k
= −1

k

n

∑
j=1

Yj log Yj + log k (24)

and Pn(Y1, . . . , Yn) = ( k
Y1 ...Yn

)n−Y1 . . . n−Yn , that is, the multinomial probability of the configuration
(Y1, . . . , Yn) under uniformity. It is directly shown that k−1 log Pn = Tn + o(1), as k → ∞ and a.s.
Asymptotically, the entropy of the configuration is thus an increasing transform of the probability of the
configuration under uniformity. The probability Pn is maximized by the constant configuration and so is the
entropy Tn.

Consider now the multinomial model in Equation (3) with unknown vector of probabilities p. The frequency
Yj/k is an unbiased estimator of pj, for j = 1, . . . , n. Thus, Tn is an estimator of the entropy εn(p). It takes
the form of the M-statistic in Equation (1) with ξ j(y; t) = −y log y + n−1k log k− n−1kt. Using the M-P
representation and some algebraic manipulations, the c.g.f. in Equation (12) takes the form

Kn(v; s) = k(log k− s1)v1 − ns2v2 − q +
n

∑
j=1

log

{
1 +

∞

∑
l=1

1
l!
(
qpjev2 l−v1

)l
}

,

with q ∈ R∗+ arbitrary. We set s2 = k/n and select q such that E[S2,n] = k/n, i.e., q = k. With this choice of q,
the marginal saddlepoint equation, cf. Equation (14), has the trivial solution β = 0. This yields

Kn

(
v;
(

s1,
k
n

))
= k {(log k− s1)v1 − v2 − 1}+

n

∑
j=1

log

{
1 +

∞

∑
l=1

1
l!
(
kpjev2 l−v1

)l
}

. (25)

Computing the second order derivatives is long but basic. We only give the simple result
K′′2,n(0; (s1, k/n)) = k; it can be used for controlling the formula of the second derivative.

We can now apply the saddlepoint approximation of Section 3 to the following case: pj = 2j/{n(n + 1)},
for j = 1, . . . , n, n = 6 and k = 32. The saddlepoint approximation is compared with the Monte Carlo
distribution of T6 based on 106 simulations. The numerical results are displayed in Figure 1 and Table 1.
The probabilities obtained by simulation are denoted PE[T6 < t], the probabilities obtained by the saddlepoint
approximation are denoted PS[T6 < t], ae(t) denotes the absolute error defined in Equation (21) and re(t)
denotes the absolute relative error defined in Equation (22), for t ∈ [1.20, 1.77]. We see that the relative errors
are mostly very small. The largest one occurs in the extreme right tail and it is around 31%.



Stats 2019, 2 133

1.2 1.3 1.4 1.5 1.6 1.7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Distribution function

t

1.2 1.3 1.4 1.5 1.6 1.7
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

Absolute error

t

1.2 1.3 1.4 1.5 1.6 1.7
0

0.05

0.1

0.15

0.2

0.25

Absolute relative error

t

Figure 1. Estimator of coloration’s entropy under sampling with replacement (T6). First graph:
saddlepoint approximation to the distribution function, PS[T6 < t]. Second graph: absolute error, ae(t).
Third graph: absolute relative error, re(t).
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Table 1. Estimator of coloration’s entropy under sampling with replacement (T6), selected lower and
upper tail points; Monte Carlo probability (PE), saddlepoint probability (PS), absolute relative error (re).

t PE[T6 < t] PS[T6 < t] re(t)

1.20 0.00109 0.00103 0.058
1.31 0.01034 0.00972 0.060
1.36 0.02648 0.02422 0.085
1.40 0.04755 0.04753 0.000
1.45 0.10116 0.10205 0.009
1.69 0.89118 0.88959 0.014
1.72 0.95691 0.95823 0.032
1.73 0.97360 0.97303 0.023
1.75 0.99114 0.99155 0.048
1.77 0.99838 0.99876 0.306

Example 2 (Power of likelihood ratio test). The estimator of entropy in Equation (24) is closely related to the
likelihood ratio test. Consider a sample of k i.i.d. random variables and consider any partition of their range
that is made by n intervals of positive length. Denote by pj the probability that any one of the sample values
belongs to the jth interval, for j = 1, . . . , n. Denote by Yj the number of sample values that belong to the jth
interval, for j = 1, . . . , n. Then, (Y1, . . . , Yn) takes values in ∆̈n−1

k and follows the multinomial distribution in
Equation (3). Consider the null hypothesis H0: p ∈ Π0, where Π0 ⊂ ∆n−1

1 . The likelihood ratio test statistic for
H0 against the general alternative is given by

Ln(Y1, . . . , Yn) =
supp∈Π0

{
k!

Y1!...Yn ! pY1
1 . . . pYn

n

}
supp∈∆n−1

1

{
k!

Y1!...Yn ! pY1
1 . . . pYn

n

} .

By restricting to Π0 = {p0}, for some p0 ∈ ∆n−1
1 , we obtain

T∗n (Y1, . . . , Yn) = −2 log Ln(Y1, . . . , Yn) = 2
n

∑
j=1

Yj log Yj − 2
n

∑
j=1

Yj log p0,j − 2k log k. (26)

In the case p0,1 = . . . = p0,n = n−1, which can be obtained without loss of generality by the probability

integral transform, T∗n (Y1, . . . , Yn) is equal to 2 ∑n
j=1 Yj log Yj plus a constant term. Then, T∗n

d−→ χ2
n−1,

as k→ ∞. In addition, if k, n→ ∞, with k/n→ l, for some l ∈ (1, ∞), then T∗n is asymptotically normal.
The numerical evaluation of the saddlepoint approximation to the distribution of T∗n , with n = 4, k = 12

and under H0, is given in Table 1 in [5]. We now extend the numerical study to the evaluation of the power
function at any point of the alternative, viz. at any p ∈ ∆n−1

1 \{n−1, . . . , n−1}. Because T∗n is an affine
transform of the entropy estimator Tn given in Equation (24), we rather consider Tn as test statistic. Thus,
the c.g.f. for the saddlepoint approximation is already given in Equation (25). Consider the power function
at the point of alternative hypothesis pj = 2j/{n(n + 1)}, for j = 1, . . . , n. We select n = 6 and k = 32.
The saddlepoint approximation to the distribution of T6 under H0 gives

PS[T6 < 1.6060] = 0.0495.

