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1 Introduction

The mass of the top quark, the heaviest known elementary particle, is a key parameter of the

Standard Model (SM) of particle physics and must be determined experimentally. In the

SM, the gauge structure of the interaction of the top quark with other particles establishes a

relation between the top-quark, Higgs-boson and W -boson masses. A precise determination

of these three parameters forms an important check of the internal consistency of the SM [1–

5]. Precise measurements of the top-quark mass are also required in order to accurately

predict the evolution of the Higgs quartic coupling at high scales, which affects the shape

of the Higgs potential and is associated in the SM with the stability of the quantum

vacuum [6, 7]. In this article the top-quark mass is inferred from the shape of a differential

cross-section distribution.

Any quantitative statement about the value of a quark mass requires a precise reference

to the mass scheme in which the mass is defined. The mass scheme which is used most

often in top-quark mass measurements is the pole-mass scheme [8–14], where the renor-

malised top-quark mass (the pole mass, mpole
t ) coincides with the pole of the top-quark

propagator. Several groups have extracted the running1 top-quark mass in the modified

1The scale µ = mt is used to express the value of top-quark running mass, mt(mt).
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minimal subtraction scheme (MS) from the total top-quark pair (tt̄) production cross sec-

tion [15, 16] or the differential cross section [17]. The two mass schemes can be related

precisely, with up to four-loop accuracy [18].

Direct top-quark mass measurements at hadron colliders, based on the reconstruction

of the top-quark decay products and using Monte Carlo (MC) event generators in the

fit to extract the mass, are frequently interpreted as the pole mass. Recent works esti-

mate that such an interpretation is affected by a 0.5–1 GeV [19–24] uncertainty due to

non-perturbative effects from below the MC lower scale at which perturbative quark and

gluon radiation is terminated in the parton shower. With direct top-quark mass measure-

ments reaching sub-percent precision [20] it becomes important to evaluate uncertainties

associated with the interpretation of the measured mass at the same level of accuracy.

It is therefore of paramount importance to extract the top-quark mass by comparing

data with predictions computed in a well-defined mass scheme. In this case the ambiguity

related to the top-quark mass interpretation is avoided, allowing a precise evaluation of

the uncertainty associated with the mass scheme chosen. In such measurements the Monte

Carlo event generator is only used to correct distributions obtained from measured data for

effects originating from the detector and the modelling of non-perturbative physics. The

uncertainty associated to such effects can be estimated comparing Monte Carlo simulations

produced with different sets of parameters, without specific assumptions on the top-quark

mass interpretation. The theory uncertainty can then be estimated using the conventional

techniques (scale variations and error sets of the parton distribution functions). Such mass

measurements also yield greater flexibility in choosing the mass scheme [8, 9].

In this article, results are presented in both the pole-mass and MS schemes. The

measurement reported in this study follows the approach developed in refs. [17, 25, 26],

which takes advantage of the sensitivity to the top-quark mass of the differential cross

section of tt̄ production in association with at least one energetic jet. The presence of the

additional jet enhances the sensitivity to the top-quark mass in comparison with similar

observables defined for the tt̄ system only [25]. In particular, the observable used to extract

the top-quark mass, R, is defined as the normalised differential tt̄+ 1-jet cross section:

R(mpole
t , ρs) =

1

σtt̄+1-jet
·

dσtt̄+1-jet

dρs
,

where

ρs =
2m0

mtt̄+1-jet
,

with m0 representing a constant fixed to 170 GeV and mtt̄+1-jet being the invariant mass

of the tt̄+ 1-jet system.2

The normalised differential cross sections are presented at the so-called particle level

in which data are only unfolded for detector effects and at the parton level where R
can be directly compared with available fixed-order calculations [17, 25]. The particle-

level distribution is provided to allow comparisons with possible future calculations. A

measurement of the top-quark pole mass [11] with this method using 4.6 fb−1 of 7 TeV pp

2The definition ρs = 2m0/
√
stt̄+1-jet is also used in the literature [17, 25], with

√
stt̄+1-jet = mtt̄+1-jet
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collisions collected by ATLAS yielded an uncertainty of 2.3 GeV (1.3%) in the top-quark

pole mass. In the current analysis the top-quark mass is determined using a sample of

8 TeV pp collisions collected in 2012. The large statistics of the 8 TeV dataset make it

possible to achieve a high precision in the measurement of the R distribution, in particular

in the region where it is most sensitive to the top-quark mass, ultimately allowing the

top-quark mass to be extracted with high accuracy.

2 ATLAS experiment

The ATLAS experiment [27] at the Large Hadron Collider (LHC) is a multipurpose particle

detector with a forward-backward symmetric cylindrical geometry and almost 4π coverage

in solid angle.3

Its core consists of an inner tracking detector surrounded by a thin superconducting

solenoid, which provides a 2 T axial magnetic field. The inner tracking detector covers the

pseudorapidity range |η| < 2.5. It is equipped with silicon pixel, silicon microstrip, and

transition radiation tracking detectors.

The inner detector is surrounded by the calorimeters and a muon spectrometer.

Lead/liquid-argon (LAr) sampling calorimeters provide electromagnetic (EM) energy mea-

surements with high granularity. An iron/scintillator-tile hadronic calorimeter covers the

central pseudorapidity range (|η| < 1.7). The endcap and forward regions are instrumented

with LAr calorimeters for EM and hadronic energy measurements up to |η| = 4.9.

