Low somatic cell count (SCC) is used worldwide as a hygienic parameter of milk. Low SCC is a reliable indicator of healthy mammary gland quarters because increasing SCC is mostly the result of pathogen invasion (Schukken et al. 2001). In dairy production exceeding a fixed SCC limit invokes penalties. Thus, it is economically advantageous to reduce SCC to very low levels, and a goal in dairy practice can be the breeding of cows that produce milk with very low SCC (Shook, 1989).

The cells in milk are, however, predominantly immune cells. These somatic cells play, evidently, important roles in the defence of the mammary gland. They recognize invading pathogens and initiate the innate immune reaction through liberation of immunomodulators (Rainard & Riollet, 2006). Each cell type (macrophages, neutrophils, lymphocytes, and epithelial cells) has a vital role in the immunity of the mammary gland e.g. phagocytosis, antigen presentation, secretion of antibacterial factors, immunological memory, or regulation of the immune response.
Udder immunity at very low SCC

(Storlillo & Streicher, 2002). An excessive reduction of SCC might therefore have a negative effect on the mammary immune competence.

There are numerous reports concerning low SCC and clinical mastitis incidence. Green et al. (1996) and Suriyasathaporn et al. (2000) showed an association between low herd SCC and increasing mastitis incidence. Beaudeau et al. (2002) found a greater risk of clinical mastitis in herds containing a high proportion of cows with low SCC (<50 × 10^3 cells/ml). In addition, Deluyker et al. (1993) showed that in a low-SCC herd, cows with clinical mastitis had a higher SCC (>245 × 10^3 cells/ml) prior to mastitis than control cows (<90 × 10^3 cells/ml). Furthermore, Sariyaka et al. (2005) found that cells from milk with very low SCC (<12 × 10^3 cells/ml) had lower mRNA expression levels of inflammatory factors compared with cells from milk with higher SCC. No previous investigation had, to our knowledge, the specific focus of studying the immune competence of mammary gland quarters with very low SCC (VLS) and with normal SCC (NS) in response to a defined challenge of the mammary immune system.

With intramammary injections of the Escherichia coli lipopolysaccharide (LPS), it is possible to mimic bacterial invasion and to induce a mammary inflammation very similar to natural mastitis (Schmitz et al. 2004). In contrast to a bacterial infection, the intensity of the inflammatory stimulus is exactly defined by the LPS dose, and the immune response can be compared between animal groups. SCC augmentation following stimulation with pathogen or endotoxin is due to the release of immunomodulators from resident somatic cells and mammary epithelial cells after recognition of the antigen (Sordillo & Streicher, 2002). TNF-α is a rapidly responding mediator of inflammatory reactions that increases in milk after an immune stimulation with LPS (Paape et al. 2002). IL-1β is a cytokine that is rapidly up-regulated in milk cells during infection to initiate the immune response (Lee et al. 2006). IL-8 is an important chemokine that is involved in the further recruitment of immune cells into the milk during the immune response (Persson-Waller et al. 2003). Lactoferrin is known to have antibacterial effects and during acute mastitis neutrophil leukocytes are besides the epithelial cells an important source (Harmon & Newbould, 1980). IL-8 is rapidly up-regulated in milk cells during infection to initiate the immune response (Lee et al. 2006). IL-8 is a rapidly responding mediator of inflammatory reactions that increases in milk after an immune stimulation with LPS (Paape et al. 2002). IL-1β is a cytokine that is rapidly up-regulated in milk cells during infection to initiate the immune response (Lee et al. 2006). IL-8 is an important chemokine that is involved in the further recruitment of immune cells into the milk during the immune response (Persson-Waller et al. 2003). Lactoferrin is known to have antibacterial effects and during acute mastitis neutrophil leukocytes are besides the epithelial cells an important source (Harmon & Newbould, 1980). Therefore, the production of the factors TNF-α, IL-1β, IL-8 and lactoferrin indicates the immune activity of the cells. Parallel to the release of these factors and the induced immune response, an increased recruitment of new leukocytes from blood into the milk is induced. Finally the enhanced population of young leukocytes increases the viability of the total milk cell population (Mehrzad et al. 2004).