The saddlepoint approximation to the distribution of T6 under the chosen alternative point gives

PS[T6 < 1.6060] = 0.5691.

This distribution is computed in Example 1. Thus, 0.5691 is the saddlepoint approximation to the power of the
test with size 0.0495 at the given alternative.
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In situations where Π0 is the singleton containing the vector of unequal elements p0,1, . . . , p0,n,
the saddlepoint approximation can be obtained in a similar way. An important application is with language
identification, where these probabilities represent the frequencies of the n letters of the alphabet of a language and
Y1/k, . . . , Yn/k are the frequencies of these n letters within a text of k letters. The belonging of the text to the
language can be tested with the statistic T∗n , which is in fact proportional to the Kullback–Leibler information.
Precisely, denote

ιn(v|w) =
n

∑
j=1

vj log
vj

wj

the Kullback–Leibler information or discrepancy between the two probability distributions v = (v1, . . . , vn) ∈
∆n−1

1 and w = (w1, . . . , wn) ∈ ∆n−1
1 , that satisfy the absolute continuity condition wj = 0 ⇒ vj = 0, for

j = 1, . . . , n. Then, T∗n = 2k ιn(Y1/k, . . . , Yn/k | p0,1, . . . , p0,n).

Example 3 (Total claim amount under delayed settlement). We are interested in the distribution of the total
claim amount of an insurance company over a fixed time horizon. We assume that the delay of claim settlement
increases as the individual claim amount increases. This can happen in actuarial practice, partially because large
claim amounts require longer controls. Precisely, the individual claim amounts are i.i.d. random variables taking
the n values r1 < . . . < rn, all in R∗+, for n = 2, 3, . . .. Let j ∈ {1, . . . , n}. Claims of amount rj are settled
exactly after the jth unit of time (e.g., months). During a given time horizon (e.g., a year), Yj claims of amount
rj occur. We assume that k ∈ N∗ claims have occurred during the time horizon under consideration and that
(Y1, . . . , Yn), which takes values in ∆̈n−1

k , follows the multinomial distribution in Equation (3). The total claim
amount settled during the time horizon is thus ∑n

j=1 rjYj. We are interested in the distribution of the proportion
of total claim amount that is settled exactly after the mth unit of time, viz. of

Tn = Tn(Y1, . . . , Yn) =
∑m

j=1 rjYj

∑n
j=1 rjYj

, (27)

for some m ∈ {1, . . . , n− 1}. It can be re-expressed as the M-statistic in Equation (1) with

ξ j(y; t) = rj(I{j ≤ m} − t)y, for j = 1, . . . , n.

The M-P representation tells that the multinomial claim counts have the distribution of independent
Poisson occurrences, given a total of k claim occurrences. Thus, with some algebraic manipulations,
the c.g.f. in Equation (12) becomes

Kn(v; s) = −ns2v2 − q

+
n

∑
j=1

log

(
1 +

∞

∑
l=1

1
l!

exp{[v1rj(I{j ≤ m} − s1) + v2 + log(qpj)]l}
)

,

with arbitrary q ∈ R∗+. We set s2 = k/n and select q such that E[S2,n] = k/n, i.e., q = k. Thus, the marginal
saddlepoint equation, cf. Equation (14), is solved by β = 0. This leads to

Kn

(
v;
(

s1,
k
n

))
= −k(1 + v2)

+
n

∑
j=1

log

(
1 +

∞

∑
l=1

1
l!

exp{[v1rj(I{j ≤ m} − s1) + v2 + log(kpj)]l}
)

.

By computing the second order derivatives, we find K′′2,n(0; (s1, k/n)) = k.
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For the numerical illustration, consider the multinomial distribution in Equation (3) with probabilities
p1 = 0.15, p2 = 0.23, p3 = 0.16, p4 = 0.14, p5 = 0.12, p6 = 0.1, p7 = 0.06, and p8 = 0.04 and the total
number of k = 30 claims. Thus, n = 8 and the possible claim amounts are r1 = 10, r2 = 15, r3 = 20, r4 = 30,
r5 = 50, r6 = 70, r7 = 100 and r8 = 120. The number of unit of times for the proportion of settled total claim
amount, cf. Equation (27), is m = 4. To assess the accuracy of the saddlepoint approximation, we compute
the Monte Carlo distribution of T8, based on 106 simulations. The numerical results are displayed in Table 2.
The probabilities obtained by simulation are denoted PE[T8 < t], the probabilities obtained by the saddlepoint
approximation are denoted PS[T8 < t] and re(t) denotes the relative error, cf. Equation (22), for t ∈ [0.12, 0.72].
Most relative errors are below 5%. The largest one occurs in the extreme left tail and is approximatively 12%.