The muon spectrometer consists of precision tracking chambers and fast detectors for

triggering in a magnetic field with bending power in the range from 2.0 to 6.5 T m generated

by three large air-core toroidal superconducting magnets with eight coils each.

A three-level trigger system is used to select events [28]. The first-level trigger is

implemented in hardware and uses a subset of the detector information to reduce the

accepted rate to at most 75 kHz. This is followed by two software-based trigger levels that

together reduce the accepted event rate to 400 Hz on average.

3 Data sample

Collision events are selected with a combination of single-electron and single-muon triggers.

Electrons (muons) are required to have transverse energy (transverse momentum, pT) above

a certain threshold. During the 2012 run the thresholds were set to 36 GeV for muons and

60 GeV for electrons, and reduced to 24 GeV for isolated muons and electrons.

The analysed data set is limited to periods with stable beam conditions when all

detector subsystems were operational. The analysed sample corresponds to an integrated

luminosity of 20.2± 0.6 fb−1 [29].

3 ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in

the centre of the detector and the z-axis along the beam pipe. The x-axis points from the IP to the centre

of the LHC ring, and the y-axis points upwards. Cylindrical coordinates (r, φ) are used in the transverse

plane, φ being the azimuthal angle around the z-axis. The pseudorapidity is defined in terms of the polar

angle θ as η = − ln tan(θ/2). Angular distance is measured in units of ∆R ≡
√

(∆η)2 + (∆φ)2.
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4 Monte Carlo simulation

The nominal tt̄ sample that is used to unfold the data was generated using the Powheg-hvq

package [30–33], which is based on next-to-leading-order (NLO) QCD matrix elements. The

CT10 [34] set of parton distribution functions (PDF) was used. The hdamp parameter [35]

controls the scale of the damping of the real radiation in Powheg and thus effectively

regulates the high-transverse-momentum radiation of the matrix element (ME) calculation.

It was set to the top-quark mass unless indicated otherwise. The sample is normalised to

the most precise tt̄ cross-section prediction for pp collisions at
√
s = 8 TeV, corresponding

to σtt̄ = 253+13
−15 pb for a top-quark mass mt = 172.5 GeV, calculated at NNLO+NNLL [36–

41] with the top++2.0 [42, 43] program using the MSTW2008 [44, 45], CT10 [34, 46] and

NNPDF2.3 [47] PDF sets. The parton shower (PS), hadronisation, and the underlying

event were simulated with Pythia 6.427 [48] using the CTEQ6L1 PDF [49] set and a set

of tuned parameters called the Perugia 2011 [50] tune.

Several tt̄ event samples with different choices of the value of the Monte Carlo top-

quark mass, but otherwise the same settings as the nominal sample, are used to validate

the analysis. Alternative samples are used to evaluate uncertainties in modelling the tt̄

signal. These include samples produced with MC@NLO 4.01 [51] interfaced with Herwig

6.520 [52] and Jimmy 4.31 [53] and samples generated with Powheg + Herwig, with the

ATLAS AUET2 tune [54] and Jimmy [53] for multiple parton interactions. Some Powheg

samples were generated with hdamp = ∞ and reweighted to hdamp = mt, following the

strategy presented in ref. [13]. Two samples with variations of the renormalisation and

factorisation scales, the value of the hdamp factor and the choice of parton-shower tune are

used to estimate the uncertainty in modelling of initial- and final-state radiation [55].

Electroweak single-top-quark production was simulated with Powheg matched with

Pythia 6.425, with the CTEQ6L1 PDF set and the Perugia 2011C [50] tune. The cross

sections are normalised to NNLO+NNLL calculations for t-channel [56], Wt [57], and s-

channel production [58].

Leptonic decays of vector bosons produced in association with several high-pT jets,

referred to as W+jets and Z+jets events, with up to five additional final-state partons in

the leading-order (LO) matrix elements, were produced with the Alpgen generator [59]

interfaced with Herwig for parton fragmentation using the MLM matching scheme [60].

Samples corresponding to the production of a W boson in association with heavy-flavour

quarks (b- and c-quarks) were generated separately, at leading order and including effects

from the value of the mass of the heavy quarks. Overlap between heavy-flavour quarks that

originate from matrix-element production and those that originate from the parton shower

was removed. The W+jets samples are normalised to the inclusive W -boson NNLO cross

section [61, 62].

Diboson events were generated with Herwig with the CTEQ6L1 PDF. The multijet

background is estimated using a data-driven matrix method described in ref. [63].

At the LHC, multiple, simultaneous pp interactions occur in each bunch crossing. The

average number of additional pp interactions was 21 during the 2012 run. These pile-up

collisions were simulated using Pythia 8.1 [64] with the MSTW2008 leading-order PDF
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set [44] and the A2M tune [65]. The number of simulated pile-up events superimposed

on each hard-scatter event was reweighted to match the distribution of the number of

interactions per bunch crossing in data.

The response of the detector and trigger was simulated [66] using a detailed model

implemented in GEANT4 [67]. For some samples used to evaluate systematic uncertainties,

the detailed description of the calorimeter response was parameterised using the ATLFAST-

II simulation [66]. For all the non-tt̄ samples the top-quark mass was set to mt = 172.5 GeV.

