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1,2,3*, Simone Oberhänsli4, Tosso Leeb3,5, Martina Dettwiler3,6,

Eliane Müller3,6,7,8, Remy Bruggman4, Eliane Isabelle Marti1,3

1 Division of Experimental Clinical Research, Department of Clinical Research and Veterinary Public Health,

Vetsuisse Faculty, University of Bern, Bern, Switzerland, 2 Graduate School for Cellular and Biomedical

Sciences, University of Bern, Bern, Switzerland, 3 Dermfocus, Vetsuisse Faculty, University of Bern, Bern,

Switzerland, 4 Interfaculty Bioinformatics Unit and SIB Swiss Institute of Bioinformatics, University of Bern,

Bern, Switzerland, 5 Institute of Genetics, Department of Clinical Research and Veterinary Public Health,

Vetsuisse Faculty, University of Bern, Bern, Switzerland, 6 Institute of Animal Pathology, Department of

Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland,

7 Department of Biomedical Research, Molecular Dermatology and Stem Cell Research, University of Bern,

Bern, Switzerland, 8 Department of Dermatology, Inselspital, Bern University Hospital, Bern, Switzerland

* iva.cvitas@vetsuisse.unibe.ch

Abstract

Insect bite hypersensitivity (IBH) is a Th-2, IgE-mediated dermatitis of horses caused by

bites of insects of the genus Culicoides that has common features with human atopic derma-

titis. Together with Th-2 cells, the epithelial barrier plays an important role in development of

type I hypersensitivities. In order to elucidate the role of the epithelial barrier and of the skin

immune response in IBH we studied the transcriptome of lesional whole skin of IBH-horses

(IBH-LE; n = 9) in comparison to non-lesional skin (IBH-NL; n = 8) as well as to skin of

healthy control horses (H; n = 9). To study the "baseline state" of the epithelial barrier, we

investigated the transcriptome of non-lesional epidermis in IBH-horses (EPI-IBH-NL; n = 10)

in comparison with healthy epidermis from controls (EPI-H; n = 9). IBH-LE skin displayed

substantial transcriptomic difference compared to H. IBH-LE was characterized by a down-

regulation of genes involved in tight junction formation, alterations in keratins and substantial

immune signature of both Th-1 and Th-2 types with particular upregulation of IL13, as well

as involvement of the hypoxic pathway. IBH-NL shared a number of differentially expressed

genes (DEGs) with IBH-LE, but was overall more similar to H skin. In the epidermis, genes

involved in metabolism of epidermal lipids, pruritus development, as well as IL25, were sig-

nificantly differentially expressed between EPI-IBH-NL and EPI-H. Taken together, our data

suggests an impairment of the epithelial barrier in IBH-affected horses that may act as a pre-

disposing factor for IBH development. Moreover, these new mechanisms could potentially

be used as future therapeutic targets. Importantly, many transcriptional features of equine

IBH skin are shared with human atopic dermatitis, confirming equine IBH as a natural model

of skin allergy.
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Introduction

Insect bite hypersensitivity (IBH) is the most common allergic skin disease affecting horses.

IBH is a seasonally recurrent, highly pruritic dermatitis caused by IgE-mediated hypersensitiv-

ity to bites of insects of the genus Culicoides [1–3]. Although the allergens differ, IBH has over-

lapping features with human atopic dermatitis.

Affected horses develop distinguishable lesions typically distributed along the dorsal mid-

line, particularly at the basis of the mane and tail, and less commonly on the ventral midline,

head and legs. Initially, lesions are seen as papules, edema and tuft hair which, due to severe

pruritus, rapidly progress to crusts, dandruff, alopecia, excoriations, and lichenification. More-

over, lesions can be further exacerbated by secondary bacterial infections [4]. Histologically,

IBH is characterized by mixed perivascular to diffuse cellular infiltrates of mononuclear cells

and eosinophils in the dermis. Increased numbers of mast cells as well as MHC class II positive

cells are found. Additional features are marked acanthosis and hyperkeratosis of the epidermis

[1, 5].

