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Abstract: Autophagy is a highly conserved degradation mechanism that is essential for maintaining
cellular homeostasis. In human disease, autophagy pathways are frequently deregulated and
there is immense interest in targeting autophagy for therapeutic approaches. Accordingly, there
is a need to determine autophagic activity in human tissues, an endeavor that is hampered by the
fact that autophagy is characterized by the flux of substrates whereas histology informs only about
amounts and localization of substrates and regulators at a single timepoint. Despite this challenging
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task, considerable progress in establishing markers of autophagy has been made in recent years.
The importance of establishing clear-cut autophagy markers that can be used for tissue analysis
cannot be underestimated. In this review, we attempt to summarize known techniques to quantify
autophagy in human tissue and their drawbacks. Furthermore, we provide some recommendations
that should be taken into consideration to improve the reliability and the interpretation of autophagy
biomarkers in human tissue samples.

Keywords: autophagy; biomarkers; pathology; disease

1. Autophagy at Glance

Autophagy is a dynamic process that controls cellular homeostasis, stress adaptation, and under
certain conditions, regulates cell death in eukaryotes [1,2]. Deregulation of autophagy is found in
a variety of human pathologies. Autophagy is, therefore, attracting an increasing number of scientists
who investigate this degradation mechanism in cell culture systems, animal models, and patient
samples. Three main autophagy pathways have been described: macroautophagy, chaperone-mediated
autophagy (CMA), and microautophagy (Figure 1).

Macroautophagy is characterized by the formation of double-membraned vesicles, called
autophagosomes that engulf superfluous or harmful components of the cytoplasm. Autophagosomes are
directed towards lysosomes, where they fuse to degrade and recycle their contents [3]. Macroautophagy
is a multistep process divided into initiation, nucleation, expansion, closure, and fusion. These steps are
regulated by six autophagy-related (ATG) [4] protein classes/complexes [5–10]; (i) The unc-51-like kinase
1 (ULK1) complex, composed of ULK1, FIP200, ATG13 and ATG101; ATG9; (ii) the class III PI3K complex,
composed of VPS34, Beclin1 and vesicular transport factor p115; (iii) WIPI proteins; and (iv and v) the two
ubiquitin (ub)-like conjugation systems, the ub-like ATG12 conjugates, composed of ATG12 and ATG5
and the ub-like ATG8 (LC3 and GABARAP proteins), which conjugates to phosphatidylethanolamine
and (iv) the less studied ATG2-ATG18 complex. The conjugation systems critically involve ATG3, ATG7,
ATG10, and ATG16L1, whereas ATG4 is required for ATG8 activation. Several signals have been shown
to activate the initiation of the macroautophagy process. All of them target the ULK1 complex, which
in turn triggers nucleation of the phagophore by phosphorylating components of the class III PI3K
complex. The class III PI3K complex stimulates local phosphatidylinositol-3-phosphate (PI3P) production
allowing the recruitment of WIPIs (and other proteins) to the membrane. WIPIs attract the ATG12
complex (ATG12-ATG5-ATG16L1) to the phagophore leading to lipid conjugation of ATG8 proteins (in
conjunction with the activity of ATG7 and ATG3). The activation of these two conjugation systems leads
to expansion of the double membrane. Recently, reports demonstrated that lipid transfer of ATG9A
vesicle delivery necessary for the phagophore expansion is dependent on ATG2A/B ATG9 interaction at
the mitochondria-associated endoplasmic reticulum (ER) membrane [11–13]. In addition, mechanistic
studies propose that ATG2A/B is responsible for the expansion and closure of the phagophore via
binding to GABARAP/GABARAP-L1 independently of WIPI4 [14]. Once closed, the double-membraned
vesicle undergoes intracellular trafficking and may fuse with endosomes (forming an amphisome)
and/or fuse directly with the lysosome. In addition, the macroautophagic pathway is tightly linked to
endocytosis. The endocytic pathway facilitates the nucleation and maturation of the phagophore and the
lysosome-autophagosome fusion (reviewed in [15,16]). In line, inhibiting endocytosis using Dynasore
leads to autophagy inhibition, despite the fact that mTORC1 activity is decreased [17], reinforcing the
positive interplay between endocytosis and autophagy.