The present study was performed to compare the response to LPS of udder quarters with NS and VLS milk in relation to the SCC increase, changes of TNF-α and LDH in milk and the mRNA expression of TNF-α, IL-1β, IL-8 and lactoferrin in milk cells. This could give an idea of whether the immune protection of udder quarters differs where the SCC is below 20 × 10^3 cells/ml compared with the quarters with SCC of (40–100) × 10^3 cells/ml.

Materials and Methods

Experiment 1

Thirty-three quarters of 19 lactating dairy cows (8 Holstein, 11 Red Holstein × Simmental) from udders free of clinical signs of mastitis were used for this experiment. All cows were chosen randomly and were in months 2–15 of lactations 1–7. Cows were kept in a tethered barn and were fed twice daily with hay, corn and concentrate. Water was available ad libitum. Milking was performed routinely twice daily.

One or two quarters of each cow were randomly selected based on foremilk SCC determined with the DeLaval cell counter (DCC, DeLaval, Tumba, Sweden). Quarters were divided into two groups: very low SCC (VLS; SCC <20 × 10^3 cells/ml; SCC =16.2±3.0 × 10^3 cells/ml; n=16) and normal SCC (NS; 40–100) × 10^3 cells/ml; SCC =56.3±4.4 × 10^3 cells/ml; n=17). The other quarters of each used udder did not show SCC above 300 000 cells/ml. The number of lactations of the cows was normally distributed between the two groups (5, 8, 2 and one quarter of cows in the 1st, 2nd, 3rd and 6th lactation in VL group, and 6, 7, 3, and one quarter of cows in the 1st, 2nd, 3rd and 7th lactation, respectively). In each group, 7 control quarters (C quarters) were randomly chosen and all other quarters were treated with LPS (LPS quarters).

Cows were milked during routine milking procedures using a quarter milking device for separate quarter milk collection (Sariyaka et al. 2005). Immediately after morning milking LPS, isolated from a mastitis-inducing Esch. coli strain by the University of Constance group (Prof. Hartung and Dr von Aulock), dissolved in sterile saline solution (9 g/l), was intramammarily infused into LPS quarters (50 ng/10 ml saline solution). Into the C quarters 10 ml saline solution was infused. Before injection teat openings were carefully disinfected with 70% alcohol. To measure the change of SCC after treatment, strict foremilk samples (first 3 squirts) were collected hourly from all quarters until the evening milking and daily (except day 6) before morning milking until day 7 post challenge (p.c.). Samples were obtained by hand milking without udder preparation to prevent any milk ejection, and therefore alveolar milk, in the samples (Bruckmaier & Hilger, 2001). SCC was measured with the DCC. From 26 of the quarters (6 C and 6 LPS for VLS and 7 C and 7 LPS for NS group) 1 l of milk at the morning milking (0 h) and at the evening milking (10 h p.c.) was collected and filtered (Ø 100 μm). Milk samples were diluted 1:1 with cold (4 °C) sterile PBS and centrifuged at 1000 g at 4 °C for 15 min. Fat layer and supernatant were removed (aspiration) and cell pellets resuspended and centrifuged twice in 50 ml PBS at (400 g and 300 g at 4 °C for 10 min). Pellets were resuspended in cold PBS (2–10 ml, depending on SCC). Cell suspension
The extraction of total RNA according to manufacturer’s photometry (Biophotometer, Vaudaux-Eppendorf, Basel, Switzerland) by measuring optical density (OD) at 260 nm. cDNA was produced using 50 ng RNA with 200 U Moloney Murine Leukemia Virus Reverse Transcriptase RNase H minus, Point Mutant (MMLV-RT, Promega, Madison WI, USA) and 100 pmol random hexamer primers (Invitrogen, Leek, The Netherlands).