Several studies have described IBH as a type I, IgE dependent hypersensitivity. The main

mediators of type I hypersensitivities are T helper type 2 cells (Th-2) and their signature cyto-

kines IL-4, IL-5 and IL-13.These cytokines induce isotype (class) switching of B cells and sub-

sequent production of allergen specific IgE antibodies which bind to mast cells, as well as

activation and infiltration of eosinophils. Activated mast cells and eosinophils are responsible

for development of clinical signs of early-phase reaction. An imbalance between the Th-2 and

regulatory T cell (Treg) response in IBH was demonstrated in allergen-stimulated PBMC as

well as locally in the skin [6, 7].

Together with Th-2 cell involvement, recent data suggests that epithelial barrier defects play

an important role in the development of type I hypersensitivities in humans. In humans, the

discovery that loss of function variants in the FLG gene encoding filaggrin predispose individ-

uals to develop AD has, for the first time, demonstrated the role of an altered epithelial barrier

in the pathogenesis of allergies [8]. Genetic variants in filaggrin affect the terminal differentia-

tion of keratinocytes and therefore impair the epithelial barrier, making it more permeable for

different allergens [9, 10]. Moreover, epithelial cells such as keratinocytes are far beyond a

mere barrier building cell type. In fact, they produce cytokines and chemokines that possibly

play a crucial role in the development of allergic inflammation. Epithelial cells can produce

cytokines such as thymic stromal lymphopoietin (TSLP), IL-25, and IL-33. These cytokines

have the ability to influence dendritic cells (DCs) that in turn affect proliferation and differen-

tiation of naïve T cells into Th-2 subtype producing IL-4, IL-5, IL-13 and TNF-α [11–15].

Additionally, these cytokines cause in vivo expansion of innate lymphoid cells type 2 (ILC2s)

that are an important early source of the type-2-cell-associated cytokines IL-5 and IL-13, and

to a lesser extent, IL-4. The ILC2s themselves are capable of controlling a type 2 innate

immune response, but often collaborate with CD4+ Th-2 cells in order to develop fully blown

type 2 immunity [14, 16–18].

Although IBH is the most frequent type I allergic skin disease of horses, the role of the epi-

thelial barrier and skin immune response in the pathogenesis of this disease has not been thor-

oughly studied. Moreover, a lot of our current knowledge on the pathogenesis of type I

hypersensitivities is based on mouse models of the disease. Therefore, studying equine IBH,

which is a spontaneously-occurring, natural model of allergy, can contribute to the under-

standing of human allergies.

We first aimed to understand the role of epithelial barrier in the pathogenesis of IBH, as

well as to characterize the type of immune response involved. Therefore, we studied differ-

ences in gene expression by comparing the transcriptome of lesional whole skin samples of
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IBH-affected horses (IBH-LE) in comparison to non-lesional skin (IBH-NL) as well as to skin

of healthy control horses (H). Furthermore, we aimed to investigate possible epithelial barrier

defects that may be predisposing factors for IBH development, thus we studied the transcrip-

tome of non-lesional epidermis (EPI-IBH-NL) of IBH-affected horses in comparison with epi-

dermis from healthy control horses (EPI-H).

Materials and methods

Sample collection

This study was approved by the Animal Experimental Committee of the Canton of Berne,

Switzerland (No. BE 69/18). Horses suffering from IBH were diagnosed based on recurrent

clinical signs of IBH. The diagnosis was confirmed by histopathological analysis of skin sam-

ples. Samples were collected from 8 horses slaughtered due to IBH and two clinical patients

suffering from IBH. In these patients, two 8 mm punch biopsies were taken from lesional and

non-lesional skin after sedation with detomidine hydrochloride (0.01 mg/kg iv; Domosedan,

www.vetoquinol.ch) and local subcutaneous injection of lidocaine. Samples from 9 horses

without clinical signs or history of IBH, slaughtered due to reasons not related to skin diseases

were collected. An overview of the samples taken is given in S1 Table.

