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Abstract

In the core-accretion formation scenario of gas giants, most of the gas accreting onto a planet is processed through
an accretion shock. In this series of papers we study this shock because it is key in setting the structure of the
forming planet and thus its postformation luminosity, with dramatic observational consequences. We perform one-
dimensional gray radiation-hydrodynamical simulations with nonequilibrium (two-temperature) radiation transport
and up-to-date opacities. We survey the parameter space of accretion rate, planet mass, and planet radius and obtain
postshock temperatures, pressures, and entropies, as well as global radiation efficiencies. We find that the shock
temperature Tshock is usually given by the “free-streaming” limit. At low temperatures the dust opacity can make
the shock hotter but not significantly so. We corroborate this with an original semianalytical derivation of Tshock.
We also estimate the change in luminosity between the shock and the nebula. Neither Tshock nor the luminosity
profile depend directly on the optical depth between the shock and the nebula. Rather, Tshock depends on the
immediate preshock opacity, and the luminosity change on the equation of state. We find quite high immediate
postshock entropies ( »S 13–20 -k mB H

1), which makes it seem unlikely that the shock can cool the planet.
The global radiation efficiencies are high (h  97%phys ), but the remainder of the total incoming energy, which is
brought into the planet, exceeds the internal luminosity of classical cold starts by orders of magnitude. Overall,
these findings suggest that warm or hot starts are more plausible.

Key words: accretion, accretion disks – methods: analytical – methods: numerical – planets and satellites:
formation – planets and satellites: gaseous planets – radiative transfer

1. Introduction

With its first direct detections already some 10 to 15 years ago
(Chauvin et al. 2004; Marois et al. 2008), the technique of direct
imaging has started to reveal a scarce but interesting population of
planets or substellar objects of very low mass at large separations
from their host stars (Bowler 2016; Bowler & Nielsen 2018;
Wagner et al. 2019). The formation mechanism of individual
detections is often not obvious, but gravitational instability as well
as core accretion (with the inclusion of N-body interactions during
the formation phase and in the first few million years afterward)
are likely candidates to explain the origin of at least some of these
systems (e.g., Marleau et al. 2019). These different formation
pathways may imprint into the observed brightness of the planets
(Baruteau et al. 2016; Mordasini et al. 2017).

To interpret the brightness measurements requires knowing
the postformation luminosity of planets of different masses.
Formation models, principally those of the California (Pollack
et al. 1996; Bodenheimer et al. 2000, 2013; Marley et al. 2007;
Lissauer et al. 2009) and the Bern group (Alibert et al. 2005;
Mordasini et al. 2012a, 2012b, 2017), seek to predict this
luminosity within the approximation of spherical accretion.
They need to assume something about the efficiency of the gas-
accretion shock at the surface of the planet during runaway gas
accretion. This efficiency is defined as the fraction of the total
energy influx that is reradiated into the local disk and thus does
not end up being added to the planet. The extremes are known

as “cold starts” and “hot starts” (Marley et al. 2007), and their
postformation luminosities can differ by orders of magnitude.
In a recent series of papers, Berardo et al. (2017), Berardo &

Cumming (2017), and Cumming et al. (2018) have begun
calculating the structure of accreting planets following Stahler
(1988). Crucially, they take into account that in the settling zone
below the shock, the continuing compression of the postshock
layers leads to a nonconstant luminosity. They find that the thermal
influence of the shock on the evolution of the planet during
accretion depends on the contrast between the entropy of the (outer
convective zone of the) planet and that of the postshock gas. This
approach promises eventually to lead to more realistic predictions
of the postformation luminosity4 but does require, as a boundary
condition, knowledge of the temperature of the shock.
While global three-dimensional (radiation-)hydrodynamical

simulations of the protoplanetary and of the circumplanetary
disks (Klahr & Kley 2006; Machida et al. 2008; Tanigawa et al.
2012; D’Angelo & Bodenheimer 2013; Szulágyi et al. 2016,
2017) have the potential of providing a realistic answer as to
the postshock conditions and its efficiency, they still have a
limited spatial resolution ofD ~x R1 J at best at the position of
the planet, despite their high dynamical range of spatial scales.
Also due to the computational cost, they are (currently) unable
to survey the large input parameter space, which covers a factor
of a few in planet radius, an order of magnitude in mass, and
several orders or magnitude in accretion rate and internal
luminosity (e.g., Mordasini et al. 2012b, 2017).

The Astrophysical Journal, 881:144 (24pp), 2019 August 20 https://doi.org/10.3847/1538-4357/ab245b
© 2019. The American Astronomical Society.

Original content from this work may be used under the terms
of the Creative Commons Attribution 3.0 licence. Any further

distribution of this work must maintain attribution to the author(s) and the title
of the work, journal citation and DOI.

4 This statement holds for a given an accretion history, which, admittedly, is,
however uncertain since it depends in part on the migration behavior of the
planet, which itself is fraught with uncertainty.
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In the present series of papers, we use one-dimensional models
of the gas accretion to take a careful look at shock microphysics.
In Marleau et al. (2017, hereafter Paper I), we introduced our
approach, presented a detailed analysis of results for one
combination of formation parameters, and discussed the shock
efficiency for a certain range of parameters. However, we
restricted ourselves to equilibrium radiation transport, in which
the gas and radiation temperatures are assumed to be equal
everywhere, and assumed a perfect5 equation of state (EOS), i.e.,
a constant mean molecular weight μ and heat capacity ratio6 γ.
We found that the shock is isothermal and supercritical and that
the efficiencies can be as low as 40%.

Here, we relax the assumption of equilibrium radiation
transport, look more carefully at the role of opacity, and
consider a wider parameter space than in Paper I, exploring
systematically the dependence on accretion rate, mass, and
planet radius. We also extend our analytical derivations
considerably. We again assume a perfect EOS, varying μ and
γ, and focus on the cases in which the internal luminosity L int is
much lower than the shock luminosity Lacc.

This paper is structured as follows: in Section 2 we estimate
in what regions of ( ˙ )M M R L, , ,p p int , where Ṁ is the accretion
rate while Mp and Rp are the planet mass and radius, the
assumption L Lint acc holds, which guides our choice of
parameters. Section 3 briefly reviews our setup and details the
relevant microphysics, including the updated opacities. The
main thrust of this paper is in Section 4, which presents and
analyzes results, including shock temperatures, global radiative
shock efficiencies, and postshock entropies, for a grid of
simulations. In Section 5 we present semianalytical derivations
of the shock temperature and of the temperature profile in the
accretion flow and compare them to our results. In Section 6 we
carefully investigate the effect of different perfect EOS in
nonequilibrium radiation transport and of dust destruction in
the Zel’dovich spike. This motivates us to derive analytically
the drop or increase of the luminosity across the Hill sphere.
While we do not yet calculate the structure of forming planets
using our shock results, Section 7 explores whether hot or cold
starts are expected, and presents a further discussion. Finally,
Section 8 summarizes this work and presents our conclusions.

2. Estimate of Negligible Internal Luminosity

The main formation parameters are the accretion rate onto the
planet, the planet mass, the planet radius, and the internal
luminosity of the planet, denoted by Ṁ , Mp, =R rp shock (the
position of the shock rshock defining the radius of the very nearly
hydrostatic protoplanet), and L int, respectively. In Paper I and this
work, we focus on the case of negligible L int. This luminosity
comes from the contraction and cooling of the planet interior and
is generated almost entirely within a small fraction of the
planetary volume, where most of the mass resides. Specifically,
this means  DL Lint , where the luminosity jump at the shock
D ~L Lacc. This reduces the number of free parameters in our
study, but is mainly also expected to be the limit in which the
shock simulations we perform are the most relevant.

We can estimate in what cases neglecting the interior
luminosity should be best justified. In the Marley et al. (2007)
formation calculations, which represent the extreme case of
cold accretion (Mordasini et al. 2017), it is blatantly obvious
that L int is negligible compared to Lacc (see their Figure 3
and the discussion in Section 7.1). For more “moderate”
(i.e., warmer) versions of cold starts, Figure 1 shows the ratio
L int/Lacc for cold-start population synthesis planets as in
Figure 7(d) of (Mordasini et al. 2017). Most points are below

~L L 1int acc . Overall, the higher the accretion rate or the
mass, the less important the interior luminosity. Using the hot-
start population should yield a somewhat weaker shock
because the radii are larger (leading to the “core mass effect”;
Mordasini 2013), but overall the results should be similar (see
Figure 13 of Mordasini et al. 2017).
When we focus on ˙ -

Å
-M M10 yr3 1 and masses above a

few MJ, simulations with »R 1.5p –3 RJ should be those in
which the accretion shock is the most relevant. At
˙ -

Å
-M M10 yr4 1, the interior luminosity frequently repre-

sents an appreciable fraction of the accretion luminosity, even
up to high planet masses. Therefore we do not consider these
lower rates in this paper. Of course, this estimate is not self-
consistent because these formation and evolution calculations
assume a fixed shock efficiency η=100%, whereas we find
clearly lower values (in the sense that the heating of the planet
by the postshock material is important relative to the interior
luminosity of the planet; see Section 7.1 and Paper I).
Nevertheless, the estimate should provide reasonable guidance.

3. Simulation Approach

As in Paper I, we use the PLUTO code (Mignone et al.
2007, 2012) to solve in a time-explicit fashion for the
hydrodynamics. The one-dimensional spherically symmetric
mass and momentum conservation equations are
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r
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¶
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t r r
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Figure 1. Ratio of intrinsic to shock luminosity in the cold nominal population
syntheses of Mordasini et al. (2017). The color of the points encodes the mass;
planets between =M 0.3p and 15 MJ are shown. The three groups of points are
for accretion rates of ˙ = -M 10 4– -

Å
-M10 yr2 1 within 0.05 dex (left to right;

see legend).

5 This is also sometimes termed a “constant EOS” but should not be referred
to only as an “ideal gas,” as is often done, unfortunately. Indeed, the latter only
needs fulfill ( )r m=P m k TH B with μ not necessarily constant. A nonideal
EOS also includes quantum degeneracy effects, for example.
6 For a perfect EOS, the various adiabatic indices Γ1,2,3, the heat capacity
ratio γ, as well as g º +P e 1eff int , where eint is the internal energy, are all
equal. Therefore we always write γ in this paper.
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respectively, where P is the pressure and the local gravitational
acceleration is ∣ ∣= -g GM rp

2 , the self-gravity of the gas
being negligible. Note that, using mass conservation, the
momentum equation can also be written in the form

( )r r r
¶
¶

+
¶
¶

+
¶
¶

= -
v

t
v

v

r

P

r
g, 2

i.e., without the geometry factors r±2 in the flux term.
The energy equation is similar to what we used in Paper I,

but we make use of the newest version of the flux-limited
diffusion (FLD) solver Makemake. We return to this in
Section 3.2.

3.1. Setup

The simulation domain extends from close to the planetary
surface to almost out to the “accretion radius” Racc (Bodenhei-
mer et al. 2000; Paper I), near one-third of the Hill radius
( =k 1 3Lissauer Lissauer et al. 2009). A grid with 1000uni-
formly spaced cells between the inner edge of the domain, rmin,
and +r R0.5min J and 1000geometrically stretched cells from

+r R0.5min J to the outer edge of the domain, rmax, was found
to yield good results for several parameter combinations. For
the other cases, an increase to 2000+2000 cells sufficed to
obtain smooth profiles (e.g., in the local accretion rate
˙ ( ) ( ) ( )p r=M r r v v r4 2 below the shock). We verified that
increasing the resolution does not produce different results
except for sharpening the Zel’dovich spike (see below) and
changing its peak value. Thus there are no qualitative
consequences on the pre- or postshock structure.

To avoid numerical issues at early times, we have revised the
initial setup. We do not use a hydrostatic atmosphere as was
done in Paper I, but rather begin directly with an accretion
profile in the density ρ and velocity v. The initial radiation and
gas temperatures are set to the nebula temperature =T 150neb K
(Pollack et al. 1994) at the outer edge rmax and increase linearly
up to T1.1 neb at rmin. The radiation and gas temperatures are set
equal, and the initial pressure is obtained from ρ and Tgas.

We use a CFL number of 0.8 (we verified that CFL=0.4
gives identical profiles), and use the tvdlf Riemann solver
along with the MinMod slope limiter. This somewhat diffusive
combination ensures numerical stability while not significantly
influencing the outcome.

The inner wall is reflective and the radiation flux there is set to
zero. We let gas fall in freefall from the outer edge under the
action of the central potential, enforcing an accretion rate at the
outer edge only. The gas piles up at the bottom of the domain,
forming a shock that defines the surface of the planet at

=r Rshock p (both variables are used interchangeably throughout,
with -rshock ( +rshock ) denoting the downstream (upstream)
location). This shock surface often but not always moves
outward over time, although at a rate that is slow even compared
to the strongly subsonic postshock velocity. The deepest pressure
in the atmosphere we simulate is greater than the postshock (ram)
pressure by one to several orders of magnitude, depending on the
amount of accumulated mass and the local gravitational
acceleration =g GM rp

2, where r is the radial coordinate in
spherical geometry, and G is the gravitational constant.