Quantitative PCR analysis was carried out on Rotor Gene 6000 (Corbett Research, Sydney, Australia) using Sensimix DNA Kit (Quantace, Biolabo, Châtel S’ Denis, Switzerland). Primers for housekeeping (GAPDH) and the target genes TNF-α, IL-8, IL-1β and lactoferrin were synthesized commercially (Microsynth, Balgach, Switzerland) (Table 1). The following 3-step programme was used: 10 min at 95 °C, 40 cycles of 95 °C for 15 s, primer specific annealing temperature for 30 s, and 20 s 72 °C, ending with a melting curve programme (60–99 °C, heating rate of 0.1 °C/s, continuous measurement). Take-off values (second derivative maximum; CP) were achieved by Rotor Gene software version 1.7.40. mRNA expression is given in ΔΔCP values: to calculate the impact of treatment the gene expression was normalized to the expression of the housekeeping gene GAPDH. Then the gene expression values of non-treated control cells [ΔCP (control cells)] and treated cells [ΔCP (treated cells)] were set in relation, according to following equation:

$$\Delta \Delta CP = \Delta CP_{\text{control cells}} - \Delta CP_{\text{treated cells}}$$

Statistical analyses

Data are presented as means±SEM. SCC are presented and statistically evaluated at a logarithmic scale (log10) to ensure normal distribution. Differences of SCC, cell viability and mRNA expression of immunomodulators between groups (VLS and NS group, C and LPS quarters) were tested by analysis of variance using the PROC MIXED procedure of SAS (1999–2001). The model included time, group, and their interaction as fixed effects. Differences between means were considered significant if P<0.05.

Table 1. Experiment 2: Sequences of PCR Primers [forward (for) and reverse (rev)], PCR product length (bp), accession number, annealing temperature (°C)

<table>
<thead>
<tr>
<th>Primer</th>
<th>Sequence (5’→3’)</th>
<th>Length</th>
<th>Accession no.</th>
<th>Annealing temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>TNF-α</td>
<td>for CCA CGT TGT AGC CGA CAT C</td>
<td>155</td>
<td>NM_173966</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>rev CCC TGA AGA GGA CCT GTG AG</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lactoferrin</td>
<td>for GGC CTT TGC CTT GGA ATG TAT C</td>
<td>338</td>
<td>DQ522305</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>rev ATT TAG CCA CAG CTC CCT GGA G</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IL-8</td>
<td>for ATG ACT TCC AAG CTG GCT GTT G</td>
<td>150</td>
<td>EU276073</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>rev TTG ATA AAT TTG GGG TGG TGG AAA G</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IL-1β</td>
<td>for AGT GCC TAC GCA CAT GTG TTC</td>
<td>114</td>
<td>M37211</td>
<td>62</td>
</tr>
<tr>
<td></td>
<td>rev TGC GTG ACA CAG AAA CTC GTG</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GAPDH</td>
<td>for GTC TTC ACT ACC ATG GAG AAG G</td>
<td>197</td>
<td>NM_00103403</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>rev TCA TGG ATG ACC TTG GCC AG</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Results

Experiment 1

Milk SCC data from LPS and C quarters at each time point are shown in Fig. 1. Before LPS challenge (0 h) SCC of VLS (14.1±1.5 x 10^3 cells/ml) and NS group (56.7±4.2 x 10^3 cells/ml) were significantly different. SCC of C quarters from both groups did not change significantly throughout the entire experiment. At 4 h p.c. SCC began to increase (P<0.05) in both LPS-treated groups to reach a maximum at 6 h p.c. for NS group (1747±696 x 10^3 cells/ml) and at 7 h p.c. for VLS group (432±130 x 10^3 cells/ml).

Cell viability (Fig. 2) of all groups at time 0 h was 43.7±3%. There was no difference between groups. At 10 h p.c. viability did not change in both C groups (48±6.3%) but increased significantly in LPS-treated quarters with no differences between VLS and NS groups (88±2.3%).

Cell viability (Fig. 2) of all groups at time 0 h was 43.7±3%. There was no difference between groups. At 10 h p.c. viability did not change in both C groups (48±6.3%) but increased significantly in LPS-treated quarters with no differences between VLS and NS groups (88±2.3%).

TNF-α concentrations in milk (Fig. 3A) increased within 3 h after LPS treatments in both groups and stayed elevated until 12 h p.c. Significant differences between VLS and NS groups was found from 3 h until 12 h p.c. with higher TNF-α concentrations in the NS group. In controls TNF-α concentrations did not increase.

