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Abstract  51 

Background: Veno-arterial extracorporeal membrane oxygenation (V-A ECMO) is used as 52 

rescue for severe cardiopulmonary failure. We tested whether the ratio of CO2 elimination at the 53 

lung and the V-A ECMO (V̇CO2ECMO/VCO2Lung) would reflect the ratio of respective blood flows 54 

and could be used to estimate changes in pulmonary blood flow (QLUNG), i. e. native cardiac 55 

output.  56 

Methods: Four healthy pigs were centrally cannulated for V-A ECMO. We measured blood flows 57 

with an ultrasonic flow probe. V̇CO2ECMO and V̇CO2Lung were calculated from sidestream 58 

capnographs under constant pulmonary ventilation during V-A ECMO weaning with changing 59 

sweep gas and/or V-A ECMO blood flow. If ventilation/perfusion (V/Q) ratio of V-A ECMO was 60 

not one, the V̇CO2ECMO was normalized to V/Q=1 (V̇CO2ECMONORM). Changes in pulmonary blood 61 

flow were calculated using the relationship between changes in CO2 elimination and V-A ECMO 62 

blood flow. 63 

Results: QECMO correlated strongly with V̇CO2ECMONORM (r2 0.95 – 0.99). QLUNG correlated well 64 

with V̇CO2LUNG (r2 0.65 – 0.89, p<=0.002).  Absolute QLung could not be calculated in a non-65 

steady state. Calculated pulmonary blood flow changes had a bias of 76 (-266 to 418) ml/min 66 

and correlated with measured QLUNG (r2 0.974 – 1.000, p = 0.1 to 0.006) for cumulative ECMO 67 

flow reductions. 68 

Conclusions: V̇CO2 of the lung correlated strongly with pulmonary blood flow. Our model could 69 

predict pulmonary blood flow changes within clinically acceptable margins of error. The 70 

prediction is made possible with a normalization to a V/Q of 1 for ECMO. This approach 71 

depends on measurements readily available and may allow immediate assessment of the 72 

cardiac output response.  73 
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Introduction 74 

Extracorporeal membrane oxygenation (ECMO) is increasingly used as rescue therapy for 75 

severe cardiopulmonary failure (2). In veno-arterial (V-A) ECMO treatment, the native heart and 76 

lung work in parallel with the extracorporeal circuit and the assessment of native cardiac output 77 

(i. e. blood flow through the lungs (QLUNG)) is difficult. The ongoing unloading of the right ventricle 78 

even at low V-A ECMO blood flow (QECMO) makes assessment of cardiac function during V-A 79 

ECMO treatment challenging. Monitoring of the cardiac function and the evolution of native 80 

cardiac output during V-A ECMO treatment are not well standardized. Echocardiography is often 81 

used, but requires specific knowledge (1) and routine echocardiographic parameters may not be 82 

useful in the context because of altered circulatory physiology and changing cardiac loading 83 

conditions (12). Monitoring of the evolution of native cardiac output based on simple, non-84 

invasive and readily available measurements would therefore be helpful in clinical practice, 85 

particularly during weaning, since early weaning success is associated with a favorable 86 

prognosis (9). 87 

Gas exchange during V-A ECMO should reflect the combined effect of ventilation and perfusion 88 

of the native lung and those of the V-A ECMO circuit (21). We hypothesize that during V-A 89 

ECMO weaning the ratio between changes in V̇CO2ECMO and V̇CO2Lung is the same as the ratio 90 

between changes in the respective flows (QECMO and QLUNG). We tested this hypothesis in this 91 

preliminary, hypothesis generating study by measuring the elimination of CO2 over the native 92 

lung and the V-A ECMO and the respective blood flows, and compared the calculated flow 93 

changes with those directly measured from the pulmonary artery and V-A ECMO circuit. 94 
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Methods 95 

Animal Care, surgery and anesthesia 96 

This study was performed as a preliminary, independent sub-study of a yet unpublished project 97 

evaluating regional abdominal circulation during V-A ECMO and systemic inflammation, where 98 

measurements were done before the main study protocol was started. The study complied with 99 

the Guide for the Care and Use of Laboratory Animals (National Academy of Sciences, 1996) 100 

and Swiss National Guidelines and was approved, including an amendment for this sub-study, 101 

by the Commission of Animal Experimentation of Canton Bern, Switzerland (BE119/17). 102 

We studied a convenience sample of four animals (2 male and female each, 51.5 ± 1.3 kg) 103 

before the main study protocol was started. The pigs fasted for 12h with free access to water. 104 

After anesthesia induction with intravenous midazolam and atropine and oral intubation, 105 

anesthesia was maintained with propofol and fentanyl and the depth was controlled by 106 

repeatedly testing the response to nose pinch in additional to bispectral index target < 60 (BIS™ 107 

Quatro, Covidien, Mansfield, MA). Additional injections of fentanyl (50 µg) or midazolam (5 mg) 108 

were given as needed. Muscle relaxation was induced with rocuronium (0.5 mg/kg). Mechanical 109 

ventilation (volume control mode, PEEP 5 cmH2O, FiO2 0.3) was initiated with a tidal volume of 110 

7 ml/kg and a respiratory rate aiming at an end-tidal pCO2 of 45 mmHg. A 5 French introducer 111 

sheath was placed in the right carotid artery for arterial blood pressure measurement and arterial 112 

blood gas sampling. Two three-lumen central venous lines were placed in the right and left 113 

jugular vein for right atrial pressure measurement and continuous administration of sedatives 114 

and vasopressors. V-A ECMO with right atrial-aortic cannulation and a left atrial vent (Maquet 115 

Cardiohelp, Quadrox MECC oxygenator, Rastatt, Germany and Medtronic cannula and vent, 116 

Minneapolis, MN) were installed via a sternotomy and a bolus of 2.500 IE unfractioned heparin 117 

was given. An appropriately sized ultrasonic flow probe was placed on the pulmonary artery (16 118 

or 18 mm internal diameter, Transonic PAU series, Ithaca, USA).  During surgery, fluid was 119 

supplemented with Ringer's lactate at an initial rate of 5 ml · kg-1 · min-1 and increased to 10ml 120 

· kg-1 · min-1. Any visible blood loss was replaced by hydroxyethyl starch (HES; 6% Voluven; 121 

Fresenius Kabi, Bad Homburg, Germany), and V-A ECMO pump speed adjusted to achieve a 122 

mixed or central venous saturation > 50%.  123 

 124 

Measurements and data recording 125 
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Pulmonary blood flow, i. e. cardiac output (QLUNG) and V-A ECMO blood flow (QECMO) were 126 

measured on the pulmonary artery main trunk and arterial ECMO tubing (Transonic PAU series, 127 

Ithaca, USA). Pulmonary end-tidal pCO2 (etCO2LUNG) and pCO2 at the membrane lung 128 