Simulated events are reconstructed with the same software as the data.

5 Lepton and jet reconstruction

Electron candidates are reconstructed from clusters of energy deposits in the electromag-

netic calorimeter, matched with a reconstructed inner-detector track [68]. Electrons are

required to fulfill the tight identification requirement of ref. [68].The calorimeter cluster is

required to have transverse energy ET > 25 GeV and pseudorapidity |η| < 2.47. Clusters in

the transition region between the barrel and endcaps with 1.37 < |η| < 1.52 are excluded.

Non-prompt electrons are suppressed by cuts on the sum of transverse energy deposited in

a cone of size ∆R = 0.2 around the calorimeter cells associated with the electron and on

the sum of track pT in a cone of size ∆R = 0.3. The longitudinal impact parameter (z0) of

the electron track relative to the selected event primary vertex4 is required to be smaller

than 2 mm [69].

Muon candidate reconstruction is based on track segments in the muon spectrometer

combined with inner-detector tracks [70]. The combined track must satisfy pT > 25 GeV

and |η| < 2.5. Muon candidates have to be separated from any jet by ∆R > 0.4 and the

sum of the transverse momenta of tracks within a cone of size ∆R = 10 GeV/pµT around

the muon candidate is required to be less than 5% of the muon transverse momentum, pµT.

The muon longitudinal impact parameter (z0) relative to the primary vertex is required to

be smaller than 2 mm.

Jet reconstruction starts from topological clusters [71] of energy deposits in the

calorimeters. A local calibration scheme [72] corrects for the non-compensating response

of the calorimeter, dead material and out-of-cluster leakage. Jets are reconstructed from

these topological clusters using the anti-kt algorithm [73, 74] with a radius parameter of

R = 0.4. Jets are calibrated to the level of stable-particle jets using Monte Carlo simulation

and the response is verified in situ [75]. Jet reconstruction is implemented in the FastJet

package [76]. Jets are accepted if pT > 25 GeV and |η| < 2.5 after the calibration. To

reduce the contribution from pile-up, jets with pT < 50 GeV and |η| < 2.4 must have a

jet-vertex-fraction (pT-weighted fraction of tracks associated with the jet that point to the

primary vertex) greater than 0.5 [77]. The closest jet within ∆R = 0.2 of selected electrons

is discarded to avoid double-counting of the electron candidate as a jet.

4A primary vertex candidate is defined as a vertex with at least two associated tracks, consistent with

the beam collision region. The vertex candidate with the largest sum of squared transverse momenta of its

associated tracks is taken as the primary vertex.
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Jets with b-hadrons (b-jets) are tagged with the MV1 algorithm, based on multivariate

techniques exploiting impact parameter and secondary vertex information [78]. The effi-

ciency to tag b-jets in tt̄ events is 70%, with a light-parton jet rejection factor of 130 and

a c-jet rejection factor of 5. The simulated b-tagging efficiency is corrected to match the

efficiency measured in data.

The missing transverse momentum (and its magnitude Emiss
T ) is reconstructed from the

vector sum of the transverse momenta of the reconstructed calibrated leptons, jets and the

transverse energy deposited in the calorimeter cells not associated with these objects [79].

6 Event selection and reconstruction

Events are selected (preselection) if they pass several quality cuts and requirements to

select final states with one reconstructed electron or muon and five or more jets [80, 81]. A

reconstructed primary vertex with at least five associated tracks is required. Exactly one

high-quality, isolated lepton with pT > 25 GeV must be present. It must match the lepton

that triggered the event within ∆R < 0.15. At least five jets are required, exactly two of

which must be b-jets. The magnitude of the missing transverse momentum Emiss
T and the

W -boson transverse mass5 must both be greater than 30 GeV. After these requirements

the data sample contains 12419 events in the electron channel and 15495 events in the

muon channel. Of these events ∼ 93% are expected to be tt̄ events.

The reconstruction of the tt̄+ 1-jet system follows that of ref. [11]. Candidates for

the hadronically decaying W boson are formed by pairing all jets not tagged as b-jets and

selecting pairs i, j that satisfy:

• 0.9 < mW /mij < 1.25

• min
(
piT, p

j
T

)
·∆Rij < 90 GeV

where piT is the transverse momentum of the jet i, mij is the invariant mass of the jet pair,

∆Rij their angular distance and mW is the value of the W -boson mass reported by the

Particle Data Group [5]. The application of these two requirements reduces the multijet

and combinatorial backgrounds.

The neutrino momentum is reconstructed, up to a twofold ambiguity, by identifying

the Emiss
T with its transverse momentum and using the W -boson mass constraint to infer

its longitudinal momentum [11]. Only events where at least one neutrino candidate exists

are considered. If there are two solutions, each of the neutrino candidates is added to the

charged lepton, leading to two W -boson candidates.

