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Abstract

Background

The evaluation of the credibility of results from a meta-analysis has become an important

part of the evidence synthesis process. We present a methodological framework to evaluate

confidence in the results from network meta-analyses, Confidence in Network Meta-Analy-

sis (CINeMA), when multiple interventions are compared.

Methodology

CINeMA considers 6 domains: (i) within-study bias, (ii) reporting bias, (iii) indirectness, (iv)

imprecision, (v) heterogeneity, and (vi) incoherence. Key to judgments about within-study

bias and indirectness is the percentage contribution matrix, which shows how much informa-

tion each study contributes to the results from network meta-analysis. The contribution

matrix can easily be computed using a freely available web application. In evaluating impre-

cision, heterogeneity, and incoherence, we consider the impact of these components of vari-

ability in forming clinical decisions.

Conclusions

Via 3 examples, we show that CINeMA improves transparency and avoids the selective use

of evidence when forming judgments, thus limiting subjectivity in the process. CINeMA is

easy to apply even in large and complicated networks.

Introduction

Network meta-analysis has become an increasingly popular tool for developing treatment

guidelines and making recommendations on clinical effectiveness and cost-effectiveness.

However, fewer than 1% of published network meta-analyses assess the credibility of their
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conclusions [1]. The Grading of Recommendations Assessment, Development and Evaluation

(GRADE) approach provides an assessment of the confidence in the results from systematic

reviews and meta-analyses, and many organisations, including the World Health Organiza-

tion, have adopted the GRADE approach [2,3]. Based on GRADE, 2 systems have been pro-

posed to evaluate the credibility of results from network meta-analyses [4,5], but the

complexity of the methods and lack of suitable software have limited their uptake.

Here we introduce the Confidence in Network Meta-Analysis (CINeMA) approach. CIN-

eMA is broadly based on the GRADE framework, with several conceptual and semantic differ-

ences [5]. It covers 6 domains: (i) within-study bias (referring to the impact of risk of bias in

the included studies), (ii) reporting bias (referring to publication and other reporting bias),

(iii) indirectness, (iv) imprecision, (v) heterogeneity, and (vi) incoherence. The reviewer’s

input is required at the study level for within-study bias and indirectness. Then, applying user-

defined rules, CINeMA assigns judgments at 3 levels (no concerns, some concerns, or major

concerns) to each domain. Judgments across domains can be summarised to obtain 4 levels of

confidence for each relative treatment effect, corresponding to the usual GRADE assessments

of very low, low, moderate, or high.

We will focus on randomised controlled trials, and on relative treatment effects. We assume

that evaluation of the credibility of results takes place once all primary analyses and sensitivity

analyses have been undertaken. We further assume that reviewers have implemented pre-spec-

ified inclusion criteria for studies and have obtained the best possible estimates of relative

treatment effects using appropriate statistical methods [6–9].

We illustrate the methods using 3 examples that highlight different aspects of the process

and represent networks of different complexities. Two examples are introduced in Box 1: a

network of trials that compare outcomes of diagnostic strategies in patients presenting with

symptoms suggestive of acute coronary syndrome [10] and a network comparing adverse

events of statins [11]. A third network, comparing the effectiveness of 18 antidepressants for

major depression [12], is evaluated for all domains and is presented in S1 Text. All analyses

were done in R software using the netmeta package and the CINeMA web application (Box 2)

[13,14].

Box 1. Description of 2 network meta-analyses used to illustrate the
CINeMA approach to assess confidence in network meta-analysis.

Diagnostic strategies for patients presenting with symptoms
suggestive of acute coronary syndrome

Siontis et al. performed a network meta-analysis of randomised trials to evaluate the dif-

ferences between the non-invasive diagnostic modalities used to detect coronary artery

disease in patients presenting with symptoms suggestive of acute coronary syndrome

[10]. Differences between the diagnostic modalities were evaluated with respect to the

number of downstream referrals for invasive coronary angiography and other clinical

outcomes. For the outcome referrals, 18 studies were included. The network is presented

in Fig 1A, and the data in S1 Data. The results from the network meta-analysis are pre-

sented in Table 1.