(peCO2ECMO) were measured with a sidestream capnograph (GE Medical, Module E-COVX with 129 

automated correction to BTPS conditions). The carbon dioxide production (V̇CO2) was 130 

calculated individually for native and membrane lungs from the tidal pCO2 tracing as described 131 

below. We recorded sweep gas flow (VECMO) manually. Arterial blood gases were taken before 132 

and after the study period. Pulmonary ventilation (VLUNG) was kept constant. In the first animal, 133 

ventilator settings were kept identical to those before V-A ECMO (tidal volume (VT) 0.465 L, 12 134 

breaths/min), whereas in the subsequent animals, VLUNG was reduced to 2 liters/minute (VT 0.25, 135 

8 breaths /min) as V-A ECMO was started and kept constant thereafter. In all animals 5 cmH2O 136 

PEEP and volume control mode was used (Servo-i, Maquet, Solna, Sweden). The fraction of 137 

inspired oxygen was set at 0.30. Measurements were performed in healthy animals, 30 minutes 138 

after surgery was completed. Eventually, the pigs were euthanized by injection of 40 mmol of 139 

potassium chloride and V-A ECMO stopped in deep anesthesia. Data were recorded using 140 

Labview™ (National Instruments Corp., Austin, TX,) for offline analysis with Soleasy (Alea 141 

Solutions, Zürich, Switzerland) and Matlab R2019a (MathWorks, Natick, Massachusetts, USA).  142 

Experimental protocol 143 

The experiment consisted of 3 phases with varying sweep gas/blood flow ratios (i. e. the “(V/Q-144 

ratio” of the membrane lung) in order to determine how the sweep gas/blood flow relationship at 145 

the V-A ECMO influences extracorporeal CO2 elimination (VCO2ECMO). First, we reduced QECMO 146 

and V̇ECMO in parallel (stable V/Q = 1, phase: “reduction of V&Q”, rV&QECMO). Then we lowered 147 

VECMO with a constant QECMO (V/Q towards shunt, phase: “reduction of V”, rVECMO). Finally, we 148 

tested an V-A ECMO weaning trial, where QECMO was reduced but VECMO was kept constant (V/Q 149 

towards dead space, phase: “reduction of Q”, rQECMO).  150 

QECMO and VECMO were set at 4 L/min each at baseline and afterward reduced – depending on 151 

the respective phase - to 75%, 50%, and 25% of baseline with an interval of one minute for each 152 

condition (Figure 1). The left atrial vent was clamped during these procedures and the stepwise 153 

reduction of blood flow was not supported by vasopressors or inotropes. 154 

Calculation of V̇CO2 for V-A ECMO 155 
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Expiratory concentration of CO2 at the V-A ECMO exhaust was calculated from the expiratory 156 

partial pressure of CO2 at the V-A ECMO exhaust, and used to calculate V̇CO2 (16, 23), using 157 

actual barometric pressures (on average 722mmHg). The experiments were performed at 540 158 

meters above sea level.  159 

(1) 𝑉𝐶𝑂 = FeCO ∗ 𝑉 = 𝑝𝑒𝐶𝑂 ∗ 𝑉𝑏𝑎𝑟𝑜𝑚𝑒𝑡𝑟𝑖𝑐 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 

Calculation of VCO2 for the lung 160 

Mean pulmonary expired carbon dioxide (pECO2) was calculated by averaging the end-tidal 161 

carbon dioxide (petCO2) curve over the respiratory cycle with correction for the inspiratory to 162 

expiratory (I:E) ratio: 163 

(2) 𝑝𝐸𝐶𝑂 =  𝑝𝐸𝐶𝑂 ∗ (𝐼 + 𝐸)𝐸  

This was verified by integration of the expiratory pCO2 curve, which delivers the same result.  164 

We then calculate V̇CO2LUNG:  165 (3) 𝑉𝐶𝑂 = 𝐹𝑒𝐶𝑂 ∗ 𝑉 = 𝑝𝐸𝐶𝑂 ∗  𝑉𝑏𝑎𝑟𝑜𝑚𝑒𝑡𝑟𝑖𝑐 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 

Blood flow calculations 166 

Figure 2 depicts the situation during V-A ECMO schematically. We define the following 167 

relationships, whereby Q is flow and Δv-aCO2 is the inflow-outflow difference in blood CO2 168 

content in a given segment (∆ 𝐶𝑂  is the difference between venous and aortal CO2 content, 169 ∆ 𝐶𝑂  is the difference between venous and left atrial CO2 content, ∆ 𝐶𝑂  is the 170 

difference between venous and post membrane CO2 content): 171 (4) 𝑄 = 𝑄 + 𝑄  (5) 𝑉𝐶𝑂 = 𝑉𝐶𝑂 + 𝑉𝐶𝑂  (6) 𝑉𝐶𝑂  𝑎𝑛𝑑 𝑉𝐶𝑂 = 𝑄 ∗  ∆ 𝐶𝑂 ;  𝑉𝐶𝑂 =  𝑄 ∗  ∆ 𝐶𝑂   
We then implement equation (4) and (6) into equation (5): 172 (7) 𝑄 ∗  ∆ 𝐶𝑂  =  𝑄 ∗  ∆ 𝐶𝑂 +  𝑄 ∗  ∆ 𝐶𝑂   
We now solve equation (7) for QLUNG: 173 𝑄 ∗  ∆ 𝐶𝑂  =  𝑄 ∗  ∆ 𝐶𝑂 +  𝑄 ∗  ∆ 𝐶𝑂   
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 (𝑄 + 𝑄 ) ∗  ∆ 𝐶𝑂  =  𝑄 ∗  ∆ 𝐶𝑂 +  𝑄 ∗  ∆ 𝐶𝑂  

𝑄 ∗ (∆ 𝐶𝑂 −  ∆ 𝐶𝑂 ) =  𝑄 ∗ ∆ 𝐶𝑂 −  ∆ 𝐶𝑂  

(8)  𝑄 = 𝑄 ∗ ∆ 𝐶𝑂 −  ∆ 𝐶𝑂(∆ 𝐶𝑂 −  ∆ 𝐶𝑂 )  

As we aim to calculate QLUNG with expired gas phase measurements only rather than calculating 174 

blood gas content from multiple blood gas samples, we modify equation (8) with the following 175 

assumptions. As carbon dioxide production and carbon dioxide elimination are mathematical 176 

opposites, we use the absolute value function, thus eliminating negative values. 177 (9) ∆ 𝐶𝑂  ~ |𝑉𝐶𝑂 | (10) ∆ 𝐶𝑂  ~ |𝑉𝐶𝑂 | (11) ∆ 𝐶𝑂  ~ |𝑉𝐶𝑂 |  
We now implement these equations (9-11) into equation (8).  178 