Whole skin. Samples from IBH lesional skin (IBH-LE, n = 9) were collected from the dor-

sal midline, non-lesional skin (IBH-NL, n = 8) from the inner thigh. Samples from control

horses were collected from the inner thigh (H, n = 9). After collection, one part of the sample

was immediately cut in half, submerged in RNAlater (ThermoFischer Scientific, Waltham,

Massachusetts, USA), and stored at 4˚C for 24 h. Subsequently, samples were removed from

RNAlater and stored at -80˚C until used. To confirm the clinical diagnosis, another part of the

sample was fixed in 10% formalin (ThermoFischer Scientific) for 24 h, trimmed, dehydrated

and embedded into paraffin wax. 2 μm sections of all formalin-fixed and paraffin-embedded

skin samples were mounted on glass slides and stained with hematoxylin and eosin (HE)

according to routine procedures. The HE slides were evaluated by one board-certified veteri-

nary pathologist without the knowledge of disease history and anatomic location.

Epidermis. For RNA sequencing of epidermis, another part of the skin samples (inner

thigh) of non-lesional skin (n = 10) from IBH-affected horses and from control horses (n = 9)

was processed aseptically after sampling. These samples were incubated at 4˚C for 24 h with 10

mg/ml Dispase II (Roche, Basel, Switzerland) in Williams E medium (Bioconcept, Allschwil,

Switzerland). Subsequently, the epidermis was separated from the dermis using sterile forceps

as described [19, 20]. 30 mg of epidermal tissue was frozen in RLT lysis buffer (RNeasy Mini

Kit; Qiagen, Hilden, Germany). Samples were kept at -80˚C until further processed.

Isolation of RNA and cDNA synthesis

Total RNA was isolated from IBH-LE, IBH-NL and H control whole skin using RNeasy

Fibrous Tissue Kit (Qiagen,). Prior to RNA extraction, skin samples were homogenized in

600 μL of RLT lysis buffer (Qiagen) using MagNa tissue lyser (Roche). Samples were homoge-

nized for 45 s with ceramic beads (Roche, Basel, Switzerland) at the shaking speed of 6,500/

min, followed by 2 min cooling on ice. Homogenization was repeated for another 30 s at shak-

ing speed of 6,500/min and subsequent 2 min cooling on ice. Supernatants were loaded onto a

spin column (QIAshredder, Qiagen) and centrifuged at 16,000x g for 2 min (Qiagen).

Total RNA was isolated from epidermis using RNeasy Mini Kit (Qiagen, Hilden Germany)

according to the manufacturer’s instructions. Prior to RNA extraction with RNeasy Mini Kit,

cell lysates were loaded onto a spin column (QIAshredder, Qiagen) and centrifuged at 16000x

g for 2 min.
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Contaminating genomic DNA was removed by on-column DNase treatment in samples

from epidermis and whole skin. Total RNA was quantified spectrophotometrically at 260 nm

(NanoDrop 2000c; ThermoScientific, Reinach, Switzerland) and RNA samples were stored at

-80˚C until used. RNA quality was determined using Fragment Bioanalyzer (Labgene, Châtel-

Saint-Denis, Switzerland).

RNA sequencing

Illumina TruSeq stranded mRNA libraries were prepared according to the manufacturer’s pro-

tocol (Illumina, San Diego, USA). Between 14 and 34 million 2 x 50 bp read-pairs per sample

were collected on an Illumina NovaSeq 6000 instrument. The quality of the RNA-seq data was

assessed using fastqc v. 0.11.5 and RSeQC v. 2.6.4.

Mapping to reference genome and differential gene expression analysis

The reads were mapped to the reference genome (EquCab3.0) using HiSat2 v. 2.1.0. Feature-

Counts v. 1.6.0 was used to count the number of reads overlapping with each gene as specified

in the genome annotation (NCBI Equus caballus Annotation Release 103). The Bioconductor

package DESeq2 v. 1.18.1 was used to test for differential gene expression between the experi-

mental groups. The Benjamini Hochberg method was used for multiple test correction. We

did not remove any genes with low or no expression before running the DESeq analysis as the

tool’s “result” function performs an “independent filtering” by default which is based on the

mean of normalized counts (see DESeq2 documentation on Bioconductor). The datasets gen-

erated during the current study will be available in the ENA repository via accession numbers

(xxx). Genes with a false discovery rate (= padjusted) smaller than 0.05 where considered sig-

nificantly differentially expressed.