Table 2. Proportion of total claim amount (T8): Monte Carlo probability (PE), saddlepoint probability
(PS), and absolute relative error (re).

t PE[T8 < t] PS[T8 < t] re(t)

0.12 0.00035 0.00040 0.124
0.16 0.00523 0.00555 0.059
0.20 0.03119 0.03261 0.044
0.24 0.10347 0.10508 0.016
0.28 0.23178 0.23278 0.004
0.32 0.39024 0.39775 0.019
0.38 0.62988 0.64044 0.029
0.42 0.76566 0.76905 0.015
0.46 0.85601 0.85930 0.023
0.48 0.89281 0.89184 0.009
0.52 0.93960 0.93993 0.006
0.56 0.96733 0.96784 0.016
0.60 0.98294 0.98352 0.035
0.64 0.99137 0.99166 0.035
0.68 0.99577 0.99578 0.003
0.72 0.99799 0.99791 0.037

A practical question would be the following: Which value of t bounds from above the proportion of total
claim amount T8 with probability 0.99? One computes directly PS[T8 < 0.63] = 0.9897 and thus t = 0.63,
approximately.

Example 4 (Bootstrap distribution of M-statistic). Let R1, . . . , Rn be a sample of i.i.d. random variables
taking values in R, for n = 2, 3, . . .. Absolute continuity is assumed, in order to avoid repeated values a.s.
Consider the M-statistic Un or Un(R1, . . . , Rn) defined as the root in t on

n

∑
j=1

ζ(Rj; t) = 0,

where ζ: R2 → R is continuous and decreasing in its second argument. Let r1, . . . , rn be a realization of the
sample and let R∗1 , . . . , R∗n be the random variables obtained by sampling with replacement from the values
r1, . . . , rn with respective probabilities p1, . . . , pn, for (p1, . . . , pn) ∈ ∆n−1

1 . The distribution of Un(R∗1 , . . . , R∗n),
or simply U∗n , is the bootstrap distribution of Un.

This coincides with sampling with replacement from the general urn model of Section 2.2, if the color
Cj is associated to the value rj, for j = 1, . . . , n, and if the number of draws from the urn is k = n. Define
ξ j(y; t) = yζ(rj; t), for t ∈ R, y ∈ N and for j = 1, . . . , n. Then, U∗n can be represented as the solution w.r.t.
t of Equation (1), denoted Tn, in which Yj is the number of times that rj has been sampled, for j = 1, . . . , n.
The conditional saddlepoint approximation of Section 3 yields the distribution of Tn, i.e., of U∗n , i.e., of the
bootstrap distribution of Un. In most practical cases, p1 = . . . = pn = n−1, i.e., a1,0 = . . . = an,0.
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The saddlepoint approximation for bootstrap distributions was introduced by [34–36] and for M-estimators
by [37]. A review can be found in [38] (Section 9.5). Thus, the conditional saddlepoint approximation of
Section 3 provides an alternative saddlepoint approximation to the bootstrap distribution of M-estimators.

Other applications of this saddlepoint approximation with the M-P representation that can be
found the literature are the following. Saddlepoint approximations for likelihood ratio test and for
chi-square tests for grouped data, under the null hypotheses, are given in [3]. For the numerical
evaluation of the saddlepoint approximation for the likelihood ratio statistic, refer to [5].

4.2. Sampling without Replacement and MH-B Representation

The saddlepoint approximation combined with the MH-B representation can be applied for
approximating the distribution of the M-statistic in Equation (1) in finite population sampling, viz.
under sampling without replacement. Example 5 analyzes the numerical accuracy of the saddlepoint
approximation to the distribution of the coloration entropy when sampling is without replacement.

Example 5 (Entropy’s estimator under sampling without replacement). We consider the entropy
estimation of Example 1 in the context of sampling without replacement. We are interested in the coloration
entropy εn(a1,0/z, . . . , an,0/z), as given by Equation (23), with a1,0, . . . , an,0 unknown. It is the entropy of
the initial state of the urn. In the multivariate hypergeometric model in Equation (4), Yj/k is an unbiased
estimator of aj,0/z, for j = 1, . . . , n, where (Y1, . . . , Yn) takes values in ∆̈n−1

k ∩ ([0, m1] × . . . × [0, mn]).
Thus, an estimator of this entropy is given by Equation (24). The unknown parameters of the multivariate
hypergeometric distribution in Equation (4) are mj = aj,0, for j = 1, . . . , n.

With the MH-B representation and some algebraic manipulations, the c.g.f. in Equation (12) becomes

Kn(v; s) = k(log k− s1)v1 − ns2v2 + z log(1− q) +
n

∑
j=1

log

{
1 +

mj

∑
l=1

(mj)l

l!

(
q

1− q
ev2 l−v1

)l
}

, (28)

with q ∈ (0, 1) arbitrary. We set s2 = k/n and select q such that E[S2,n] = k/n, i.e., q = k/z. For this
purpose, we assume k < z. With this choice, the marginal saddlepoint equation, cf. Equation (14), has the trivial
solution β = 0 and the c.g.f. in Equation (28) becomes

Kn

(
v;
(

s1,
k
n

))
= k {(log k− s1)v1 − v2}+ z{log(z− k)− log z}

+
n

∑
j=1

log

{
1 +

mj

∑
l=1

(mj)l

l!

(
k

z− k
ev2 l−v1

)l
}

.

The second order derivatives of Kn can be obtained through long but simple algebraic manipulations.
In particular, we find K′′2,n(0; (s1, k/n)) = k(z− k)/z.

For the numerical illustration, we consider the multivariate hypergeometric distribution with n = 7,
m1 = 2, m2 = 4, m3 = 6, m4 = 8, m5 = 10, m6 = 12, m7 = 14 and k = 25. We compute the Monte Carlo
distribution of T7 based on 106 simulations. The saddlepoint approximation is obtained by following the steps of
Section 3. The results are given in Table 3. The saddlepoint probabilities are obtained instantaneously and we see
that the relative errors are below 15%, with the exception an extreme left tail point, for which the relative error
is 25%.