(12)  𝑄 = 𝑄 ∗ |𝑉𝐶𝑂 | −  |𝑉𝐶𝑂 ||𝑉𝐶𝑂 | −  |𝑉𝐶𝑂 |  

Equation (5) simplifies (12) to: 179 

(13) 𝑄 = 𝑄 ∗ |𝑉𝐶𝑂 ||𝑉𝐶𝑂 | 
There is a fixed relationship of QLUNG and QECMO with the respective eliminated CO2. This 180 

expresses our hypothesis that the ratio between the differences in V̇CO2ECMO and V̇CO2Lung is the 181 

same as the ratio between the differences in the respective flows (QECMO and QLUNG). In our 182 

experimental setup, we cannot expect to reach a steady state as step changes were set at 1 183 

minute. Therefore, we calculate pulmonary blood flow using the differences in V̇CO2 and QECMO 184 

during V-A ECMO weaning rather than applying it to steady state conditions. 185 

(14)∆𝑄 = ∆𝑄 ∗ ∆𝑉𝐶𝑂∆𝑉𝐶𝑂   
Normalization of uneven V/Q ratios at the V-A ECMO 186 
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During phase “rV&QECMO” with a constant V/QECMO of 1, we expect relationship (14) to work. 187 

However, ∆ V̇CO2ECMO is influenced by VECMO and QECMO. QECMO determines the amount of CO2 188 

transported towards the membrane lung, while VECMO determines the amount of CO2 eliminated 189 

over the membrane lung with a major impact on ∆ V̇CO2ECMO (10, 13, 17). ∆ V̇CO2ECMO does 190 

therefore not necessarily represent ∆QECMO, when V/QECMO differs from 1. During the phase ” 191 

rQECMO”, V̇CO2 may decouple from QECMO. Accordingly, the ratio ∆ V̇CO2ECMO/∆ V̇CO2LUNG is 192 

affected by VECMO despite unchanged blood flows.   193 

In order to correct for uneven V/Q, we normalized ∆ V̇CO2ECMO into a new variable, ∆ 194 

V̇CO2ECMONORM, only dependent on QECMO and independent of VECMO with formula (15). The 195 

correction factor f is expressed in formula (16). 196 (15) ∆𝑉𝐶𝑂 =  ∆𝑉𝐶𝑂 ∗ 𝑓 

(16) 𝑓(𝑉, 𝑄) =  𝑄 ∗ 𝑉𝑄 + 𝑐𝑉 ∗ (1 + 𝑐)  

A formal deduction of this normalization is found in the Appendix (See Appendix A, 197 

Normalization function).  198 

Statistical Analysis 199 

For statistical, mathematical and graphical analysis, we used Matlab R2019a (MathWorks, 200 

Natick, Massachusetts, USA) including an extension pack under a creative commons license for 201 

the creation of Bland-Altman plots (15). Data are presented either individually or as range. 202 

Correlation coefficients were calculated using Pearson’s square (r2). Agreement between 203 

methods (calculated and measured QLUNG) was assessed with Bland-Altman analysis. 204 

205 
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Results 206 

Baseline 207 

At baseline VECMO and QECMO of 4 L/min, V̇CO2ECMO was between 202 and 243 ml/min, while 208 

V̇CO2LUNG was between 13 and 193 ml/min, corresponding to a measured QLUNG of 10 to 964 209 

mL/min and representing a normal V̇CO2 production for swine (6) (Step 1 for V, Q and VQ in 210 

Table 1). 211 

Measurements at the V-A ECMO 212 

Per protocol, QECMO remained unchanged from baseline during phase “rVECMO” (98 – 100 % of 213 

baseline or 3989 - 4186 l/min) and was reduced to a quarter of baseline in phase “R V/Q" (641 -214 

1178 ml/min, 16 – 29 % of baseline). In phase “rQECMO”, QECMO was reduced to approximately a 215 

quarter in all animals except animal 3  due to hemodynamic instability (25.4 – 49.5% of baseline 216 

or 1048 -1994 ml/min)  (Table 1). 217 

The normalization function was calculated by fitting our data points into formula (16) and 218 

retrieving the constant c = 1.157 (r2 = 0.995, p < 0.001). V̇CO2ECMONORM correlated highly with 219 

QECMO and the normalization improves correlation significantly (Figure 3A and B). In phase 220 

“rVECMO”, reducing VECMO without any change in QECMO, V̇CO2ECMONORM was 194 – 249 ml/min or 221 

93.3 – 100.1 % of baseline. Without normalization, V̇CO2ECMO decoupled from QECMO with a 222 

decrease from 205 – 246 ml/min to 73 – 96 ml/min in this phase (Table 1, Figure 4B). V̇CO2ECMO 223 

values for phase: “rV&QECMO" dropped to roughly a quarter from baseline (64 - 74 ml/min, 25 – 224 

33% of baseline) in parallel with reduced QECMO. During phase: “rQECMO", V̇CO2ECMONORM was 84 225 

– 156 ml/min or 38 – 58 % of baseline. 226 

Measurements at the lung  227 

During unchanged QECMO (phase “rVECMO”) QLung remained close to baseline (2 - 980 ml/min) and 228 

did not change much within one animal and V̇CO2 stayed constant, accordingly. 229 

During reduction of QECMO in phase “rV&QECMO” and phase “rQECMO”, QLUNG increased from its low 230 

baseline values to 928 - 1550 ml/min, and 328 - 1914 ml/min, respectively (Table 1).  V̇CO2LUNG 231 

followed the changes in QLUNG to 74 – 232 ml/min (rise of 28 – 57 ml/min from baseline, with 232 

stepwise increases in every animal) for “rV&QECMO” and 39 – 233 ml/min for “rQECMO” (rise of 18 233 

– 45 ml/min from baseline), and remained steady at full QECMO (phase “rVECMO”, 21 – 188 ml/min, 234 
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change of 7 – 8 ml/min from baseline) (Table 2). QLUNG and V̇CO2LUNG showed a high correlation 235 

(Figure 4). 236 

Calculation of QLUNG 237 

The calculation of pulmonary blood flow from absolute V̇CO2 values is imprecise and leads to a 238 

consistent overestimation (Table 1). This overestimation increases with increasing V/Q ratio at 239 

the lung, which is shown in animal 1, where we had increased ventilation compared to the other 240 

animals. In phase “rVECMO”, we observe no change in measured QLUNG as well as calculated 241 

changes in QLUNG , When differences between the short stepwise flow reductions are considered 242 

(Table 2), correlations are reestablished (Figure 5B) and the respective Bland Altman Plot 243 

(Figure 5A) shows a small bias with acceptable limits of agreement. True blood flow changes are 244 

underestimated since bias is positive. Bias stays constant over the measured range (R2 = -0.16, 245 

p = 0.5). When the phase “rVECMO” is excluded due to no expected change in blood flow, out of 246 

23 blood flow change calculations, an opposite direction of the flow change is calculated in four 247 

instances. In all of these instances, the value of the change is below the least significant change, 248 

which is 113 ml/min. When the entire reduction steps are summarized (Table 2 and Figure 5C), 249 

the relationship becomes overt.  250 
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Discussion 251 

We show in a preliminary analysis that measurements of V̇CO2 at both lung and V-A ECMO are 252 

possible with simple side-stream technology. Our model for the estimation of changes in QLUNG 253 

predicts the directional change of pulmonary blood flow, i. e. cardiac output with acceptable 254 

accuracy in this small sample size (3). The measurements needed for our calculations (QECMO, 255 