Pairs of hadronic and semileptonic top-quark candidates are formed by combining

all the hadronic and leptonic W -boson candidates with the two b-tagged jets. Among

all possible combinations the one selected is that which minimises the absolute difference

5The transverse mass of the W boson is determined as mW
T =

√
2pT,` · Emiss

T [1− cos(φ` − φEmiss
T

)],

where ` is the selected lepton and Emiss
T is the missing transverse momentum.
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Channel e+jets µ+jets

tt̄ 5530 ± 470 7080 ± 600

Single top 191 ± 15 226 ± 18

W+jets 100 ± 33 121 ± 37

Z+jets 24 ± 8 13 ± 4

Multijet 21 ± 11 < 11

Prediction 5870 ± 540 7440 ± 660

Data 6379 7824

Table 1. Summary of the event yield after the final selection. The observed event yield is compared

with the prediction of the Monte Carlo simulation for top-quark pair production and the most

important SM background processes. The estimate of the uncertainty in the normalisation of the

expected signal and backgrounds yields includes the theoretical uncertainty in the cross section,

as well as experimental systematic uncertainties as discussed in section 8. The contribution from

diboson production is negligible.

between the masses of the reconstructed hadronic top (mthad
) and the semileptonic top

(mtlept
) candidates, divided by their sum:∣∣mtlept

−mthad

∣∣
mtlept

+mthad

The tt̄ candidates must satisfy mtlept
/mthad

> 0.9.

The four-momenta of the jets which are identified with the hadronic decay of the

W boson are corrected by the factor mW
mij

. Among the jets not used in either top-quark

candidate, the leading jet in pT is taken as the jet produced in association with the top

quarks, before their decay. Only events where this extra jet has a transverse momentum

larger than 50 GeV are considered. Due to this requirement the selected tt̄+1-jet events are

reconstructed with a topology similar to the one used in the theoretical NLO calculation,

where a similar pT cut is applied [25].

In table 1 the event yield after the final selection cuts is presented. The contribution

from diboson production is negligible and is hence not reported. The efficiency of the signal

selection, relative to the events that passed the preselection cuts, is ∼ 51%. The purity of

the sample is 94.3% for the electron channel and 95.2% for the muon channel. The yield

predicted by the Monte Carlo simulation is lower than the observed yield in both channels,

but is compatible within the MC normalisation uncertainty.

The tt̄+ 1-jet system is reconstructed adding the four-vectors corresponding to the

b-jets, the selected W -boson candidates and the additional jet. The inclusive quantity ρs

defined in section 1 is insensitive to ambiguities in the combinatorics and is not affected

by an incorrect pairing of b-jets with W -boson candidates. The observed ρs detector-level

distribution is presented in figure 1.

7 Data unfolding

This analysis follows the approach of ref. [11] in which the measured R distribution is

unfolded for detector, hadronisation and top-quark decay effects to the parton level where

– 7 –
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Figure 1. Distributions of the ρs variable in the tt̄+ 1-jet system after the final selection. Data

are compared with the SM expectation as obtained with Monte Carlo calculation which includes

a full simulation of the ATLAS detector. Statistical uncertainties in the observed event counts

are indicated with error bars. The band estimates the uncertainty on the expected yields. It

includes the uncertainty on the luminosity, effects from the cross-section normalisation computed

as 8.5%σtt̄⊕7.8%σsingle-t⊕33%σV+jets⊕50%σmultijet and detector plus tt̄ modelling uncertainties, as

described in section 8. Sub-leading background contributions have been merged into the “Others”

category to improve their visibility and reduce statistical fluctuations in the plot. The bin of the

highest ρs interval includes events reconstructed with ρs > 1.

top quarks are on-shell. The distribution obtained at this level is then compared with

theoretical predictions at fixed order, allowing the determination of the top-quark mass

in a well-defined theoretical framework. In addition, in this paper, the R distribution is

also presented at particle level, where data are unfolded for detector effects only. This

will allow direct comparisons with possible future theoretical calculations which include

top-quark decay and hadronisation effects.

The parton level is defined using on-shell top quarks and including initial- and final-

state radiation from quarks and gluons before the top-quark decay. Jets are reconstructed

by clustering u-, d-, c-, s-, b-quarks and gluons, via the anti-kt jet algorithm with R = 0.4.

The tt̄+1-jet fixed-order calculation at NLO is defined for a jet with pT larger than 50 GeV

and with absolute pseudorapidity smaller than 2.5, ensuring the observable is infrared-safe

for calculation purposes. The same definition is also applied to MC reconstructed events.

– 8 –
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The particle level is constructed from the collection of stable particles6 from full matrix-

element plus parton-shower generators, including top-quark decay and final-state radiation

effects. Particles produced from interactions with the detector components or from pile-

up of additional pp collisions are not considered at this level. The leptons’ four-momenta

are defined by clustering photons and the leptons with the anti-kt jet algorithm, using a

jet-radius parameter of R = 0.1. No isolation condition is imposed. In order to choose

prompt leptons from W/Z-boson decay, the parent of the lepton is required not to be a

hadron. Leptons from τ decay are considered as valid final-state particles. The neutrino

from the W/Z decay is treated as a detectable particle and is selected for consideration in

the same way as electrons or muons, i.e. the parent is required not to be a hadron. Jets

are defined by clustering all the stable particles which have not been used in the definitions

of electrons, muons and neutrinos with the anti-kt algorithm. The value of the jet-radius

parameter is chosen to be R = 0.4. A jet is tagged as a b-jet if any rescaled b-hadron7 is

included in the jet. Events where the leptons overlap with the selected jets are discarded.

The fiducial volume at particle level is defined by applying the detector-level selection

algorithm to the aforementioned particles as for data, the only difference being that the

neutrino four-momentum is known. This choice minimises the magnitude of the correction

to the data.