Gene ontology analysis

TopGo v. 2.24.0 was used to identify gene ontology terms significantly enriched for differen-

tially expressed genes (threshold for genes to be significantly differentially expressed:

padjusted < 0.05). All tests were repeated using different combinations of algorithm (weight01

or classic) and test statistic (Fisher or Kolmogorov-Smirnov) to assess the robustness of the

results. An interactive Shiny application was set up to facilitate the exploration and visualisa-

tion of the RNA-seq analysis results. All analyses were run in R version 3.4.4 (2018-03-15).

Pathway analysis

To visualize differences in gene expression between conditions within biochemical pathways

entrezgene ids of significantly differentially expressed genes from each comparison (epidermis:

padjusted < 0.05, IBH-LE vs H and IBH-LE vs IBH-NL: padjusted < 0.05) were mapped to

KEGG pathways of horse (species =“ecb”, analysis date = July 2019) using the R Bioconductor

packages “KEGGREST” and “pathview” (R version 3.5.0, pathview v. 1.22.3, KEGGREST v

1.22.0). Expression changes (log 2 fold change) were visualized with colors blue (negative log

fold change) and red (positive log fold change). Additionally, Reactome analysis (https://www.

reactome.org) was performed based on gene symbols of significantly differentially expressed

genes with p values as mentioned above, for comparisons of IBH-LE vs H whole skin and and

non-lesional IBH epidermis vs healthy epidermis [21].

ClusterProfiler v3.10.1 was used to test for enrichment of KEGG pathways with signifi-

cantly differentially expressed genes. Gene set enrichment analysis (GSEA) was performed

using the gseKEGG-function (default settings except for minGSSize = 50) and a ranked list as
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input (entrezgene-id and it’s corresponding–log 10 (raw pvalue) x +/-1 (depending on the

direction of the foldchange), list sorted according to–log10 (raw pvalue) x +/-1 (depending on

the direction of the foldchange).

Results

The histopathological evaluation revealed inflammatory changes compatible with a type 1 hyper-

sensitivity in all IBH-LE samples, thus confirming the clinical diagnosis of IBH. H skin samples

were devoid from inflammation. IBH-LE skin samples were characterized by substantial hyperker-

atosis and acanthosis, infiltration with lymphocytes and a strong infiltration with eosinophils in all

but one sample. This sample was characterized by a strong dermal infiltration with lymphocytes.

Substantial hyperkeratosis and acanthosis were not observed in IBH-NL skin, however, IBH-NL

samples also showed infiltration with eosinophils, although to a lower degree than IBH-LE skin.

Transcriptome analysis of whole skin

Sequencing data could be generated from all samples. Out of 33,078 genes annotated in the ref-

erence genome, 21,337 (IBH-LE vs H skin), 20,328 (IBH-LE vs IBH-NL skin) and 21,337

(IBH-NL vs H skin) genes showed sufficient expression (i.e. read counts) to be included in the

analysis of differential expression in the whole skin.

Principal component analysis (PCA) of IBH-LE, IBH-NL and H whole skin, based on

expression data of 500 genes with the highest variability, showed a clear separation between

IBH-LE and H skin samples (Fig 1). Samples of IBH-NL clustered between the IBH-LE and H

samples, in closer proximity to the H samples (Fig 1).

Comparing IBH-LE to H skin, we found 2,228 significantly upregulated (range log2 fold

change 0.14–2.9) and 2,356 significantly downregulated genes (range log2 fold change -0.17 -

-2.74) (S1A Fig and S2 Table). When we compared IBH-LE to IBH-NL skin, we found 740

upregulated (0.20–2.77) and 945 downregulated genes in IBH-LE (-0.20 - -2.14) (S1B Fig and

S3 Table). Over 50% of DEGs were the same when IBH-LE was compared to IBH-NL or to H

control skin: 29.4% of upregulated and 33.8% of downregulated genes were shared (Fig 2). In

contrast, when we compared IBH-NL to H whole skin no differentially expressed genes were

found (S1C Fig). For the above mentioned reasons the results presented from the study on

whole skin were mainly derived from the comparison of IBH-LE to H control skin.