VECMO, VLUNG, peCO2ECMO, etCO2LUNG) are easily performed with use of standard side-stream 256 

capnographs, all of which are readily available in an ICU setting or an operating theater and 257 

require no specific training.  258 

As expected from the ventilation-perfusion concept and the gas content equations in figure 2 259 

(14), we found that a decrease in QECMO and the consecutive increase in QLUNG leads to a 260 

respective change in V̇CO2LUNG and V̇CO2ECMONORM. A closer look at formula (8) as the 261 

background of our hypothesis shows an adaptation of the classic Berggren-shunt equation (11). 262 

This seems intuitive, as the V-A ECMO is in concept an anatomical right-to-left shunt, where the 263 

ability to ventilate and oxygenate the shunted blood will clearly affect its functional influence 264 

(Figure 2). Changing the sweep gas/blood flow ratio on the ECMO will vary the function of this 265 

anatomical shunt from true shunt (VECMO = 0 at any QECMO) to dead space (QECMO = 0 at any 266 

V̇ECMO). V̇CO2ECMO only represents the shunt correctly, as long as sweep gas/blood flow on the V-267 

A ECMO are kept at a ratio of 1 (in phase “rV&QECMO”). For sweep gas/blood flow ratios differing 268 

from one, sweep gas flow (VECMO) will drastically change the amount of the eliminated CO2 (10, 269 

17) independently of blood flow - a known phenomenon in states of shock or multiorgan failure 270 

(13). We could simulate this in the derivation of our normalization procedure (See Appendix A, 271 

Appendix figures 2 and 3) and reproduce it in the experiment during the steps “rVECMO” (Table 1). 272 

The normalization of V̇CO2ECMO reestablishes a sweep gas/blood flow ratio of 1, and therefore 273 

restores the correlation between V̇CO2ECMONORM and QECMO. This newly calculated V̇CO2ECMONORM 274 

now is only dependent on blood flow and independent from ventilation and thus eliminates the 275 

influence of V/QECMO mismatch on blood flow calculations. We used our data to calculate the 276 

constant c with a curve fitting function, in order to stay independent from blood gas 277 

measurements, although individual calculations would be possible to  from pre-membrane pH. 278 

We see the high goodness of fit of this normalization procedure as an indirect proof of the 279 

normalization function (See Appendix A, Appendix figure 6). During V-A ECMO weaning with a 280 

sweep gas/blood flow ratio of 1, it seems of little practical importance. Normalization might be 281 
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particularly helpful to wean a low blood flow system with the primary intention to eliminate CO2, 282 

where the effect of increased ventilation is most relevant (5). (See Appendix A, Appendix figure 283 

3). Whether this might be applicable to a veno-venous configuration would need to be 284 

investigated. In a veno-arterial configuration, normalization might allow accurate estimations of 285 

post-membrane CO2 pressures in blood, enabling a continuous gaseous oxygenator 286 

measurement to derive blood gas tensions (See Appendix A, figure 2).  287 

A high V/QLung ratio will significantly increase the overall amount of CO2 eliminated and thus lead 288 

to an overestimation of pulmonary blood flow, while a reduction in VECMO will lead to a decrease 289 

in eliminated CO2 and thus to a rise in venous CO2 content. This in turn increases V̇CO2LUNG, to 290 

achieve a new steady state. However, as the V-A ECMO and the lung both drain venous blood 291 

from the right atrium, V̇CO2ECMO should increase simultaneously with the new steady state in 292 

order to fulfill formula (5). Our short measurement periods did preclude a steady state for CO2 293 

elimination. Calculations of total blood flow for any given moment may therefore be impossible, 294 

because the lack of a steady state does not allow for sufficient accuracy. As we calculated QLUNG 295 

through a deliberate step change in V̇CO2, a steady state is not necessary, as there is no need 296 

for an absolute reference point. This also allows the calculations for different settings of VLUNG 297 

(as shown with animal 1), as long as VLUNG remains constant. 298 

The ratio of ventilation to perfusion in the lung will vary with hypoxic vasoconstriction, shunt, 299 

alveolar collapse and dead space. Our V̇CO2LUNG – estimated from end-tidal pCO2 in healthy 300 

lungs - showed an acceptable relationship with QLUNG, but stable minute ventilation on the lung 301 

was mandatory. As QLUNG is the quantity to be calculated, a normalization procedure is not 302 

possible. As V̇CO2LUNG can only represent blood flow that participates in gas exchange, shunt 303 

due to supine positioning of the animals could explain the bias of underestimation of changes in 304 

pulmonary blood flow with our method.  305 

There are several possible limitations to our method: Firstly, a V/QLUNG mismatch (e.g. high shunt 306 

and/or high dead space) might result in a decrease of QLung – V̇CO2Lung correlation and might thus 307 

increase the bias significantly. Secondly, we did not document every V-A ECMO flow change 308 

with blood gas samples, because our aim was to calculate QLUNG using gaseous measurements. 309 

Nevertheless, a meticulous documentation of blood gas status would strengthen our hypothesis 310 

and allow for alternative calculations of gas content and direct calculations of the normalization 311 

function. Thirdly, V̇CO2 was calculated using side-stream capnography, which are of limited 312 
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accuracy. Signal shifts in the pCO2-time tracing may introduce an error here. We did not rely on 313 

a breath-by-breath measurement, but averaged values over one minute may help to minimize 314 

this possible influence. Mainstream calorimetric modules are available and used in assessing 315 

cardiac output, alveolar and dead space ventilation (7, 18-20). Mainstream capnography at the 316 

V-A ECMO gas outlet is feasible and may deliver accurate results for V̇O2 and V̇CO2 (4, 22). 317 

This might improve our results and overall accuracy compared to our calculations from side-318 

stream end-tidal carbon dioxide.  Fourthly, this study was conducted in a small, clearly 319 

preliminary set of healthy animals and without any cardiovascular support. 320 

The large scatter in pulmonary flow reflects the individual variability of native cardiac output 321 

during V-A ECMO treatment. In conclusion, we show that measurement of V̇CO2 at the V-A 322 

ECMO are easily performed. A normalization procedure allows estimation of V̇CO2 only 323 

dependent on blood flow without the influence of a V/Q mismatch. This in turn lays the basis of 324 

blood flow calculations using V̇CO2 values. Calculations of pulmonary blood flow using absolute 325 

values of carbon dioxide elimination are not possible in a non-steady state with our method. The 326 

concept can be derived from basic physiological equations. Whether our method may result in a 327 

clinically useful approach and support V-A ECMO weaning, where assessment of cardiac output 328 

may help to evaluate weanability, has to be further evaluated. These preliminary findings need 329 

further confirmation in a larger study, also investigating low and high V/Q states at the lung 330 

before exploring clinical applications.  331 

Downloaded from journals.physiology.org/journal/ajplung at Univ Bern Hosp (161.062.252.040) on April 17, 2020.