LDH activity in milk (Fig. 3B) increased after 6 h p.c. in LPS quarters with no differences between groups and stayed elevated until the end of the experiment. In C quarters no increase of LDH activity was detectable.

Experiment 2

At time 0 h no differences within relative mRNA expression of milk cells of all measured genes were found between the controls and treatments and between groups.
At 12 h p.c. an increased mRNA expression of IL-8 (Fig. 4 IL-8) and IL-1β (Fig. 4 IL-1β) in LPS quarters from both groups was observed. In C quarters IL-8 and IL-1β mRNA expression was decreased at 24 h p.c. in VLS and was not changed at other time points. Lactoferrin mRNA expression (Fig. 4 Lactoferrin) was increased at 36 h p.c. in VLS and C quarters. A decrease of lactoferrin mRNA expression could be detected in LPS-treated quarters at 24 h and 36 h p.c. of the NS group and in LPS-treated quarters at 12, 24 and 36 h p.c. of the VLS group. TNF-α relative mRNA expression (Fig. 4 TNF-α) of milk cells was decreased at 12 h in C quarters of both groups and was not changed at all time points in all treatments.

Discussion

In the present study the immune competence of udder quarters with very low SCC (<20 x 10^3 cells/ml; VLS) was compared with quarters with normal SCC (NS) of (40–100) x 10^3 cells/ml. Previous investigations already compared low SCC and high SCC but definitions of low SCC varied: 200 x 10^3 cells/ml (Vangoenweghe et al. 2004; Kauf et al. 2006; Olde Rierink et al. 2007), 150 x 10^3 cells/ml (Schukken et al. 1991; Barkema et al. 1998; Schmitz et al. 2004; Werner-Misof et al. 2007), 100 x 10^3 cells/ml (Paape et al. 1977; Boutet et al. 2004; Koess & Hamman, 2008), 50 x 10^3 cells/ml (Beaudeau et al. 2002), 18 x 10^3 cells/ml (Cheng et al. 2008) or 12 x 10^3 cells/ml (Sarikaya et al. 2006). However, a direct comparison of very low SCC levels below 20 x 10^3 cells/ml with normal SCC levels of (40–100) x 10^3 cells/ml that are found very often in dairy practice, in regard to the immune response of the cells, had not been done before as far as we were aware.

The quarters for the experiments were selected based on their SCC of <20 x 10^3 cells/ml for VLS group and (40–100) x 10^3 cells/ml for NS group. The selected quarters were of experimental cows with a broad range of lactational stage and number of lactation because other cows were not available. However, all quarters were from udders without any signs of mastitis and they were grouped with normal distribution of number of lactation and lactational stages. If two quarters from one cow were used the treatments of the two quarters within this cow were randomly chosen (control and control, control and LPS treatment, or LPS and LPS treatment). Therefore, results were not influenced by a potential crosstalk between quarters.

For the measurement of responses of SCC and cell viability during an immune response in VLS and NS groups, quarters were stimulated with 50 ng LPS in 10 ml saline solution to induce a clear but not too strong immune response so as to be able to detect possible differences in cell count and viability. To investigate the immune response of the milk cells by mRNA expression of immune factors, a strong immune response is necessary to be able to detect possible differences. Therefore, it was not possible to use the same treatment for the measurements of all factors and two experiments had to be performed with a lower LPS dose for the measurement of SCC, cell viability, and TNF-α concentration and LDH activity in milk, and a higher LPS dose for mRNA expression of immune factors in milk cells. According to Bannerman et al. (2004), Didier & Bruckmaier (2004) and Werner-Misof et al. (2007) SCC of C quarters were stable over the time of the experiment. Therefore, comparisons between C and LPS quarters were possible.
SCC started to increase simultaneously in both groups 4 h after the challenge with LPS. NS group reached higher SCC levels, although the highest level of SCC was reached 1 h earlier than in VLS group. The time required for SCC increase is the time needed for the recruitment of new cells from blood into milk (Harmon & Heald, 1982; Nickerson & Pankey, 1984; Kehrli & Schuster, 1994). This recruitment of cells was faster in NS quarters than in VLS quarters, which can indicate a more effective immune response.