Lesional whole skin of IBH-affected horses is characterized by changes in

the epithelial barrier and substantial immune signatures

Comparison of the IBH-LE and H skin showed a considerable transcriptional difference between

the two studied groups (S1A Fig). Hierarchical clustering based on expression of the top 30 differ-

entially expressed genes showed that IBH-LE and H samples clustered separately, with the excep-

tion of one healthy control horse. The majority of the top 30 genes were downregulated in

IBH-LE. The log2 fold change of the top 30 genes ranged from -1.33 to -2.66 and from 1.67 to

2.90 with low p values (range 1.19 x 10−17 to 1.59 x 10−13). Among the top 30 DEGs, genes

involved in terminal differentiation of keratinocytes, such as late cornified envelope protein 3D

(LCE3D) as well as different types of keratins (e.g. KRT2B, KRT18) are noticeable (Fig 3), implying

an involvement of these gene families in the pathogenesis of IBH. Other top upregulated genes

were LCE2B and KRT2B, involved in epithelial barrier formation, SHC3 and ADORA2B that

has been shown to have a tissue protective role during hypoxic conditions. Other top downregu-

lated genes were LOC100056556, the gene coding for the major allergen Equ c1, i.e. lipocalin,

PPP1R1B, C25H9orf152, and SLCO1A2. However, these top downregulated genes did not belong

to the enriched KEGG pathways nor gene ontology (GO) categories (Fig 3).
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a) Changes in the epithelial barrier. GO analysis of DEGs between IBH-LE and H skin

confirmed enrichment of genes affecting processes of epithelial cell differentiation, desmo-

some organization as well as regulation of epithelial morphogenesis, indicating important

changes in barrier epithelium (Table 1 and S4 Table). Conversely to AD, most of the genes

involved in terminal differentiation of keratinocytes, such as filaggrin, involucrin and loricrin

showed high and comparable expression between IBH-LE and H (high mean counts; S2

Table). Small proline rich protein SPRR2A, another component of the cornified layer, as well

as other members of SPRR family such as SPRR2D and SPRR2E, were significantly upregulated

in IBH-LE. Furthermore, expression of certain keratins, such as KRT3, -5, -6A, -6B, -10A, -6
and KRT-17 was significantly upregulated, while the expression of KRT8, -13, -15, -18, -19, -77
and KRT-222 was significantly downregulated. In contrast, expression of genes involved in for-

mation of adheres and tight junctions, such as CADM1, CADM2, CLDN3, CLDN7, CLDN8
and CLDN19 and TJP3 were significantly downregulated (Fig 4).

Interestingly, expression of fibroblast growth factor receptor FGFR1 as well as different

fibroblast growth factors, namely FGF7, FGF9 and FGF1 was significantly downregulated in

IBH-LE compared to H. FGFR2 expression was, however, not different between IBH-LE and

H skin. Additionally, expression of EGF was significantly downregulated (T). Many different

serine proteases, such as SERPINB1, SERPINB6 and SERPINB11, as well as matrix metallopro-

teinases like MMP1, MMP3, MMP9, MMP12, MMP13 and others were significantly upregu-

lated (Fig 4).