Chaperone-mediated autophagy (CMA) is a selective autophagy pathway that modulates the
turnover of soluble cytosolic proteins. In contrast to macroautophagy, CMA delivers cargo directly to
the lysosomes. Therefore, CMA does not require the formation of vesicles [18–20]. CMA is a multistep
process that is initiated by (1) recognition of the substrate (2) substrate binding and unfolding followed
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by (3) the translocation of substrate to the lysosome and finally (4) degradation of the substrate within
the lysosome [19]. Briefly, the molecular chaperone HSC70 (HSPA8) recognizes and binds CMA
substrates containing a KFERQ (Lys-Phe-Glu-Arg-Gln)-like amino acid motif [21] within the cytosol
and targets them to the lysosomal surface. At the lysosome, the substrate interacts with the cytosolic
tail of the lysosome-associated membrane protein (LAMP) type 2A receptor. This interaction leads to
the multimerization of LAMP2A at the lysosomal membrane, stabilized by HSP90, which is located
on the luminal side of the lysosome membrane. Substrates are finally translocated and degraded by
lysosomal proteases.
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Figure 1. The autophagy machinery: Macroautophagy: After initiation, several autophagy proteins,
including LC3B and the ATG12-ATG5-ATG16L1 complex are recruited to the pre-autophagosomal
site. Next, the phagophore is expanded and in parallel cytoplasmic content gets engulfed
before the autophagosome closes and finally fuses with the lysosome. Chaperone-mediated
autophagy (CMA): The molecular chaperone HSC70 binds potential substrates containing the KFERQ
(Lys-Phe-Glu-Arg-Gln) amino acid motif in the cytosol and targets them to the lysosomal surface via the
LAMP2A receptor on the lysosome membrane, leading to the degradation of the substrate by lysosomal
proteases. Microautophagy; the lysosomal membrane undergoes invaginations and/or protrusions to
directly internalize and degrade cytoplasmic material.
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Microautophagy is characterized by the degradation of intracellular proteins and organelles
directly engulfed by lysosomes or endosomes. In mammalian cells three types of microautophagy exist:
(a) Microautophagy with lysosomal protrusion, (b) Microautophagy with lysosomal invagination, and
(c) Microautophagy with endosomal invagination. The latter, termed endosomal microautophagy
(eµA), occurs in late endosomes/multivesicular bodies, which subsequently fuse with the lysosome for
full degradation [22]. The detailed steps and molecular mechanisms of microautophagy are yet to be
fully determined. Endosomal microautophagy has been described as a stepwise pathway, starting
with an invagination of the membrane that is coordinated by ESCRT and accessory proteins. Similarly,
to CMA, proteins bearing the KFERQ-like motif will be targeted via the binding of HSC70 (HSPA8) and
then internalized. Various types of organellar microautophagy have been described in yeast [23,24].
The extent of organellar microautophagy in mammalian cells is yet to be determined.While the
predominant role of autophagy is to promote cell survival, in specific contexts autophagy, the autophagic
machinery, or components thereof can be either (i) associated with, (ii) contributing to, (iii) required for,
or (iv) mediating regulated cell death (reviewed in [25,26]). The autophagic machinery or components
thereof may be engaged or upregulated as part of stress responses alongside cell death in a futile
attempt to restore homeostasis. However, there are also many examples of the involvement of ATGs or
other autophagy-associated gene products in regulated cell death. For instance, ATG4D, ATG5, Beclin-1,
MAP1LC3B, and p62/SQSTM1 have been implicated in apoptosis and caspase activation under various
conditions [27–32]. Macroautophagic responses or components of the macroautophagic machinery can
also contribute to cell death induction independently of apoptosis. For instance, in apoptosis-deficient
Bax/Bak knockout mouse fibroblasts, chemotherapy-induced cell death requires ATG5 and Beclin-1 [33].
Moreover, autophagy can promote ferroptosis via degradation of ferritin [34]. Furthermore, necrosome
assembly can occur on the autophagosomal membranes [35]. The caspase-independent regulated
necrosis called necroptosis can be induced in a pan-caspase inhibited environment by TRAIL and
TNF. TRAIL-induced necroptosis is ATG5 dependent while TNF-dependent necroptosis is ATG5 and
ATG16L1 dependent [36]. Together, these links indicate that analyzes of autophagy and autophagic
markers in tissues can provide information not only about autophagic activity, but also on various modes
of cell death. Further studies on the roles of the different ATG proteins and other autophagy-associated
proteins on cell death will improve the understanding of the relationship between autophagy and
cell death.

2. Autophagy and Human Disease

Autophagy is an attractive research subject for the biomedical community because of its crucial
role in maintaining organelle homeostasis, proteostasis, and the cellular energetic balance. Indeed,
autophagy deregulation has been linked to many human disorders including neurodegenerative
conditions, metabolic disorders, myopathies, heart conditions, and cancer. Therefore, efforts have
been made to understand the function of autophagy in diseases to improve current therapies.
Macroautophagy is modulated by a large number of clinical drugs, which affect various steps
in the autophagic pathway, and include both inducers of autophagy (rapamycin/rapalogs, metformin,
lithium, chlorpromazine, and others) and inhibitors (hydroxychloroquine, azithromycin, clomipramine,
and others) (reviewed in [37]). In this section, we will summarize recently published insights into the
roles of autophagy in a selected set of human diseases. For more detailed information, please see the
indicated list of recent review articles [38–47].

2.1. Autophagy in Cancer

A tumor-suppressive function of macroautophagy is supported by animal models, for example
Beclin1 heterozygous mice display an increased tumor incidence [48]. Conversely, stress- and cancer
therapy-related induction of macroautophagy frequently supports tumor cell survival, suggesting
an oncogenic function ([49,50]). Altogether, the role of macroautophagy in tumorigenesis is still
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controversial and likely depends on the type of tumor and the stage of disease progression [51]
(Table 1).