While we use a fully time-dependent code, our simulations
represent steady-state snapshots in the formation-parameter
space, as discussed in Paper I. For reference, the profiles for the
runs presented here needed on the order of 5×106 s to
come into equilibrium. This is entirely negligible compared to

the timescale on which the protoplanet grows, which is
on the order of 104–106 yr. (Even after = ´t 2 10 sstop

7 ,
our usual stopping time, some starting structures were still
visible at a position r deep below the shock for which

( )ò-t v dx1
r

r
stop

shock in at least some simulations; these
regions are not of interest here, however.)

3.2. Radiation Transport

A significant improvement since Paper I is the change from
equilibrium to nonequilibrium (or two-temperature, 2-T) FLD
in the radiation transport routine Makemake (Kuiper et al.
2010, R. Kuiper et al. in preparation) In this approach, the gas
and radiation temperatures are not enforced to be equal, and the
full energy equation reads (see also Mihalas & Mihalas 1984;
Kley 1989; Turner & Stone 2001; R. Kuiper et al. 2010;
Commerçon et al. 2011b; Klassen et al. 2014)

( ) ([ ] )

( )

r
¶ +

¶
+  + + = -L -

E E

t
E E P v gv,

3a

kin int
kin int

( )¶
¶

+  = +L
E

t
F , 3brad

rad

omitting the radiation pressure because it is negligible in this
problem, and with Frad the radiative flux. In FLD, one writes
(Paper I)

( )= -F D E , 4arad F rad

( ) ( )l
k r

ºD
R c

, 4bF
R

( ) 
k r


ºR

Eln
, 4crad

R

where DF is the diffusion coefficient, λ the flux limiter (see
Section 5.1 below), kR the Rosseland mean, and R the “local
radiation quantity” (see Paper I). Thus the radiative flux is
assumed to be colinear with and opposite in direction to the
gradient of radiation energy density.7 In Equation (3), the
combined cooling and heating or exchange term is

( )k r
p

k rL º -c
S

c
c E

4
5aP E rad

( ) ( )k r= -c aT E . 5bP gas
4

rad

We use the second line because we take the source function S
to be the Planck function s p=B Tgas

4 , with s = ac4 (s being
the Stefan–Boltzmann constant and a and c the radiation
constant and speed of light). This assumes local thermody-
namic equilibrium. Our gray approximation suffices to make kP

and kE, the Planck (blackbody-weighted) and Erad-weighted
mean opacities, respectively, be the same. Equations 3(a) and
(b) are followed separately to prevent the Λ terms from
canceling. This system states that the material (gas or dust,
assumed here to have the same temperature) is losing energy at
the rate k rc aTP gas

4 but absorbing energy (photons) at the rate
k rc EE rad, and conversely for the radiation.

7 In angularly resolved radiation transport methods, it is in fact possible for
the radiation to flow up the Erad gradient (McClarren & Drake 2010; Jiang et al.
2014). However, this can occur only for subcritical shocks and does not
represent a large effect. It thus does not affect our work.
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To solve the energy Equation 3(b) in the radiation transport
substep, the radiative flux Frad is replaced by its expression
from Equation (4), so that the FLD approach in fact does not
naturally yield Frad (nor thus the luminosity). While it is
possible at a given time to calculate it from the output
quantities ( )r r , ( )E rrad , ( )k rR by Equation (4), this is
approximate because in our implicit approach the diffusion
coefficient DF (Equation 4(b)) is computed from the quantities
at the current time while the Erad factor is written with Erad at
the following timestep. To avoid any numerical noise and
inaccuracy, we therefore store DF before the FLD step and
combine it with Erad after, thus exactly reconstructing the flux
as it is effectively computed (albeit otherwise not explicitly).
This was also done in Paper I but was not reported there.

We use the same outer boundary condition for Erad as in
Paper I, but verified that changing the outer temperature
boundary condition (in particular to a Dirichlet boundary
condition) does not affect the temperature or luminosity
structure except at the largest radii.

3.3. Microphysics: Opacities

With respect to Paper I, we now always use the dust
opacities of Semenov et al. (2003), taking by default their
simplest model for the dust grains, the “normal homogeneous
spheres” (nrm_h_s). It features more evaporation transitions
than in Bell & Lin (1994), which we used originally. We
slightly modified the opacity routine8 to leave the evaporation
of the most refractory component to be handled in the main
code and to avoid adding the contribution from the Helling
et al. (2000) gas opacities.

Instead, the gas opacity is provided by Malygin et al. (2014),
and we take their one-temperature Planck mean, as opposed to

the 2-T Planck mean (see their Equation (4)). We found that it
is crucial for numerical stability, especially toward higher
constant μ and γ, to evaluate the single-temperature kP at the
radiation temperature ( )ºT E arad rad

1 4 and not at the gas
temperature Tgas. Fortunately, it is also justified. Indeed,
looking at ( )k T T,P rad gas for fixed densities, one generally
incurs a smaller mistake when using ( )k k» T T,P P rad rad than
with ( )k k» T T,P P gas gas . We also evaluate the dust opacities at
Trad but note that this barely makes a difference because we will
find that the radiation and gas are always well coupled
( =T Tgas rad) in the region where the dust opacity matters
( T 1500gas K).
We recall that the Planck opacity is relevant for the coupling

between dust/gas and radiation, whereas the Rosseland mean
determines whether the radiation can stream freely or has to
diffuse. This is discussed in more detail in Section 7.2.
The Planck opacity kP is shown in Figure 2 and is compared

to the Rosseland mean kR. In the low-temperature, dust-
dominated regime kP is similar to kR with k k~ ~P R
1–10 cm2 g−1. For comparison, the different models of
Semenov et al. (2003) are shown, with the exception of the
porous models. We note that the fluffiness or porosity of dust
aggregates during their growth remains an open question (see
Cuzzi et al. 2014; Kataoka et al. 2014; Kirchschlager et al.
2019; Tazaki et al. 2019, and references in these works). In any
case, the model curves of Semenov et al. (2003) for porous
composite particles are not markedly different from the ones
shown in Figure 2.
While the Rosseland mean opacity past dust evaporation

(near »T 1500 K) drops to k » -10R
2 cm2 g−1 (see Figure 1

of Paper I), the Planck mean does not drop much below k »P
1 cm2 g−1 and even increases (between a few thousand to
104 K) to k = 10P

2–104 cm2 g−1, depending on the density.
Note that the Bell & Lin (1994) Rosseland mean opacities

are three to six orders of magnitude(!) lower than the Plank
average above the dust destruction temperature. This implies

Figure 2. Rosseland (kR) and Planck (one-temperature; kP) mean opacities (left and right panels, respectively), from Malygin et al. (2014) for the gas and Semenov
et al. (2003) for the dust. The total opacity is taken as the sum of the gas and dust contributions. Three densities are shown: ρ=10−13,−11,−9 g cm−3 (thin to thick
lines). The Malygin et al. (2014) opacities are kept constant below the table limit of T=700 K (pale blue ρ-independent lines in the right panel). Since Bell & Lin
(1994) do not provide kP, their kR are displayed for comparison. Their curves reach down to κ=10−7

–10−4 cm2 g−1 (Paper I), roughly four orders of magnitude
smaller than the Malygin et al. (2014) Planck values. We also display the Helling et al. (2000) kP opacities, which are also too low (Malygin et al. 2014). For the
Semenov et al. (2003) opacities, we show their “nrm.h.s” model (thick red lines). The other available “homogeneous” and “composite” models (thin pale red lines) are
also shown at ρ=10−11 g cm−3, with the curve sticking out mostly in the Planck mean being the five-layer composite model “nrm.c.5.”

8 Original version available at http://www2.mpia-hd.mpg.de/home/henning/
Dust_opacities/Opacities/opacities.html.
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that studies using nonequilibrium radiation transport with the
Bell & Lin (1994) Rosseland mean as their Plank opacity are
effectively assuming much less coupling between opacity
carrier (dust or gas) and radiation. As Malygin et al. (2014)
found out, a similar word of caution applies to the gas opacities
of Helling et al. (2000), which are included in Semenov et al.
(2003). Whether using these low opacities would actually lead
to a strong disequilibrium between the matter and radiation will
also depend on the local density and velocity, however, as
briefly discussed in Section 7.2.

4. Grid of Simulations: Results and Analysis

We now present and discuss results for a grid of simulations
for the macrophysical parameters

˙- -
Å

- 
 
 

M M
M M

R R

10 10 yr
1.3 10

1.6 3 .

3 2 1

p J

p J

We consider a mixture of molecular hydrogen and helium with
helium mass fraction Y=0.25, yielding μ=2.29 and γ=
1.44. At high temperatures, the hydrogen should dissociate
(Szulágyi & Mordasini 2017), but we defer simulations that

Figure 3. Shock properties in the perfect-gas case with (μ=2.29, γ=1.44) and with tabulated opacities (Semenov et al. 2003; Malygin et al. 2014) for a grid of
accretion rates ˙ = -M 10 3– -

ÅM10 2 yr−1 (color and symbol shape); masses =M 1.3p , 5, 10 MJ (line saturation), and planet radii, i.e., shock positions »R 1.5p –3 RJ.
The symbol size scales with the position of the inner edge of the respective simulation box =r 1.6min –2.9 RJ. Shown are (left column) the shock temperature T ;shock

(top right) the luminosity at rmax, which is roughly the luminosity at the accretion radius ( )( ) » »L r L R R ;max
1

3 Hill acc and (bottom right) the Rosseland optical depth

tD R from Rp to rmax. Note that ( )L Racc depends on (μ, γ) (see Equations (42) and (45)). We compare in the temperature panel to Equation 6(b), i.e., with
h = D =f 1;kin

red in the luminosity panel to Equation (8); and in the tD R panel to the rough estimate Equation (9) with k = 1R cm2 g−1, the gray long-dashed line
highlighting tD ~ 1R .

Figure 4. Global physical shock efficiency hphys (Equation (10)) against the
preshock Mach number M in the perfect-gas case with ( )m g= =2.29, 1.44
and with tabulated opacities (Semenov et al. 2003; Malygin et al. 2014) (grid of
accretion rates, masses, and radii of Figure 3; see color, saturation, and shape
meaning there). We compare to Equation (13) with γ=1.44 (black) and
γ=1.1 for reference (gray), and also show hkin (Equation (14) for these two
γ values (thin dashed gray lines). There is some noise in some simulations, but
this is only cosmetic.
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take this into account to another paper in this series (G.-D.
Marleau et al. 2019, in preparation).

The results are summarized in Figures 3–5 and discussed in the
following: Figure 3 shows the resulting shock temperature as a
function of the macrophysical parameters (Section 4.1), the
luminosity at roughly the Hill radius (Section 4.2), and the optical
depth to the Hill radius (Section 4.3), whereas Figure 4 shows the
global physical efficiency as a function of the preshock Mach
number (Section 4.4). Finally, in Figure 5 we display the
efficiency as a function of the macrophysical parameters
(Section 4.5) and the postshock entropy (Section 4.6).

Note that the grid is irregular in shock position because we
considered the same rmin values for all masses and accretion
rates but the shock moves at different rates dr dt;shock over the
course of 2×107 s, which we use as the maximal simulation
time because it is more than enough for the profiles to reach a
quasi-steady state, the ranges of radial positions that the shock
covers often do not overlap between different ( ˙ )M M r, ,p min .
We added several simulations at higher r R2.9min J for
( ˙ )= =-

Å
-M M M M10 yr , 1.33 1

p J .

4.1. Shock Temperature

For our choice of macrophysical parameters, the shock
temperature is always above 1000 K. In Figure 3, simulations
with a given ( ˙ )M M, p but different rmin (symbol size) are seen to
lead to the same shock temperature at a given radius =rshock

Rp. This confirms that even though the postshock density
structures differ, the shock properties do not depend on our
placement of the inner boundary, thus supporting the robust-
ness of our results. We have also verified that varying other
numerical parameters such as the resolution or the tolerance in
the FLD solver step (R. Kuiper et al. 2019, in preparation) does
not modify the simulation outcomes.
An interesting result is that in all cases, the postshock gas

and radiation (not shown) are in equilibrium, with =T Tgas rad

to better than 1%, so that one can speak of a single temperature.
The same applies to the preshock temperature. (For other
choices of γ the equality is less strict but still within a
few percent.) In Figure 3(a), the values we obtained are
compared to the analytical shock estimate from Equation (27)

Figure 5. Top row: global physical efficiency hphys for the simulations shown in Figure 3 using the same color and symbol coding. The theoretical curves (solid lines)
use Equation (13) withM = v cff s, with the sound speed cs set by the temperature from Equation 6(b). Note the small vertical range. The deviations of the simulation
data from the analytical expression at ˙ = -

Å
-M M10 yr3 1 are discussed in the text. Bottom row: postshock entropy ( ˙ )s M M R, ,p p for the same simulations. The

entropy is calculated with a full nonperfect EOS (Berardo et al. 2017), which formally is not self-consistent with the assumption of a perfect gas for the postshock
temperature Tshock and pressure Pram (dots: simulation results; lines: Equations 6(b) and (16)). However, because Tshock and Pram should be independent of the EOS, the
entropy values are probably realistic. The zero-point of the entropy (relevant only when comparing to other work) is discussed in the text.
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of Paper I

( )s
h r

=
D

T
f

v

4 2
6ashock

4
kin

red

ff shock
3

˙
( )

p
»

GM M

R16
, 6b

p

p
3

where ( ) ( ˙ )h rº D »F v L GM M R0.5kin
rad

3
acc p p is the nor-

malized jump in luminosity and ( )D º -+f f rred red shock

( )-f rred shock the jump in fred at the shock. This equation is
revisited in Section 5.3. The freefall density ˙ ( )r p= M r v4ff

2
ff

is evaluated ahead of the shock, with =v GM r2ff p the
approximate freefall velocity Paper I. The reduced flux

( )ºf F cE 7red rad rad

is also termed the “streaming factor” (Kley 1989) because it
indicates to what extent the radiation is freely streaming
( f 1red ) or diffusing ( f 0red ). In usual shock terminol-
ogy, free-streaming regions are called “transmissive” (see
Figure 8 of Vaytet et al. 2013b; Drake 2006; we recall in
passing that Equation 6(a) is valid for L Lint acc.) The
simulations have preshock Mach numbers M » 7–35
(Figure 4) and therefore h = 1kin (used in going from
Equations 6(a) to (b)) because this is above M » 2.5 (see
the thin line in Figure 4; Paper I). Moreover, we find that
D »f 1red for a large part of the parameter space, i.e., the
downstream regions are in the diffusion limit with

( ) »-f r 0.03red shock –0.05 (equivalently, a flux limiter λ≈
1/3), while the preshock region is in the free-streaming
regime, with ( ) »+f r 1red shock . Thus the shock is a “thick–thin”
shock in the classification of Drake (2006).