The unfolding procedure is detailed in the following. First, the detector-level distribu-

tion of ρs in figure 1 is re-binned as in figure 2 to maximise the sensitivity of the observable

to the top-quark mass while keeping enough statistics in each bin. This is achieved by

choosing a fine binning in the region ρs & 0.6, where the observable is most sensitive to the

top-quark mass [25]. Second, the predicted background contribution is subtracted and the

distribution is normalised to unity. Finally, the distribution is unfolded with a procedure

known as iterative Bayesian unfolding [82].

For the parton level the unfolding procedure takes the following form:

Rtt̄+1-jet(ρs) =
[
M−1 ⊗Rdet(ρs)

]
· f(ρs) · fph.sp.

(
ρs,Rtt̄+1 jet

ACC

)
.

The unfolded distribution is denoted by Rtt̄+1-jet(ρs) and the detector-level distribution

by Rdet(ρs). Migrations between the parton level and the detector level are described by

the unfolding matrixM. The matrix is built from the nominal ATLAS MC tt̄ sample, using

events which pass both the parton-level and detector-level selection cuts. The matrix is

inverted and regularised with the Bayesian unfolding method of ref. [82]. The bin-by-bin

correction factor f accounts for the acceptance and for the difference between the tt̄+ g

system in the nominal ATLAS MC sample (the first emission level of ref. [11]) and the

tt̄+ 1-jet system at parton level. It has a residual dependence on the value of the mass used

in the MC generator for the correction, near the threshold production of tt̄+ 1-jet events.

This is due to the available phase space in this region, which depends on the top-quark

mass. This effect is taken into account by a second factor fph.sp., which is parameterised in

6A particle is considered stable if its lifetime is greater than 3 × 10−11 s.
7Intermediate b-hadrons with pT > 5 GeV in the MC decay chain history are clustered in the stable-

particle jets with their energies set to zero.
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each bin as a function of the unfolded observable before acceptance correction, Rtt̄+1 jet
ACC ,8

removing any explicit dependence on the value of the top-quark mass. The fph.sp. factor

is very close to one and only affects those bins close to the tt̄+ 1-jet production threshold

region (ρs > 0.775). The unfolding to particle level is performed using the same tools, but

is simpler in two ways: f is a pure acceptance correction in this case and the phase-space

correction fph.sp. is equal to one as the same event topologies are considered at detector

and particle level.

The unfolded, normalised differential cross section at particle level is presented in

figure 2, where it is compared with the prediction of the Powheg + Pythia 6 generator

with the top-quark mass parameter set to 172.5 GeV. The distributions obtained from the

electron and muon channels separately, unfolded following the nominal procedure, are also

presented in the same figure to show their compatibility with the combined result.

In figure 3 the same measurement is presented after unfolding to parton level. The

result is compared with the prediction for tt̄+ 1-jet production of refs. [25, 83]. The fixed-

order calculation at NLO accuracy in QCD is interfaced to the parton shower and is labelled

as “NLO+PS” in the following. The prediction is shown for two values of the top-quark

pole mass, to demonstrate the sensitivity of the observable to the top-quark mass.

8 Extraction of the top-quark mass

The top-quark pole mass is extracted from the parton-level result with an NLO+PS cal-

culation of tt̄+ 1-jet production [25, 83]. The fit finds the optimal value of mpole
t by

minimising the following expression with the least-squares method:

χ2 =
∑
i,j

[
Rtt̄+1-jet

data −Rtt̄+1-jet
NLO+PS(mpole

t )
]
i

[
V −1

]
ij

[
Rtt̄+1-jet

data −Rtt̄+1-jet
NLO+PS(mpole

t )
]
j
,

where indices i, j ∈ {1, 2, . . . , 8} refer to the bin number of the unfolded observable. co-

variance matrix, of which diagonal terms are the experimental statistical uncertainties in

the measured observable, bin-by-bin. Per-bin uncertainties are assumed to be Gaussian.

Correlations between bins are taken into account via off-diagonal entries in V . The term

Rtt̄+1-jet
data represents the measured differential cross section. In each bin i a continuous

parameterisation [Rtt̄+1-jet
NLO+PS(mpole

t )]i is obtained by interpolating with a second-order poly-

nomial between different Rtt̄+1-jet
NLO+PS predictions computed at fixed mpole

t values.

Experimental systematic uncertainties are assigned to account for imperfections in

the modelling of the detector response and signal and background simulations. Monte

Carlo simulations with varied response or simulation parameters are used to compute a

set of R distributions at detector level. These distributions are then unfolded using the

nominal procedure described in the previous section to particle or parton levels. Systematic

uncertainties in the unfolded distribution are evaluated by taking into account the difference

of the variation bin-by-bin where the unfolded alternative MC samples are compared to

their generator-level distribution. Uncertainties in the top-quark mass are evaluated instead

8The observable is defined at parton level, but only for those events which pass detector-level selection.
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Figure 2. The normalised differential cross section for pp→ tt̄+ 1-jet production in pp collisions at√
s = 8 TeV, as a function of ρs. The results in the electron and muon channels, and the combination

of the two, are shown with different marker styles. The data are unfolded to the particle level and

are compared with the prediction from the nominal MC generator, Powheg + Pythia 6, with the

top-quark mass parameter set to 172.5 GeV.

by comparing the values of the top-quark mass extracted from the unfolded distributions

covering the systematic variations, and their numerical values are reported in table 2. A

detailed description of the systematic uncertainties evaluated is given in the following.