Fig 1. Principal component analysis of top 500 most variable DEGs in the first two component spaces (p<0.05): Lesional whole

skin of IBH-affected horses (IBH-LE) is shown in green, non-lesional whole skin of IBH-affected horses (IBH-NL) in blue and

healthy skin of control horses (H) in red.

https://doi.org/10.1371/journal.pone.0232189.g001
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b) Immune cell signatures. GO analysis also indicated involvement of categories related

to different parts of the immune system, including response to fungus and formation of germi-

nal center (Table 1 and S4 Table). Furthermore, gene set enrichment analysis (GSEA) using

KEGG pathways indicated that genes of pathways FcεRI signaling (p = 0.01), Th-1 and Th-2

differentiation (p = 0.03), T and B cell receptor signaling (p = 0.02 and 0.007, respectively) and

C-type lectin receptor signaling pathway (p = 0.003) are significantly overrepresented among

DEGs (S5 Table). We therefore examined genes belonging to these respective pathways. How

they possibly relate to cell populations involved in IBH is described below:

Antigen presenting cells. Two MHC class II genes homologous to HLA-B and HLA-DMB,

and one MHC class I gene homologous to HLA-DOA were significantly upregulated. Addi-

tionally, expression of CD86, a T cell co-stimulator, as well as CD68 and CD180 were signifi-

cantly upregulated. Furthermore, CD209 (DC-SIGN), as well as certain c-type lectins, namely

C-LEC 6A, CLEC7A, CLEC10A, were significantly upregulated in IBH-LE compared to H, sug-

gesting increased numbers of antigen presenting cells, such as dendritic cells in IBH lesions.

Moreover, expression of FCER1G and FCER2 (CD23) which are suggestive of inflammatory

dendritic epithelial cells (IDECs) was found to be significantly upregulated. Recently, it has

been shown that IDECs also express histamine 4 receptor [22]. The gene coding for it, HRH4,

was significantly upregulated in IBH-LE (Fig 5).

Expression of FCER1A, highly expressed on Langerhans (LC) and mast cells was also signif-

icantly upregulated. Expression of CD207, the gene encoding the langerin protein and marker

of LCs, was not differentially expressed in IBH-LE compared to H. FCER1G and FCER1A
form the FcεRI receptor and have previously been shown to be upregulated by Th2 cytokines,

namely IL13. FCER1G and MRGPRX2, genes indicative of mast cells, were both significantly

upregulated in IBH-LE compared to H skin (Fig 5).

Fig 2. Venn diagram of DEGs shared between IBH-LE vs. H and IBH-LE vs. IBH-NL comparisons (p<0.05). The numbers of

up- and down regulated genes are indicated.

https://doi.org/10.1371/journal.pone.0232189.g002
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Th-2 cells. The expression of IL13, a signature cytokine of Th-2 CD4+ T helper cells, as well

as of both IL13RA1 and IL13RA2 was significantly upregulated in IBH-LE compared to H skin

(Fig 5). Other Th-2 signature cytokines like IL-4 and IL-5 were not differentially expressed

between the groups, and these cytokines were expressed on a very low level (S2 Table). How-

ever, both IL5RA (p = 0.01) and IL4R (p = 0.057) expression was upregulated. Furthermore,

expression of Th-2 associated chemokines CCL13 and CCL17 was significantly upregulated.

Th-1 and Th-22 cells. IL12RB, CXCL8, CXCL11, CXCL16, and IL36B (IL-1F8), indicative of

Th-1 subsets, were also significantly upregulated. IL22 was expressed on a very low level (S2

Fig 3. Hierarchical clustering top 30 DEGs expression of IBH-LE and H whole skin samples separates IBH-LE whole skin from H skin, with exception of one H

control horse (lower mean counts are shown in light green and higher mean counts in dark blue). Epithelial barrier genes are listed in red and immune signature

genes in blue.

https://doi.org/10.1371/journal.pone.0232189.g003
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Table), and did not differ between IBH-LE and H skin. However, IL22RA1 and IL10RB2, both

subunits of IL-22 receptor were significantly upregulated in IBH-LE, as well as many genes of

S100 family such as S100A4, S100A6, S100A9, S100A11, S100A12, and S100A14 (Table 2).

Expression of the cytokine IL32, recently described as a pluripotent inflammatory interleukin,

was also significantly upregulated in IBH-LE skin [23] (Fig 5).