As a consequence of this, Equation 6(b) holds very
accurately for almost all simulations; we are almost always in
the limit of Equation (28) of Paper I, discussed as Equation (33)
below. There is an exception to this, namely for the lowest
mass (1.3MJ) at a low accretion rate ( -

Å
-M10 yr3 1) and toward

larger radii ( )R R2.5p J . In this case, the postshock temper-
ature is higher than predicted from Equation 6(b) by
ΔT≈50 K. This is because fred is lower ahead of the shock,
with, e.g., ( )º =+ +f f r 0.65red red shock for the »T 1100shock K
case. Indeed, because µF f Trad red rad

4 and we find =T Tgas rad, a
lower fred at a location requires a higher temperature for the
same radiation flux (equal to the kinetic energy flux) to flow
through that location. As discussed in Paper I, this smaller fred
can also be pictured as a slower effective speed of light, so that
Erad must increase so as to have the same =F c Erad eff rad. We
return to these points in Section 5.3 and show that another
effect is also at play. Note, however, that this is the gas
temperature but not the effective temperature, with only the
latter setting the spectral shape.

4.2. Luminosity at the Hill Sphere

Figure 3(b) shows the luminosity at the outer edge of the grid,
which is very nearly equal to the luminosity at the Hill sphere, as
we show in Section 6.1.2. The Mach numbers we find here are all
M > 2.5, so that essentially the entire kinetic energy is converted
into radiation (see the pale gray curve in Figure 4). Because for
the specific choice of ( )m g= =2.29, 1.44 , the decrease in L
from the shock to RHill is insignificant (see Section 6.1), the entire

kinetic energy is transformed into visible radiation, according to
the usual expression for the shock luminosity,

˙
( )=L

GM M

R
. 8acc

p

p

This equation is shown as solid lines and seen to match very
well (note that the symbols are almost smaller than the line),
even though we neglected the finite “accretion radius” Racc.
This radius is much larger than the planet radius, however,
because we are considering the detached phase during giant
planet formation (Mordasini et al. 2012b).
We also produced a grid with (μ=1.1, γ=1.1) (not

shown), which increases the contrast with the present situation.
One example is discussed in Section 6.1 below. Over the grid,
however, the shock temperatures were the same, as one would
expect from Equation (6) because they do not explicitly depend
on the EOS. The situation could be different for an ideal but
nonperfect EOS, but due to the potential sink of energy
(dissociation and ionization). As for the luminosity at the Hill
radius, it was different from the m = 1.23 case and was lower
by at most ≈10% compared to the immediate shock upstream
luminosity. The luminosity profile is discussed in Section 6.1.

4.3. Optical Depth of the Infalling Gas

Figure 3(c) displays the Rosseland mean optical depth from
the shock to the outer edge of the computational domain,

òt rkD = - dr
r

r
R R

max

shock . Especially for the lower masses, the

contribution from the outer layers is actually significant despite
their low density, and tD R does depend on the choice of the
domain size (here, =r R0.7max acc as in Paper I). We find that
tD » 0.2R –5, increasing with accretion rate and decreasing

with mass. This is qualitatively as expected from Equation (24)
of Paper I

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

˙

( )

t
k

D ~

´

- -
Å

-

M

M

M

M

R

r

3
1 cm g 10 yr

1 2
, 9

R
R
2 1 2 1

J

p

J

shock

shown as dotted lines in Figure 3(c). The agreement with the
nominal models is not too rough (to at worse 1 dex) considering
that we took a constant k = 1R cm2 g−1 in Equation (9) in this
estimate for all simulations. In the radial profiles, the maximum
value of the actual ( )k rR is near 7(3) cm2 g−1 for ˙ = -M 10 3

(10−2) ÅM yr−1. However, contrary to what was explained in
Paper I, what is relevant is the immediate preshock opacity, as
we show in Section 5.
The significance of Figure 3(c) can only be appreciated in

conjunction with panels(a) and(b). It shows that the total
optical depth, at least up to moderate depths of tD ~ 10R , does
not set the shock temperature or the shock luminosity (which is
nearly identical to the Hill-radius luminosity in the present
case). In fact, the deviations of Tshock from Equation (6) do not
occur at the highest optical depths. (What causes these
deviations is explained in Section 5.) Furthermore, when, as
is often the case, the layers between the tD ~ 1R surface and
the shock are not sufficiently diffusive ( f 0.1red ), it does not

hold that ( )( )t» D +T r Tshock
4 3

4 R
2

3 eff
4 , where Teff is the
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temperature at the radius where tD = 2 3R , the photosphere,
and where ( ) òt rkD = - ¢r dr

r

r
R R

max
is the optical depth

measured from the outer radius inward. The temperature rise
from the photosphere to the shock is much higher because the
optical depth increases more slowly when the radiation is less
diffusive, i.e., when t k r=d dr R is small.

Finally, we note that there is nothing special about the
tD ~ 1R surface. As Figure 3(c) shows, most simulations at

˙ = -
ÅM M10 3 yr−1 remain optically thin or barely optically

thick above the shock, but their temperature structure (not
shown) is qualitatively identical to cases with an optically thick
accretion flow. In any case, tD R is not well defined because it
depends on the outer integration radius. We return to
considerations of shock temperature in Section 5.3.

4.4. Shock Efficiency against Mach Number

When calculating a planet structure for given ( ˙ )M M R, ,p p ,
only the postshock ( )P T,post shock point is used in an approach
equivalent to the one used in mesa by Berardo et al. (2017)
and Berardo & Cumming (2017). This yields the density ρ;
from this and Ṁ , the boundary condition on the velocity v and
thus the luminosity profile L(r) in the postshock region follow
(Berardo et al. 2017). When only the global energetics are
followed (see the review in Section 2.1 of Berardo et al. 2017),
we argued in Paper I that one should use hphys and not hkin.

We show in Figure 4 the “global physical efficiency” hphys of
the shock against the preshock Mach number. The quantity
hphys is measured as (Paper I, their Equation (18))

˙ ( ) ˙ ( )
˙ ( )

( )h º
- -E r E r

E r
, 10phys max shock

max

where -rshock is immediately downstream of the shock. The
material-energy flow rate is defined as

˙ ( ) ∣ ˙ ∣[ ( ) ( ) ( )] ( )º - + + DFE r M e r h r r r, , 11kin shock

where =e vkin
1

2
2, eint, and r= +h e Pint are the kinetic

energy, internal energy density, and the enthalpy per unit mass,
respectively, and Φ is the external potential. The DF term in
Equation (11) accounts for the work done by the potential on
the gas down to the shock, with the potential difference from r0
to r given by

⎛
⎝⎜

⎞
⎠⎟( ) ( )DF = - -r r GM

r r
,

1 1
. 120 p

0

We found that for all simulations here, using the tenth cell
below the shock as the postshock location was a robust
prescription. The shock itself was identified by the <dv dr 0
and ( )D >P Pmin 5 criterion in AppendixB of Mignone
et al. (2012).

The efficiency hphys measured from Equation (10) is
compared in Figure 4 as a function of the Mach number to
the analytical result in the isothermal limit (Paper I, their
Equation (36)),

M

⎛
⎝⎜

⎞
⎠⎟ ( )h h

g
= ´ +

-

-

1
2

1

1
13aisoth

phys
isoth
kin

2

1

M

M M

( )( )
[( ) ]

( )g g
g g

=
- -
- +

1 1

1 2
, 13b

2 4

2 2 2

with the isothermal “kinetic efficiency” given by (Commerçon
et al. 2011a)

M
( )h

g
= -1

1
. 14isoth

kin
2 4

This definition was derived from energy conservation for the
1-T case but it is also meaningful here because shocks are
isothermal in the radiation temperature, and we find that the gas
and radiation are tightly coupled.
As expected, we find essentially perfect agreement between the

measured (Equation (10)) and the theoretical (Equation (13))
efficiencies. This reflects both energy conservation by our
radiation-hydrodynamical code and the isothermality—i.e., super-
criticality—of the shock.
We also computed the kinetic efficiency,

( )h
r

º
D

+ +

F

v
, 15kin rad

1

2
3

where DFrad is the jump in radiative flux at the shock and ρ+
and v+ are the density and velocity upstream of the shock. This
measured hkin was found to match Equation (14). As
mentioned above, because M  2.5 and the shock is
isothermal, we have h » 100kin %. Locally at the shock, the
whole incoming kinetic energy is thus converted into radiation.

4.5. Shock Efficiency Against Formation Parameters

Figure 5 shows the global physical efficiency hphys but now
as an explicit function of the (possibly observable, macro-
physical) formation parameters ( ˙ )M M R, ,p p . The efficiencies
range from 97%at high accretion rate to almost 100%at low
Ṁ , increasing both with decreasing radius and increasing mass.
The precise range depends on the assumed EOS, but
qualitatively our results should be robust. Typically, in core-
accretion formation, the radius decreases as the mass grows in
the detached phase.9 Because the gas accretion onto a planet
usually slows down with time, at least in the single-embryo-
per-disk simulations of Mordasini et al. (2012b), our simula-
tions clearly suggest that the efficiency hphys increases over
time. Thus, the accretion of the outer layers is associated with
less energy recycling (Paper I) in the accretion flow, and a
greater net fraction of the kinetic energy escapes the system.
However, as discussed in Mordasini (2013), there could be a

self-amplifying memory effect: an hphys that is small early after
detachment should lead to the accretion of “hot” (high-entropy)
material into the planet. If the planetary accretion timescale
is much shorter than its global cooling timescale—i.e.,

˙ ( )º ºt M M t GM R Lacc p KH p
2

p p , where tacc and tKH are
the accretion and Kelvin–Helmholtz timescales, respectively,
with L the luminosity at the radiative–convective boundary
(Berardo et al. 2017)—, a large planet radius should ensue.
This large radius would in turn keep hphys small, so that the
planet would always remain in a regime where it is accreting
rather high-entropy material. Ultimately, this would lead to a
hot (or at least warm) start. This scenario should be tested with
dedicated evolutionary simulations coupling the shock effi-
ciency self-consistently with the interior structure. It might also

9 This can easily be verified for instance with the results of the Bern planet
formation code in the “Evolution” section of the Data Analysis Centre for
Exoplanets (DACE) platform at https://dace.unige.ch by plotting ( )R tp
against ( )M tp .
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be instructive to compare this with accretion in the context of
star formation, where a similar phenomenon is seen (Hosokawa
& Omukai 2009; Hosokawa et al. 2013; Kuiper & Yorke 2013).
Care should be taken to distinguish in the analysis the local
accretion and cooling times of the material immediately below
the accretion shock from the global ones tacc and tKH (i.e., for
the planet as a whole).

4.6. Postshock Entropy

Our detailed calculations of the accretion shock are meant to
serve as outer boundary conditions for calculating the structure
of accreting planets as in Mordasini et al. (2012b), Berardo
et al. (2017), Berardo & Cumming (2017), and Cumming et al.
(2018). Because these planet structure calculations always use a
full EOS including chemical reactions (dissociation and
ionization), we use this to compute the entropy corresponding
to the shock temperatures and pressures we obtained above.
This is formally not self-consistent given that we assumed a
perfect EOS for the shock simulations. However, because Tshock

should be independent of the EOS, as we argue in Section 6.1,
the entropy values are possibly realistic. In any event, they will
serve as a comparison point for simulations with a realistic
EOS (G.-D. Marleau et al. 2019, in preparation).