Uncertainties in the modelling of the jet energy response are taken into account by

varying the jet energy scale (JES ) within its uncertainty for a number of uncorrelated

components [84–86]. A separate uncertainty is assigned to the b-quark jet energy scale

(bJES ), which is uncorrelated with the JES. Systematic effects that affect the jet energy

resolution (JER) and jet reconstruction efficiency are taken into account by smearing the

jet energy and by randomly removing a fraction of the jets, respectively. Uncertainties

originating from b-jet tagging/mistagging efficiency are also considered (b-tagging efficiency

and mistag). Scale factors are applied to correct for the difference between efficiencies

measured in data and in simulated events [68, 70]. The uncertainties in these correction

factors are propagated to the measurement (Lepton). The modelling of Emiss
T is affected

by uncertainties in the jet energy and lepton momentum scales, as well as the response for

the soft-term and pile-up modelling [79].

Modelling uncertainties cover a possible bias of the measurement due to imperfections

in the description of signal and background processes in Monte Carlo generators. Several

alternative models are used for tt̄ production as introduced in section 4. Monte Carlo sim-
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Figure 3. The normalised differential cross section for pp→ tt̄+ 1-jet production in pp collisions at√
s = 8 TeV, as a function of ρs. The data are unfolded to the parton level as described in the text.

The predictions of the NLO+PS calculation of refs. [25, 83] are shown for a top-quark pole mass of

165 GeV, 175 GeV and 171.1 GeV. Statistical errors are represented by error bars, while the shaded

area represents the bin-by-bin sum in quadrature of the statistical and systematics uncertainties,

as described in section 8. Bin-by-bin correlations are not shown in the plot.

ulations produced with a different matrix-element generator (Powheg and aMC@NLO)

are compared to evaluate the uncertainties in the calculation of the matrix elements (Sig-

nal MC generator). Uncertainties in tt̄ modelling coming from the parton shower and

hadronisation model (Shower and hadronisation) are evaluated by comparing Pythia 6

with Herwig, both interfaced with Powheg. Uncertainties due to the choice of proton

PDF (Proton PDF ) are evaluated following the prescriptions of ref. [87]. Uncertainties

coming from the choice of parameter values that control initial- and final-state radiation

(ISR/FSR), the colour reconnection (Colour reconnection) and underlying-event modelling

(Underlying event) are estimated following the scheme of ref. [88]. The uncertainty in the

modelling of background processes is evaluated by varying the normalisation and shape

of several sources (Background). The normalisation is varied within the cross-section un-

certainty for single-top (±7.8%) and V+jets (±33%) backgrounds, while the data-driven

multijet contribution is scaled by ±50% [63]. Background shape uncertainties and lumi-

nosity uncertainty are found to be negligible.

The uncertainty due to the limited size of the Monte Carlo sample used to unfold the

data (MC statistics) is evaluated by repeating the unfolding procedure 5000 times, varying

the unfolding matrix within its uncertainties.
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Finally, additional systematic uncertainties are assigned to the top-quark mass extrac-

tion procedure. The top-quark mass value is obtained by fitting the R(mt) prediction to

the data unfolded at parton level. One uncertainty is assigned to the fit procedure (Fit pa-

rameterisation) to account for a possible bias from the continuous parameterisation of the

theoretical prediction and for non-closure effects. Another uncertainty is assigned to the

phase-space correction factor fph.sp. (Unfolding modelling). It is evaluated as half the differ-

ence between top-quark mass results obtained with and without the phase-space correction.

The theoretical uncertainty in the mass consists of two contributions. The uncertainty

due to the truncation of the perturbative series is evaluated with the conventional proce-

dure of varying the factorisation (µf) and renormalisation (µr) scales by factors of 2 and

then 1/2 from the nominal scale µf = µr = mt (Scale variations). The scale uncertainty

is taken as the mass shift for the alternative scale choices and is typically asymmetric. A

positive (negative) shift of the extracted top-quark mass is found when decreasing (increas-

ing) the renormalisation scale. Additional tests were performed in order to gain confidence

in the values presented in table 2. The scale variation has a larger impact in the MS

mass scheme, as already observed in ref. [17]. A redundancy exists between the theoretical

uncertainty obtained from the scale variations and the one considered by the initial/final

radiation, which is not subtracted. The uncertainty due to PDFs and the parametric un-

certainty in the strong coupling constant, αs, is evaluated by generating the prediction

for three consistent choices of PDF set and αs: CT10nlo with αs(mZ) = 0.118 (nominal),

MSTW2008nlo90cl with αs(mZ) = 0.120 and NNPDF23 with αs(mZ) = 0.119. The un-

certainty is taken as half the envelope of the mass values extracted from the three choices

mentioned above (Theory PDF⊕αs). The total theory uncertainty is obtained by adding

the scale and PDF uncertainties in quadrature. The parton shower barely affects the

theoretical prediction [11] and its associated uncertainty is negligible.

9 Results

The fit to the parton-level differential cross section yields a top-quark pole mass of

mpole
t = 171.1± 0.4 (stat)± 0.9 (syst) +0.7

−0.3 (theo) GeV. (9.1)

The procedure for the extraction of the MS mass with the calculation from ref. [17]

is completely analogous to the pole-mass fit described above. The result for the running

mass in the MS scheme is:

mt(mt) = 162.9± 0.5(stat)± 1.0(syst) +2.1
−1.2 (theo) GeV.