Like SCC, milk cell viability is crucially involved in the outcome of mammary gland infection. In the present study cell viability was stable during the time of the experiment in quarters that were not stimulated. According to Mehrzad et al. (2001, 2004) the viability in LPS-treated quarters increased from 42.9±4.3% to 88.9±2.3%. This is due to the increased presence of young leucocytes that migrate from blood into milk and these cells undergo slower apoptosis than older cells (Van Merris et al. 2002). Moreover, LPS stimulation prolongs cell survival (Burvenich et al. 2003). Without stimulation and, therefore, without this entry of new leucocytes, resident somatic cells have a long storage period (milking interval) in the cisternal cavities. During this time striking changes occur in the morphology of somatic cells owing to the ingestion of fat globules and casein (Paape et al. 1975; Paape & Guidry, 1977). Owing to these morphological and physiological changes, phagocytic and bactericidal activities, as well as cell viability are decreasing and, therefore, the mammary gland defence will be impaired (Burvenich et al. 2007; Rainard & Riollet, 2006). However, no difference in the cell viability between VLS and NS groups was observed after LPS challenge, because at 10 h p.c. the viability of the cells was already nearly 90%. Differentiation of cell populations was for technical reasons not possible in these experiments; however, it is known that the increase of SCC is due mainly to the increase of polymorphonuclear neutrophils (Sarikaya et al. 2006).

LDH activity increased after LPS challenge in NS quarters and in VLS quarters as expected in response to intra-mammary LPS administration (Bogin & Ziv, 1973). LDH is

![Image of graphs showing mRNA expression of immune factors](https://www.cambridge.org/core/cover-image).
a ubiquitous enzyme that is found in all cells and is an indicator of inflammation as it is released into the extracellular fluid during cell damage and cell death (Glick, 1969). The increase of milk cells after LPS challenge led to a greater number of cells contributing to the LDH activity besides cells from the tissue. The differences in SCC increase between the NS and VLS groups were most likely not great enough to induce differences in LDH increase.

Cytokines and other pro-inflammatory factors produced after pathogen invasion or intramammary stimulation initiate the immune reaction (Rainard & Riollet, 2006). Some of the most important factors were analysed in this study. TNF-α is a cytokine, which serves as a rapidly responding central mediator of inflammatory functions known to play an important role in mastitis and increases in milk after LPS challenge (Paape et al. 2002). It is also involved in the endotoxin shock during an acute phase of coliform mastitis (Sordillo & Streicher, 2002). However, TNF-α mRNA expression in milk cells was not changed at 12 h p.c. TNF-α is a cytokine which is expressed in the early immune response and important for the initiation of the innate immune response. It is likely that the milk cells responded immediately within the first hours after LPS challenge with an increase of TNF-α transcription. Measurement of mRNA expression 12 h p.c., however, could not detect a TNF-α mRNA expression increase because it was already normalized to levels before stimulation. Unfortunately RNA of milk cells earlier than 12 h p.c. was not available because of an insufficient amount of milk. The protein accumulates in the milk and, therefore, an increase 12 h after LPS challenge was detectable although the increased synthesis had already stopped after 12 h. The increase of TNF-α concentration in milk after LPS challenge was significantly higher in NS than in VLS group. This is because more cells could contribute to the production of TNF-α as the SCC was higher in NS group. It is possible that the increased TNF-α concentration in milk could elicit the cure of a potential infection due to a faster and more effective immune response in udder quarters with slightly higher SCC.

IL-8 and IL-1β mRNA expression of milk cells was increased 12 h p.c. in response to LPS treatment with no differences between the groups. This increase was expected as it is known that after intramammary injection of LPS the expression of IL-8 and IL-1β increases (Schmitz et al. 2004; Werner-Misof et al. 2007) in mammary tissue. In addition, Lee et al. (2006) found increasing expression of cytokines in milk cells after intramammary Escherichia coli stimulation. After 12 h the milk cells that had direct contact with the LPS are removed by milking and, for this reason milk cells at 24 h p.c. did not show an increased cytokine mRNA expression. Surprisingly, unlike the other factors, relative mRNA expression of lactoferrin in milk cells decreased. Pfaffl et al. (2003) found a lower lactoferrin expression in quarters with SCC >150×10^3 cells/ml than in quarters with SCC <150×10^3 cells/ml. The difference between high-SCC quarters and low-SCC quarters in Pfaffl et al. (2003) might be compared to the difference between LPS and C quarters of both groups in the present study. Thus, quarters with elevated SCC (with or without stimulation) have similar or lower lactoferrin expression in milk cells than quarters with low SCC. Why lactoferrin mRNA expression in VLS decreased earlier (12 h) than in NS group remains unclear. The increasing lactoferrin expression after intramammary injection of 100 μg LPS in mammary tissue that was found by Schmitz et al. (2004) is due to the increased expression of lactoferrin by mammary epithelial cells, the main source of lactoferrin in milk. These cells represent only a very small population of the somatic cells.