To calculate the entropy, we can use the ideal-gas form
( )r m=P m k TH B (but with variable μ) because degeneracy

effects start being relevant only at a conservative limit of
ρ∼10−2 g cm−3 (see Figure 1 of SCvH), several orders of
magnitude above even the highest postshock densities

Mr rµpost pre
2, with r ~ -10pre

13–10−10 g cm−3 (see Figure

4 of Paper I) and M  100, so that r -10post
6 g cm−3. We

use the Saha equation and Sackur–Tetrode formula as
implemented10 in Berardo et al. (2017). The entropy zero-
point (see Appendix B of Marleau & Cumming 2014 and
footnote 2 of Mordasini et al. 2017) is the same as in the
published version of SCvH and mesa (Paxton et al.
2011, 2013, 2015, 2018), and thus the entropy values reported
here are higher by ( )- = -Y k m1 ln 2 0.52 B H

1, where
Y=0.25 is the helium mass fraction, than those in, e.g.,
Mordasini et al. (2017). The zero-point of the entropy is not
physically meaningful but does have to be taken into account
when comparing entropies from different works.

These effective postshock entropies spost are shown in
Figure 5. For the range of shock positions »r 1.5shock –3 RJ and
masses =M 1.3p –10MJ shown, the entropies for ˙ =M

-
Å

-M10 yr3 1 are mostly around »s 12post –14 but go up to
»s 19post (dropping, also in the following, the usual units

of -k mB H
1 for clarity). For ˙ = -

Å
-M M10 yr2 1, the whole

range »s 13post –20 is covered. These values are high
compared to the postformation entropy of planets, which is at
most around 10–14 -k mB H

1 according to current, though not
definitive, predictions (Mordasini 2013; Berardo & Cum-
ming 2017; Berardo et al. 2017; Mordasini et al. 2017).
However, we caution and emphasize that this postshock
entropy is not the same as the entropy below the postshock
settling layer; this latter quantity is most likely the one most
relevant in setting the entropy of the planet as it accretes.

Before calculating the (non-self-consistent) postshock
entropy analytically, we briefly discuss the ram pressure,

˙ ˙
( )r

p p
= = =P v

M

R
v

G M M

R4

2

4
. 16ram ff

2

p
2 ff

p
1 2

p
5 2

We inserted the expressions for freefall from infinity and find
that Equation (16) holds very well for all simulations, even for
those for which D ¹f 1red . At high shock temperatures, the
small pressure buildup ahead of the shock slows the gas down
slightly, making Equation (16) less accurate by at most
3.5%for the range of parameters shown. Given the relatively
weak (logarithmic, with a small prefactor) dependence of the
entropy s(P, T) on P, outside of dissociation or ionization
regions, this will not be an important source of inaccuracy. The
ram pressure varies from » -P 10ram

4 bar to 0.2bar for the
range of parameters discussed here.
We compare the postshock entropies spost in Figure 5 based

on the actual T to spost using as input =T Tshock from
Equation 6(b), i.e., taking h = D =f 1kin

red for all simulations.
The match is very good, which reflects the overall good match
of temperature, on which the entropy depends only
logarithmically.

5. Analytics of the Temperature ahead of and at the Shock

As we show in Figure 9, the temperature profile upstream of
the shock shows variations that appear to be related to
variations in opacity. This modifies the temperature at the
outer edge of the accretion flow (i.e., the local nebula
temperature) compared to what a naive extrapolation ( ) =T r

( )-T r rshock shock
1 2 would predict. Also, and even more

importantly, the temperature at the shock is obviously a key
outcome of our simulations. The usual expression for the shock
temperature, with our modification of a factor (1/4)1/4

(Equation (6)), provides in general a very good estimate.
However, we have seen in Figure 3 that there can be small
deviations. We now turn to the task of understanding both the
temperature profile in the accretion flow and the shock
temperature by analytical means. We also discuss the link
between the reduced flux and the Rosseland opacity.

5.1. Temperature Profile in the Accretion Flow

To derive the slope of the temperature throughout the
infalling gas, let us begin with the general relationships

( )
p

=acT
L

r f4

1
17rad

4
2

red

( ) ( )l=f R R , 18red

with ºaT Erad
4

rad. The first equation is nothing but a rewriting
of the definition of fred, and the second follows from
Equation (17) and the definition of the radiation quantity R,
given by

( )
k r

ºR
d E

dr

1 ln
19

R

rad

in spherical symmetry. (In this section we use the symbol “d”
instead of “∂” because of time independence.) It is equal to the
ratio of the photon mean free path to the “Erad scale height”10 See https://github.com/andrewcumming/gasgiant.
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(Paper I). Taking the derivative of Equation (17) yields

( )= - + -
d T

d r

d L

d r

d f

d r

ln

ln
2

ln

ln

ln

ln
. 20rad

4
red

The last term, by Equation (18), is

⎜ ⎟⎛
⎝

⎞
⎠ ( )l

= +
d f

d r

d R

d r

d

d R

ln

ln

ln

ln
1

ln

ln
. 21red

These expressions are exact and general. We now proceed to
expand the last equation.

By the definition of R, the first factor in Equation (21) is

⎛
⎝
⎜⎜

⎡
⎣⎢

⎤
⎦⎥

⎞
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⎟⎟[ ] ( )k r= -

d R
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d T

d r
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ln ln
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ln
ln 22rad

4

R

because =E aTrad rad
4 . Inserting recursively Equation (20) into

Equation (22) is likely not fruitful as it generates derivatives of
fred of ever-higher order. However, it will prove instructive to
perform this once. In full generality, this yields

( )

( ) ( ) k
=

-

- + -
- +

d R

d r

d L d f

d L d f

d

d r

ln

ln

ln ln

2 ln ln

ln

ln

1

2
,

23

r r

r r

ln
2

ln
2

red

ln ln red

R2 2

where ( ) ( )ºd f x d f x dxx
n n nn . For this derivation we have

made use of the fact that r µ -r 3 2 in the accretion flow.
The second factor in Equation (21) depends only on the

choice of the flux limiter and can be computed easily
independently of a simulation. If one takes the flux limiter
used in Ensman (1994),

( ) ( )l =
+

R
R

1

3
, 24

one obtains for the derivative term the simple expression

( )l
l+ =

d

d R
1

ln

ln
3 . 25

Note that this flux limiter is actually not physical (Levermore
1984), but it recovers the correct limits of free-streaming and
diffusion (see Paper I). When the rational approximation of the
Levermore & Pomraning (1981) flux limiter

( ) ( )l =
+

+ +
R

R

R R

2

6 3
, 26

2

which we take by default in this work, is used instead, the result is

( )
( )( )

( )l
+ = -

+
+ + +

d

d R

R R

R R R
1

ln

ln
1

4

2 6 3
. 27

2

2

For R 2 (the diffusion limit), this function (the right-hand
side) is equal to 3λ. In the other limit of R 2, it converges to
simply λ; in any case, it remains roughly proportional to the
flux limiter λ, a fact we shall use in the discussion below.
Combining Equations (20), (21), (23), and (25), we obtain

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

( )

( )

( )l k
» - +

+
- +

d T

d r

R d f

d f

d

d r

ln
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1

2

3

4

ln

2 ln

ln
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1

2

28

r

r

ln
2

red

ln red

R2

in the limit of a radially constant luminosity (in the sense that
∣ ∣ d L d rln ln 2, which is the case here as shown below).
The temperature here was written as T because we find that

=T T ;gas rad if the gas and radiation are not coupled, T should be
taken to refer to Trad only. We used Equation (25) because it
makes it explicit that the second term on the right-hand side of
Equation (28) is (in general roughly) proportional to the flux
limiter ( )l R . While at least in this form, Equation (28) is not
predictive because ( )f rred is needed for its derivatives, it does
exhibit the link between the temperature and the opacity slopes,
as we now discuss.

Figure 6. Top panel: normalized luminosity, temperatures (gas and radiation),
reduced flux (against the left axis), and opacity kR (against the outer right axis)
for the nominal case presented in Figure 9. Note the logarithmic scale. The
region with a temperature flattening (r = 8– R16 J) due to dust destruction is
highlighted. Middle panel: first two curves: different terms in the brackets in
Equation (28) (see legend). Some of the factors are plotted individually (blue
and green lines). Bottom panel: temperature slope obtained from Equation (28)
for two flux limiters (black and gray lines; in both cases the same simulations
are used, with λ changing only in the formula). This is compared to the exact
result (red line).
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Looking in detail at Equation (28), we see that the first term
on the right-hand side corresponds to the result that µ -T r 1 2

for a radially constant luminosity. It seems likely that this term
will dominate in the free-streaming (often termed “optically
thin”) regime because then λ (and thus the second term) goes
to zero.

For the temperature slope to differ significantly from −1/2,
it is sufficient for either the opacity slope or the term with
derivatives of fred to be large, and necessary for the radiation to
be sufficiently diffusive (λ not too small).

The second term of Equation (28) is interesting: it relates the
local slope of the opacity to that of the temperature. In the free-
streaming regime, the flux limiter λ goes to zero and thus also
the second term in Equation (28) because it is multiplied by λ).
Therefore, even strong variations of kR with radius will only
minorly affect the temperature structure; this is as expected for
the limit of infinite optical mean free path, in which the
radiation does not interact with the opacity carrier. In the other
limiting case of diffusion, l » 1 3 and the opacity variations
are important. The evaporation of dust as the material moves in
leads to a large kd d rln lnR , and if λ is not too small, this
will be able to slow the decrease of the temperature outward.

Moreover, it does not seem necessary that the radiation be
free streaming ( f 1red ) in order to have T∝r−1/2, which is
usually associated with free streaming. If kR is constant with
radius and (as perhaps a consequence) fred is sufficiently
constant, and λ has an intermediate value (e.g., λ∼0.1), the
−1/2 term in Equation (28) can dominate.

We show in the top panel of Figure 6 the luminosity,
temperature, reduced flux, and opacity on logarithmic scales for
the nominal case shown in Figure 9. Indeed, the luminosity is
effectively radially constant.

The middle panel of Figure 6 shows the terms on the right-
hand side of Equation (28) and parts thereof. In the free-
streaming region at r=2–8 RJ, the first and second derivatives
of fred are nearly zero, and the strong values of the opacity
slope do not bring T away from an r−1/2 scaling because the
radiation is nearly free-streaming: »f 1red (see top panel), so
that λ≈0. In the flat temperature part at r=8–16 RJ (shaded
region), the opacity slope term dominates, but the term with the
derivatives of fred is similar in magnitude, with their signed
sum dominating the −1/2 term. The result, along with a lower
fred (i.e., higher λ), is a different (namely, almost zero)
temperature slope. At >r R16 J, the radiation remains some-
what diffusive with ~f 0.3red , but the opacity is nearly
constant. The temperature slope is therefore set by the leading
−1/2 term as well as the two other terms in the brackets and
the factor of ≈3λ (depending on the flux limiter model). The
net result is that the −1/2 dominates.

The slope from Equation (28) is shown in the bottom panel of
Figure 6 and compared to the actual value. The agreement is
excellent, which mainly confirms the approximation »dL dr 0
because the equation is otherwise exact for a freefall density
profile. The choice of the flux limiter barely makes a difference.

Note finally that Equations (19) and (20) imply that when the
ratio L1/ fred is radially constant, the radiation quantity R is
given by

( ) ( )/
k r

=R
r

L f
2

constant . 29
R

red

This had been derived in Paper I, above their Equation (25).

This analysis provides an approximate analytical under-
standing of the link between the opacity and the temperature.
What is less clear from this derivation is how much the
geometry accurately reflects the realistic transport of radiation,
even within the gray approximation, and to what extent it
depends on the approximations (e.g., concerning the angular
distribution of the specific intensity) inherent to moments-
based methods such as FLD. Nevertheless, it might prove
insightful to attempt a similar derivation using M1 radiation
transport (e.g., González et al. 2007; Hanawa & Audit 2014).

5.2. Link between Reduced Flux and Opacity

Figure 6 suggests that there is a relationship between the
reduced flux fred and the Rosseland mean opacity kR. Defining
the logarithmic slope

( )
( )b º

d L f

d r

ln

ln
, 30red

this relationship can be obtained by combining Equations (17)–(19)
to yield

∣ ∣
( )

b
k r= +

-f
r

1
1

3

2
31a

red
R

( ) ( )/k r= + r L f1
3

2
constant , 31bR red

which holds anywhere in the flow. This generalizes Equation
(25) in Paper I. We used λ from Equation (24), but it is trivial
to repeat the derivation for another flux limiter.
Equation (31) explains why fred drops in the dust destruction

region in Figure 6 (gray band there): the opacity increases such
that k r r 1R , thereby leading to a drop in fred. Physically, this
has the intuitive explanation that the radiation becomes less
freely streaming and starts to diffuse. In the dust destruction
region, b » 1.87 (and relatively constant) due to the outward
decreasing fred. From Equation 31(a) this implies that f1 red will
be larger, i.e., fred smaller, than predicted by Equation 31(b),
but the trend is the same. Quantitiatively, this works well in this
example, but to obtain the exact value of fred, one would have
to use the Levermore & Pomraning (1981) flux limiter because
this was chosen for the simulations. Thus, Equation (31)
explains the sudden drop of fred where the opacity suddenly
increases to become important in the sense of k r r 1R .