Similar to macroautophagy, accumulating evidence suggests that CMA activity has a dual effect
on tumor development and growth (Reviewed in [38]). High LAMP2A expression has been found
in numerous cancer types and was linked to higher CMA activity [52]. Therefore, increased effort
has been made to define the role of CMA in cancer. CMA may sustain the Warburg effect in cancer
cells [53] either indirectly by targeting p53 and thus reducing p53-dependent transcription of key
glycolytic enzymes such as GAPDH and aldolase [52], or directly by targeting key glycolytic enzymes
such as acetylated PKM2 [54] and HK2 [55]. Degradation of PKM2 and HK2 leads to an accumulation
of glycolytic intermediates and proliferative signals [53]. CMA may also improve resistance to various
stress inducing stimuli including chemotherapy [56], ER stress [57] and hypoxia [58,59]. Lastly, CMA
may contribute to tumor cell proliferation and metastatic potential [52,60–62]. While constitutively
active CMA was frequently found in cancer cells [52], a study reported that the lack of Lamp2A
expression in mice increased the risk of malignant transformation and liver tumorigenesis [63]. Further
studies are warranted to better understand the impact of CMA on cellular transformation and on
cancer cells.

2.1.1. Solid Tumors

The different roles of autophagy in cancer seem to be related to the tumor type, stage, and genetic
context [49]. Autophagy is likely to play as predominantly tumor suppressor role during the initiation
and development of tumors. However, in well-established tumors, autophagy may be a survival
mechanism in response to stress [64]. In accordance with a tumor suppressor role, a decreased
expression of Beclin-1 at mRNA and protein levels have been found in human brain tumor samples,
compared to non-tumoral lesions [65]. In the context of breast cancer, reduced BECN1 mRNA expression
contributes to poor prognosis in HER2-enriched breast tumors [66]. In addition, upstream positive
regulators of Beclin-1, such as UV radiation, resistance-associated gene or Bax interacting factor-1
(Bif-1), have been found downregulated in several types of cancers, including colorectal cancer [67,68].
In contrast, Ras-driven tumors seem to be autophagy-dependent [69]. For instance, Ras-driven
tumorigenesis in pancreatic or lung cancer likely relies on autophagy induction through oncogenic
Ras pathway activation to promote cell transformation, reactive oxygen species (ROS) clearance
and mitochondrial oxidative phosphorylation [70–72]. Correlative evidence suggests that resistance
to systemic therapies based on tyrosine kinase inhibitors (TKIs) could be regulated by autophagy.
In hepatocarcinoma (HCC), Sorafenib resistance was reported to be related to AMP-activated protein
kinase (AMPK), which induces pro-survival autophagy and reduces cell death [73]. Upregulation of
GATA6, a transcription factor that mediates the expression of autophagy-related genes such as ATG5,
ATG7, and ATG12 by erlotinib treatment promotes treatment resistance in cellular models of non-small
cell lung cancer (NSCLC) [74].

All this knowledge suggests that autophagy could serve as a targetable pathway to treat cancer
progression, although controversies remain regarding whether to inhibit or enhance autophagy.
Strategies based on the blockage of autophagy usually combine traditional inhibitors with cancer
therapies. As an example, the use of chloroquine (CQ) during Sorafenib treatment in a thyroid cancer
subcutaneous mice model, markedly reduced tumor volume and enhanced caspase-3 activation [75].
In HCC, combination of the PARP inhibitor Niraparib and CQ increased cell death and DNA
damage [76]. Converesly, in other models of cancer, boosting autophagy has an anti-tumoral effect.
Mitochondrial targeted Lonidamine (mito-LND) blocks mitochondrial bioenergetics, leading to ROS
and autophagic-induced cell death, therefore, alleviating lung cancer progression [77]. Another strategy
based on glycolytic metabolism inhibition in breast cancer promotes autophagy to bypass Lapatinib
resistance [78].

Increasing evidence suggests that alterations in autophagy may be a major mechanism of tumor
escape from immune surveillance by regulating signaling pathways in both tumor and immune
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cells [42]. Targeting autophagy in cancer cells in combination with other therapeutic strategies, such as
immunotherapy, has gained significant interest to promote tumor regression. In fact, some authors
have proposed autophagy-associated cell death as a key immunogenic mechanism that could potentiate
tumor treatment response and mitigate progression [79–81]. In immune-competent animal models,
autophagy is necessary for dendritic cell and T-lymphocyte infiltration [82–84]. Autophagic vesicles
charged with defective ribosomal products (DRiPs) may serve as tumor vaccines to facilitate antigen
cross-presentation and immunogenicity [85]. Dribble DRiPs based vaccines have been tested in clinical
trials along with cyclophosphamide in patients with NSCLC, showing increased T and B-cell response,
thus, serving as potential immunotherapy based on autophagy promotion (NTC01909752) [85].