15 
 

References 332 

1. Cavarocchi NC, Pitcher HT, Yang Q, Karbowski P, Miessau J, Hastings HM, and 333 

Hirose H. Weaning of extracorporeal membrane oxygenation using continuous hemodynamic 334 

transesophageal echocardiography. The Journal of thoracic and cardiovascular surgery 146: 335 

1474-1479, 2013. 336 

2. Combes A, Brodie D, Chen Y-S, Fan E, Henriques JPS, Hodgson C, Lepper PM, 337 

Leprince P, Maekawa K, Muller T, Nuding S, Ouweneel DM, Roch A, Schmidt M, Takayama 338 

H, Vuylsteke A, Werdan K, and Papazian L. The ICM research agenda on extracorporeal life 339 

support. Intensive care medicine, 2017. 340 

3. Critchley LA and Critchley JA. A meta-analysis of studies using bias and precision 341 

statistics to compare cardiac output measurement techniques. Journal of clinical monitoring and 342 

computing 15: 85-91, 1999. 343 

4. De Waele E, van Zwam K, Mattens S, Staessens K, Diltoer M, Honore PM, Czapla J, 344 

Nijs J, La Meir M, Huyghens L, and Spapen H. Measuring resting energy expenditure during 345 

extracorporeal membrane oxygenation: preliminary clinical experience with a proposed 346 

theoretical model. Acta Anaesthesiol Scand 59: 1296-1302, 2015. 347 

5. Duscio E, Cipulli F, Vasques F, Collino F, Rapetti F, Romitti F, Behnemann T, 348 

Niewenhuys J, Tonetti T, Pasticci I, Vassalli F, Reupke V, Moerer O, Quintel M, and 349 

Gattinoni L. Extracorporeal CO2 Removal: The Minimally Invasive Approach, Theory, and 350 

Practice. Crit Care Med 47: 33-40, 2019. 351 

6. Hannon JP, Bossone CA, and Wade CE. Normal physiological values for conscious 352 

pigs used in biomedical research. Laboratory animal science 40: 293-298, 1990. 353 

7. Jonson B. Volumetric Capnography for Non-invasive Monitoring of ARDS. American 354 

journal of respiratory and critical care medicine, 2018. 355 

8. Keener JS, J. Ventilation and Perfusion. In: Mathematical Physiology: Systems 356 

Physiology (Second Edition ed.), edited by Antman SM, J. Sirovich L. New York: Springer, 2009, 357 

p. 694-701. 358 

9. Lee SH, Chung CH, Lee JW, Jung SH, and Choo SJ. Factors predicting early- and 359 

long-term survival in patients undergoing extracorporeal membrane oxygenation (ECMO). 360 

Journal of cardiac surgery 27: 255-263, 2012. 361 

10. Lehle K, Philipp A, Hiller KA, Zeman F, Buchwald D, Schmid C, Dornia C, Lunz D, 362 

Muller T, and Lubnow M. Efficiency of gas transfer in venovenous extracorporeal membrane 363 

oxygenation: analysis of 317 cases with four different ECMO systems. Intensive care medicine 364 

40: 1870-1877, 2014. 365 

Downloaded from journals.physiology.org/journal/ajplung at Univ Bern Hosp (161.062.252.040) on April 17, 2020.



16 
 

11. Leigh JM, Tyrrell MF, and Strickland DA. Simplified versions of the shunt and oxygen 366 

consumption equations. Anesthesiology 30: 468-470, 1969. 367 

12. Morimont P, Lambermont B, Guiot J, Tchana Sato V, Clotuche C, Goffoy J, and 368 

Defraigne JO. Ejection Fraction May Not Reflect Contractility: Example in Veno-Arterial 369 

Extracorporeal Membrane Oxygenation for Heart Failure. ASAIO journal (American Society for 370 

Artificial Internal Organs : 1992) 64: e68-e71, 2018. 371 

13. Park M, Costa EL, Maciel AT, Silva DP, Friedrich N, Barbosa EV, Hirota AS, 372 

Schettino G, and Azevedo LC. Determinants of oxygen and carbon dioxide transfer during 373 

extracorporeal membrane oxygenation in an experimental model of multiple organ dysfunction 374 

syndrome. PloS one 8: e54954, 2013. 375 

14. Radermacher P, Maggiore SM, and Mercat A. Fifty Years of Research in ARDS. Gas 376 

Exchange in Acute Respiratory Distress Syndrome. Am J Respir Crit Care Med 196: 964-984, 377 

2017. 378 

15. Rik. BlandAltmanPlot. 2019. 379 

16. Scaravilli V, Kreyer S, Belenkiy S, Linden K, Zanella A, Li Y, Dubick MA, Cancio LC, 380 

Pesenti A, and Batchinsky AI. Extracorporeal Carbon Dioxide Removal Enhanced by Lactic 381 

Acid Infusion in Spontaneously Breathing Conscious Sheep. Anesthesiology 124: 674-682, 382 

2016. 383 

17. Sun L, Kaesler A, Fernando P, Thompson AJ, Toomasian JM, and Bartlett RH. CO2 384 

clearance by membrane lungs. Perfusion 33: 249-253, 2018. 385 

18. Tusman G, Groisman I, Maidana GA, Scandurra A, Arca JM, Bohm SH, and Suarez-386 

Sipmann F. The Sensitivity and Specificity of Pulmonary Carbon Dioxide Elimination for 387 

Noninvasive Assessment of Fluid Responsiveness. Anesthesia and analgesia 122: 1404-1411, 388 

2016. 389 

19. Tusman G, Suarez-Sipmann F, Bohm SH, Borges JB, and Hedenstierna G. 390 

Capnography reflects ventilation/perfusion distribution in a model of acute lung injury. Acta 391 

Anaesthesiol Scand 55: 597-606, 2011. 392 

20. Verscheure S, Massion PB, Verschuren F, Damas P, and Magder S. Volumetric 393 

capnography: lessons from the past and current clinical applications. Critical care 20: 184, 2016. 394 

21. West JB. Understanding pulmonary gas exchange: ventilation-perfusion relationships. 395 

Journal of applied physiology (Bethesda, Md : 1985) 97: 1603-1604, 2004. 396 

22. Wollersheim T, Frank S, Muller MC, Skrypnikov V, Carbon NM, Pickerodt PA, Spies 397 

C, Mai K, Spranger J, and Weber-Carstens S. Measuring Energy Expenditure in 398 

extracorporeal lung support Patients (MEEP) - Protocol, feasibility and pilot trial. Clinical nutrition 399 

37: 301-307, 2018. 400 

Downloaded from journals.physiology.org/journal/ajplung at Univ Bern Hosp (161.062.252.040) on April 17, 2020.



17 
 

23. Zanella A, Mangili P, Giani M, Redaelli S, Scaravilli V, Castagna L, Sosio S, Pirrone 401 

F, Albertini M, Patroniti N, and Pesenti A. Extracorporeal carbon dioxide removal through 402 

ventilation of acidified dialysate: an experimental study. The Journal of heart and lung 403 

transplantation : the official publication of the International Society for Heart Transplantation 33: 404 

536-541, 2014. 405 

  406 

Downloaded from journals.physiology.org/journal/ajplung at Univ Bern Hosp (161.062.252.040) on April 17, 2020.