Comparative tolerability and harms of statins

The aim of the systematic review by Naci et al. [11] was to determine the comparative

tolerability and harms of 8 statins. The outcome considered here was the number of
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Methodology

The framework was initially developed by a Cochrane Methods Group (Comparing Multiple

Interventions Methods Group; https://methods.cochrane.org/cmi/about-us), based on previous

work [4,16,17]. A preliminary version of the framework was published [5], and recent advances

were subsequently implemented in a freely available web application [13]. Here we present the

latest, refined version of the framework, which was developed in regular meetings between the

authors, based on feedback by users of the CINeMA web application and participants at several

workshops, including Cochrane webinars and workshops at Cochrane Colloquia (Cape Town,

2017; Edinburgh, 2018) and workshops at the World Health Organization (November 2017)

and the National Institute for Health and Care Excellence (NICE) (February 2018).

Within-study bias

Background and definitions. Within-study bias refers to shortcomings in the design or

conduct of a study that can lead to an estimated relative treatment effect that systematically dif-

fers from the truth. In our framework we assume that studies have been assessed for risk of

bias. The majority of published systematic reviews of randomised controlled trials currently

use a tool developed by Cochrane to evaluate risk of bias [18]. This tool classifies studies as

having low, unclear, or high risk of bias for various domains (such as allocation concealment,

attrition, and blinding), with judgments summarised across domains. A recent revision of the

tool takes a similar approach [19].

The CINeMA approach. While it is straightforward to gauge the impact of within-study

biases in pairwise meta-analysis [20], this is more complex in network meta-analysis. The

treatment comparison of interest might not have been tested directly in any trial, or tested in

only a few small trials at high risk of bias. Thus, even when direct evidence is present, judg-

ments about the relative treatment effect cannot ignore the risk of bias in the studies providing

indirect evidence. In complex networks, indirect evidence is often obtained via several routes,

including 1-step loops and loops involving several steps. It may then be insufficient to consider

only the risk of bias in studies in a single prominent 1-step loop, as has previously been advo-

cated [4,21]. This is because most studies in a network contribute more when their results are

precise (e.g., large studies), when they provide direct evidence, or when the indirect evidence

does not involve many steps. For example, studies in a 1-step indirect comparison contribute

more than studies of the same precision in a 2-step indirect comparison. We can quantify the

contribution made by each study to each relative treatment effect and present contributions in

a percentage contribution matrix [22].

CINeMA combines the studies’ contributions with the risk of bias judgments to evaluate

within-study bias for each estimate from a network meta-analysis. It uses the percentage con-

tribution matrix to approximate the contribution of each study and then computes the per-

centage contribution from studies judged to be at low, moderate, and high risk of bias. Using

different colours, study limitations in direct comparisons can be shown graphically in the

patients who discontinued therapy due to adverse effects, measured as an odds ratio.

This outcome was evaluated in 101 studies. The network is presented in Fig 1B, and the

outcome data are given in S2 Data. The results of the network meta-analysis are pre-

sented in S1 Table, and the results from Separating Indirect from Direct Evidence

(SIDE) in S2 Table.
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network plot, while study limitations in the estimates from a network meta-analysis are pre-

sented for each comparison in bar charts.

Fig 1. Network plots of 2 network meta-analyses. (A) Network of randomised controlled trials comparing non-

invasive diagnostic strategies for the detection of coronary artery disease in patients presenting with symptoms

suggestive of acute coronary syndrome. The width of the edges is proportional to the number of patients randomised

in each comparison. The colours of edges and nodes refer to the risk of bias: low (green), moderate (yellow), and high

(red). (B) Network of randomised controlled trials comparing statins with respect to adverse effects. CCTA, coronary

computed tomography angiography; CMR, cardiovascular magnetic resonance; ECG, electrocardiogram; echo,

echocardiography; SPECT-MPI, single photon emission computed tomography–myocardial perfusion imaging.

https://doi.org/10.1371/journal.pmed.1003082.g001
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Table 1. Results from pairwise (upper triangle) and network (lower triangle) meta-analysis from the network of non-invasive diagnostic strategies for the detection

of coronary artery disease in Fig 1A.

CCTA — 2.25 1.04 1.23 —

(1.04–4.90) (0.70–1.55) (1.00–1.50)

3.07 CMR — — 0.38 —

(1.46–6.45) (0.18–0.78)

2.24 0.73 Exercise ECG — 0.42 1.93

(1.22–4.11) (0.28–1.88) (0.14–1.30) (1.39–2.67)

1.27 0.42 0.57 SPECT-MPI 0.87 —

(1.01–1.60) (0.20–0.87) (0.30–1.07) (0.71–1.06)

1.17 0.38 0.52 0.92 Standard care 2.95

(0.97–1.40) (0.18–0.78) (0.28–0.96) (0.76–1.10) (0.97–8.98)

4.31 1.40 1.93 3.38 3.69 Stress echo

(2.23–8.32) (0.53–3.74) (1.39–2.66) (1.71–6.68) (1.90–7.17)

Odds ratios and their 95% confidence intervals are presented for referrals for invasive coronary angiography. Odds ratios in the lower triangle less than 1 favour the

strategy in the column; odds ratios in the upper triangle less than 1 favour the strategy in the row. Cells with a dash indicate that no direct studies examined that

particular comparison.