2.1.2. Leukemia and Lymphomas

Hematopoiesis is a highly hierarchical process during which hematopoietic cells produce functional
progenitor cells including mature myeloid cells and lymphocytes. Deregulation of this process can lead
to a block in differentiation of immature cells that have acquired increased self-renewal potential. One of
the key mechanisms that maintains hematopoietic homeostasis is autophagy (reviewed in [41,45].
There is solid evidence that hematopoietic stem cells (HSCs) with impaired macroautophagy are
more prone to ageing and have an increased risk of developing hematopoietic malignancies [86–91].
Lymphomas and leukemias are highly heterogeneous blood cancers [92,93]. Autophagy can act either
as pro- or antiproliferative mechanism depending on the lineage and the genotype of the disease [41].
The complexity of the interplay between autophagy and disease progression in blood cancer is well
exemplified in acute myeloid leukemia (AML) studies. Autophagy deregulation has been described
in AML where ATG gene expression is frequently repressed [90,94–97]. Autophagy abrogation,
by deletion of key ATG genes, leads to leukemia initiation and progression in mouse models [96–99].
Remarkably, some studies showed a high frequency of AML patients, particularly those with complex
karyotypes, carrying heterozygous deletions, missense mutations or copy number variations of
ATG genes [97,100,101]. Furthermore, a correlation was found between AML and heterozygous
chromosomal loss of 5q, 16q, or 17p with the encoded regions for the ATG genes ATG10 and ATG12,
GABARAPL2 and MAP1LC3B, or GABARAP, respectively [97]. AML is a highly heterogeneous disease,
therefore it is expected that macroautophagy can be both tumor-promoting or suppressive. For instance,
the pro-oncogenic FLT3-ITD mutation found in many AML patients promotes higher macroautophagy
levels, suggesting that macroautophagy is not tumor-suppressive in this setting and may instead be
tumor-promoting [102]. On the other hand, combining expression of the oncofusion protein MLL-ENL
expression with knock out of Atg7 or Atg5 leads to a more aggressive leukemia in a mouse model,
indicating a tumor-suppressive role of autophagy under those conditions [97]. Interestingly, using an
MLL-Af9 leukemia model, Liu et al. reported that while macroautophagic activity is key for the disease
development, it is dispensable for the maintenance of leukemia [103]. Therefore, although autophagy
is critical in the maintenance of hematopoietic stem cells (HSCs), it plays context-dependent roles
in leukemia initiation and progression, suggesting a highly complex role for autophagy in leukemic
transformation and leukemic stem cells properties in AML (reviewed in [104]). To further complicate
this scenario, autophagy is also established as one of the resistance mechanisms of leukemic cells to
chemotherapy [94,95]. There are clinical trials in which hydroxychloroquine (an autophagy inhibitor),
increased cytotoxicity of conventional chemotherapy in leukemic cells [98,105]. However, there is still
divergence on this subject and it is accepted that autophagy has a versatile role, which will depend
on the progenitor and the driver engaged in the leukemia transformation and the state of leukemic
expansion. Of note, some oncofusion proteins, such as PML-RARA [106,107] and BCR-ABL [108,109],
which are encoded in APL and CML, are degraded by autophagy, whereas others, such as AML1-ETO,
are not [110].
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Table 1. Summary of the effect of autophagy on cancer discussed in the present review. For more
detailed information, please see the indicated list of recent review articles [38–47].

Type of
Autophagy

Level of
Activity Type of Tumor Role of Autophagy

Macroautophagy Low Solid Tumors Beclin-1 deficiency in mice increase tumor incidence [48]

Low Beclin-1 expression levels in human brain tumors [65]

Low Beclin1 mRNA levels iscorrelated with a poor prognosis
in HER2-enriched breast tumors [66]

Low macroautophagy activity in HSCs increases risk of
developing hematopoietic malignancies [86–91]

Leukemia and
Lymphomas Low ATG gene expression in AML [90,94–97]

Accelerated leukemia development in mouse model with
impaired macroautophagy [96–99]

ATG gene mutations found in AML [97,100,101]

High Solid Tumors Therapy-induced macroautophagy enhances tumor cell
survival [49,50,73,74,94,95]

RAS-driven tumors are autophagy-dependent [66,70–72]

Leukemia and
Lymphomas

High macroautophagy activity in FLT3-ITD mutant AML
patients [102]

Important for the differentiation and activation of
lymphocytes [39,111–118]

CMA Low Solid Tumors Lamp2a deficiency in a mouse model increase liver tumor
incidence [63]

High Solid Tumors High LAMP2A expression commonly found in cancers [52]

Therapy-induced CMA promote tumor cell survival [56]

CMA activity contributes to tumor cell proliferation and
metastatic potential [52,60–62]

2.2. Autophagy in other Diseases (Neurodegenerative Conditions, Metabolic Disorders, Myopathies,
and Heart Conditions)

In addition to influencing the initiation and progression of cancer, deregulation of autophagy has
been linked to other human diseases such as neurodegenerative conditions, metabolic disorders, and
autoimmune diseases.

