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Combination of Precise Orbit Solutions
for Sentinel-3A

using Variance Component Estimation
Introduction
Today the orbits of various Earth observation satellites are routinely calcu-
lated from Global Positioning System data on an operational basis. These
calculations can differ in many ways, e.g., in terms of used background
models, adopted orbit parametrizations, or the used processing software.
This raises the question whether it is possible to derive an orbit with su-
perior quality by combining different solutions. In this presentation we
use the Low Earth Orbiting (LEO) satellite Sentinel-3A to further address
this question. Together with the Sentinel-3B, the two Sentinel-3 satel-
lites form a pair of Earth observation satellites. They belong to the fleet
of the Copernicus Earth observation programme, established by the EU
and ESA in 2012 to address and answer environmental and safety issues.

The task of Sentinel-
3A is ocean observa-
tion. It measures land
and ocean colours,
land and sea temper-
ature and sea surface
and ice topography. It
was launched on 16
February 2016 from
space port Plessezk.

Figure 1: Sentinel-3A ( c©ESA)

It is equipped with two GPS receivers in order to enable precise orbit de-
termination (POD). Sentinel-3A orbital solutions are routinely computed
by the following Analysis Centers (ACs):

• GMV (Grupo Mecánica del Vuelo)

• AIUB (Astronomical Institute, University of Bern)

• TUM (Technische Universität München)

• CNES (Centre National d’Etudes Spatiales)

• TUD (Delft University of Technology)

• EUM (European Organisation for the Exploitation of Meteorological
Satellites)

• DLR (Deutsches Zentrum für Luft- und Raumfahrt)

• ESOC (European Space Operations Center of ESA)

These ACs are members of the so-called Sentinel POD QWG (Quality
working group). All institutions of this QWG regularly provide inde-
pendent orbit solutions for the Sentinel-1,-2,-3 satellites, see e.g. [3]. The
solutions are produced by different software packages and are based on
different reduced-dynamic orbit determination approaches. In order to
combine the different solutions we use the method of variance component
estimation (VCE) [4]. Due to the reduced-dynamic orbit modeling, the in-
dividual solutions are, however, not primarily affected by random errors
but rather by systematic errors. In this presentation we make an attempt
to assess different types of systematic errors affecting the combined so-
lution by using simulation studies. In order to transfer the results of the
simulations to reality, the simulation has to reflect the main characteristics
of real orbit errors.
Since the estimation of variance components is an iterative procedure, it is
furthermore of interest to investigate the convergence behaviour and the
added value of performing more than one iterations.
SLR measurements are eventually used to assess the quality of the com-
bined solution when using real orbit solutions from the ACs of the Sentinel
POD QWG. In addition to the combined solution, the individual solutions
are also validated by SLR.

Comparison of individual solutions
The different solutions are first compared against each other. Since one may loose track from a cross-comparison between all solutions, we select a
reference solution and compute the differences between this solution and all other solutions. Note that we do not apply a Helmert transformation. The
selected reference solution is the official orbit solution from the Copernicus POD Service (CPOD) computed by GMV. The comparison was performed
for the period from 1 January 2017 to 27 January 2018.

[cm] AIUB TUM CNES DLR TUD ESOC EUM
Radial-RMS 1.28 0.97 0.59 1.05 0.95 0.62 0.72
Along-RMS 1.57 1.71 1.52 1.41 1.24 1.32 1.78
Cross-RMS 1.20 1.30 0.80 1.29 1.25 1.69 1.46
3D-RMS 1.35 1.33 0.97 1.25 1.15 1.21 1.32
Radial-MEAN -0.80 -0.18 0.06 -0.59 -0.60 0.07 -0.10
Along-MEAN -0.25 -0.58 -0.52 -0.01 -0.06 -0.69 -0.55
Cross-MEAN -0.69 -0.69 -0.48 -0.80 -0.86 -1.32 0.12
3D-MEAN -0.58 -0.49 -0.31 -0.47 -0.51 -0.65 -0.18
Radial-STD 0.99 0.95 0.59 0.85 0.73 0.61 0.71
Along-STD 1.53 1.60 1.41 1.41 1.23 1.23 1.70
Cross-STD 0.93 0.98 0.75 0.01 0.89 0.92 1.45
3D-STD 1.15 1.18 0.92 1.08 0.95 0.92 1.29

Table 1: Orbit comparison in the local orbital frame, CPOD vs. other solutions

Figure 2: Along-track differences between individual solutions and CPOD solution for
24.09.17

Since the different solutions may also show systematic differences, e.g. systematic radial biases (see Table 1), a Helmert transformation with respect to
a fixed reference solution would be advantageous to quantify the remaining differences. By such a transformation it could in particular be possible to
remove a systematic offset between two solutions. Figure 2 shows the differences of the individual solutions in along-track direction with respect to the
CPOD solution for one example day.

Theory
The combined solution shall be calculated from the individual solutions
for each epoch as a weighted average independent of the other epochs.
The weights are a priori unknown and shall be determined using VCE.
Under these assumptions, the following explicit formulas result [1]. Note
that correlations between components and positions referring to different
epochs are neglected.