CCTA, coronary computed tomography angiography; CMR, cardiovascular magnetic resonance; ECG, electrocardiogram; echo, echocardiography; SPECT-MPI, single

photon emission computed tomography–myocardial perfusion imaging.

https://doi.org/10.1371/journal.pmed.1003082.t001

Box 2. The CINeMA web application.

The CINeMA framework has been implemented in a freely available, user-friendly web

application aiming to facilitate the evaluation of confidence in the results from network

meta-analysis [13]. The web application is programmed in JavaScript, uses Docker, and

is linked with R; in particular, packages meta and netmeta are used, and an R package to

calculate the contribution of studies in network meta-analysis treatment effects [14,15].

Knowledge of these languages and technologies is not required to use CINeMA. The

source code is available at https://github.com/esm-ispm-unibe-ch/cinema.

Loading the data

In the ‘My Projects’ tab, CINeMA users are able to upload a comma-separated values

(csv) file with the by-treatment outcome study data and study-level risk of bias and indi-

rectness judgments. The CINeMA web application can handle all the formats used in

network meta-analysis (long or wide format, binary or continuous, arm-level or study-

level data) and provides flexibility in labelling variables as desired by the user. A demo

dataset is available under the ‘My Projects’ tab.

Evaluating the confidence in the results from network meta-analysis

A preview of the evidence (network plot and outcome data) and options concerning the

analysis (fixed or random effects, effect measure, etc.) are available under the ‘Configura-

tion’ tab. The next 6 tabs guide users to make informed assessments of the quality of evi-

dence based on within-study bias, reporting bias, indirectness, imprecision,

heterogeneity, and incoherence. Features include the percentage contribution matrix,

relative treatment effects for each comparison, estimation of the heterogeneity variance,

prediction intervals, and tests for the evaluation of the assumption of coherence.
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It can be useful to assign judgments of ‘no concerns’, ‘some concerns’, or ‘major concerns’

about within-study bias according to the relative contributions from studies at high or moder-

ate risk of bias. The contributions defining different levels of concern should be informed by

sensitivity analysis. If the summary estimates from studies at high/moderate risk of bias are

similar to those obtained from studies at low risk of bias, then even a large contribution from

studies at high risk of bias will raise few concerns. The sensitivity analyses should be pre-speci-

fied in the study protocol to avoid data-driven conclusions.

Example: Comparing diagnostic strategies to detect coronary artery disease. Consider

the comparison of exercise ECG versus standard care in the network meta-analysis described

in Box 1, Fig 1A, and S1 Data. The direct evidence from a single study is at low risk of bias

(study 12), so there is no within-study bias when interpreting the direct odds ratio of 0.42.

However, indirect information from 7 studies that compare standard care and CCTA, from 1

study comparing exercise ECG and CCTA, and from 3 studies of stress echo contribute addi-

tional information to the odds ratio of 0.52 from the network meta-analysis. The risk of bias in

the 11 studies providing indirect evidence varies (Fig 1A). Every study in the 2 1-step loops

contributes information proportional to its precision (the inverse of the squared standard

error, largely driven by sample size). Consequently, the within-study bias of the indirect evi-

dence can be judged by considering that there is much information both from studies at high

risk of bias (2,162 participants randomised) and from studies at low risk of bias (2,355 partici-

pants) and relatively little information from studies at moderate risk of bias (60 participants).

Direct evidence from study number 12 (based on 130 participants), at low risk of bias, is con-

sidered separately, as it has greater influence than the indirect evidence.

Studies in the indirect comparisons contribute information not only proportional to their

study precision but also according to their location in the network. Indirect evidence about

exercise ECG versus SPECT-MPI comes from 2 1-step loops (via CCTA or via standard care)

and 3 2-step loops (via CCTA–standard care, stress echo–standard care, standard care–CCTA)

(Fig 1A). In each loop of evidence, a different subgroup of studies contributes indirect infor-

mation, and the studies’ size and risk of bias vary. For the odds ratio from the network meta-

analysis comparing exercise ECG and SPECT-MPI, study 2 (with sample size 400) is more

influential than study 8 (with sample size 1,392) because study 2 contributes 1-step indirect

evidence (via standard care) whereas study 8 contributes via 2 steps.