2.2.1. Neurodegenerative Disorders

Neurodegenerative diseases are characterized by aggregation of misfolded proteins and loss of
neuronal population [119]. Many mutated proteins in neurodegenerative diseases are autophagy
targets (e.g., mutated α-synuclein in Parkinson’s disease, mutated huntingtin in Huntington’s
disease or mutants of TAR DNA-binding protein 43 (TDP-43) in amyotrophic lateral sclerosis) [120].
Loss of key ATG genes such as Atg5 or Atg7, has been shown to accelerate neurodegeneration in
mouse models [121,122]. Therefore, activating autophagy in neurodegenerative disorders may be
beneficial [123]. In concordance, mice with a conditional deletion of Atg7 in dopamine neurons showed
progressive neuron loss accompanied by p62-positive inclusions [124]. Surprisingly, elderly mice
had increased dopamine neurotransmission leading to improved movement [124]. Those results
indicate that although macroautophagy may be beneficial for neuronal survival, impairing autophagy
in Parkinson’s disease patients could improve their motor performance. It is important to note that
ATG7, like most of the ATGs, has a number of non-autophagic functions [125] and that the effects
of conditional deletion of Atg7 in dopamine neurons therefore may not (only) be related to effects
on autophagy. In conclusion, more studies are needed to highlight the complex role of autophagy
in neurodegeneration.
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2.2.2. Metabolic Syndrome Diseases

Metabolic syndrome is the name for a cluster of multifactorial diseases characterized by several risk
factors (high blood pressure, high triglycerides, low levels of high-density lipoprotein cholesterol, high
blood sugar and /or visceral distribution of body fat) [126]. This condition increases the risk of heart
disease, obesity, and type 2 diabetes. There is an increased number of studies showing that autophagy
is important for the maintenance of metabolism and that it has a protective role on metabolically active
organs such as the pancreas, adipose tissue, skeletal muscle, and liver. Therefore, it is unsurprising
that systemic enhanced autophagy is beneficial for the organism and improves the life span of aged
mice [127,128]. It has been proposed to treat metabolic syndrome diseases by activating autophagy
via caloric restriction, intermittent fasting, physical exercise and pharmacological means [40]. Indeed,
recently, Lim et al. demonstrated that enhancing autophagy in metabolic syndrome diseases and in
an obesity mouse model improves the metabolic profile [129].

2.2.3. Autoimmune Diseases

Autoimmune diseases are characterized by the abnormal recognition of self-components as
foreign, inducing immune antigen-driven response against healthy cells and tissues [130]. These
diseases are chronic and present with a wide range of symptoms. One of the challenges in treating
autoimmune diseases is to find potent immunomodulators that do not alter the integrity of the
immune cells. Unfortunately, most of the effective drugs are immunosuppressants that shut down
the entire immune system (reviewed in [39]). Interestingly, several studies demonstrated that
autophagy (macroautophagy and CMA) are important for the differentiation and activation of
lymphocytes [39,111–118]. In accordance, autophagy dysregulation has been described in various
autoimmune diseases and some of the current treatment suggestions include autophagy regulators [39].
The peptide P140/Lupuzor that directly acts on CMA [131,132], significantly improved the clinical
response in patient with systemic lupus erythematosus diseas [133].

2.2.4. Mitochondrial Diseases

Mitochondrial diseases are rare conditions caused by dysfunction of the oxidative phosphorylation
system. In cellular models of these pathologies, trans-mitochondrial cybrids and human skin-derived
fibroblasts showed evidence of altered autophagic flux, accumulation of autophagy markers, and
higher mitophagic activity [134–139]. In addition, deregulated autophagy has been described in
animal models of mitochondrial diseases: (i) an autophagic starvation-like response and mitophagy
in the skeletal muscle of a mouse model of mitochondrial myopathy [140,141], and (ii) increased
autophagosome numbers in retinal ganglion cells of a murine model of dominant optic atrophy [142].
These observations suggest that altered autophagy might play a role in the pathophysiology of
mitochondrial diseases.

3. Current Autophagy Markers and Their Limitations

Various methods and markers have been described and extensive guidelines have been produced
to guide researchers in the assessment of autophagic activity in different experimental models [143,144].
In this review, we will focus on methods employed to measure autophagy in primary patient samples
and in the pre-clinical setting.

Transmission Electron microscopy (TEM) is a gold standard method to demonstrate autophagosome
formation. TEM reveals the morphology of autophagic structures in the cells and their positioning
relative to other cellular components. Autophagosomes appear as double- or multi-membrane
vesicles. It is currently unclear whether TEM is a suitable technique to determine autophagy in patient
tissue. The sample preparation can lead to artifacts and the double membrane is harder to detect
in formalin-fixed samples. Therefore, the operator needs to be well-trained in using TEM and also
in the analysis and interpretation of the images [145]. A recent study has reported that snap-frozen
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cryo-fixation of tissue pieces followed by 1.5% paraformaldehyde post-fixation can help to reveal
autophagosome structures [146]. TEM is however so labor-intensive that it is unlikely to become
a routine clinical praxis for determining autophagy in patient samples.