5.3. Shock Temperature

5.3.1. Calculation Setup

We now turn to explaining the shock temperatures found in
Figure 3, in particular the points that deviate from
Equation 6(b). We recall that this temperature more precisely
refers to the radiation temperature Trad, should it ever be found
to differ from Tgas, which is not the case here, however.
Looking at the results of Section 4.1 again, there is a tight

anticorrelation (not shown) between fred and k rrR both evaluated
immediately upstream of the shock. Empirically across our grid of
models, ( )b ~ -+r 0.1shock typically, which in absolute value
is2. Therefore, the tight relationship comes from Equation 31(b).
Thus while in general, ( )b +rshock is not known but could perhaps
be estimated, in the following analysis we restrict ourselves to

( ) b +r 2shock and consequently use ( ) k r=+R r R2shock R ff p at
the shock (Equation (29)).
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With this, Equation 6(a) can be rewritten as

( )

( )
( )

˙

s
h

p
=

+

+
T

L T

f T R16
32a

GM M

R
shock
4

dnstr
kin

shock

red shock p
2

p

p

⎜ ⎟⎛
⎝

⎞
⎠( ) ( )

˙

k r
p

» +
+

T R
L

R
1

3

2 16
, 32b

GM M

R
R shock ff p

dnstr

p
2

p

p

which is an implicit equation for Tshock. The second line is valid
when the resulting M  2.5 (so that h » 1kin ), which should
be verified a posteriori, and was written for the Ensman (1994)
flux limiter through Equation (31). The downstream luminosity
Ldnstr is the sum of the luminosity coming from the deep
interior and of the compression luminosity: = +L Ldnstr int

Lcompr. While Lcompr might depend on Tshock, we effectively
absorb this dependency into L int, treated as a free parameter.
Still, the generalization ( )L L Tdnstr dnstr shock could be readily

made. With these assumptions, in Equation 32(b) the shock
temperature enters on the right-hand side only through the
opacity.
In the 100% efficiency limit, the shock temperature that

solves Equation 32(b) thus has the limiting cases

( ) ( )k rºT T R 1 33ash,fs shock R p
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Figure 7. Top row:analytical shock temperature Tshock taking upstream opacity effects into account, obtained by implicitly solving Equation (35). We use accretion
rates of ˙ = -M 10 4 to -

Å
-M10 yr2 1 (bottom to top). Planet masses of 1.3MJ (left panel) and 5 MJ (right) are shown. Both =L 0dnstr ( full lines) and

( ) ( ˙ ) = -Å
-L L M Mlog log yr 110 dnstr 10

1 (dashed lines) are shown. The “free-streaming solution” (Equation (33)) is shown by solid lines (black and gray,
respectively). Along the top axes, the corresponding freefall velocities are indicated. An example for label A in the left panel is shown in the bottom row. Bottom row:
graphical solution of Equation (35) for ˙ = -M 10 3 when =M M1.3p J and =R R3p J. We plot the fourth root of the left- and right-hand sides. We vary (see legend)
Ldnstr (nominal: =L 0dnstr ), the flux limiter (nominal: LP81), and the opacity model (nominal: nrm.h.s), which leads to different solutions. The denominator of the
quantity on the y-axis, Tsh,fs, is evaluated at =L 0dnstr . The shock temperature is given by the intersection of the left- and right-hand sides.
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with = +ℓ L L1 dnstr acc,max, without needing to assume that
Ldnstr/Lacc,max is small. We defined Tsh,fs as the “free-streaming
shock temperature” given by Equation 6(b), but now general-
ized to include a downstream luminosity Ldnstr (we consider

=L 0dnstr in this work). Similarly, Tsh,diff is the “diffusive
shock temperature,” which obtains when the preshock material
is diffusive. The maximum accretion luminosity is =Lacc,max

˙GM M Rp p, with the actual luminosity at the shock =Lacc

h Lkin
acc,max (Paper I). The opacity kR appearing in the

expressions for Tsh,diff is either the constant opacity or less
trivially, the value satisfying Equation 32(b), as detailed below.
Equation 34(c) should replace Equation 28(b) of Paper I
because the prefactor there was inexact and the exponent of the
Rp factor was missing a minus sign. Equations 34(b) and (c)
were written to leading order in the quantity k r rR ff shock, in
which case they are also independent of the flux limiter. Note
that if Ldnstr were to dominate Lacc,max ( ℓ 1), the functional
dependence of the shock temperature on the various parameters
would be different from what Equations (33) and (34) naively
suggest.

As an example, for the (g k= =1.1, 1 cm2 g )-1 simulation
in Figure 2 of Paper I, Equation (34) predicts »T 3600sh,fs K,
which is close to the actual shock temperature 3500 K. This is

satisfying, especially given that there k r =R 2.3R p , which is
not entirely1, and that the Levermore & Pomraning (1981)
flux limiter had been used and not the Ensman (1994) one as
for Equations 34(b) and (c), which makes a difference in this
transition regime between free streaming and diffusion.
In general, we solve Equation 32(b) by writing it as

⎛
⎝⎜

⎞
⎠⎟

⎧
⎨⎪
⎩⎪( )

( )

( ) ( )
( )=

+

+ + +

T

T

x

x x x

1 E94

1 1 LP81
, 35shock

sh,fs

4 3

2

3

2

3

2
2

with

( ) ( ) ( )k rºx T T R . 36shock R shock ff p

The first and second versions of the right-hand side of
Equation (35) hold for the flux limiters of Ensman (1994, E94)
and Levermore & Pomraning (1981, LP81), respectively. The
equation is solved by root finding, simply starting slightly below
=T Tsh,fs and stepping up in temperature to find an intersection of

the two sides of Equation (35).

5.3.2. Semianalytical Shock Temperature Solutions

In Figure 7 we display the shock temperature as a function of
planet radius according to Equation (35). We consider =M 1.3p

and 5MJ, take ˙ = - - -
Å

-M M10 yr4, 3, 2 1, and vary Rp from1 to
about 7 RJ, but truncating at lower Rp for the lowest accretion
rate. The downstream luminosity is taken to be zero or smaller
than but not entirely negligible compared to the accretion
luminosity, ( ) ( ˙ ) = -Å

-L L M Mlog log yr 110 dnstr 10
1 for defi-

niteness. For reference, the corresponding preshock (freefall)
velocity is indicated on the top axis. The solution is also
compared to the free-streaming shock temperature Tsh,fs
(Equation (33)).
Figure 7 reveals that opacity effects can alter the shock

temperature only for a relatively small range of parameters.
Specifically, for ˙ ~ -M 10 3– -

Å
-M10 yr2 1, planets of low mass

( M M3p J) with moderate to large radii ( »R 3p –10 RJ) could
have their Tshock increased by up to tens of percent, by a few
100 K. This might be important especially for a nonzero L int,
leading to a higher shock temperature than naively expected.

5.3.3. Regimes of the Shock Temperature

To understand these results graphically, we show in the
bottom row of Figure 7 the fourth root of the left- and right-
hand sides of Equation (35). We see that the points that deviate
in Figure 3 can do so for two reasons. First of all, a high
constant (temperature- and density-independent) opacity will
increase the shock temperature by reducing the effective speed
of light ahead of the shock. The threshold for this is
k r ~R 1R ff p , as mentioned above, and an example is for
( ˙ )= = =-

Å
-M M M M R R10 yr , 1.3 , 33 1

p J p J , labeled “A,”
where the opacity of the most refractory dust component
leads to a higher shock temperature than =T 1000sh,fs K:

»T 1080shock K for the nominal dust model and »T 1200shock
K for the curve sticking out most in Figure 2. Second of all, the
case of nonconstant high (k r R 1R ff p ) opacities opens up the
possibility of multiple solutions.

Figure 8. Analytical preshock Mach number. The mass is =M M1.3p J and the
radius and accretion rate are varied. We use μ=1.23 (different from our
nominal case) and γ=1.44 to obtain a rough lower bound on the Mach
number and thus also on hkin. As in Figure 7, colored solid (short dashed) lines
are for =L 0dnstr ( ¹L 0dnstr ), using the implicit shock temperature from
Equation 32(b). The limiting case of D =f 1red (which implies simultaneously

=L 0dnstr and the free-streaming limit for the shock temperature;
Equation (38)) is also shown (solid black lines). The value M = 2.5 is
highlighted because above this, hkin is essentially 100%(dotted line).
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If k rR 1R p at the free-streaming shock temperature Tsh,fs,
it is necessary and sufficient for the opacity slope

⎜ ⎟⎛
⎝

⎞
⎠ ( )a

k
º

¶
¶

k
rT

ln

ln
37R

to satisfy a a> =k k 1crit at higher temperatures and for a
sufficient T range in order to have one high-T solution. A drop
of ak below ak

crit at a higher temperature will lead to a third
solution. The stronger the slopes, the closer these higher-T
solutions will be to Tsh,fs.

Figure 9. Accretion and shock profiles (see axis labels) using a perfect equation of state with different mean molecular weights μ and ratios of specific heat γ (see
legend). The black line corresponds to the nominal case of an H2–He mixture. The Malygin et al. (2014) and Semenov et al. (2003) opacities are used. The simulations
differ only in μ, γ, and the inner edge of the computational domain rmin (see legend), the latter chosen to have the shocks coincide at a time t=5×107 s after the start
of accretion at t=0. All but the first profile in the density and entropy-difference panels are shifted horizontally for legibility. Gray dotted lines highlight values of
0, 1, or 2/3 in the v, fred, S and Δτ panels, as appropriate. Circles in the temperature panel and its inset show the estimate from Equation 6(a), whereas in the density,
luminosity, pressure, and fred panels they highlight the postshock conditions and in part the preshock conditions. In the M( )hphys panel on the bottom left, the solid
(dashed) curves show the physical (kinetic) efficiency for g = 5 3, 1.44, 1.1 (top to bottom) compared to the simulation results (circles).
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If on the other hand k r R 1R p at Tsh,fs (i.e., the preshock gas
would be diffusive already if it were at that temperature), Tsh,fs
will not be a solution. Provided the opacity slope a <k 1 at
some higher temperature, there will only be a single11 solution
at high temperature. Again, the stronger the slopes ∣ ∣ak in the
increasing and decreasing parts, the closer the solution will be
to Tsh,fs.

If k r R 1R p at Tsh,fs and ak remained >1 at higher
temperatures, however, there would formally be no solution:
try it as it may by increasing its temperature, the shock would
not be able to radiate away the kinetic energy. It is not clear,
however, whether in this case we would still find a Mach
number such that h = 1kin , or if the model otherwise breaks
down. Fortunately, for gas mixtures as considered here, ak does
drop again, so that the situation does not arise.

Qualitatively, these results do not depend much on different
model settings. Including a low downstream luminosity
(coming from compression, an interior luminosity, or both)
does not significantly change the shock temperature(s) of
Figure 7. Changing the opacity (the dust model or, at higher
temperature, the abundance of water; Malygin et al. 2014) or
the flux limiter also has a clear but limited effect.

5.3.4. Mach Number

Within the restriction of negligible Ldnstr, the Mach number
M increases with increasing Mp or R1 p, but, perhaps
counterintuitively, decreases with increasing accretion rate.
Using Equation (6), the Mach number is

M
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where we took h = 1kin and D =f 1red for the second
expression. Thus the Mach number depends only moderately
on the mass (M µ »Mp

3 8 0.4) and accretion rate (given that the
latter ranges over several orders of magnitude) and barely on
the radius.

We show in Figure 8 the preshock Mach number obtained
from Equation 32(b) with μ=1.23, and also plot
Equation (38) for reference. Mach numbers increase with
decreasing accretion rate, reaching M ~ 30 (in particular at
higher masses, not shown) for ˙ = -

Å
-M M10 yr4 1. The Mach

number at Tsh,fs, given by Equation (38), provides an upper
bound but M still remains securely above M » 2.5. There,
hkin is near 100%, which justifies our approximation
a posteriori. Also, taking Ldnstr not large (see Figure 8) but
nonzero barely changes these results.

5.3.5. Discussion of the Analytical Shock Temperature

The preceding analysis has shown that for an isothermal
radiative shock with negligible downstream luminosity, the
shock temperature is determined by the conditions immediately
upstream. There can be small to very important deviations from
the free-streaming result Tsh,fs. These occur either because of the
dust contribution to the opacity (at low temperature) or because
of the high opacity and high preshock density at high
temperature and accretion rates. Nevertheless, the Tsh,fs solution
remains valid for a large part of parameter space.
Interestingly, our derivations do not depend explicitly on the

EOS, specifically on the choice of and (non-)constancy of μ
and γ across or ahead of the shock. Thus the expressions (32)–
(34) for the shock temperature could also apply to the case of a
general EOS. This is should certainly be the case for
( ˙ )M M R, ,p p combinations for which the pre- and postshock
points have the same γ and μ values. It might also hold more
generally, but this will be investigated in a subsequent article.
Finally, note that the importance of a shock temperature

increased with respect to Tsh,fs for lower planet masses and
larger radii than shown here, as might be relevant during the
early stages of detachment (runaway accretion), will have to be
assessed with separate formation calculations as in Berardo
et al. (2017).