Table 2 shows the percentage contribution matrix for the network, with columns represent-

ing studies grouped by comparison. The rows represent all relative treatment effects from net-

work meta-analysis. The matrix entries show how much each study contributes to the

estimation of each relative treatment effect. Combined with the risk of bias judgments, this

information can be presented as a bar chart, as shown in Fig 2. The larger the contribution

from studies at high or moderate risk of bias, the greater the concern about study limitations.

For example, studies at low risk bias contribute 44% to the estimation of the indirect evidence

for the comparison of exercise ECG with SPECT-MPI, with the contributions from studies

with moderate and high risk of bias being 32% and 24%, respectively.

Summarising judgments

The ‘Report’ tab includes a summary of the evaluations made in the 6 domains and gives

users the possibility to either not downgrade, or downgrade by 1 or 2 levels each relative

treatment effect. Users can download a report with the summary of their evaluations

along with their final judgments. CINeMA is accompanied by documentation describing

each step in detail (‘Documentation’ tab).
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CCTA, coronary computed tomography angiography; CMR, cardiovascular magnetic reso-

nance; ECG, electrocardiogram; echo, echocardiography; SPECT-MPI, single photon emission

computed tomography–myocardial perfusion imaging.

The CINeMA software facilitates judgments, based on the data presented in the bar graphs

combined with specific rules. For example, a weighted average of the risk of bias can be com-

puted by assigning scores of −1, 0, and 1 to low, moderate, and high risk of bias, respectively.

For the comparison exercise ECG versus SPECT-MPI, this would produce a weighted score of

0.44 × −1 + 0.32 × 0 + 0.24 × 1 = −0.20, which corresponds to ‘some concerns’.

Reporting bias

Background and definitions. Reporting bias occurs when the results included in the sys-

tematic review are not a representative sample of the results generated by studies undertaken.

This phenomenon can be the result of the suppression of statistically non-significant (or ‘nega-

tive’) findings (publication bias), their delayed publication (time-lag bias), or omission of unfa-

vourable study results from study reports (outcome reporting bias). The presence and the

impact of such biases has been well documented [23–30]. Reporting bias is a missing data

problem, and hence it is difficult to conclude with certainty for or against its presence in a

given dataset. Consequently, and in agreement with the GRADE system, CINeMA assumes 2

possible descriptions for reporting bias: suspected and undetected.

Fig 2. Risk of bias bar chart for the comparison of non-invasive diagnostic strategies for the detection of coronary artery disease. Each bar represents a

relative treatment effect estimated from the network shown in Fig 1A. White vertical lines separate the percentage contribution of different studies. Each bar

shows the percentage contribution from studies judged to be at low (green), moderate (yellow), and high (red) risk of bias.

https://doi.org/10.1371/journal.pmed.1003082.g002
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The CINeMA approach. Conditions associated with suspected reporting bias include the

following:

• There is a failure to include unpublished data and data from grey literature.

• The meta-analysis is based on a small number of positive early findings, for example for a

drug newly introduced on the market (as early evidence is likely to overestimate its efficacy

and safety) [31].

• The treatment comparison is studied exclusively or primarily in industry-funded trials

[32,33].

• There is previous evidence documenting the presence of reporting bias; for example, the

study by Turner et al. documented publication bias in placebo-controlled antidepressant tri-

als [34].

Reporting bias is considered undetected under the following conditions:

• Data from unpublished studies have been identified, and their findings agree with those in

published studies.

• There is a tradition of prospective trial registration in the field, and protocols or clinical trial

registries do not indicate important discrepancies with published reports.

• Empirical examination of patterns of results between small and large studies, using compari-

son-adjusted [35,36], regression [37], or selection [38] models, do not indicate that results

from small studies differ from those in published studies.

See S1 Text for a worked example based on the antidepressants network.

Indirectness

Background and definitions. Systematic reviews are based on a focused research ques-

tion, with a clearly defined population, intervention, and setting of interest. In the GRADE

framework for pairwise meta-analysis, indirectness refers to the relevance of the included stud-

ies to the research question [39]. Study populations, interventions, outcomes, and study set-

tings might not be representative of the settings, populations, or outcomes about which

reviewers want to make inferences. For example, a systematic review about treating the general

adult population might identify studies only in elderly men; these studies will have an indirect

relevance [40].