We now summarize two practical applications of the conditional saddlepoint approximation
with the MH-B representation. The first one can be found in [39] and concerns a permutation
test of comparison of two groups. The jth individual belongs to the control group, when
Yj = 0, and to the treatment group, when Yj = 1, for j = 1, . . . , n. We have (Y1, . . . , Yn) ∼
Multi-Hypergeometric(k; 1, . . . , 1), where k is the number of individuals of the treatment group.
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The realizations of (Y1, . . . , Yn) represent the permutations of the individuals and the test statistic Tn is
a linear combination of the elements of (Y1, . . . , Yn). The permutation distribution of Tn is obtained
from Equation (2), where X1, . . . , Xn are i.i.d. Bernoulli random variables.

Table 3. Estimator of coloration’s entropy under sampling without replacement (T7); Monte Carlo
probability (PE), saddlepoint probability (PS), and absolute relative error (re).

t PE[Tn < t] PS[Tn < t] re(t)

1.30 0.00010 0.00008 0.247
1.35 0.00034 0.00031 0.075
1.40 0.00124 0.00119 0.042
1.45 0.00377 0.00405 0.074
1.50 0.01271 0.01240 0.024
1.55 0.03340 0.03393 0.015
1.60 0.08396 0.08250 0.017
1.65 0.17648 0.17680 0.002
1.70 0.33407 0.33088 0.010
1.75 0.53940 0.53896 0.001
1.80 0.75566 0.75979 0.017
1.85 0.94083 0.93226 0.145
1.90 0.99594 0.99638 0.109

The second application can be found in [40] and concerns the jackknife distribution of a ratio.
Consider the fixed sample z1, . . . , zn, sample without replacement 1 ≤ d < n values and define
Yj = 0, if zj is not sampled, and Yj = 1, if zj is sampled, for j = 1, . . . , n. This procedure is repeated
many times and a statistic of interest is computed k = n − d times, from the k sampled values
of each iteration. In the terminology of B. Efron, this is called the delete-d jackknife. We have
(Y1, . . . , Yn) ∼ Multi-Hypergeometric(k; 1, . . . , 1), where k is the sample size of the jackknife samples.
The realizations of (Y1, . . . , Yn) represent the permutations of (z1, . . . , zn). The statistic considered
in [40] is Tn = ∑n

j=1 vjYj/ ∑n
j=1 ujYj, for uj, vj ∈ R, for j = 1, . . . , n. The permutation, viz. delete-d

jackknife, distribution of Tn is obtained from Equation (2), where X1, . . . , Xn are independent Bernoulli
random variables with parameter 1/2, together with the saddlepoint approximation for M-statistics of
Section 3.

4.3. Polya’s Sampling and MP-NB Representation

This section provides various applications of the saddlepoint approximation with the MP-NB
representation. Example 6 considers the estimator of the entropy of the initial coloration probabilities
of the urn, in the setting of Polya’s sampling. Example 7 considers the Bayesian analysis if this entropy.
The Bayesian Entropy’s estimator under multivariate Polya a priori and sampling without replacement
is considered. The saddlepoint approximation to this the posterior distribution of the entropy can
be obtained by MP-NB representation. Example 8 concerns the saddlepoint approximation with the
MP-NB representation for many two-sample tests based on spacing-frequencies.

Example 6 (Entropy’s estimator under Polya’s sampling). We consider the entropy estimation problem
introduced in Example 1, now in the context of Polya’s sampling. We are interested in the entropy of the initial
coloration probabilities εn(a1,0/z, . . . , an,0/z), given in Equation (23), where a1,0, . . . , an,0 are unknown. In the
multivariate Polya model in Equation (5), Yj/k is an unbiased estimator of aj,0/z, for j = 1, . . . , n, and so
an estimator of the entropy is given by Equation (24). The parameters of the multivariate Polya distribution
in Equation (5) are k equal to k of the urn model and mj = aj,0/r, for j = 1, . . . , n. Using the MP-NB
representation, the c.g.f. in Equation (12) becomes
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Kn(v; s) = u log q− k(s1 − log k)− ns2v2

+
n

∑
j=1

log

{
1 +

∞

∑
l=1

(l + mj − 1)l

l!
[
(1− q)ev2 l−v1

]l
}

, (29)

with q ∈ (0, 1) arbitrary. This formula allows for the direct evaluation of the conditional saddlepoint
approximation of Section 3.

Example 7 (Bayesian Entropy’s estimator under multivariate Polya a priori and sampling without
replacement). The multivariate Polya distribution is often used as a prior distribution in Bayesian statistics,
because it constitutes a conjugate class when associated to the multivariate hypergeometric likelihood. Precisely,
consider the prior

(M1, . . . , Mn) ∼ Multi-Polya(z; α1, . . . , αn) (30)

taking value in ∆̈n−1
z , for z ∈ N∗, (α1, . . . , αn) ∈ ∆n−1

u and u ∈ R∗+, and consider the likelihood

(Y1, . . . , Yn) | {(M1, . . . , Mn) = (m1, . . . , mn)} ∼ Multi-Hypergeometric(k; m1, . . . , mn),

for (m1, . . . , mn) ∈ ∆̈n−1
z , k ∈ {0, . . . , z} and (Y1, . . . , Yn) taking values in ∆̈n−1

k ∩ ([0, m1]× . . .× [0, mn]).
Then, the posterior is given by

{(M1, . . . , Mn)|(Y1, . . . , Yn) = (k1, . . . , kn)} ∼
(k1, . . . , kn) + Multi-Polya(z− k; α1 + k1, . . . , αn + kn), (31)

for (k1, . . . , kn) ∈ ∆̈n−1
k ∩ ([0, m1]× . . .× [0, mn]). Indeed,

P[M1 = m1, . . . , Mn = mn|Y1 = k1, . . . , Yn = kn] ∝
n

∏
j=1

(
mj

k j

)(
αj + mj − 1

mj

)

∝
n

∏
j=1

(αj + mj − 1)!
(mj − k j)!