Immunohistochemistry (IHC) and Immunofluorescence microscopy (IF) are routinely used in formalin-
fixed paraffin-embedded (FFPE) tissue. FFPE samples are an extensive resource in most hospitals.
Therefore, there is a lot of interest in using this type of samples for pre-clinical studies. The ATG proteins
MAP1LC3B, p62/SQSMT1, Beclin-1 and LAMP2A are frequently stained and used to assess the status
of autophagy [52,147–153]. These proteins are unfortunately not specific to autophagy and therefore
interpretation of autophagic activity based on ATG protein levels is still under discussion. For instance,
several studies demonstrated that Beclin-1 is a potent biomarker in several cancers [154–160].
Unfortunately, while Beclin-1 is an important component of the class III PI3K complex, it has also been
shown to bind to BCL-2 inhibiting its autophagic function [161,162]. Furthermore, Beclin-1 and ATG5
can be cleaved and thereby acquire pro-apoptotic functions [28,29,163]. Indeed, several components
of the autophagic machinery, including some ubiquitin-like ATGs, have important non-autophagic
cellular functions, implicated in cellular reprogramming, cell survival, and death, modulation of cellular
traffic, protein secretion, cell signaling, transcription, translation and membrane reorganization [164].
Importantly, using a snapshot of ATG gene expression to quantify a dynamic process clearly has its
limitations. For instance, high MAP1LC3B levels could result from either an increase or an impairment
in the autophagy flux [165,166]. Indeed, accumulation of an autophagy component that is not degraded
during the process (e.g., ATG5, ATG12, Beclin-1) may reflect either a block in autophagy or a high
turnover. Moreover, antibodies tested to specifically detect ATG8 family members in immunoblotting
assays need to be re-evaluated in formalin-fixed paraffin-embedded tissue. It is therefore difficult to
interpret and draw conclusions about autophagy on the sole basis of the abundance of ATG proteins in
primary human samples.

Western blotting (WB) is frequently used in autophagy assessments. Indeed, it is possible to detect
and distinguish the non-lipidated and the lipidated, autophagosome-associated form of ATG8 family
members by WB due to the differential migration rate of the two forms. As previously mentioned,
the specificity of the antibody is key to obtaining conclusive results [167]. Furthermore, WB requires
a substantial amount of cellular material, which may be problematic to obtain from primary patient
samples. Moreover, the results will reflect an average from the cells that are in the sample, and thus
potential differences across different cell types in the patient sample cannot be detected and potentially
important differences in a subset of the sample may be masked. It is possible to detect ATG8 by
WB of proteins extracted from FFPE tissue although it is not an easy task with potential protein
fragmentation and low protein yields [168]. In addition, altered ATG8 levels on a WB may be the result
of altered transcription or translation of the protein instead of altered autophagy. Finally, an increase
in autophagosome formation does not necessarily mean an increase in degradation of its content.

Flow cytometry allows the recording of high content and multiparametric sample detections and
is extensively used for non-adherent cells. Membrane-associated MAP1LC3B-II can be measured
after extraction of non-membrane-bound ATG8 using a detergent such as saponin for instance as
demonstrated in EGFP-MAP1LC3B reporter expressing cells [169]. While this high-throughput method
can be easily used in cells growing in suspension or liquid biopsies, measuring autophagy activity
by flow cytometry in adherent cells or FFPE tissue is challenging. Furthermore, microdissection
of FFPE tissue to prepare them for flow cytometry can be a tremendous task, but still represents
an alternative [170].

To summarize, all the above-mentioned methods have their limitations in assessing autophagic
activity in tissue. Measurement of MAP1LC3B and MAP1LC3B-II levels is frequently used to assess
autophagy, but this is insufficient. Of note, focus in pre-clinical and clinical studies has so far mostly
been on assessing canonical macroautophagy, while an increasing amount of data point to important
roles of selective macroautophagy or other types of autophagy, including CMA. Unfortunately, there
are no robust markers to measure autophagy activity in archived tissue and in vivo. Researchers
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must rely on their knowledge and expertise, interpret their data with caution, and integrate their
interpretation with functional and clinical data.

In addition to the difficulty in measuring autophagy in primary samples, ATG genes also function
in membrane biology (reviewed in [125,164,171,172]), such as secretion and endocytosis and have also
been associated with cell death mechanism and DNA repair responses. Therefore, non-autophagy
functions must be considered besides alterations of autophagic activity when autophagy-related genes
are deregulated.

We will discuss some ideas to overcome this difficult task in the next section.

4. New Avenues for Better Autophagy Markers

Scientists in translational biomedical research often seek better therapeutic targets by comparing
cell signaling pathways in healthy and diseased tissue. In recent years, autophagy modulation has
turned out to be an attractive option to tackle a large number of diseases. Accurately monitoring
autophagic activity in tissues will likely implement new treatment strategies and a better understanding
of the role of autophagy in a given disease. Therefore, reliable autophagy markers, improved staining
protocols, and agreed interpretation for primary human samples are urgently needed before we can
really determine the contribution of autophagy to a specific disease or treatment. New autophagy
markers will also be of great value for in vitro and in vivo experimentation/research.

As stated earlier, most of the published pre-clinical and clinical studies rely on MAP1LC3B-
dependent methods to assess autophagy. While for some types of autophagy and experimental setting
this marker is valuable, our current knowledge on autophagy suggests that MAP1LC3B does not
always reflect the actual autophagic flux. Therefore, we propose to increase the number and diversity
of markers in order to not only improve autophagic flux measurement but also to assess different types
of autophagy that contribute to a given phenotype. We should, for example, include additional ATG8
family members, other ATGs and autophagic substrates and CMA markers such as LAMP2A and
HSC70 (HSPA8).