The CINeMA approach. Each study included in the network is evaluated according to its

relevance to the research question, classified into low, moderate, or high indirectness. Note

that only participant, intervention, and outcome characteristics that are likely associated with

the relative effect of an intervention (i.e., effect-modifying variables) should be considered.

Then, the study-level judgments can be combined with the percentage contribution matrix to

produce a bar chart similar to the one presented in Fig 2, and the contribution from studies of

high or moderate indirectness assessed.

Indirectness addresses the issue of transitivity in network meta-analysis. Transitivity means

that we can learn about the relative treatment effect of treatment A versus treatment B from an

indirect comparison via treatment C. This holds when the distributions of all effect modifiers

are comparable in studies of A versus C and studies of B versus C. Different distributions of

effect modifiers across comparisons indicate intransitivity. Evaluation of the distribution of

effect modifiers is only possible when enough studies are available per comparison. Also,

assessment of transitivity will be challenging or impossible for interventions that are poorly
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connected to the network. A further potential obstacle is that details of important effect modi-

fiers might not be reported. For these reasons, we recommend that the network structure and

the amount of available data are considered, and that judgments are on the side of caution, as

highlighted in the worked example for the antidepressants network provided in S1 Text.

Imprecision

Background and definitions. A key advantage of network meta-analysis compared with

pairwise meta-analysis is the gain in precision [41] by adding indirect evidence to direct evi-

dence. To evaluate imprecision the relative treatment effect that represents a clinically impor-

tant difference needs to be defined. At its simplest, this treatment effect corresponds to any

beneficial effect. In this case even a small difference is considered important, leading to one

treatment being preferred over another. Alternatively, ranges may be defined that divide rela-

tive treatment effects into 3 categories: ‘favours X’, ‘no important difference between X and Y’,

and ‘favours Y’. The middle range is the ‘range of equivalence’, which corresponds to clinically

unimportant differences between interventions. The range of equivalence should be defined

with reference to absolute risk differences that matter to patients. The range of equivalence can

be symmetrical (when a clinically important benefit is the reciprocal of a clinically important

harm, on a relative scale) or asymmetrical (when clinically important differences vary by direc-

tion of effect). For simplicity, we will assume symmetrical ranges of equivalence.

The CINeMA approach. CINeMA compares the treatment effects included in the 95%

confidence interval with the range of equivalence, as illustrated in the upper part of Fig 3. A

rating of ‘major concerns’ is assigned to a treatment effect if the 95% confidence interval

extends beyond the area of equivalence on the opposite side of the no effect line as the point

estimate, so that the estimated treatment effect is compatible with clinically important effects

in both directions (imprecision scenario 1 in Fig 3). A rating of ‘some concerns’ is assigned if

the confidence interval extends into but not beyond the area of equivalence on the opposite

side of the no effect line (imprecision scenario 2 in Fig 3). There are ‘no concerns’ if the confi-

dence interval is entirely on one side of the no effect line (imprecision scenario 3 in Fig 3), or if

it is entirely within the area of equivalence (imprecision scenario 4).

Example: Adverse events of statins. Consider the network comparing adverse events of

different statins, introduced in Box 1 and shown in Fig 1B [11]. Let us assume a range of equiv-

alence that translates into an odds ratio greater than 1.05 or below 0.95 (¼ 1

1:05
) representing a

clinically important effect. For odds ratios greater than 1, we compare the 95% confidence

interval with the opposite half of the range of equivalence (0.95, 1). The 95% confidence inter-

val of rosuvastatin versus pravastatin is quite wide (1.09 to 1.82; Fig 4), but any treatment effect

in this range would lead to the conclusion that pravastatin is safer than rosuvastatin. Thus,

imprecision does not reduce the confidence that can be placed in the comparison of prava-

statin with rosuvastatin (‘no concerns’). The 95% confidence interval of simvastatin versus

pravastatin is wider (0.84 to 1.42) and covers all 3 areas, extending below 0.95, thus favouring

pravastatin, and above 1, thus favouring simvastatin, and including no important difference.

‘Major concerns’ on imprecision therefore applies. The comparison of placebo versus simva-

statin is more certain, but it is unclear which drug has fewer adverse effects: most estimates

within the 95% confidence interval favour simvastatin, but the interval crosses into the (0.95,

1) range. A rating of ‘some concerns’ is appropriate.