∝
∏n

j=1 (
(αj+kj)+(mj−kj)−1

mj−kj
)

((u+k)+(z−k)−1
z−k )

,

where the last result is in fact equal to the posterior probability. Thus, Equation (31) holds.
The underlying urn model is the sampling without replacement described, in Section 2.2, where the

initial number of balls of each one of the colors C1, . . . , Cn, viz. mj = aj,0, for j = 1, . . ., in the same order,
is unknown. Only z = ∑n

j=1 aj,0 is known. These initial counts are the elements of the random vector
(M1, . . . , Mn) with prior distribution in Equation (30). Sampling without replacement has led to the counts
(Y1, . . . , Yn) = (k1, . . . , kn), for the colors C1, . . . , Cn, in same order. The updated or posterior distribution of
(M1, . . . , Mn) is given by Equation (31).

Assume that we are interested in the entropy of the probabilities of the initial coloration. The a priori
entropy is thus Tn(M1, . . . , Mn) = εn (M1/z, . . . , Mn/z), cf. Equation (23). According to Equation (31), the a
posteriori entropy is Tn(k1 + L1, . . . , kn + Ln), where (L1, . . . , Ln) ∼Multi-Polya(z− k; α1 + k1, . . . , αn + kn).

The saddlepoint approximations to the distributions of the a priori and a posteriori entropies can be obtained
by the saddlepoint approximation of Section 3 with MP-NB representation, as in Example 6. The a priori and a
posteriori c.g.f. can be obtained by minor adaptations of the c.g.f. in Equation (29).

Example 8 (Two-sample tests based on spacing frequencies). Consider two independent samples: the
first consisting of k independent random variables U1, . . . , Uk with common absolutely continuous distribution
PU and the second sample consisting of l independent random variables V1, . . . , Vl with common absolutely
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continuous distribution PV . All these random variables have common range given by the real interval I . We wish
to test the null hypothesis H0 : PU = PV . Define V(0) = inf I , V(l+1) = sup I and V(1) ≤ . . . ≤ V(l) the
ordered V1, . . . , Vl . Let n = l + 1. The random counts

Yj =
k

∑
i=1

I{Ui ∈ [V(j−1), V(j))}, for j = 1, . . . , n, (32)

are called spacing-frequencies: they provide the number of random variables U1, . . . , Uk that lie between gaps
made by V(0), . . . , V(l+1). Thus, (Y1, . . . , Yn) takes values in ∆̈n−1

k and possesses exchangeable components
under H0.

Denote by Rj the rank of the jth largest V1, . . . , Vl in the combined sample, for j = 1, . . . , l. It is easily

seen that Rj = ∑
j
i=1(Yi + 1), or, Yj = Rj − Rj−1 − 1, for j = 1, . . . , l. Consequently, many two-sample test

statistics based on ranks can be re-expressed in terms of spacing-frequencies. Besides this, spacing-frequencies
are essential for the analysis of circular data, because they are invariant w.r.t. changes of null direction and sense
of rotation (clockwise or anti-clockwise) (for a review, see, e.g., [41]). Circular data are planar directions and can
be re-expressed as angles in radians, so that I = [0, 2π), or any other interval of length 2π.

Holst and Rao [42] consider nonparametric test statistics of the form of

Tn(Y1, . . . , Yn) =
n

∑
j=1

hj(Yj), (33)

for some Borel functions h1, . . . , hn. If h1 = . . . = hn = h, then the test statistic Tn is called symmetric.
Under H0, the multivariate Polya distribution in Equation (5) holds with m1 = . . . = mn = 1. Consequently,

u = ∑n
j=1 mj = n and all Polya’s probabilities in Equation (5) are equal to (n+k−1

k )
−1

. This is in accordance with
the result of combinatorics that the number of solutions (k1, . . . , kn) ∈ Nn of the equation k1 + . . . + kn = k,
i.e., card ∆̈n−1

k , is given by (n+k−1
k ). Thus, the equivalence in Equation (2) holds with the MP-NB representation,

where the negative binomial reduces to the geometric distribution. Clearly, Equation (33) takes the form of the
M-statistic in Equation (1) and the saddlepoint approximation of Section 3 can be applied.

We now summarize the examples presented in [3,5]. In the classical Wald–Wolfowitz run test, Tn takes
the symmetric form of Equation (33) with h(x) = I{x > 0}. We define a U-run in the combined sample as a
maximal non-empty set of adjacent U1, . . . , Uk. Since each positive Y1, . . . , Yn is mapped to a different U-run
and conversely, Tn yields the number of U-runs and it takes values in {1, . . . , n}. Large values of Tn show
evidence for equal spread, i.e., for H0. [5] provides the numerical evaluation of the saddlepoint approximation
to the distribution of Tn under H0. The saddlepoint approximation to the distributions of the Wilcoxon viz.
Mann–Whitney, the van der Waerden viz. normal score and the Savage viz. exponential score tests are developed
in [3], The numerical study of Savage’s test appears in [5]. In the context of directional data, a generalization of
Rao’s spacings tests (see Section 4.4) to spacing-frequencies together with the saddlepoint approximation is given
in [41], which mention its saddlepoint approximation.