18 
 

Figure legends 407 

Figure 1. Experimental protocol with stepwise reduction of V̇ECMO and/or QECMO. 408 

Figure 2. Schematics for V-A ECMO. ∆ 𝐶𝑂  is the difference between venous and aortal CO2 409 

content, ∆ 𝐶𝑂  is the difference between venous and left atrial CO2 content, ∆ 𝐶𝑂  is the 410 

difference between venous and post membrane CO2 content. 411 

Figure 3: Effect of the normalization of the Sweep Gas Flow to Blood Flow Ratio on the V-A 412 

ECMO A: Scatter plot for QECMO vs. V̇CO2ECMO. Smallest points represent phase: “rVECMO", 413 

middle sized points represent phase “rQECMO”, large points represent phase: “rV&QECMO”. No 414 

correlations reached significant levels (p < 0.05). B: Scatter plot for QECMO vs. V̇CO2ECMONORM, all 415 

data points considered. Smallest points represent phase: “rVECMO”, middle sized points represent 416 

phase: “rQECMO” large points represent phase: “rV&QECMO”. In the phase “rQECMO”, animal 3 did 417 

not tolerate the last reduction in V-A ECMO flow. 418 

Figure 4: Correlation between Lung Blood Flow and Carbon Dioxide Elimination at the Lung, 419 

absolute values. Scatter plot for QLUNG vs. V̇CO2LUNG, all data points considered. Smallest points 420 

represent phase “rVECMO”, middle sized points represent phase: “rQECMO ", large points represent 421 

phase: “rV&QECMO”. Note that in animal 1 ventilation and thus V̇CO2Lung is high, because baseline 422 

settings at respirator were 5.6l/min (TV 465ml, 12 times / minute). This was the first animal and 423 

the ventilator settings were not adjusted from previous settings. In the phase “rQECMO”, animal 3 424 

did not tolerate the last reduction in V-A ECMO flow. 425 

Figure 5 A: Bland Altman plot for all data points during V-A ECMO Weaning. Bias is positive but 426 

close to zero with wide limits of agreement. Bias stayed constant over increasing changes in 427 

QLung (R2 = 0.014). B: Scatter plot for the real change in QLung vs. the calculated change in QLung 428 

during V-A ECMO weaning. Smallest points represent phase: “rVECMO”, middle sized points 429 

represent phase “rQECMO”, large points represent phase “rV&QECMO”. Linear regressions yield : 430 

Animal 1: y = 0.75 * x + 73.34, Animal 2: y = 0.44 * x – 47.85, Animal 3: y = 0.73 * x + 7.17, 431 

Animal 4: y = 0.8 * x – 30.17. C: Scatter plot for subsumed weaning steps for each animals. 432 

Linear regressions yield: Animal 1: y = 0.91 * x + 125.05, Animal 2: y = 0.47 * x – 166.98, Animal 433 

3: y = 0.70 * x + 34.8, Animal 4: y = 0.79 * x – 84.95. 434 

  435 
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Appendix A 436 

Normalization function 437 

1 Formal derivation of a normalized VCO2 for a 438 

ventilation/perfusion ratio of one 439 

As V̇CO2ECMO is dependent on the sweep gas flow (17), normalization of the V̇CO2 at any given 440 

V̇/Q ratio to a ventilation/perfusion (V/Q) ratio of 1 (V̇CO2ECMONORM) will render a variable only 441 

dependent on blood flow (QECMO) and independent from ventilation (VECMO). This may facilitate 442 

the blood flow prediction in the lung.  443 

The theoretical deduction of this normalization is based on the description of the V/Q ratio as (8): 444 

(1) =  𝜎 ∗ 𝑅 ∗ 𝑇 ∗ (1 + 𝐾 ) ∗    445 

σCO2 is the solubility of CO2 in blood, R is the gas constant, T is temperature. PvCO2 is venous 446 

partial pressure and PPMCO2 is the post membrane CO2 partial pressure. We assume that 447 

PPMCO2 is equal to PeCO2ECMO, which is measured at the V-A ECMO gas outlet. Kc indicates the 448 

equilibration constant of the CO2 + H2O ↔ HCO3- + H+ reaction at a given pH. It describes the 449 

additional liberation of gaseous carbon dioxide from bicarbonate during the passage through the 450 

membrane lung. pK is the acid dissociation constant.  451 

𝐾 = 𝑘𝑘 ∗ 𝐻 ; 𝑤ℎ𝑒𝑟𝑒 log10 𝑘𝑘  = −6.1 = 𝑝𝐾 

We assume the following values for BTPS conditions: 452 

𝑅 = 62.363 (𝐿 ∗  𝑚𝑚𝐻𝑔)(𝐾 ∗  𝑚𝑜𝑙)  𝑇 = 310.5 𝐾𝑒𝑙𝑣𝑖𝑛 (𝐾) 𝐾 = 12   𝑝𝐻 = 7.35 𝜎 = 3.3 ∗ 10 𝑀𝑜𝑙𝑎𝑟𝑚𝑚𝐻𝑔 
Downloaded from journals.physiology.org/journal/ajplung at Univ Bern Hosp (161.062.252.040) on April 17, 2020.



20 
 

Under the assumption of a constant pH, we can combine these individual constants into one 453 

overall constant c. 454  𝑐 = 𝜎 ∗ 𝑅 ∗ 𝑇 ∗ (1 + 𝐾 ) 

For the derivation, we assume a constant venous carbon dioxide partial pressure and calculate 455 

gas fraction of expired CO2 (FeCO2). 456 𝑃 = 45 𝑚𝑚𝐻𝑔 

𝐹𝑒𝐶𝑂 = 𝑝𝑒𝐶𝑂𝑏𝑝 ;  𝑏𝑝 = 𝑏𝑎𝑟𝑜𝑚𝑒𝑡𝑟𝑖𝑐 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 =  760 𝑚𝑚𝐻𝑔 

 457 

We solve eq. 1 for PPMCO2.  458 

(2)𝑃 = 𝑝𝑒𝐶𝑂 = 𝑐 ∗  𝑃(𝑉𝑄 + 𝑐) 

A plot of this function shows the known hyperbolic dependency of alveolar, i. e postmembrane 459 

pCO2 from ventilation (V and Q values are assumed from 0 to 4 with an interval of 0.25 l/min). 460 
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 461 

Appendix Figure 1. Colors refer to different V/Q data points resulting from the chosen interval of 0.25. 462 

 463 
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Appendix Figure 2 464 

The next step is to calculate V̇CO2ECMO and plot the function (Appendix figure 3). Note, that the 465 

factor 1000 is needed to convert the results in ml/min.  466 

(3) 𝑉𝐶𝑂 = 𝐹𝑒𝐶𝑂 ∗ 𝑉 = 𝑉 ∗ 𝑐 ∗ 𝑃𝑉𝑄 + 𝑐 ∗ 1000760  

 467 

Appendix Figure 3 468 

The diverging effects of the ventilation on the ECMO on PCO2 and VCO2 become apparent. In 469 

order the represent blood flow, we now normalize the given V̇CO2 to a V̇/Q ratio of 1. 470 