6. Importance of the EOS and Opacity

Next we verify the robustness of our results by varying
different parts of the microphysics that go into our simulations.
This also gives us occasion to show global profiles of the
accretion flow; we had restricted ourselves in Figure 2 of
Paper I to the vicinity of the shock.

6.1. Dependence of Preshock-region Quantities on the EOS

While the use of an ideal but nonperfect EOS is deferred to a
later article, we study in this section the importance of the
constant μ and γ. For conciseness, we refer to a particular (μ, γ)
combination as an EOS.
Figure 9 shows the profiles for the four extreme combina-

tions (μ, γ), where μ=1.23 (atomic) or μ=2.29 (molecular),
and γ=1.1 (occurring for dissociation or ionization) or
γ=5/3 (monatomic, no dissociation or ionization) together
with the nominal case (μ=2.29, γ=1.44), i.e., for a perfect-
gas H2–He mixture. The density in the accretion flow being set
by mass conservation, it is independent of the EOS, but the
jump across the shock scales as r mD µ . The pressure in the
accretion flow does scale as P∝1/μ, but being a dynamical
quantity, the ram pressure (i.e., the postshock pressure) is the
same in all cases. While this might be counterintuitive, the
shock temperature (see inset) is also independent of (μ, γ),
which was to be expected from the analytical estimates of the
shock temperature because the microphysical parameters do
not enter anywhere. The opacities kR and kP are the same here
because we use the same tables in all cases (computed using an
nonperfect EOS) while the opacity is fundamentally a function
of temperature and density (but not mean molecular weight).

6.1.1. Entropy

One of the quantities that change with the EOS is the entropy
calculated with the chosen (μ, γ). Note that it differs from the
entropy that would be obtained with nonperfect EOS shock

11 In the case that the opacity shows several nonmonotonicities at higher
temperatures, the number of roots is of course different and the discussion
would need to be adapted. This is presumably the case at the iron opacity
“bump” at »Tlog 5.3 (Iglesias et al. 1992; Jiang et al. 2015), and in principle
also for a very metal-rich gas.
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simulations. This (μ, γ)-dependent entropy is given in general
(but for constant (μ, γ), i.e., outside of chemical reactions such
as conversion of ortho- to parahydrogen, dissociation, or
ionization) by

( ) ( ) ( )g
g m m

= +
-

-s s
T

T

P

P1

ln 10
log

ln 10
log , 390 10

0
10

0

where s0 is a constant, and T0 and P0 are an arbitrary reference
temperature and pressure, respectively. The form is similar as a
function of (P, ρ) (e.g., Rafikov 2016).

The radial profile of the entropy given by Equation (39) is
shown in Figure 9 for various EOS. We plot in fact the entropy
difference with respect to the preshock location because we are
interested in the radial profiles of s for the individual (μ, γ)
cases. It increases outward for γ=5/3 because it is greater
than the critical value of4/3 (Section 3.3.2 of Paper I) but
decreases for γ=1.1 (because then γ<4/3) outward in the
accretion flow. Convection is not expected there because of the
supersonic motion, however.

6.1.2. Luminosity

Another difference between the various EOS is in the
luminosity profile, as Figure 9 shows. We now proceed to
explain it. The luminosity L varies throughout the accretion
flow by an amount that depends on the EOS, not directly on the
optical depth. This perhaps surprising statement can be derived
from considering the steady-state (time-independent) version of
the evolution equation for the total energy (so that the ±Λ
terms cancel even in nonequilibrium radiation transport;
Equation (3)) and writing the gravity field term as a potential:
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where r r= = +h H e Pint is the specific enthalpy per mass
and is given by ( ) ( )g g m= -h k T m1 B H for a perfect EOS.
Only Equation 40(a) was derived in Paper I. It did not require
identifying the gas and radiation temperatures with each other,
leaving the derivation valid also for 2-T radiation transport.
Equation 40(b) is obtained from ˙ p r=M r v4 2 (Equation 1(a))
and the time-independent momentum equation (Equation 1(b)).
Equation 40(d) follows from the first law of thermodynamics,

⎛
⎝⎜

⎞
⎠⎟ ( )

r
= +Tds de Pd

1
, 41int

with the entropy s here not normalized by -k mB H
1. Note that

Equation (40) both above and below the shock. In the pre-
shock region, it is the small deviation of the velocity from a
freefall profile that makes µdL dr Tds dr and not /µ dh dr .

In Paper I, we had argued that the radial non-constancy (over
∼Hill-sphere scales) of the luminosity can be understood from
the enthalpy profile when the second term in Equation 40(a) is
negligible. While this is formally true, Equation (40) provides a

more complete derivation that reveals that the relevant quantity
is the entropy, without requiring restrictions on any term. Thus
the radial luminosity profile is set not directly by the optical
depth. Nevertheless, the analysis in Section 5.1 has shown that
there is a link between the local opacity and its slope on the one
hand and the temperature (and thus the entropy) profile on the
other.
In the case of a perfect EOS, Equation 40(d) becomes

⎡
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3

2
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H

where the second line holds for a freefall density profile.
Because the factor T/r in Equation 42(b) decreases outward, it
is the layers closest to the shock that contribute most to the
change in L between rshock and rmax, at least for a constant
logarithmic temperature slope. Equation (42) reveals that, all
other things being equal, the change in luminosity from the
shock to the Hill sphere will be more important as γ tends to 1
(i.e., more isothermal), or for smaller mean molecular weight μ.
The choice of γ can change the sign of dL dr , whereas μ

cannot.
In fact, an estimate for the change in luminosity between the

shock and a given distance in the flow, in particular the
accretion radius, can be derived by using the constant-( )L fred
temperature profile (see Equation (20))

⎜ ⎟⎛
⎝

⎞
⎠( ) ( )=
-

T r T
r

r
, 43shock

shock
1 2

where Tshock is the shock temperature, which by Equation (35)
can be higher than the free-streaming temperature. (Note that
µ -T r 1 2 can hold not only for free-streaming.) In Figure 6(c)

or Figure 9, the T(r) profiles are rarely steeper than
Equation (43), so that it will provide an upper bound. Inserting
Equation (43) in Equation (42) yields

⎛
⎝⎜

⎞
⎠⎟

∣ ˙ ∣ ( )( )

g m
g

= -
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-dL
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M k T

m R
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4 3

2
, 4443 B shock

H p p

3 2

using the subscript “(43)” on L to recall that a temperature
profile given by Equation (43) was assumed. Thus, the change
(drop or increase) in ( )L 43 between Rp and Racc, neglecting

terms of order R R 1p acc , is given by

∣ ˙ ∣ ( )( ) ò
g
g m

D = =
-
-

L
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k T M

m

3 4

1
, 45

R

R

43
B shock
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acc

with the luminosity reaching the local circumstellar disk (the
nebula) equal to

( ) ( )( )» + + DL R L L L . 46acc int acc 43

Equation (45) is more general than Equation (32) in Paper I. In
the usual limit R Racc p, the luminosity change ( )DL 43 is thus
independent of Racc, and thus also of =k 1 3Lissauer (as we
assume here) for the accretion radius »R k Racc Lissauer Hill. For
γ>4/3, the luminosity increases outward ( ( )D >L 043 ),
whereas for γ<4/3 there is a decrease in luminosity
( ( )D <L 043 ).
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Equation (45) is an upper bound in the case γ<4/3 because
any flattening of the luminosity profile as in Figure 9 will slow
down the decrease of T(r). For γ>4/3 the estimate is more
like a lower bound, but because the critical γ=4/3≈1.33 is
not far from γ=1.44 for molecular hydrogen with helium, it is
also roughly equal to the actual change in that case. This can be
seen graphically in Figure 9.

Thus, in Figure 9, L(r) increases outward for the high-γ cases
(γ=5/3) as well as for the nominal case (γ=1.44), while it
slightly decreases overall for the low-γ cases (γ=1.1). The
mean molecular weight also plays a role, and, in all, L at
roughly the Hill radius varies by roughly 10% for this specific
( ˙ )M M R, ,p p case over all ( )g m, combinations. In Section 7.3
we look at this more generally.

However, the size of the luminosity jump ΔL at the shock is
very nearly the same across all simulations in Figure 9.
Because in all cases the immediate upstream region is in the

free-streaming regime, the small differences in ( )+L rshock are
related to the slightly different downstream luminosities or,
equivalently, ( )-f rred shock .

6.1.3. Global Physical Efficiency

Finally, depending on both γ and μ, the global physical
efficiency ranges from h = 84%phys to 98%, increasing with μ
but decreasing with γ. This large difference comes from different
γ values but also from the changing Mach number (through μ),
as can be seen from Equation (38). One can wonder whether a
low μ caused by ionization could lead to much lower Mach
numbers and thus efficiencies. However, because the Mach
numbers we find are all high ( M mµ10 1 ), even a change
by a factor of at the very most =0.6 2.3 0.5 (from ionized to
molecular gas) would leave M > 5 2.5 and thus the shock
supercritical for a given Tshock and vff . This statement should still

Figure 10. Structure of the shock for different behaviors of the dust in the Zel’dovich spike: no destruction (red curves) or equilibrium destruction (nominal case; blue
curves). For comparison, a case with no dust opacity at all is also shown (gray). In the top and bottom middle panels, the radiation temperature is shown as dashed
black lines. In the opacity panel, the Planck curves are shifted by 0.05 RJ to the right for clarity. Note that the Planck opacity is high (k  3P cm2 g−1) even in the
absence of dust and that the gas and radiation are tightly coupled, with ¹T Trad gas only in the Zel’dovich spike (see the middle panels in the top and bottom rows). The
solid black lines in the bottom middle panel display for reference where hydrogen is dissociated or ionized to 50%(SCvH), and the gray contours are for integer
values of ( )k -cm glog R

2 1 .
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be revisited with simulations using the full EOS becauseM is of
course a function of Tshock.

6.1.4. Other Quantities

The other panels of Figure 9 are shown for completeness.
The profiles are qualitatively similar between all simulations
(see the detailed description in Paper I), and we can mention
here that we find that the gas and radiation are always well
coupled, which is presumably related to the sufficiently high
opacity. Moreover, as in Paper I, the radiative precursor to the
shock is larger than the simulation box, as even a cursory
comparison to standard supercritical and subcritical shock
structures (e.g., Ensman 1994) reveals.

6.1.5. Summary of the Effect of the EOS

In summary, depending on the EOS, a different luminosity
reaches the accretion radius, but the variation is moderate (tens
of percent) across the relevant input parameter range. However,
both the shock temperature and the ram (postshock) pressure
are independent of the perfect EOS, at least in the limit of an
isothermal shock. This is an important result. We conjecture
that the postshock temperature and pressure will not be
different when an ideal but nonperfect EOS is used instead.
This will need to be verified, but if if holds, and if the shock is
still isothermal, it implies that the postshock entropy spost,
which depends only on T and P, will be the same as found here.
As for the shock efficiency, it clearly depends on the EOS (see
Figure 9).

6.2. Influence of the Dust Opacity

Simulations such as those presented here do not spatially
resolve the physical Zel’dovich spike (see Appendix B of
Vaytet et al. 2013b), which is typically much thicker than the
mean free path of the gas particles but still orders of magnitude
smaller than a photon mean free path (Zel’dovich &
Raizer 1967; Drake 2007). The peak temperatures should be

very high but the cooling behind the peak also very quick, so
that the fate of dust grains passing through this shock is not
obvious a priori. Calculating their time-dependent sublimation
and recondensation including nonequilibrium effects is beyond
the scope of this work. Because our standard assumption is to
use time-independent (equilibrium) abundances from the
simple model of Isella & Natta (2005), in which the destruction
temperature is simply r= ´ -T 1220dest 11

0.0195 K, where r º-11

r ´ -10 cm g11 3 1, we consider in this section the other
extreme, namely that the grains are not destroyed. Note that
the question of the dust (non-)destruction in the shock poses
itself only for shocks at low enough temperature that solid
grains are still present the incoming material (e.g., the » M1 J

cases at ˙ = -
Å

-M M10 yr3 1 in Figure 3).
Figure 10 shows the resulting shock structure for constant

dust abundance in red and equilibrium abundances in blue. In
all relevant quantities (ρ, v, T, L, fred), with the obvious
exception of kR and kP, the profiles are essentially identical for
these two cases. This also holds throughout the simulation
domain (not shown). In particular, the shock temperature is the
same, and the Zel’dovich spike stays very optically thin (as it
should), increasing from, very roughly, tD ~ -10R

5 to 10−2.
Note that the opacity is too high in the always-dust case (see
blue solid line in opacity panel), but this does not affect the
temperature structure of higher postshock regions, i.e., directly
below the shock.
As a more extreme case, we also switched off the dust

contribution entirely, shown by gray profiles in Figure 10. This
represents the limiting case of the reduction of Szulágyi et al.
(2017) by a factor of 10 relative to the interstellar medium, on
the grounds that the growth of dust grains into larger
aggregates diminishes the opacity. As pointed out by Uyama
et al. (2017), dust also tends to settle to the midplane while
accretion comes from higher up in the circumstellar disk, so
that the accretion flow onto a planet is actually possibly devoid
of dust.