The so-called multispacing-frequencies are obtained by gaps of order larger than one made by
V(0), . . . , V(l+1). Let g ∈ N∗ denote the differentiation gap order, such that n = (l + 1)/g is an integer.
Then, the multispacing-frequencies are defined by

Yj =
k

∑
i=1

I{Ui ∈ [V({j−1}g), V(jg))}, for j = 1, . . . , n. (34)

In the case g = 1, Equation (34) coincides with the spacing-frequencies in Equation (32). As before
with g = 1, (Y1, . . . , Yn) takes values in ∆̈n−1

k . We reconsider the null hypothesis H0 : PU = PV and the
general test statistics in Equation (33), however with the multispacing-frequencies in Equation (34). Under H0,
the multivariate Polya distribution in Equation (5) holds with m1 = . . . = mn = g, u = ∑n

j=1 mj = ng and
the MP-NB representation applies.
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The saddlepoint approximation with MP-NB representation was analyzed by Gatto and Jammalamadaka
[7] in the context of the asymptotically most powerful multispacing-frequencies test against a specific sequence
of alternative distributions and also in the context of the test statistic defined by the sum of squared
multispacing-frequencies.

It seems difficult to formulate an arbitrary alternative hypothesis in terms of a particular multivariate Polya
distribution, for the multispacing-frequencies. In this sense, the conditional saddlepoint approximation with the
MP-NB representation may not be easily applied to power computations.

4.4. D-G Representation

Example 9 of this section analyzes the most powerful test of symmetry of the Dirichlet distribution.
The saddlepoint approximation based on the D-G representation to the distribution of the test statistic
under an asymmetric alternative is developed and its numerical accuracy is studied. The Dirichlet
associated to the multinomial distribution is an important conjugate class of distributions in Bayesian
statistic. This is illustrated in Example 10, which presents a Bayesian bootstrap test on the entropy.
The D-G representation with the conditional saddlepoint approximation allow to compute the Bayes
factor of the test, without resampling. Another important application of the saddlepoint approximation
with the D-G representation is for the class of one-sample tests based on spacings. This class of
nonparametric tests is presented in Example 11 and has some similarities with the two-sample tests
based on spacing frequencies of Example 8. Example 11 provides a summary of the applications that
can be found in the literature of this saddlepoint approximation to tests based on spacings.

Example 9 (Test for Dirichlet’s symmetry). The symmetric Dirichlet distribution is obtained by setting
a1 = . . . = an = a in Equation (9), for any a ∈ R∗+. In Bayesian statistics, symmetric priors are of particular
interest in absence of prior knowledge on the individual elements, because they become exchangeable random
variables. The single parameter a becomes a concentration parameter: a = 1 yields the uniform distribution
over ∆n−1

1 (thus, the noninformative prior); a > 1 yields a concave density over ∆n−1
1 (thus, promoting

similarity of elements); and a < 1 yields a convex density over ∆n−1
1 (thus, promoting dissimilarity of elements).

For (Ȳ1, . . . , Ȳn) ∼ Dirichlet(a1, . . . , an), consider the testing problem of a particular symmetry against any
particular asymmetric alternative. Precisely, given a, α1, . . . , αn ∈ R∗+, where at least one the values α1, . . . , αn

differs from the other ones, consider H0: a1 = . . . = an = a, against H1: (a1, . . . , an) = (α1, . . . , αn). The test
of uniformity is obtained with a = 1. Neyman–Pearson’s Lemma tells that the most powerful test has the form
Tn > t, where Tn viz. Tn(Ȳ1, . . . , Ȳn) is given by

Tn(Ȳ1, . . . , Ȳn) =
n

∑
j=1

(αj − a) log Ȳj. (35)

It is the M-statistic in Equation (1) with ξ j(y; t) = (αj − a) log y− t/n, for j = 1, . . . , n. From the D-G
representation and some algebraic manipulations, the c.g.f. in Equation (12) becomes

Kn(v; s) = −s1v1 − ns2v2 + α̃ log q− log(q− v2){α̃ + (α̃− na)v1}

+
n

∑
j=1
{log Γ(αj + [αj − a]v1)− log Γ(αj)},

where α̃ = ∑n
j=1 αj and q ∈ R∗+ arbitrary. We set s2 = 1/n and select q such that E[S2,n] = 1/n, i.e. q = α̃.

The marginal saddlepoint equation, cf. Equation (14), has then β = 0 as solution. This leads to

Kn

(
v;
(

s1,
k
n

))
= −s1v1 − v2 + α̃ log α̃− log(α̃− v2){α̃ + (α̃− na)v1}

+
n

∑
j=1
{log Γ(αj + [αj − a]v1)− log Γ(αj)}. (36)
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The second order derivatives of Kn can be expressed in terms of polygamma functions ψ(n)(z) = (d/dz)n+1

log Γ(z), for n = 0, 1. We skip the details but note that K′′2,n(0; (s1, k/n)) = α̃−1.
In the following numerical illustration, a = 1 and αj = j, for j = 1, . . . , 5, so n = 5. The saddlepoint

approximation is computed under H1, so it gives the power of the test. It is compared with the Monte Carlo
distribution of T5 with 106 simulations. The numerical results are displayed in Table 4. The probabilities obtained
by simulation are denoted PE[T5 < t], the probabilities obtained by the saddlepoint approximation are denoted
PS[T5 < t] and re(t) denotes the absolute relative error given in Equation (22), for t in the lower and in the
upper tails of the distribution. The relative errors of both lower and upper tails do not exceed 7%.