We define the correction factor f as the ratio of V̇CO2 at V/Q = 1 to the V̇CO2 at any V/Q. We plot 471 

this correction factor f against V/Q. 472 

(4) 𝑓(𝑉, 𝑄) = 𝑉𝐶𝑂 𝑉𝑄 = 1𝑉𝐶𝑂  
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𝑓 = 𝑉 ∗ 𝑐 ∗ 𝑃(1 + 𝑐) ∗ 1000760𝑉 ∗ 𝑐 ∗ 𝑃𝑉𝑄 + 𝑐 ∗ 1000760 = 𝑉 ∗ 𝑉𝑄 + 𝑐𝑉 ∗ (1 + 𝑐)  

As VV/Q=1 is equal to Q, we can write: 473 

(5) 𝑓(𝑉, 𝑄) =  𝑄 ∗ 𝑉𝑄 + 𝑐𝑉 ∗ (1 + 𝑐) = 𝑉𝑄 + 𝑐(1 + 𝑐) ∗ 1𝑉/𝑄 

 474 

This describes a hyperbolic dependency of f from V/Q scaled with V/Q and c (Appendix figure 4). 475 

Note that for a V/Q of 1, the scaling and correction factor is 1. 476 

 477 

Appendix Figure 4: Colors refer to different V/Q data points resulting from the chosen interval of 0.25. 478 

Now, VCO2NORM can be calculated using eq. (3, 5). We plot this new function VCO2NORM, which is 479 

independent of V or V/Q (Appendix figure 5). 480 
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 (6) 𝑉𝐶𝑂 = 𝑉𝐶𝑂 ∗ 𝑓(𝑉, 𝑄) 

= 𝑉 ∗ 𝑐 ∗ 𝑃𝑉𝑄 + 𝑐 ∗ 1000760 ∗ 𝑄 ∗ 𝑉𝑄 + 𝑐𝑉 ∗ (1 + 𝑐)  

= 𝑄 ∗ 𝑐 ∗ 𝑃(1 + 𝑐) ∗ 1000760  

It is clear from this resolved eq. (6), that V̇CO2NORM is dependent on Q and PvCO2, as well as the 481 

constant c which itself is dependent on temperature and pH.  482 

It seems intuitive, that this equation (6) can simply be achieved by implementing V/Q = 1 and 483 

substituting Q for V in eq. (3). This calculation eliminates the dependency of ventilation and 484 

VCO2NORM will represent blood flow at any V/Q (see Appendix figure 5). 485 

 486 

 487 

Appendix Figure 5 488 
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This derivation assumes perfect conditions and depends on venous pvCO2 and pH, which are as 489 

a limitation of our study unknown. Therefore, the function has to be approximated from 490 

measured data, as described in the following section. 491 

  492 
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2 Retrieving the normalization function from measured Data 493 

We calculated the necessary correction factors using the measured data and eq. 4.  494 

Then, the correction factors were plotted against V̇/Q and the coefficient c was received 495 

(Appendix figure 6).  496 

(7) 𝑓(𝑉 , 𝑄 ) =  𝑄 ∗ 𝑉𝑄 + 𝑐𝑉 ∗ (1 + 𝑐) ; 
𝑐 = 1.157;  95%  𝐶𝐼 𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙: 1.097,1.216 ; 𝑟 = 0.9954  

 497 

Appendix Figure 6 498 

It is a limitation of our study that our measurements of sweep gas flow (set and read by hand) 499 

are much more inaccurate than the blood flow readings. Additionally, instantaneous PvCO2 and 500 

pH measurements to calculate c are not available. Inexact ventilation measurements will 501 

introduce an error in the position of the normalization curve, where a small shift around a V̇/Q of 502 

1 will have a large impact on the slope of the function. Small errors in measurement of V̇CO2, V̇ 503 

or Q will therefore largely influence c (Appendix figure 4). However, the calculated function with 504 

empirically derived c shows almost perfect goodness of fit and the normalization of V̇CO2ECMO 505 

with this correction function shows very strong correlations between V̇CO2ECMONORM and QECMO 506 

within the range of our measurements (Figure 3, manuscript).   507 
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Table 1: Individual data sets 

  
Animal 1  Animal 2  

ECMO Lung ECMO Lung 
V Q VCO2 VCO2 norm V Q VCO2 Qcalc V Q VCO2 VCO2 norm V Q VCO2 Qcalc 

Step [ml/min] [ml/min] [ml/min]   

V 

1 4000 4105 214 217 5600 964 189 3572 4000 4013 222 223 1800 389 52 935 
2 3000 4092 177 212 5600 917 189 3647 3000 4010 194 229 1800 387 61 1077 
3 2000 4049 135 209 5600 1125 195 3778 2000 3982 150 229 1800 370 66 1141 
4 1000 4071 77 203 5600 980 196 3934 1000 3994 86 223 1800 358 60 1065 

Q 

1 4000 4113 226 229 5600 920 197 3529 4000 4079 259 261 1800 105 64 1006 
2 4000 3147 202 179 5600 1035 200 3520 4000 3016 236 205 1800 503 73 1073 
3 4000 2058 173 128 5600 1458 215 3463 4000 1995 205 150 1800 968 72 966 
4 4000 1207 140 88 5600 1915 244 3348 4000 1048 160 97 1800 1349 87 944 

VQ 

1 4000 4068 211 213 5600 843 202 3859 4000 4016 245 245 1800 126 75 1236 
2 3000 3231 168 174 5600 1157 199 3686 3000 3008 195 195 1800 560 76 1170 
3 2000 2191 120 126 5600 1376 227 3945 2000 2019 142 143 1800 991 88 1245 
4 1000 1178 66 73 5600 1550 242 3932 1000 1094 67 71 1800 1472 105 1626 

Animal 3  Animal 4  
ECMO Lung ECMO Lung 

V Q VCO2 VCO2 norm V Q VCO2 Qcalc V Q VCO2 VCO2 norm V Q VCO2 Qcalc 
Step [ml/min] [ml/min] [ml/min] [ml/min] 

V 

1 4000 4062 263 266 1800 10 14 217 4000 4170 239 244 2000 59 22 378 
2 3000 4043 228 270 1800 10 18 264 3000 4216 197 240 2000 72 30 528 
3 2000 4025 177 274 1800 5 19 283 2000 4188 154 244 2000 39 34 592 
4 1000 3989 102 266 1800 2 22 333 1000 4186 89 241 2000 21 32 561 

Q 

1 4000 4031 287 288 1800 4 23 324 4000 4177 248 254 2000 9 31 515 
2 4000 2966 261 225 1800 8 22 296 4000 3031 225 195 2000 294 36 556 
3 4000 1994 228 167 1800 328 42 502 4000 2064 192 142 2000 616 58 845 
4 N/A N/A N/A N/A N/A N/A N/A N/A 4000 1060 149 91 2000 909 68 801 