Eosinophils. Since infiltration of eosinophils in the skin is one of the hallmarks of equine

IBH, we investigated the expression of genes possibly involved in the infiltration of eosino-

phils. We found a significant upregulation of siglec8, as well as a significant upregulation of

CSF2RB. IL5RA, which is expressed exclusively on eosinophils, was upregulated significantly

in IBH-LE. However, expression of genes encoding for proteins involved in eosinophil infiltra-

tion, such as CCL11, CCL24, CCL7, CCL5 or CCR3 was not different between IBH-LE and H

normal skin (Fig 5).

c) Response to hypoxia in lesional skin of IBH affected horses. GO and enrichment

analyses revealed an enrichment of DEGs in the hypoxic pathway in IBH-LE compared to H

skin (GSEA using KEGG pathways as gene sets; p = 0.005, S5 Table). We found a significant

upregulation of HIF1α, a major sensor of cellular hypoxia, as well as of NOX2 (CYBB), and of

downstream effector molecules of HIF1α signaling, namely SLC2A1 (GLU1), SLC2A3
(GLUT3), LDHA, CA9, HK2, TIMP1, GAPDH and ALDOA, indicating an involvement of the

hypoxic pathway in the pathogenesis of IBH (Fig 6). Interestingly, expression of ADORA2B,

one of the top 30 DEGs, was also significantly upregulated (Figs 3 and 7).

The transcriptome of non-lesional epidermis of IBH-affected horses differs

from the epidermis of healthy horses

In order to investigate the baseline state of the epithelial barrier in IBH-affected horses, we

studied the transcriptome of non-lesional epidermis from IBH-affected horses (EPI-IBH-NL)

in comparison to epidermis from healthy controls (EPI-H).

Out of 33,078 annotated genes, 17,849 genes were found to be expressed in epidermis and

were therefore used in the DEG analysis.

PCA analysis of the epidermis samples derived from EPI-IBH-NL and EPI-H showed,

despite considerable within-group variability, two distinctive clusters. However, three out of

nine EPI-H clustered with the EPI-IBH-NL samples (Fig 8A). In EPI-IBH-NL 596 genes were

differentially expressed. 461 genes were significantly upregulated (range log2 fold change

0.18–1.56) and 135 downregulated (-0.16 - -1.19) (S1D Fig and S6 Table).

a) Epithelial barrier. Hierarchical clustering of epidermis samples between EPI-IBH-NL

and EPI-H was only partial, reflecting the results of PCA analysis. Among the top 30 DEGs in

EPI-IBH-NL compared to EPI-H were genes involved in epithelial barrier formation and

metabolism of epithelial lipids. Expression of KRT5, KRT15, KRT17 and GJA3 was upregulated

Table 1. Selected biological processes enriched in IBH-LE whole skin compared to H whole skin, acquired by gene ontology analysis. Significantly enriched biological

processes were ranked based on classic Fisher p values (p<0.05).

GO ID Term Annotated Significant Classic Fisher

GO:0030855 Epithelial cell differentiation 384 130 2.40E-05

GO:0048754 Branching morphogenesis of an epithelial . . . 118 40 0.01465

GO:0060688 Regulation of morphogenesis of a branchi . . . 42 16 0.03652

GO:0002934 Desmosome organization 8 6 0.00389

GO:0002467 Germinal center formation 11 6 0.03199

GO:0009620 Response to fungus 17 8 0.03699

GO:0035556 Intracellular signal transduction 1898 497 0.04769

https://doi.org/10.1371/journal.pone.0232189.t001

PLOS ONE Epithelial barrier and immune signatures in the pathogenesis of equine IBH

PLOS ONE | https://doi.org/10.1371/journal.pone.0232189 April 28, 2020 9 / 22

https://doi.org/10.1371/journal.pone.0232189.t001
https://doi.org/10.1371/journal.pone.0232189


PLOS ONE Epithelial barrier and immune signatures in the pathogenesis of equine IBH

PLOS ONE | https://doi.org/10.1371/journal.pone.0232189 April 28, 2020 10 / 22

https://doi.org/10.1371/journal.pone.0232189


while the expression of GK5 and SCEL was downregulated (Fig 8B). Interestingly, although

not among the top 30 DEGs, expression of other keratin genes was different between the two

study groups. Expression of KRT6B, KRT7, KRT16, KRT17, KRT31, KRT33 and KRT75 was

significantly upregulated (Fig 4). GO analysis results further confirmed enrichment of pro-

cesses involved in keratinocyte differentiation and its regulation (Table 2 and S7 Table).