Heterogeneity

Background and definitions. Variability in the results of studies influences our confidence

in the point estimate of a relative treatment effect. If this variability reflects genuine differences
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Fig 3. CINeMA rules to assess imprecision, heterogeneity, and incoherence of network treatment effects. Black lines show

confidence intervals, and red lines prediction intervals. The shaded grey area represents values that favour neither of the competing

interventions: the range of equivalence, from 0.8 to 1.25. The hatched area shows the interval between the no effect line and a

clinically important effect in the opposite direction to the observed effect. For incoherence, dashed lines represent direct effects, and

dotted lines indirect effects.

https://doi.org/10.1371/journal.pmed.1003082.g003
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between studies, rather than random variation, it is called heterogeneity. GRADE uses the term

inconsistency [42] rather than heterogeneity. In network meta-analysis, there may be variation

in treatment effects between studies, i.e., heterogeneity, but also variation between direct and

indirect sources of evidence. The latter is called incoherence [43–46] and is discussed below.

The 2 concepts are related; incoherence can be seen as a special form of heterogeneity.

There are several ways of measuring heterogeneity in a set of trials. The variance of the dis-

tribution of the underlying treatment effects (τ2) is a measure of the magnitude of heterogene-

ity. This variance can be estimated for each pairwise meta-analysis, and, under the assumption

of a single variance across comparisons, a common heterogeneity variance can be obtained for

the whole network. The magnitude of τ2 is usefully expressed as a prediction interval, which

shows where the true effect of a new study similar to the existing studies is expected to lie [47].

The CINeMA approach. As for imprecision, the CINeMA approach to heterogeneity

involves comparisons of results with the pre-specified range of clinical equivalence. Specifi-

cally, we examine both the confidence intervals (which do not capture heterogeneity) and pre-

diction intervals (which do capture heterogeneity) in relation to the range of equivalence.

Heterogeneity is important if a prediction interval includes values that lead to a different con-

clusion than an assessment based on the confidence interval. The middle part of Fig 3 illus-

trates the CINeMA rules for a range of equivalence of 0.8 to 1.25. When confidence and

prediction intervals lead to the same conclusions (heterogeneity scenarios 1, 2, 5, and 7 in the

middle part of Fig 3), then there are ‘no concerns’ about heterogeneity. When the confidence

intervals and the prediction intervals lead to conclusions that are somewhat different but of

lesser impact for decision-making, CINeMA concludes that there are ‘some concerns’ about

heterogeneity (heterogeneity scenarios 3 and 6 in Fig 3).

If there are very few trials, the amount of heterogeneity is poorly estimated and prediction

intervals are unreliable. Turner et al. and Rhodes et al. analysed many meta-analyses of binary

and continuous outcomes, categorised them according to the outcome and type of interven-

tion and comparison, and derived empirical distributions of heterogeneity values [48,49].

These empirical distributions can help to interpret the magnitude of heterogeneity, comple-

menting considerations based on prediction intervals.

Example: Adverse events of statins. In the statins example, we assumed a range of equiv-

alence of 0.95 to 1.05. The prediction interval for simvastatin versus pravastatin is wide (Fig 4).

However, the confidence interval for this comparison already extended to both sides of the

(0.95, 1) range; thus, the heterogeneity does not change the conclusion. The confidence inter-

val for rosuvastatin versus pravastatin lies entirely above the (0.95, 1) range, and there are ‘no

concerns’ regarding imprecision. However, the prediction interval crosses both boundaries

(0.95 and 1), and we therefore have ‘major concerns’ about the impact of heterogeneity.

Fig 4. Odds ratios for treatment discontinuation due to adverse effects from the network of statins with their 95% CIs and their 95% PrIs. Black lines

represent 95% CIs, and red lines represent 95% PrIs. The range of equivalence is from 0.95 to 1.05. CI, confidence interval; PrI, prediction interval; vs, versus.

https://doi.org/10.1371/journal.pmed.1003082.g004
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Similar considerations result in ‘some concerns’ regarding heterogeneity for the comparison

of placebo versus simvastatin.

Incoherence

Background and definitions. Transitivity stipulates that we can compare 2 treatments

indirectly via an intermediate treatment node. Incoherence is the statistical manifestation of

intransitivity; if transitivity holds, the direct and indirect evidence should be in agreement and

coherent [50,51]. Conversely, if estimates from direct and indirect evidence disagree, we con-

clude that transitivity does not hold and that there is incoherence.