All autophagy subtypes are multistep processes, and it is therefore reasonable to include ATG
proteins operating in different phases. Furthermore, lysosomes are central for the degradation efficiency
via autophagy. Lysosomal markers should be used together with autophagy markers to get a better
indication as to whether the autophagy machinery is fully functional. This includes assessing lysosomal
integrity in the tested samples [173–176]. In addition, a critical step for macroautophagy is the fusion of
the autophagosome with the lysosome. Therefore, techniques to detect pH in the autophagic vesicles
may be useful to detect the fusion of the autophagosome (neutral pH) to the lysosome (low pH) [177].

Other key players in the process are autophagy cargo receptors. While the majority of studies rely
on p62/SQSTM1, one should not forget additional receptors such as NBR1, NDP52, Optineurin [178]
and NCOA4 [179], and more recently identified receptors should be added to this list, e.g., ER-phagy
receptors. Knowing the specific cargo receptor involved in the autophagy pathway will point to
the specific substrates degraded in the experimental setting or in a particular malignancy. Indeed,
monitoring the expression levels of autophagy targets may provide information on autophagic flux
when combined with analyzing proteins of the autophagy machinery. The notion of autophagic flux
includes a time dimension and the autophagosomal pool size per cell and the current techniques
may fail in measuring autophagy in a snapshot [165]. Therefore, the quantification of proteins that
are degraded during the process (i.e. amount of substrate will inversely correlate to the degradation
activity of autophagy) coupled with the quantification of autophagosomes using marker proteins that
are maintained during autophagy (mediators of autophagy amounts correlate with autophagosome
amount) will help to gain knowledge on the autophagic activity. For instance, detection of low
concentrations of autophagy substrates (e.g., p62/SQSTM1) together with the presence of high amounts
of non-substrate autophagy proteins (e.g., ATG5) may indicate high autophagy activity. Importantly,
hypotheses based on any particular protein ratio should be supported by experimental systems in
which mechanistic relationships can be tested in the relevant cell type. In general, it is most promising
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to investigate substrate proteins that are (1) only inefficiently degraded by breakdown mechanisms
other than autophagy, (2) produced at stable rates, and (3) able to accumulate within a cell without
undergoing secretion or rapidly causing cell death. Potentially useful candidates of this type of
autophagy substrates are components of large protein complexes such as the subunits of the CCT/TRiC
chaperonin and proteasomes [180,181].

Given the limitations of antibody-based methods, mass-spectrometric (MS) analysis of FFPE
tissues may offer important advantages due to a higher specificity and broader scope, that is, the
capacity to detect many proteins in parallel. FFPE tissue MS protocols have been reported [182,183]
and their application in the assessment of autophagy should be tested in the near future.

In some contexts, autophagy affects gene expression and therefore it is appropriate to measure the
mRNA expression of autophagy-regulated genes. Transcription factors targeted by autophagy provide
the opportunity to couple protein detection methods with RNA-seq of their target genes. For instance,
HIF-1 alpha is a known CMA target and GATA4 is a senescence regulator that is degraded by selective
macroautophagy under basal conditions in human fibroblasts [184]. Therefore, analysis of the mRNA
levels of target genes and protein expression of the transcription factor in question, combined with
analyses of autophagy-related genes, will help to delineate the autophagy activity involved in specific
diseases. Apart from correlating expression of certain genes with autophagic activity, the quantification
of mRNAs allows one to estimate the synthesis of autophagy substrates. This helps to evaluate whether
high abundance of a substrate, e.g., p62/SQSTM1, is caused by inefficient autophagic degradation or
high synthesis (or both).

Many ATG genes are modified at the posttranslational level in a way that influences autophagic
activity (Reviewed in [185,186]). Therefore, the use of antibodies recognizing specific posttranslational
modifications in ATG proteins will provide a better picture of the autophagic activity in tissues and
patient samples. It is desirable to develop antibodies that are specific for lipidated MAP1LC3 and
GABARAPs (LC3-II/GABARAPs-II as opposed to LC3-I/GABARAPs-I), protein conjugates such as
ATG12–ATG5 (as opposed to free ATG12 and ATG5), and other posttranslational modifications found
in ATG proteins (e.g., phosphorylation, acetylation, O-GlcNAcylation etc.).

In-situ hybridization (ISH) identifies mRNA expression in tissue samples and can be used to assign
gene expression to specific regions of an organ. Furthermore, ISH can be used if specific antibodies are
not available. For instance, Alfy expression levels in mouse brain during development were detected
by ISH [187]. Therefore, ISH can be used as a method complementary to IHC. Advanced methods
such as RNAScope ISH offer high sensitivity at relatively low technical complexity.

Finally, it is not only the expression levels of proteins that is important but also their intracellular
localization, which notably can affect the function of ATG proteins. Therefore, whenever possible the
cellular compartmentation of the proteins of interest should be monitored.