Table 4. Most powerful test statistic for Dirichlet’s symmetry (T5), selected lower and upper tail points:
Monte Carlo probability (PE), saddlepoint probability (PS), and absolute relative error (re).

t PE[T5 < t] PS[T5 < t] re(t)

−20.5 0.00105 0.00110 0.044
−18.5 0.00976 0.01017 0.042
−17.6 0.02593 0.02661 0.026
−17.0 0.04814 0.04952 0.029
−16.3 0.09709 0.09951 0.025
−13.4 0.90156 0.90255 0.010
−13.2 0.95632 0.95753 0.029
−13.1 0.97661 0.97727 0.029
−13.0 0.99104 0.99090 0.015
−12.9 0.99833 0.99820 0.070

Example 10 (Bayesian bootstrap and Bayesian entropy test). In Bayesian statistics, Dirichlet and
multinomial distributions are conjugate: Dirichlet prior and multinomial likelihood lead to Dirichlet posterior.
Precisely, if

(Ȳ1, . . . , Ȳn) ∼ Dirichlet(a1, . . . , an) (37)

and
{(Y1, . . . , Yn) | (Ȳ1, . . . , Ȳn) = (ȳ1, . . . , ȳn)} ∼ Multinomial(k; ȳ1, . . . , ȳn),

then

{(Ȳ1, . . . , Ȳn)|(Y1, . . . , Yn) = (y1, . . . , yn)} ∼ Dirichlet(a1 + y1, . . . , an + yn), (38)

∀a1, . . . , an ∈ R∗+ and (y1, . . . , yn) ∈ ∆̈n−1
k .

The Bayesian bootstrap was introduced by Rubin [43] as a method for approximating the posterior
distribution of a random parameter; precisely the distribution of a function of Ȳ1, . . . , Ȳn, given the observed
data (Y1, . . . , Yn) = (y1, . . . , yn). It consists in sampling of (Ȳ1, . . . , Ȳn) from Equation (38). This can be done
by generating Zj ∼ Gamma(aj + yj, q), for j = 1, . . . , n, independently, and by setting

Ȳj =
Zj

∑n
i=1 Zi

, for j = 1, . . . , n. (39)

The value of q ∈ R∗+ is irrelevant. Details can be found in Section 10.5 of [38]. Assume that the parameter
of interest is Tn(Ȳ1, . . . , Ȳn) that admits the M-statistic representation in Equation (1), then the saddlepoint
approximation with the D-G representation can be used instead of the described sampling method.
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Consider now the urn model of Section 2.2 with sampling with replacement, where the probability of
drawing a ball of color Cj is given by the random variable Ȳj, for j = 1, . . . , n. We are interested in the entropy
εn(Ȳ), viz. Equation (23) as a function of Ȳ = (Ȳ1, . . . , Ȳn). According to Equation (10), εn(Ȳ) is the entropy
of the sample proportions of colors C1, . . . , Cn under Polya’s sampling at steady state. Thus, aj = aj,0/r,
for j = 1, . . . , n; cf. Section 2.3. We consider the Bayesian testing problem H0: {εn(Ȳ) ∈ [ε0, log n]}, against
H1 : {εn(Ȳ) ∈ [0, ε0)}, for some ε0 ∈ (0, log n). Then, ρ0 = P[εn(Ȳ) ≥ ε0] and ρ1 = P[εn(Ȳ) < ε0]

are the prior probabilities of H0 and H1, respectively. Their analog posteriors are r0(y) = P[εn(Ȳ) ≥
ε0|Y = y] and r1(y) = P[εn(Ȳ) < ε0|Y = y], where Y = (Y1, . . . , Yn) and y = (y1, . . . , yn) ∈ ∆̈n−1

k .
The Bayes factor of H0 to H1 is the posterior odds ratio r0(y)/r1(y) over the prior odds ratio ρ0/ρ1, namely
ϕ(y) = ρ1r0(y)/{ρ0r1(y)}. The Monte Carlo solution consists in sampling of (Ȳ1, . . . , Ȳn) from the prior in
Equation (37) and then from the posterior (38), both levels by means of Equation (39). Thus, r0(y) and r1(y) are
Bayesian bootstrap estimators of ρ0 and ρ1, respectively, and they allow for the evaluation of ϕ(y). Alternatively,
these values can be obtained without repeated sampling by using the conditional saddlepoint approximation of
Section 3 with the D-G representation.

Example 11 (Tests based on spacings). The so-called spacings are the first order differences or gaps between
successive values of the ordered sample. Let U1, . . . , Ul be absolutely continuous and i.i.d. over [0, 1], without
loss of generality by the probability integral transform, let 0 ≤ U(1) ≤ . . . ≤ U(l) ≤ 1 denote the ordered
sample and let U(0) = 0 and U(l+1) = 1. For n = l + 1, the spacings are defined by

Ȳj = U(j) −U(j−1), for j = 1, . . . , n. (40)

Thus, (Ȳ1, . . . , Ȳn) takes values in ∆n−1
1 . Statistics that are defined as functions of spacings are used in

various statistical problems, goodness-of-fit testing representing the most important (see, e.g., [44]). Spacings
are essential in the analysis of circular data, because they form a maximal invariant w.r.t. changes of null
direction and sense of rotation. For Borel functions hj, for j = 1, . . . , n, important spacings statistics have
the form

n

∑
j=1

hj(nȲj). (41)

If h1 = . . . = hn = h, then the test statistic is called symmetric. Under the null hypothesis H0 of uniformity
of U1, . . . , Ul , the D-G representation holds with a1 = . . . = an = 1, so that the n spacings are equivalent in
distribution to n i.i.d. exponential random variables conditioned by their sum. As Equation (41) takes the form
of the M-statistic in Equation (1), the saddlepoint approximation of Section 3 can be directly applied.

The conditional saddlepoint approximation with the D-G representation under H0 is analyzed numerically
by [3] in the following cases: Rao’s spacings test (viz., hj(x) = |x − 1|/2, for j = 1, . . . , n), the logarithm
spacings test (viz., hj(x) = log x, for j = 1, . . . , n), Greenwood’s test (viz., hj(x) = x2, for j = 1, . . . , n) and
a locally most powerful spacings test (viz., hj(x) = Φ(−1)(j/(n + 1))x, for j = 1, . . . , n). In the context of
reliability, Gatto and Jammalamadaka [6] re-expressed a uniformly most powerful test of exponentially, against
alternatives with increasing failure rate, in terms of spacings. They obtained the saddlepoint approximation and
show some numerical comparisons.