To quantify incoherence the agreement between direct and indirect evidence can be exam-

ined for specific comparisons in the network, often referred to as a local approach. For exam-

ple, SIDE or ‘node splitting’ [43] compares the direct and indirect evidence for each

comparison to estimate an inconsistency factor with a confidence interval. The inconsistency

factor is calculated as the difference or ratio of the 2 estimates. This method can only be

applied to comparisons that are informed by both direct and indirect evidence. Consider the

incoherence scenario 1 in the lower part of Fig 3: The studies directly comparing the 2 treat-

ments result in a direct odds ratio of 0.48 (0.42 to 0.54), while the studies that provide indirect

evidence produce an odds ratio of 0.61 (0.52 to 0.70). The inconsistency factor in this example

(the ratio of indirect to direct odds ratio) is 1.28, with a confidence interval of 1.05 to 1.55 and

a p-value of 0.07. A simpler version of SIDE considers a single loop in the network (loop-spe-

cific approach [52]).

The global approach is an alternative approach to quantifying incoherence. It models all

treatment effects and all possible inconsistency factors simultaneously, resulting in an ‘omni-

bus test’ of incoherence in the whole network. The design-by-treatment interaction test is such

a global test [45,46]. An overview of other methods for testing incoherence can be found else-

where [44,53].

The CINeMA approach. Both global and local incoherence tests have low power [54,55],

and it is therefore important to consider the inconsistency factors as well as their uncertainty.

A large inconsistency factor may indicate a biased direct or indirect estimate. As for impreci-

sion and heterogeneity, the CINeMA approach to incoherence considers the impact on clinical

implications, based on visual inspection of the 95% confidence intervals of direct and indirect

odds ratios and the range of equivalence. The rules implemented in CINeMA are illustrated in

the lower part of Fig 3. The inconsistency factor using the SIDE approach is the same for the

first 3 incoherence scenarios in Fig 3 (ratio of odds ratios 1.28 with confidence interval 1.05 to

1.55), but their position relative to the range of equivalence differs and affects the interpreta-

tion of incoherence. In incoherence scenario 1, the 95% confidence intervals for both direct

and indirect odds ratios lie below the range of equivalence: treatment X is clearly favoured,

and there are ‘no concerns’ regarding incoherence. In incoherence scenario 2, the 95% confi-

dence interval of the indirect odds ratio straddles the range of equivalence, while for the direct

odds ratio the 95% confidence interval lies entirely below 0.8. In this situation, a judgment of

‘some concerns’ is appropriate. In incoherence scenario 3, the 95% confidence intervals of the

odds ratios from direct and indirect comparisons share only the area below 0.8, whereas only

the 95% confidence interval of the indirect odds ratio lies within and above the range of equiv-

alence. Therefore, the disagreement leads to a rating of ‘major concerns’.

Note that in the scenarios described above, the p-value from SIDE is 0.07. As a general rule,

there are ‘no concerns’ if the p-value is greater than 0.10, independent of the position of the

95% confidence intervals with respect to the range of equivalence, because the evidence for

incoherence is weak (p> 0.10). This rule can be overwritten on a case by case basis.
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Incoherence can only be evaluated using local approaches when both direct and indirect

estimates are available for the comparison, as was the case for the incoherence scenarios in Fig

3. If there is only direct or only indirect evidence, we can neither estimate an inconsistency fac-

tor nor judge potential implications with respect to the range of equivalence. In this situation,

CINeMA considers that there are ‘major concerns’ if the p-value of the global design-by-treat-

ment interaction test is <0.05, ‘some concerns’ if it is between 0.05 and 0.10, and ‘no concerns’

if it is >0.10. There are also ‘major concerns’ if the design-by-treatment interaction test statis-

tic cannot be computed due to the absence of closed loops in the network.

In S1 Text we provide a worked example for the antidepressants network.

Summarising judgments across the 6 domains

Τhe final output of CINeMA is a table with the level of concern for each of the 6 domains.

Reviewers may then choose to summarise judgments across domains using the 4 levels of con-

fidence of the GRADE approach: very low, low, moderate, or high [4]. For this purpose, one

may start at high confidence and drop the level of confidence by 1 step for each domain with

some concerns, and by 2 levels for each domain with major concerns. However, it is important

to note that domains are interconnected: factors that may reduce the confidence in a treatment

effect may affect more than 1 domain. Indirectness includes considerations on intransitivity,

which manifests itself in the data as statistical incoherence. Heterogeneity will increase impre-

cision in treatment effects and may be related to variability in within-study bias or the presence

of reporting bias. Furthermore, in the presence of heterogeneity, the ability to detect important

incoherence will decrease [54]. The 6 CINeMA domains should therefore be considered jointly

rather than in isolation, avoiding downgrading the overall level of confidence more than once

for related concerns. For example, for the citalopram versus venlafaxine comparison in the

antidepressants example, we have ‘some concerns’ for imprecision and heterogeneity and

‘major concerns’ for incoherence (see S1 Text). However, downgrading by 2 levels is sufficient

in this situation, because imprecision, heterogeneity, and incoherence are interconnected.