Figure 11. Estimated heating of the planet by the shock. Left panel:heating +Qshock relative to the maximum accretion luminosity ˙=L GM M Racc,max p p for an
isothermal shock (Equation (49)) as a function of the preshock Mach number for different γ. BelowM = 1 there is no shock (grayed-out region). The large-M limit

M[( ) ]g= -+Q L 2 1shock acc
2 is also shown (dashed gray lines). Right panel: absolute +Qshock (Equation 50(c)) for ˙ = -M 10 2 (blue shaded region) and -

Å
-M10 yr3 1

(purple). We neglect Ldnstr in +Qshock and take =R R1.5p J for all masses. We also show the approximate internal luminosity L int from the Marley et al. (2007) cold
starts during formation, which accrete mostly at ˙ » -

Å
-M M10 yr2 1. The shock heating clearly dominates L int.
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Leaving out the dust opacity lowered the Rosseland mean by
four orders of magnitude near the shock but the Planck mean
only by a factor of two due to the high Planck opacity of the
gas. The consequence was a decrease in shock temperature by
only 100 K, associated with a jump in the reduced flux
increasing from D »f 0.7red to D »f 1red .

Our conclusion from this test is that the upstream fred (given
»f 0red downstream), and hence ultimately the opacity there,

is important in setting the shock temperature, but that the dust
destruction in the Zel’dovich spike is not. This seems to imply
that one would need to follow the time-dependent evaporation
of the dust approaching the shock in each simulation because
the outer parts are always cold enough for dust to be present.12

However, this will affect only a very small fraction of cases.
Indeed, it requires (i)preshock temperatures above the
(density-dependent) dust destruction temperature but (ii)not
too high to not already have the dust destroyed at a large
distance ahead from shock, in which case the dust would
certainly be evaporated. The transition region is very narrow in
temperature (ΔT∼100 K; Semenov et al. 2003) compared to
the range of shock temperatures we can expect (see, e.g.,
Figure 3). For these cases where it is relevant, a zeroth-order
approach would be to compare the flow timescale =t r vflow
to the evaporation time as given by the Polanyi-Wagner
formula (see, e.g., Equation (20) of Grassi et al. 2017).
However, this is an only marginally important consideration
and will not be investigated further.

7. Discussion

We discuss some of the results presented here.

7.1. Hot Starts or Cold Starts?

The main question driving this work is whether the
processing of the accreting gas through the shock leads to
hot starts or cold starts (Marley et al. 2007). While a detailed
coupling of the shock results to formation calculations is
needed to resolve this, there are several ways of estimating the
outcome beforehand. We now consider them in turn.

7.1.1. Luminosity-based Argument: Shock Heating
versus Internal Luminosity

The classical understanding of the extreme outcomes
considers that the accreting gas carries only kinetic energy
and that for cold starts, all of this incoming energy is radiated
away at the shock, with no energy brought into the planet,
while for hot starts, none of the incoming energy should leave
the system but instead is added to the planet. However, this
view neglects the thermal energy of the gas that is brought into
the planet, which comes from preheating by the radiation from
the shock. In Paper I we have shown that this is in fact not
negligible, leading to the definition of hphys instead of hkin (see
Section 4.4). Therefore, it is possible for most of the accretion
energy to be radiated away at the shock, but to still have an
important heating of the planet by the shock if the inward
heating is high compared to the internal luminosity.

To quantify this, at least when following the global
energetics alone, one can look at the effective heating by the

shock +Qshock (to be defined shortly) relative to the internal
luminosity L int,

( )º+
+

q
Q

L
. 47shock,rel

shock

int

A high +qshock,rel would suggest that the shock can heat up the
planet appreciably.
The effective heating of the planet by the shock, in turn, is

the net rate of total energy that is not lost from the system and
therefore added to the planet. By the definition of hphys

(Equation (10)), this is

( )∣ ˙ ( )∣ ∣ ˙ ( )∣ ( )h= - =+ -Q E r E r1 , 48shock
phys

max shock

where -rshock is immediately downstream of the shock. From
the definition of Ė (Equation (11)), we have in the isothermal
limit that is applicable to our results
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using also that for an isothermal shock the post- and preshock
densities are related by Mr r g=2 1

2 and that ρ2v2=ρ1v1. We
recall that ˙=L GM M Racc,max p p. Equation 49(b) in particular
shows that what is added to the planet is mostly the enthalpy of
the gas, with a small additional term corresponding to the
leftover kinetic energy (from the postshock settling velocity of
the gas). The latter is vanishingly small in the limit of a high
preshock Mach number.
The shock heating relative to Lacc,max is plotted against Mach

number in Figure 11(a). It may seem surprising that for low
Mach numbers M < 2–4 (depending on γ), we have that

>+Q Lshock acc,max. However, this simply comes from the fact
that the gas at rmax does not bring only kinetic energy but also
enthalpy with it.
For the range M » 7–35 (looking at Figures 4 and 8) and

with γ=1.44 as we used here, we see from Figure 11(a) that
(»+Q 10shock %–0.4%)Lacc, respectively. In this high-Mach

number limit (valid actually already for M  1), the effective
heating rate can be simplified to

M
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12 It is easy to estimate, assuming T∝r−1/2, that only unrealistic parameter
combinations could lead to evaporated dust (i.e., T 1000 K, taking the
density dependence into account) at ~r k RLissauer Hill or ~r RBondi.
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where again = +ℓ L L1 dnstr acc,max, the downstream luminos-
ity = +L L Ldnstr int compr being the sum of the luminosity
coming from the deep interior and the compression luminosity,
and writing γ1.44≡γ/1.44. For Equations 50(b) and (c), we
took the free-streaming limit for the shock temperature
(Equation (33)), which was seen to hold over most of
parameter space. As in Equation (33), ℓ formally depends on
( ˙ )M M R, ,p p , but this dependence is negligible in the limit
of L Ldnstr acc,max.

Mordasini et al. (2017) have demonstrated that not only a
“hot accretion”, but even a “cold nominal” formation scenario
leads to warm starts. Therefore, we estimate +qshock,rel with the
cold starts of Marley et al. (2007), which represent a
conservative lower limit to the entropies and luminosities of
planets during their formation. Because Marley et al. (2007) do
not report the internal luminosities of their planets during
formation, we need to estimate them. Their Figure 4 shows that
right after formation, the cold starts stay within 90%of the
initial luminosity for a timescale t 1 Myr90 for 1MJ,
1–2Myr for 2MJ, and ∼6Myr and increasing for 4MJ and
up.13 The time spent in runaway accretion in their models is
around =t 0.1 Myracc to 0.5 Myr for 1to 10MJ, respectively.
Thus even for =M M1p J, the cooling timescale t90 is much
longer than tacc, and it should be a reasonable approximation to
assume that the internal luminosity and the radius do not
change considerably between the last stages of the runaway
accretion phase—when, for example, more than half the planet
mass has been assembled—and right after.

Figure 11(b) displays the approximate heating by the shock
(Equation 50(c)). Considering the extreme combinations
of μ and γ as in Section 6, we find »+ -Q 10shock

4– 
- L10 3

for ˙ » -
Å

-M M10 yr2 1 and »+ -Q 10shock
5– 

- L10 4 for
-

Å
-M10 yr3 1. The radius is fixed at =R R1.5p J, a typical

value for forming planets (Mordasini et al. 2012a), but varying
it in a reasonable range »R 1p –3 RJ does not change the
outcome qualitatively.

We compare in Figure 11(b) the shock heating to the internal
luminosity of the Marley et al. (2007) cold starts. In their
model, most of the mass is accreted with ˙ » -

Å
-M M10 yr2 1

with a linear decrease of Ṁ toward the end (Hubickyj
et al. 2005; Marley et al. 2007). Thus, the relevant heating is
around >+ -Q L10shock

4 . This is one to two orders of
magnitude higher(!) than the (post-)formation luminosities

» -L L10int
6 of Marley et al. (2007). At M1 J, the heating

could be only moderate, but for M M2p J, the conclusion
becomes more secure. Moreover, taking ¹L 0dnstr into account
for the estimate would only lead to a lower Mach number and
thus a higher +Qshock.
Thus, based on this a posteriori comparison of the internal

luminosity and of the energy input rate, the shock is expected
to heat up planets in the “cold classical” approach (Marley et al.
2007; Mordasini et al. 2017). The importance of the shock
should increase with planet mass.

7.1.2. Shock-temperature-based Argument

Berardo & Cumming (2017) and Cumming et al. (2018)
followed the time-dependent internal structure of accreting
planets with constant accretion rates. They specified their outer
boundary conditions for the planet structure as a temperature T0
at a pressure equal to the ram pressure, =P P0 ram. Berardo &
Cumming (2017) report that setting T0 as a fraction14 f of the
free-streaming temperature Tsh,fs (plus a relative contribution
from the internal luminosity) led to fully radiative interiors at
the end of formation for f above a certain fmin. Lower values of
f resulted in convective interiors. The minimum fraction fmin
was lower for higher accretion rates, with »f 1min for
˙ = -M 10 3 and » »f 0.1 0.6min

1 4 for ˙ = -M 10 2
Å

-M yr 1.
Because we find f 1—i.e., the temperature at the ram
pressure matches the temperature in the h = 100%kin limit
(Equation (33))—we expect formation calculations using our
results to lead to radiative planets. Note that even though we
considered only =L 0int here, we expect the same result
(h = 1kin and thus f=1) to hold for nonzero interior
luminosity. It should still be explored systematically, however,
especially because the result of Berardo & Cumming (2017)
was for a specific choice of pre-runaway entropy of the planet
Si, and it is the contrast between this entropy Si and the
immediate postshock entropy ( )=S S T P,0 0 0 that matters
(Berardo et al. 2017).

7.1.3. Entropy-based Argument

Because our postshock entropies are higher or much higher
than postformation entropies (and thus, neglecting cooling,
entropies during formation) of Mordasini et al. (2017), we
certainly do not expect the shock to be able to cool the planet as
it accretes. Berardo et al. (2017) found that they needed
extremely low shock entropies (with temperatures of about

»T 150shock K) to reproduce the cold starts of Marley et al.
(2007). We find >T 1000shock K, however, down to
˙ = -

Å
-M M10 yr3 1. Thus the high postshock entropy will at

least slow down the cooling of the planet during its formation
(the “stalling” regime of Berardo et al. 2017), if not heat the
planet (“heating regime”), but should not allow for any
decrease of the entropy (“cooling regime”). From this argument
too, then, cold starts seem unlikely.

13 Alternatively, one could look at the e-folding times of the luminosity, which
are 4 Myr for =t M1exp J, 10 Myr for 2 MJ, 60 Myr for 4 MJ, and
increasing. Note that the Kelvin–Helmholtz times = =t GM R LKH p

2
p p

( ) [( )( )]´ -M M R R L L1 Gyr 4 1.3 3 10p J
2

p J p
6 are longer than these e-

folding times by roughly a large factor of 30 (i.e., ca. 1.5 dex). Note that tKH is
within ca. ±0.5 dex of the cooling time =t M TS LS p p defined in Marleau &
Cumming (2014), where S is the entropy of the planet and T the mass-weighted
average temperature of the planet is within approximately0.5 dex. Thus both
tS and tKH are hardly adequate proxies for t90 or texp, and one must exercise
caution when using tKH in timescale-based arguments.

14 These authors write c= +T T T0
4

acc
4

eff
4 , but their Tacc differs from our

equivalent quantity, Tsh,fs, with = »T T T4 1.4acc
1 4

sh,fs sh,fs in the case of =ℓ 0
in Equation (33). We therefore here use f and not χ. Note also that χ in
Cumming et al. (2018) was written as η in Berardo & Cumming (2017), but
that it should not be confused with the efficiency. Our f here can be larger
than1, which occurs when the preshock k rRR p is large (see Section 5.3).
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7.2. Opacities and Gas–radiation Coupling

Next we discuss the opacities. We have seen in detail in this
work that the Rosseland mean controls the extent to which
radiation is diffusing as opposed to freely streaming. As for
the Planck opacity, it is an important factor in determining the
extent to which the opacity carrier (gas or dust) and the radiation
are in equilibrium. Indeed, the inflowing matter will equilibrate
with the outgoing radiation, leading to »T Tgas rad, if the energy
exchange time (controlled by the absorption coefficient rk ;P see
Malygin et al. 2017) is shorter than the time needed for the gas to
reach the shock (controlled by vff ). Therefore we take a critical
look at uncertainties concerning the opacities.

1. We find that everywhere except in the shock (in the
Zel’dovich spike), the preshock temperatures of the gas
and radiation are equal. Simulations that use none-
quilibrium radiation transport with tables with unrealis-
tically low Planck mean values (see Figure 2(b)) might
not find that the shock is able to preheat the gas. Thus it is
an important result that the Planck values are high enough
for the radiation and gas to be coupled.

2. A quite uncertain aspect of dust opacity computations is
the distribution of dust grain properties (size, porosity,
composition, etc.) and also their sublimation. However,
we found that the exact opacity in the accretion flow does
not matter for the shock temperature. This effectively
removes a source of uncertainty and makes the derived
shock temperatures more robust.