In conclusion, the results of the present study showed differences in the immune response between quarters with normal and very low SCC. The time until SCC started to increase after LPS challenge was approximately equal in quarters with normal and with very low SCC. However, quarters with very low SCC did not reach SCC levels as high as quarters with normal SCC. Although increasing less, maximum SCC in response to LPS challenge was reached slightly later in quarters with very low SCC compared with those with normal SCC. The immune response of the milk cells themselves, based on the mRNA expression of the immune factors TNF-α, IL-1β, IL-8 and lactoferrin, was not different between cells of normal and very low SCC groups. Although the selection of experimental quarters was limited, the results suggest that the immune response of udders with slightly higher SCC might be more efficient, as more cells can contribute to the production of immune factors like TNF-α. It is possible that this effect can impair the immune response of udder quarters with very low SCC.

We thank the H. Wilhelm Schumann-Stiftung, Hamburg, Germany, for financial support of Mrs A Baumert and Mrs Machabat Saudenowa.

References
Beaudeau F, Fourichon C, Seegers H & Bareille N 2002 Risk of clinical mastitis in dairy herds with a high proportion of low individual milk somatic cell counts. Preventive Veterinary Medicine 53 43–54
Bogin E & Ziv G 1973 Enzymes and minerals in normal and mastitic milk. Cornell Veterinarian 63 666–676

Burvenich C, Van Mervi V, Mehrzad J, Diez-Fraile A & Duchateau L 2003 Severity of E. coli mastitis is mainly determined by cow factors. Veterinary Research 34 521–564

Didier A & Bruckmaier RM 2004 mRNA expression of apoptosis-related genes in mammary tissue and milk cells in response to lipopolysaccharide challenge and during subclinical mastitis. Milchwissenschaft 59 119–123

Glick JH 1969 Serum lactate dehydrogenase isoenzyme and total lactate dehydrogenase values in health and disease, and clinical evaluation of these tests by means of discriminant analysis. American Journal of Clinical Pathology 53 320–328

Green MJ, Green LE & Cripps PJ 1996 Low bulk milk somatic cell counts and endotoxin-associated (toxic) mastitis. Veterinary Record 138 305–306

Harmon RJ & Heald CW 1982 Migration of polymorphonuclear leukocytes into the bovine mammary gland during experimentally induced Staphylococcus aureus mastitis. American Journal of Veterinary Research 43 992–998

Kauf AC, Vinyard BT & Bannerman DD 2006 Effect of intramammary infusion of bacterial lipopolysaccharide on experimentally induced Staphylococcus aureus intramammary infection. Research in Veterinary Science 82 39–46

Lee JW, Bannerman DD, Paape MJ, Huang MK & Zhao X 2006 Characterization of cytokine expression in milk somatic cells during intramammary infections with Escherichia coli or Staphylococcus aureus by real-time PCR. Veterinary Research 37 219–229

Mehrzad J, Dosogne H, Meyer E & Burvenich C 2001 Local and systemic effects of endotoxin mastitis on the chemiluminescence of milk and blood neutrophils in dairy cows. Veterinary Research 32 131–144

Rainard P & Riollet C 2006 Innate immunity of the bovine mammary gland. Veterinary Research 37 369–400 Review

Werner-Misof C, Pfaffl MW & Bruckmaier RM 2007 Dose-dependant immune response in milk cells and mammary tissue after intramammary administration of lipopolysaccharide in dairy cows. Veterinarini Medicina 52 231–244