The statistical uncertainty in the mass is evaluated by repeating the unfolding and

fit procedure on pseudo-data samples, where the number of events in each bin is varied

within the statistical uncertainty. The experimental systematic uncertainty is evaluated as

described in section 8 and corresponds to those values quoted in table 2.

Several tests were performed to verify the consistency and robustness of the result.

The measured value of the top-quark mass is stable with respect to variations of the

pT cut on the additional jet and the choice of binning of the ρs variable. The analysis
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Mass scheme mpole
t [GeV] mt(mt) [GeV]

Value 171.1 162.9

Statistical uncertainty ¡0.4 ¡0.5

Simulation uncertainties

Shower and hadronisation <0.4 <0.3

Colour reconnection <0.4 <0.4

Underlying event <0.3 <0.2

Signal Monte Carlo generator <0.2 <0.2

Proton PDF <0.2 <0.2

Initial- and final-state radiation <0.2 <0.2

Monte Carlo statistics <0.2 <0.2

Background <0.1 <0.1

Detector response uncertainties

Jet energy scale (including b-jets) <0.4 <0.4

Jet energy resolution <0.2 <0.2

Missing transverse momentum <0.1 <0.1

b-tagging efficiency and mistag <0.1 <0.1

Jet reconstruction efficiency <0.1 <0.1

Lepton <0.1 <0.1

Method uncertainties

Unfolding modelling ¡0.2 <0.2

Fit parameterisation ¡0.2 <0.2

Total experimental systematic ¡0.9 ¡1.0

Scale variations (+0.6,−0.2) (+2.1,−1.2)

Theory PDF⊕αs <0.2 <0.4

Total theory uncertainty (+0.7, −0.3) (+2.1, −1.2)

Total uncertainty (+1.2, −1.1) (+2.3, −1.6)

Table 2. Summary table of the uncertainties in the measurement of the pole mass, mpole
t , and the

running MS mass, mt(mt).

is repeated using six bins, eight bins and ten bins. The central values of mpole
t obtained

with these different binning configurations agree within 0.3 GeV with the default setup. A

higher number of bins increases the sensitivity and leads to a slightly reduced uncertainty of

the measurement. However, the use of ten bins is affected by fluctuations in the unfolding

procedure and the χ2, originating from the limited statistics of the available simulations.

The result obtained with eight bins is very stable in all aspects of the analysis and therefore

this choice is finally adopted. The fits are also repeated excluding different bins in the χ2

sum, with an agreement of the results obtained within 0.1 GeV.

Correlations between the extracted top-quark mass and the assumed value of mW used

in event selection are negligible.
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Figure 4. Summary of top-quark pole mass measurements at the Tevatron and the LHC.

The masses extracted from the electron channel and the muon channel separately are

compatible. Effects associated to the top-quark finite width, off-shell effects and non-

resonant contributions are small and covered by the tt̄ MC modelling uncertainties. In

addition, the measured top-quark mass is independent of the assumed top-quark mass in

the MC simulation that is used to unfold the data. The fit is repeated for MC samples using

different top-quark masses between 165 GeV and 180 GeV. For all samples the unfolding is

based on MC simulation with a top mass of 172.5 GeV. The difference between simulated

top-quark mass and the fit result is found to be compatible with zero over the entire range

of top-quark masses tested.

The unfolding procedure is validated using pseudo-data samples which were generated

by varying the bin contents of the observable at detector level according to their statistical

errors. Pull distributions are produced using these samples. In addition, stress tests

are performed to demonstrate that the unfolding procedure is independent of the input

distribution. All these tests demonstrate that the analysis procedure is unbiased and

correctly estimates the statistical uncertainties.

The assigned theoretical uncertainty to the measured top-quark pole mass is cross-

checked in two alternative ways, following the approach applied to the measurement based
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on the data set at 7 TeV centre-of-mass energy [11]:

• The value of the top-quark mass is evaluated based on an LO calculation and com-

pared to the default, which is based on an NLO calculation. The difference is found

to be 0.3 GeV and is covered by the assigned uncertainties due to the scale choice.

• An expansion of R in powers of αS is performed and the theoretical uncertainty is

re-evaluated performing scale variations on the new expression for R. In this way,

potential cancellations are avoided which may occur when expanding the numerator

and the denominator or R separately as a function of αS and can lead to a too

optimistic uncertainty. Only the case of mpole
t is considered in this test and the result

obtained (+0.4, -0.2) is found to be compatible with that expressed in table 2,

All the above considerations and cross-checks suggest that the error assigned to un-

known higher orders gives a reliable estimation of its value.

The scale variation has a larger impact in the MS mass scheme, as already observed

in ref. [17].

The top-quark pole mass result obtained from data unfolded to parton level and re-

ported in eq. (9.1) is compatible with previous measurements of the pole mass [8–14], as is

shown in figure 4. Compared with the result obtained by ATLAS with the same method

at 7 TeV [11] the statistical and systematic uncertainties of the new result are reduced by

more than a factor of two.