3. Nevertheless, the presence of dust in the accretion flow
was seen to affect the temperature at and beyond the dust
destruction front (see Stahler et al. 1980; Vaytet et al.
2013a) and thus also the luminosity at the Hill sphere.
With a dust destruction front, the temperature there and
beyond remains higher by up to a factor of several
compared to the expression for a constant-( )L fred profile,
Equation (43) (although with the same power-law
dependence). The decrease or increase in luminosity
between the shock and the Hill sphere is also different
from the case without a dust destruction front (see
Section 6.1). However, if the dust in the incoming flow is
strongly depleted relative to the interstellar medium
abundance assumed in Semenov et al. (2003), the flow
will tend more to be in the free-streaming regime, and its
temperature is thus given by Equation (43).

4. We conducted tests as in Paper I with constant low opacity.
Typically, as we verified separately (not shown), at lower
values k k= ~ 0.01R P cm2 g−1, the radiation and gas
temperatures stay decoupled even in the high-density
postshock region. This is entirely unrealistic, however,
given that at these densities (r » -10 10– - -10 g cm8 3) and
temperatures ( »T 500gas –5000K; see Figure 4 of Paper I)
the Planck opacity is rather of order k ~ 10P cm2 g−1

(Figure 2(b)).
5. Finally, we related the behavior of the opacity to that of

the temperature and thus also of the luminosity
(Section 5.1). This makes it now possible to understand
the “bursts” in L seen, e.g., at 0.3au in Figure 8 of Vaytet
et al. (2013a), who also use FLD, but kept the frequency
dependency. These bursts are associated with sharp
opacity transitions in the respective wavelength band
(in particular at the dust destruction front) and with slight
changes of slope in the temperature.

We note that it is in the Zel’dovich spike that nonequilibrium
(2-T) effects lead to the formation of observable spectral tracers
of accretion onto protostars and brown dwarfs (Hartmann et al.
2016; Santamaría-Miranda et al. 2018). This emission is
discussed for the shock onto the circumplanetary disk in
Aoyama et al. (2018) and for the accretion shock on the planet
surface in a forthcoming publication (Y. Aoyama et al. 2019, in
preparation).

7.3. Equation of State

In these first two papers (Paper I, this work) we have
restricted ourselves to a perfect EOS (constant μ and γ). To first
order, this should not affect our main results. However, (i)the
luminosity in the accretion flow (and thus at the Hill sphere),
(ii)the postshock compression luminosity, and thus also
(iii)the more precise value of Tshock (through the Dfred factor)
should all be affected to some extent by the EOS, at least for
some combinations of ( ˙ )M M R, ,p p .
Concerning item(i), we studied in Section 6.1.2 an estimate

( )DL 43 of the drop or increase in the luminosity between the
shock and the Hill radius. In the limit of a perfect EOS and of
temperature profile µ -T r 1 2, Equation (45) shows that the
ratio ∣ ∣( )DL L43 acc is highest for high accretion rates, low
masses, and high radii. Over ˙ = -M 10 3– -

Å
-M10 yr2 1, =Mp

1–10MJ, and =R 1p –5 RJ (an even wider parameter space than
what we consider for our simulations), the relative drop or
increase is never larger than ∣ ∣( )D »L L 10%43 acc –15%, taking
the extreme case of ( )m g= =1.23, 1.1 . Taking the actual
temperature profile into account (as opposed to assuming
T∝r−1/2 everywhere) will change this somewhat, but usually
only to make it smaller. In any case, the variation in L across
the Hill sphere is unimportant compared to the effect of other
simplifications of our model. We note that for molecular
hydrogen and neutral helium (our default case), the actual
change in L (i.e., as measured from the simulation and not
using a simple T∝r−1/2 profile) is less than 2%for any
( ˙ )M M R, ,p p considered here.

We report already here that preliminary estimates suggest
that for simulations with a full EOS, the change in luminosity
across the Hill radius is at most approximately 20%, which is
thus noticeable but also not large. Details will be presented in a
forthcoming publication.
Finally, the relative smallness of the luminosity change ( )DL 43

justifies a posteriori the assumption of constant ( )L fred made to
derive it. Indeed, a relative change ∣ ∣( )D »L L 10%43 acc –

15%over 2–3 dex in radius (from »R 1p –3 RJ to »Racc
( ) »k R M 250Lissauer Hill p –500 RJ for »M 1p –10MJ at 5.2au)

corresponds to an approximate average slope (see Equation (30))
of at most ∣ ∣ ( )b » =log 1.15 2 0.0410 if fred is constant or
∣ ∣b » 0.4 at most if fred also changes by a factor of approxi-
mately3, as in Figure 9. Thus even for these conservative
estimates, we find ∣ ∣ b 2, justifying a posteriori the assumption
of a constant L/ fred used to derive the change in L.

8. Summary and Conclusions

In this series of papers (Paper I; this work; G.-D. Marleau
et al. 2019, in preparation) we take a detailed look at the
physics of the accretion shock in planet formation. In this
second paper, we have updated to disequilibrium (2-T)
radiation transport (i.e., following the gas and radiation energy
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densities separately) and modern opacities, especially for the
gas: we use the dust opacities of Semenov et al. (2003) but the
gas opacities of Malygin et al. (2014), avoiding the too-low
Planck mean opacities that are normally included in Semenov
et al. (2003). We have now also surveyed a range of values for
the formation parameters ( ˙ )M M R, ,p p , assuming negligible L int

(see Figure 1), namely ˙ = -M 10 3– -
Å

-M10 yr2 1, »Mp
1–10MJ, »R 1.6p –3 RJ. This has motivated us to several
semianalytical derivations along with comparisons to simula-
tion outputs. We have kept the simplification of a perfect EOS
and focused on the case of molecular hydrogen with a cosmic
admixture of helium (μ=2.29, γ=1.44).

We now summarize our primary findings on different
aspects. Concerning the thermal and radiative properties of
the accretion flow:

1. Both our simulations and analytical theory show that the
behavior of the luminosity in the accretion flow is not the
direct result of radiative transfer effects but rather depends
on the EOS (Section 6.1.2). The luminosity turns out to be
radially constant to ≈ 2 %for values of μ and γ appropriate
for H2+He. Taking other values of μ and γ increases or
decreases the change in L between the shock and roughly
the Hill sphere. However, the maximum change is relatively
small with ∣ ∣( )D L L 1543 acc %across the relevant
parameter space and for any (g m 1.1, 1.23) combi-
nation (Section 7.3). We highlight that the tD ~ 1R surface
is not of any particular significance (Section 4.3).

2. Thanks to the sufficiently high Planck mean opacities (for
which a contribution from the dust is not needed), the
matter and radiation are very well coupled both ahead
of and behind the shock, i.e., everywhere except in
the Zel’dovich spike (Figures 2 and 9). In fact,
nonequilibrium (2-T) radiation transport could be
neglected when studying only the postshock temperature
and pressure or the global energetics.

3. As found in Paper I and confirmed here, the radiative
precursor to the shock (Mihalas & Mihalas 1984;
Commerçon et al. 2011a) is larger than the simulation
domain, which is roughly the Hill sphere, even in the case
of somewhat high Rosseland optical depth ( tD ~ 10R ).

4. The preshock region close to the planet, out to some
Rosseland optical depth, is usually in the free-streaming
regime and not, as one would expect for a supercritical
shock, in the diffusion limit (e.g., Figure 8 of Vaytet et al.
2013b). Thus the shock is a thick–thin shock in the
classification of Drake (2006). At low shock temperatures
(T1500 K) the dust is still present, making the
preshock region somewhat diffusive and raising the
shock temperature.

The shock properties were a focus of this study, and we found
the following:

1. As in Paper I, all shocks are isothermal and supercritical,
and the Mach numbers are high enough for h » 100%kin

of the incoming kinetic energy flux to be converted to
radiation locally at the shock (see gray lines in Figures 4
and 8). The postshock pressure is equal to the ram
pressure Pram.

2. The free-streaming analytical estimates of the shock
temperature (Equation 6(b)) and of the upstream
luminosity (Equation (8)) were seen to hold very well

over a large portion of parameter space. Importantly, we
found out that this holds also for high optical depths
between the shock and the nebula. Deviations of ∼5% in
T occur at low shock temperatures (Figure 3(a)).

3. An important analytical development was the derivation
of an implicit (Equation (35)) for the shock temperature
Tshock given a Rosseland mean opacity function

( )k r T,R shock . We solved this numerically (Figure 7).
4. Based on our analysis, Tshock should not be affected to first

order by the use of an nonperfect ideal EOS (i.e., considering
dissociation and ionization) because γ and μ do not enter in
the derivation of Tshock (see Equation (32)). However, (i)the
luminosity in the accretion flow (and thus at the Hill sphere),
(ii)the postshock compression luminosity, and thus also
(iii)the more precise value of Tshock (through the Dfred
factor; Equation (6)) should all depend somewhat on the
EOS. This will be assessed in a subsequent paper (G.-D.
Marleau et al. 2019, in preparation).

5. We calculated the postshock entropies immediately
below the shock using an EOS taking dissociation into
account (Appendix A of Berardo et al. 2017). While this
is formally not consistent with our (perfect-EOS)
simulations, we argued that this is likely accurate because
Tshock and =P Ppost ram are probably independent of the
EOS. The immediate postshock entropies were found to
be between approximately 13 and 20 -k mB H

1 for our
range of parameters (Section 4.6, Figure 5). These values
are high compared to the postformation entropy of
planets, which is at most around 10–14 -k mB H

1 accord-
ing to current, though not definitive, predictions (Morda-
sini 2013; Berardo & Cumming 2017; Berardo et al.
2017; Mordasini et al. 2017). However, we caution and
emphasize that the actual entropy of the gas added to the
planet, below the postshock settling layer, is different
from this immediate postshock entropy. This is explored
in Berardo et al. (2017) and Berardo & Cumming (2017).

Finally, a key output of our simulations was the efficiency of
the shock:

1. We have measured the physical efficiency hphys as a
function of accretion rate Ṁ , planet mass Mp, and planet
radius Rp (Figure 5) and derived it semianalytically
(Equations (13) and (38)). This efficiency captures the
global energy recycling that occurs in the preshock region
(Paper I). We saw (Figure 5) that the efficiencies are
always greater than roughly 97%for the range of
parameters considered here.

2. Naively, a high hphys could suggest that the gas is added
“cold”, but the part that does not escape (i.e., the heating
of the planet by the shock) turns out to be much larger
than the internal luminosity in the Marley et al. (2007)
extreme cold starts (Section 7.1.1).

The semianalytical work presented here revealed the reduced
flux ( )=f F cEred rad rad (Equation (7)) to be a powerful
quantity for understanding the behavior of the radiation field
(free streaming or diffusing, often termed approximately
“optically thin” and “optically thick”). This holds at least for
the gray treatment of radiation transport used in this work in a
spherically symmetric geometry. When L/ fred is sufficiently
constant radially, we showed in Equation (31) that there is a
simple relation between the reduced flux fred and the opacity,
which provides an intuitive understanding of fred.
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The main results of our simulations are postshock (P, T)
values and global efficiencies hphys. This is useful for detailed
modeling of the structure of accreting planets as in Berardo
et al. (2017), Berardo & Cumming (2017), and Cumming et al.
(2018), and also for the one-zone global approach of, e.g.,
Hartmann et al. (1997). The Bern model (Alibert et al. 2005;
Mordasini et al. 2012b, 2017) is currently in between,
calculating detailed planet structures but with the assumption
of a radially constant luminosity. Note that the modeling of the
energy transfer at the accretion shock is also relevant in the
context of star formation (e.g., Baraffe et al. 2012; Geroux et al.
2016; Baraffe et al. 2017; Jensen & Haugbølle 2018).
Researchers interested in using our simulation results can take
the semianalytical formulæpresented above, including the
opacity effects for the temperature, under the assumption of a
perfect EOS.

The other main outcome is the amount of radiation that
reaches the Hill sphere. This should be useful input for studies
of the thermo-chemical feedback of planets on the local
protoplanetary disk, for instance as in a number of recent
papers (Cleeves et al. 2015; Cridland et al. 2017; Stamatellos &
Inutsuka 2018; Rab et al. 2019). Within the simplification of a
spherical accretion geometry, our results show that essentially
all of the accretion shock luminosity is expected to reach the
local nebula, and that a high Rosseland optical depth, at least
up to tD ~ 10R , does not lead to significant extinction of the
bolometric shock luminosity in the accretion flow.

Finally, we have explored by different means whether our
results point toward hot starts or cold starts (Section 7.1). As
discussed above, the heating of the planet by the shock +Qshock
(i.e., the flow rate of inward-going energy; Equation (48)) was
estimated to be much higher than the internal luminosity for the
Marley et al. (2007) classical cold starts. This suggests that they
are not entirely realistic. As for the “nominal cold start” or the
“hot start” assumption during accretion, Mordasini et al. (2017)
showed that both lead to warm or even hot starts. Taken
together, all of this might explain why direct-imaging
observations, with the sole exception of 51Erib (Macintosh
et al. 2015; Nielsen et al. 2019), have not found evidence for
planets even consistent with cold starts.
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