Method of Combination
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Note that in each iteration new weights are calculated for each solution
based on the RMS of the differences to the combined solution of the previ-
ous iteration. However, xk in the formula shown above can be interpreted
as one dimensional or as a full position vector. Since the orbital solutions
of the individual analysis centers are given in 3D space, there are two dif-
ferent variants. Either the differences of each spatial direction can be used
together and one single RMS can be determined, or each spatial direction
can be treated separately. In the latter case a separate RMS is determined
per spatial direction (X,Y,Z), per solution and per iteration. The combina-
tion thus runs independently for each direction. Various tests have shown
that the version with one weight per solution is generally better suited.
If the procedure is aborted after the first iteration, this procedure corre-
sponds to that used by the International GNSS Service (IGS) for the com-
bination of GNSS satellite orbits from different ACs [5].

Simulations
Figure 2 shows that errors of
reduced-dynamic orbit solutions
are usually periodic. We thus sim-
ulated orbit solutions affected by
once-per-rev periodic errors with
different amplitudes and phases
(see Fig. 3) according to:

fi(t) = Ai · sin(ω · t+ φi) Figure 3: Simulations of phase shifts and their
impact on the variance component estimation

Figure 4: Resulting RMS with different
phase shifts

Figure 4 shows the quality of the
combination based on three individ-
ual simulated solutions. The result-
ing RMS with respect to the true so-
lution is plotted as a function of the
mutual phase shift (∆φ) between the
simulated periodic errors. We clearly
see a minimum. The exact location of
the minimum depends on the ampli-
tudes of the simulated errors of the
individual solutions.

In general, the simulation shows that the larger the phase shifts between
the individual solutions, the smaller the RMS of the combined solution.
The result for three individual solutions shown here can be generalized to
any number of solutions, which could also be confirmed by simulations.
The minimum occurs for ∆φi,j = 2π/N,∀i, j ∈ k, where N = Number of
solutions. In other independent simulations with more individual solu-
tions (not shown here) it could be shown that the RMS of the combination
becomes smaller as soon as the mean value of the phase shifts approaches
the value 2π/N . In these simulations, both the amplitudes of the indi-
vidual periodic errors and their relative phase positions were randomly
generated. In order to generate combined solutions from real data, which
ultimatively shall be of better quality than the individual solutions, peri-
odic orbit errors need to fulfill the above mentioned criterion. The deter-
mination of the phases of the individual solutions showed that all solu-
tions have indeed different phases with non-zero mean. From this result
and that of the simulation it can be concluded that the variance compo-
nent estimation is able to reduce the errors observed in real orbit solutions
although they are not random but systematic (periodic).

SLR validation of real solutions
In order to independently validate if the VCE, especially as an iterative
method, is advantageous for the combination of different LEO orbit solu-
tions, Satellite Laser Ranging (SLR) residuals are computed for the com-
bined solutions as well as for the individual orbit solutions of each AC.
The validation was performed for the time period from 1 January 2017 to
27 January 2018. For the validation of the SLR measurements, only mea-
surements from a subset of well performing stations were used. The list
of accepted stations was compiled on the basis of externally determined
quality of the the measurements [2]. A threshold of 20 cm was set for the
outlier detection of the residuals.

AIUB CPOD TUM CNES DLR
MEAN -0.607 -0.069 -0.264 -0.045 -0.443
STD 1.179 1.238 1.325 1.385 1.179
RMS 1.328 1.242 1.353 1.388 1.262

TUD ESOC EUM VCE1 VCE10

MEAN -0.539 0.041 -0.279 -0.319 -0.364
STD 1.108 1.372 1.724 1.092 1.080
RMS 1.234 1.374 1.748 1.140 1.142

Table 2: SLR validation of individual solutions and the combined orbit by using variance
component estimation (cm), the subscript for the VCE solutions denotes the number of iter-
ations

It can be seen that the standard deviation (STD) of the combination is
smaller than that of any of the individual solutions. It is also notewor-
thy that the mean value of the combined solution is not the smallest, but
rather represents an average of the mean values of the individual solu-
tions. This issue underlines the need for applying a Helmert transforma-
tion before the combination. It is also evident that the mean value and the
RMS assume larger values as the number of iterations increases.

Conclusions
The method of variance component estimation can be successfully applied
to the combination of precise orbit solutions of the Sentinel-3A satellite
computed in the frame of the Sentinel POD Quality Working Group. It
could be shown that the STD of the SLR measurements is further im-
proved by the combination process. However, the mean value of residuals
is worse than for some of the individual solutions. A possible approach
to improve is a preceding Helmert transformation to eliminate systematic
differences before performing the combination. Both the simulation of the
periodicities and the values of the SLR validation for the mean value and
RMS show that more than one iteration can also be disadvantageous in the
presence of systematic errors, which requires further investigation. An im-
provement of the combination method is also conceivable, especially with
regard to the correlated spatial directions and correlations in time.
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