5. The Pathologists’ Corner

Clinical pathologists and researchers should combine their efforts in order to better understand
the autophagy machinery and its impact in human health. Basic scientists depend on the expertise
of pathologists in assessing cell and tissue morphology and identifying alterations associated with
disease. Improved collaborations between clinicians and researchers will facilitate the generation of
clinically relevant hypotheses in the autophagy field. Furthermore, trained pathologists can support
the autophagy researchers in developing standardized staining and scoring protocols allowing for
better reproducibility and comparability of basic research and clinical studies. Autophagy cannot be
detected in routine H&E-stained FFPE tissues and therefore relies on biomarkers detection by IHC [188].
Reliable antibody testing should be done to validate the specificity and the sensitivity of antibodies
used in different experimental set-ups and in tissue staining. For instance, we have observed that
anti-Beclin-1 antibodies may give very different results and the specificity of the antibodies should be
tested by both western blotting (Figure 2a) and IHC of cell lines (Figure 2b) and more importantly
IHC of primary samples (Figure 2c,d). Indeed, while Cell Signaling Technologies antibody (#3738)
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detects knockdown in FLOT-1 cell line by western blot and IHC, the Covalab antibody (#mab50763)
does not. In concordance, IHC of two gastric tumors demonstrated a case with low and high Beclin-1
expression with the Cell Signaling Technologies antibody (Figure 2c) while no significant difference
was detected with the Covalab antibody (Figure 2d). Whenever possible, the specificity of antibodies
for a particular protein should be validated with respective knockdown/knockout cell models and/or
by ectopic expression of the protein before patient cohorts are screened (Figure 2).
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Figure 2. Specificity test of two different anti-Beclin-1 antibodies in FLO-1 human oesophageal
adenocarcinoma cells and in primary gastric cancer. FLO-1 cells were transduced with a non-targeting,
scrambled shRNA (SHC002) or 3 independent shRNAs targeting BECN1. (a) Total lysates were subjected
to immunoblotting using anti-Beclin-1 from Cell Signaling Technologies (left panel) or Covalab (right
panel). Stain-Free Total protein is shown as a loading control, (b) cell pellets were fixed and subjected
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to immunohistochemistry using anti-Beclin-1 from Cell Signaling Technologies (left panel) or Covalab
(right panel). (c,d) 2 Primary Gastric Cancer samples were fixed and subjected to immunohistochemistry
using anti-Beclin-1 from Cell Signaling Technologies (c) or Covalab (d). The results indicate that the
Cell Signaling Technologies antibody specifically recognizes Beclin-1 in both Western Blotting (WB)
and immunohistochemistry (IHC), whereas the Covalab antibody shows no or very poor specificity
with either method. Furthermore, scoring results of primary Gastric Tumors gave different results
from one case low and on high with Cell Signaling Technologies antibody to both in a moderate range
with the Covalab antibody. The Cell Signaling Technologies antibody would therefore be the more
reliable antibody to use in assessing Beclin-1 levels in human oesophageal adenocarcinoma patient
samples. The experiments were performed by Félice Janser and José Galván in the lab of Rupert Langer.
Representative pictures are shown.

Working hand-in-hand will undoubtedly increase the number of autophagy markers that are
reliable and relevant for a given disease or experimental sample.

6. Gathering New Knowledge and Tools for a Better Autophagy Assessment

A broad use of autophagy markers by diagnostic laboratories and pharma companies should
be highly reliable, easy to handle and cost-effective. The first step to design the best strategy to
assess autophagy is to identify the autophagy pathway involved in a particular model, if possible,
with a pre-test in vitro, for example, by identifying the essential ATG genes.

In-depth understanding of the autophagy pathway at the molecular level will help to design specific
markers. Indeed, understanding the core autophagy components and the upstream and downstream
regulators will provide new tools to dissect the autophagy response in a given disease context.

Gene panels are increasingly being developed for cancer diagnosis, prognostics, and to guide
treatment. For example, in breast cancer several multigene prognostic tests have been developed to
improve stratification of patients and treatment decisions (reviewed in [189]). Since autophagy cannot
be deduced by the use of single markers in archived tissue, it will be very interesting for autophagy
researchers to identify gene “signatures” that can predict autophagic activity and even response to
autophagy-targeted treatment.

Furthermore, designing autophagy detection kits for non-invasive samples such as plasma or
liquid biopsies instead of tissue markers will facilitate less invasive sampling. Interestingly, in patients
with multiple sclerosis, the levels of ATG5 and Parkin in the serum and the cerebrospinal fluid were
found to be significantly higher than in the control cohorts [190,191]. In addition serum levels of
Beclin-1 are related to the stage of diabetic kidney disease and inversely correlate with a kidney
dysfunction marker albuminuria in these patients [192].

In conclusion, a better overall understanding of autophagic activity in patients and patient tissue
may open up new diagnostic, prognostic and therapeutic strategies.

7. Improving Autophagy Assessment by Sharing Knowledge

The field of autophagy is rapidly growing and many groups have done tremendous work to link
autophagy to disease. Therefore, a platform that summarize all the current knowledge is urgently
needed. An autophagy atlas that will give researchers the opportunity to implement current knowledge
in their experimental design and autophagy quantification would be a first step in the right direction.
Furthermore, this platform will improve collaborations between autophagy groups working on similar
diseases and therefore increase the impact of their research.

8. Conclusions

While autophagy is still a growing field, we should not neglect the need to improve currently
available autophagy markers as well as to identify novel ones for tissue samples. A team effort is
needed to provide improved autophagy assays to better correlate autophagy activity with disease
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outcome and therapy response in translational biomedical research. Furthermore, guidelines to how to
proceed with pre-clinical and clinical samples and to interpret the data will be essential.
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