Discussion

We have outlined and illustrated the CINeMA approach for evaluating confidence in treat-

ment effect estimates from network meta-analysis, covering the 6 domains of within-study

bias, reporting bias, indirectness, imprecision, heterogeneity, and incoherence. We differenti-

ate between the 3 sources of variability in a network, namely, imprecision, heterogeneity, and

incoherence, and we consider the impact that each source might have on decisions for treat-

ment. Our approach avoids the selective use of indirect evidence, while considering the charac-

teristics of all studies included in the network. In other words, we are not using assessments of

confidence to decide whether to present direct or indirect (or combined) evidence, as has been

suggested by others [4,5]. The web application greatly facilitates the implementation of all

steps involved in the application of CINeMA [13] and makes the approach easy to implement

even for very large networks. Researchers should not, however, naively rely on the software’s

programmed rules. The CINeMA application safeguards against transcription errors and thus

will enhance reproducibility, but judgments should be revisited and reconsidered, taking into

account the particularities of each network meta-analysis. This paper and the CINeMA tool

extend the framework previously described by Salanti and colleagues [5]. Our original frame-

work also addressed the credibility of a treatment hierarchy, which we plan to develop further

and implement in CINeMA in the future.

Any evaluation of the confidence in evidence synthesis results will inevitably involve some

subjectivity. Our approach is no exception. While the use of bar charts to gauge the impact of
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within-study bias and indirectness provides a consistent assessment across all comparisons in

the network, their summary is difficult. Defining the range of equivalence will often be subjec-

tive, and might be influenced by the data. Further limitations of the framework are associated

with the fact that published articles are used to make judgments, and these reports do not nec-

essarily reflect the way studies were undertaken. For instance, judging indirectness requires

study data to be collected on pre-specified effect modifiers, and incomplete reporting will inev-

itably impact on the reliability of judgments.

A consequence of the inherent subjectivity of the system is that interrater agreement may

be modest. Studies of the reproducibility of assessments made by researchers using CINeMA

will be required in this context. However, we believe that transparency is key: although in CIN-

eMA judgments may differ across reviewers, they are made using explicit criteria. These

should be specified in the review protocol so that data-driven decisions are avoided.

A GRADE working group developed [4] and subsequently refined [21] an approach for rat-

ing the quality of treatment effect estimates from network meta-analysis. There are many simi-

larities but also some notable differences between CINeMA and the GRADE approach. For

example, Puhan et al. [4] suggest a process of deciding whether indirect estimates are of suffi-

cient certainty to combine them with the direct estimates. In contrast, CINeMA evaluates rela-

tive treatment effects without considering separately the direct and indirect sources. Evaluation

of the impact of within-study bias also differs substantially between the 2 approaches. The

GRADE approach considers within-study bias of the most influential 1-step loop for each treat-

ment effect [4,21], which discards a large amount of information and makes the approach diffi-

cult to apply to large networks. We believe that the CINeMA approach, which is based on the

percentage contribution matrix and considers the impact of every study included in the net-

work, is preferable. In contrast to the GRADE approach, CINeMA does not rely on metrics for

judging heterogeneity and incoherence. Instead it considers the likely impact of these issues on

clinical decisions. Yet another approach to assessing the credibility of conclusions from network

meta-analysis explores how robust treatment recommendations are to potential degrees of bias

in the evidence [56]. The method is easy to apply but exclusively focuses on the impact of bias

and does not explicitly address heterogeneity, indirectness, and incoherence.

Evidence synthesis is increasingly used by national and international medical societies and

agencies [57,58] to inform decisions about the clinical effectiveness and cost-effectiveness of

medical interventions, by clinical guideline panels to recommend one drug over another, and

by clinicians to prescribe a treatment or recommend a diagnostic procedure for individual

patients. However, published network meta-analyses seldom evaluate confidence in relative

treatment effects [1]. Through the free, open-source CINeMA software (see Box 2), our

approach can be routinely applied to any network meta-analysis [13,59]. The suggested frame-

work operationalises, simplifies, and accelerates the process of evaluation of results from large

and complex networks without compromising statistical and methodological rigor. In conclu-

sion, we believe the CINeMA framework is a transparent, rigorous, and comprehensive system

for evaluating the confidence of treatment effect estimates from network meta-analysis.
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