These spacings can be generalized to higher order differences or gaps. Let g ∈ N∗ denote the gap order,
selected such that n = (l + 1)/g ∈ N∗. The so-called multispacings are defined as

Ȳj = U(jg) −U({j−1}g), for j = 1, . . . , n. (42)

As previously, (Ȳ1, . . . , Ȳn) takes values in ∆n−1
1 . When g = 1, the random variables in Equation (42)

coincide with the spacings in Equation (40). Under H0, the D-G representation holds with a1 = . . . = an = g.
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Gatto and Jammalamadaka [7] provided explicit formulae of the saddlepoint approximations for Rao’s
multispacings test and for the logarithmic multispacings test, together with a numerical study.

The next problem would be the computation of the distribution of a spacings or multispacings test
statistic under a non-uniform alternative distribution. This can be done by saddlepoint approximation with the
D-G representation whenever one can find the parameters a1, . . . , an ∈ R∗+ such that, under the alternative
distribution, the spacings or multispacings satisfy (Ȳ1, . . . , Ȳn) ∼ Dirichlet(a1, . . . , an). This would give
the power of the test. However, re-expressing a non-uniform distribution in terms of a particular Dirichlet
distribution does not appear practical, in general.

5. Final Remarks

This article presents the saddlepoint approximation for M-statistics of dependent random
variables taking values in a simplex. Four conditional representations that allow re-expressing
these dependent random variables as independent ones are presented. A detailed presentation
of the underlying urn sampling model that is common to all four conditional representations is
given. Important applications are reviewed. New applications are presented with some numerical
comparisons between this saddlepoint approximation and Monte Carlo simulation. The numerical
accuracy of the saddlepoint approximation appears very good.

A practical question concerns the relative advantages and disadvantages of using the conditional
saddlepoint approximation presented in this article. Indeed, tail probabilities can be computed rapidly
and more easily by means of Monte Carlo simulation. However, there is no unique answer to this
general question, because several aspects should be considered.

First, when very small tail probabilities, e.g., 10−4, or extreme quantiles are desired, then the
simple Monte Carlo used in this article may not always lead to accurate results. The reason is that the
saddlepoint approximation is a large deviation technique, with bounded relative error everywhere in
the tails, whereas simple Monte Carlo has unbounded relative error in the tails. In fact, simple Monte
Carlo is even not logarithmic efficient. This is well explained in [45] (pp. 158–160). To have bounded
relative error, importance sampling is required. Then, the mathematical complexity would become
close to the one of the saddlepoint approximation. Moreover, computing quantiles by importance
sampling may not be straightforward. As shown above, this is quite simple with the saddlepoint
approximation.

The computations required for this article were done with Matlab (R2017b, The MathWorks, Natick,
MA, USA). The minimization program fminsearch was used for obtaining the saddlepoint defined
in Equation (13). All Matlab programs are available at http://www.stat.unibe.ch. They should be
easily used and modified for new related applications.

One should also mention that, having analytical expression such as a saddlepoint approximation
for computing a quantity of interest, may have advantages. Monte Carlo and other purely numerical
methods often do not provide such an expression. For example, the saddlepoint approximation can be
used for computing the sensitivity of the upper tail probability, viz. the derivative of the tail probability
w.r.t. to a parameter of the model. Gatto and Peeters [46] proposed evaluating the sensitivityof the
tail probability of the random sum w.r.t. the parameter of the summation index distribution (which is
either Poisson or geometric) with the saddlepoint approximation. They showed numerically that the
sensitivities obtained by the saddlepoint approximation and by simulation with importance sampling
are very close, but this no longer true when simulation is without importance sampling. In the case of
computing sensitivity, importance sampling is significantly more computationally intensive than the
saddlepoint approximation.

An application of the saddlepoint approximation that exploits a different conditional representation
concerns the distribution of the inhomogeneous compound Poisson total claim amount under force
of interest, in the context of insurance. It was suggested by [47] and the main idea is the following.
The inhomogeneous Poisson process of occurrence times of individual claims is given by 0 ≤ T1 ≤

http://www.stat.unibe.ch
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T2 ≤ . . .. Let Nt denote the number of occurrences during the time interval [0, t], for some t > 0. Then,
∀n ∈ N∗,

{(T1, . . . , TNt)|Nt = n} ∼ (Y(1), . . . , Y(n)), (43)

where Y(1) ≤ . . . ≤ Y(n) are the ordered values of some random variables Y1, . . . , Yn that are
nonnegative, i.i.d. and independent of {Nt}t≥0. The individual claim amounts are represented
by the random variables X1, X2, . . . that are nonnegative, i.i.d. and independent of {Nt}t≥0. Let r ∈ R
denote the force of interest. The discounted total claim amount is Zt = ∑Nt

j=0 er(t−Tj)Xj, for T0 = X0 = 0,

and Equation (43) implies Zt ∼ ∑Nt
j=0 er(t−Yj)Xj, for Y0 = 0. The last random sum has a simple structure

and its distribution can be computed by the saddlepoint approximation of [18].
A technique that could exploit the four conditional representations of Section 2 for computing

the conditional c.g.f. (and not the conditional saddlepoint approximation) can be found in [48]. It is
tentatively applied, with the MP-NB representation, to the symmetric spacing-frequencies test statistic
in Equation (33) in [41] (Section 6.3.2). However, this approach seems impractical.

Another extension of the proposed approximation would concern neutrosophic statistics.
In standard statistics, observations and parameters are represented by precise values, whereas in
neutrosophic statistics they remain indeterminate (see, e.g., [49]).
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