The MS mass result is translated to the pole-mass scheme using the NLO QCD rela-

tionship [18] between the top-quark masses in the two schemes.9 When converting mt(mt)

to mpole
t the obtained value is mpole

t ≈ 170.9 GeV, which is in good agreement with the

direct extraction of the pole mass. The measurements of mpole
t and mt(mt) are therefore

fully compatible.

10 Conclusions

In this paper, the normalised differential cross section, R, of top-quark pair production in

association with an energetic jet is presented as a function of the inverse of the invariant

mass of the tt̄+ 1-jet system ρs = 2m0/mtt̄+1-jet. The measurement is performed using pp

collision data at a centre-of-mass energy of 8 TeV collected by the ATLAS experiment at

the LHC in 2012. The data sample corresponds to an integrated luminosity of 20.2 fb−1.

The distribution of R observed in the semileptonic final state is unfolded to the parton and

particle levels. The result from data unfolded to parton level is compared with the NLO

9The QCD relation between the two schemes is known to four loops, but here the series is truncated at

two loops to match the precision of the tt̄ + 1-jet cross section that was used to extract the mass in both

schemes. The relationship between the two masses then takes the simple form:

mpole
t = mt(mt)

(
1 +

4

3

αs (µ = mt)

π

)
+O(α2

s ).

The pole mass result quoted in the text is obtained for αs(163 GeV) ∼ 0.116.
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QCD predictions in two different renormalisation schemes. The top-quark running mass

in the MS scheme yields the following value:

mt(mt) = 162.9± 0.5 (stat)± 1.0 (syst) +2.1
−1.2 (theo) GeV.

The top-quark mass extracted in the pole-mass scheme yields

mpole
t = 171.1± 0.4 (stat)± 0.9 (syst) +0.7

−0.3 (theo) GeV

with a total uncertainty of ∆mpole
t = +1.2

−1.1 GeV.

The result for mt(mt) suffers from a larger theoretical uncertainty as compared with

the pole mass. This is due to a larger dependence on the renormalisation and factorisation

scales of the MS scheme in the most sensitive region close to the tt̄+ 1-jet threshold.
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N. Haddad35e, A. Hadef60a, S. Hageböck36, M. Hagihara169, M. Haleem177, J. Haley129,

G. Halladjian106, G.D. Hallewell101, K. Hamacher182, P. Hamal130, K. Hamano176,

H. Hamdaoui35e, G.N. Hamity149, K. Han60a,ao, L. Han60a, S. Han15a,15d, K. Hanagaki81,x,

M. Hance146, D.M. Handl114, B. Haney137, R. Hankache136, E. Hansen96, J.B. Hansen40,

J.D. Hansen40, M.C. Hansen24, P.H. Hansen40, E.C. Hanson100, K. Hara169, A.S. Hard181,

T. Harenberg182, S. Harkusha107, P.F. Harrison178, N.M. Hartmann114, Y. Hasegawa150,

A. Hasib50, S. Hassani145, S. Haug20, R. Hauser106, L.B. Havener39, M. Havranek142,

C.M. Hawkes21, R.J. Hawkings36, D. Hayden106, C. Hayes155, R.L. Hayes175, C.P. Hays135,

J.M. Hays92, H.S. Hayward90, S.J. Haywood144, F. He60a, M.P. Heath50, V. Hedberg96,

L. Heelan8, S. Heer24, K.K. Heidegger52, W.D. Heidorn78, J. Heilman34, S. Heim46, T. Heim18,

B. Heinemann46,aw, J.J. Heinrich131, L. Heinrich36, C. Heinz56, J. Hejbal141, L. Helary61b,

A. Held175, S. Hellesund134, C.M. Helling146, S. Hellman45a,45b, C. Helsens36,

R.C.W. Henderson89, Y. Heng181, S. Henkelmann175, A.M. Henriques Correia36, G.H. Herbert19,

– 26 –



J
H
E
P
1
1
(
2
0
1
9
)
1
5
0

H. Herde26, V. Herget177, Y. Hernández Jiménez33c, H. Herr99, M.G. Herrmann114,
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S. Ketabchi Haghighat167, M. Khader173, F. Khalil-Zada13, M. Khandoga145, A. Khanov129,

A.G. Kharlamov122b,122a, T. Kharlamova122b,122a, E.E. Khoda175, A. Khodinov166, T.J. Khoo54,

E. Khramov79, J. Khubua159b, S. Kido82, M. Kiehn54, C.R. Kilby93, Y.K. Kim37,

N. Kimura66a,66c, O.M. Kind19, B.T. King90,∗, D. Kirchmeier48, J. Kirk144, A.E. Kiryunin115,

T. Kishimoto163, D.P. Kisliuk167, V. Kitali46, O. Kivernyk5, E. Kladiva28b,∗,

T. Klapdor-Kleingrothaus52, M. Klassen61a, M.H. Klein105, M. Klein90, U. Klein90,

K. Kleinknecht99, P. Klimek121, A. Klimentov29, T. Klingl24, T. Klioutchnikova36,

F.F. Klitzner114, P. Kluit120, S. Kluth115, E. Kneringer76, E.B.F.G. Knoops101, A. Knue52,

D. Kobayashi87, T. Kobayashi163, M. Kobel48, M. Kocian153, P. Kodys143, P.T. Koenig24,
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72 INFN Sezione di Roma(a); Dipartimento di Fisica(b), Sapienza Università di Roma, Roma, Italy
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