VQ 

1 4000 4074 260 262 1800 9 42 651 4000 4031 231 232 2000 14 49 848 
2 3000 3008 211 211 1800 36 37 529 3000 3098 188 191 2000 259 55 899 
3 2000 1973 168 167 1800 399 57 677 2000 2108 138 142 2000 602 65 964 
4 1000 641 79 64 1800 1327 103 1035 1000 1051 75 78 2000 928 78 1060 
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Table 1. Individual data for all animals at baseline (step 1 at V, Q, and VQ) and every step of blood flow reduction. ECMO Q and Lung Q 

denote readings from the respective flow probes, VCO2 values were calculated according to formulas 1 to 3 in the method section using 

reported barometric pressure for each day (728, 726, 711 and 721 mmHg). Note that 1) in animal 1 ventilation is high because baseline 

settings at respirator were 5.6l/min (TV 465ml, 12 Freq) and that 2) during phase: “reduction of Q” the cardiovascular system of animal 3 

did not support the ECMO Reduction to 25 % of baseline, therefore no measurement is available. VCO2norm refers to a calculated 

VCO2 for a sweep gas/blood flow ratio normalized towards one (details see Appendix). 
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Table 2: stepwise reductions 

  
Animal 1  Animal 2    

ECMO Lung ECMO Lung 
ΔV ΔQ ΔVCO2 ΔVCO2 norm ΔV ΔQ ΔVCO2 ΔQ Calculated ΔV ΔQ ΔVCO2 ΔVCO2 norm ΔV ΔQ ΔVCO2 ΔQ Calculated

Step [ml/min] [ml/min] [ml/min] [ml/min]   

V 

1 -> 2 -1000 -13 -37 -6 0 -47 0 -1 -1000 -3 -27 6 0 -2 9 -5 
2 -> 3 -1000 -43 -42 -2 0 208 7 122 -1000 -28 -42 1 0 -17 4 -189 
3 -> 4 -1000 22 -59 -7 0 -145 1 -2 -1000 12 -61 -6 0 -13 -6 12 

summed up -3000 -34 -138 -15 0 16 7 119 -3000 -19 -130 1 0 -32 7 -181 
                                    

Q 

1 -> 2 0 -966 -24 -50 0 115 3 66 0 -1063 -22 -56 0 398 9 160 
2 -> 3 0 -1089 -29 -51 0 423 15 313 0 -1021 -31 -55 0 465 0 -9 
3 -> 4 0 -851 -32 -40 0 457 28 605 0 -947 -44 -53 0 381 15 268 

summed up 0 -2906 -86 -142 0 995 47 984 0 -3031 -98 -164 0 1244 23 419 
                                    

VQ 

1 -> 2 -1000 -837 -43 -38 0 314 -3 -59 -1000 -1008 -50 -50 0 434 0 7 
2 -> 3 -1000 -1040 -47 -48 0 219 28 612 -1000 -989 -52 -52 0 431 12 236 
3 -> 4 -1000 -1013 -54 -54 0 174 15 286 -1000 -925 -75 -72 0 481 17 217 

summed up -3000 -2890 -144 -140 0 707 41 838 -3000 -2922 -177 -174 0 1346 30 460 

Animal 3  Animal 4  
ECMO Lung ECMO Lung 

ΔV ΔQ ΔVCO2 ΔVCO2 norm ΔV ΔQ ΔVCO2 ΔQ Calculated ΔV ΔQ ΔVCO2 ΔVCO2 norm ΔV ΔQ ΔVCO2 ΔQ Calculated
Step [ml/min] [ml/min] [ml/min] [ml/min] 

V 

1 -> 2 -1000 -19 -36 4 0 0 3 -15 -1000 46 -42 -4 0 13 8 -84 
2 -> 3 -1000 -18 -50 4 0 -5 2 -8 -1000 -28 -43 4 0 -33 4 -31 
3 -> 4 -1000 -36 -75 -8 0 -3 3 13 -1000 -2 -65 -2 0 -18 -2 -2 

summed up -3000 -73 -161 0 0 -8 8 -9 -3000 16 -150 -3 0 -38 10 -117 
                                    

Q 

1 -> 2 0 -1065 -25 -63 0 4 -1 -11 0 -1146 -24 -59 0 285 4 88 
2 -> 3 0 -972 -33 -58 0 320 20 326 0 -967 -32 -53 0 322 22 410 
3 -> 4 N/A N/A N/A N/A N/A N/A N/A N/A 0 -1004 -43 -52 0 293 10 196 

summed up 0 -2037 -59 -121 0 324 19 315 0 -3117 -99 -164 0 900 37 693 
                                    

VQ 

1 -> 2 -1000 -1066 -49 -51 0 27 -5 -99 -1000 -933 -43 -40 0 245 7 158 
2 -> 3 -1000 -1035 -43 -45 0 363 20 459 -1000 -990 -50 -49 0 343 10 195 
3 -> 4 -1000 -1332 -89 -103 0 928 45 588 -1000 -1057 -63 -65 0 326 13 213 

summed up -3000 -3433 -181 -199 0 1318 61 948 -3000 -2980 -155 -154 0 914 29 565 
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Table 2. Individual data for all animals for measurements performed at the lung. Note, that during phase: “reduction of Q” the 
cardiovascular system of animal 3 did not support the ECMO Reduction to 25 % of baseline, therefore no measurement is available. 

 

Downloaded from journals.physiology.org/journal/ajplung at Univ Bern Hosp (161.062.252.040) on April 17, 2020.



Downloaded from journals.physiology.org/journal/ajplung at Univ Bern Hosp (161.062.252.040) on April 17, 2020.



Downloaded from journals.physiology.org/journal/ajplung at Univ Bern Hosp (161.062.252.040) on April 17, 2020.



Downloaded from journals.physiology.org/journal/ajplung at Univ Bern Hosp (161.062.252.040) on April 17, 2020.



Downloaded from journals.physiology.org/journal/ajplung at Univ Bern Hosp (161.062.252.040) on April 17, 2020.



Downloaded from journals.physiology.org/journal/ajplung at Univ Bern Hosp (161.062.252.040) on April 17, 2020.



Downloaded from journals.physiology.org/journal/ajplung at Univ Bern Hosp (161.062.252.040) on April 17, 2020.



Downloaded from journals.physiology.org/journal/ajplung at Univ Bern Hosp (161.062.252.040) on April 17, 2020.



Downloaded from journals.physiology.org/journal/ajplung at Univ Bern Hosp (161.062.252.040) on April 17, 2020.



Downloaded from journals.physiology.org/journal/ajplung at Univ Bern Hosp (161.062.252.040) on April 17, 2020.



Downloaded from journals.physiology.org/journal/ajplung at Univ Bern Hosp (161.062.252.040) on April 17, 2020.



Downloaded from journals.physiology.org/journal/ajplung at Univ Bern Hosp (161.062.252.040) on April 17, 2020.


	1
	Table
	Table
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Appendix: Figure 1
	Appendix: Figure 2
	Appendix: Figure 3
	Appendix: Figure 4
	Appendix: Figure 5
	Appendix: Figure 6