Besides enrichment of processes involved in keratinocyte differentiation and its regulation,

GO analysis of DEGs showed enrichment of genes engaged in triglyceride homeostasis

(Table 2 and S7 Table). This was particularly interesting, as terminally differentiated keratino-

cytes (corneocytes) and epidermal lipids function as "brick and mortar" in formation of the

epithelial barrier of the skin. We next looked into KEGG pathway analysis, which confirmed

that genes of glycerolipid metabolism were significantly overrepresented among DEGs in

EPI-IBH-NL (p = 0.04) (S8 Table), suggesting changes in the epithelial barrier in IBH-affected

horses already at this non-lesional stage.

b) Genes involved in pruritus. Interestingly, one of the genes among the 30 top DEGs in

non-lesional epidermis of IBH horses is HTR3A (p = 0.003) coding for 5-hydroxytryptamine

receptor 3A, shown to play a role in itch development [24] (Fig 8B). Furthermore, expression

of both IL-31 receptor subunit genes, IL31RA and OSMR was significantly upregulated (Fig 5).

IL-31 plays a major role in development of pruritus, and its signaling engages JAK/STAT

pathway. Interestingly, in the non-lesional epidermis of IBH horses, two additional genes, LIF
and TNFRSF11A (RANK), engaging JAK/STAT pathway were also significantly upregulated

(Fig 7).

c) Immune signatures. Unlike in IBH-LE skin, non-lesional epidermis of IBH horses is

not characterized by a strong immune cell signature. Nonetheless, we found a significantly

upregulated expression of CCL17 (TARC), ITGA4, ITGA9, all involved in T cell homing (Fig

5). Furthermore, IL12RB2, expressed on T cells, was among the highest upregulated genes in

EPI-IBH-NL compared to EPI-H (Fig 8B). CD52, expressed on mature lymphocytes as well as

monocyte derived dendritic cells, was significantly upregulated as well. However, there was no

evidence of Th-2 responses in EPI-IBH-NL, with the notable exception of IL25, which was sig-

nificantly upregulated (Fig 5). Additionally, KEGG pathway analysis indicated that genes of

cell adhesion molecules (p = 0.009), cytokine-cytokine receptor interaction (p = 0.009) and

antigen processing and presentation pathways (p = 0.04) were significantly overrepresented in

non-lesional epidermis of IBH-affected horses (S8 Table).

Discussion

In the present study, we aimed to characterize the reaction and state of the epithelial barrier in

horses suffering from IBH, as well as immune responses possibly involved in the pathogenesis

of this disease. Therefore, we first studied the transcriptome of IBH-LE and IBH-NL whole

skin in comparison to H controls. We found a high number of DEGs which indicated that

IBH-LE is characterized by changes in the epithelial barrier, substantial changes immune sig-

nature and a strong involvement of the hypoxic pathway.

Our data showed a significant downregulation in the group of genes involved in the forma-

tion of tight junctions in the skin. Differing from human AD patients, genes coding for

Fig 4. DEGs classified by gene families influencing epithelial barrier formation and maintenance in the three different

transcriptome comparisons we studied: IBH-LE vs. H and IBH-LE vs. IBH-NL whole skin as well as non-lesional epidermis of

IBH horses (EPI-IBH-NL) vs. epidermis from control horses (EPI-H). Only representative genes are shown. (Pink = statistically

significant upregulation; beige = non-significant upregulation; dark blue = statistically significant downregulation; light blue = non-

significant downregulation; gray = no difference in gene expression; false discovery rate<0.05). Log2 fold changes are noted for all

DEGs.

https://doi.org/10.1371/journal.pone.0232189.g004
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proteins involved in terminal differentiation of keratinocytes (FLG, IVL) were not differen-

tially expressed between our study groups (S2 Table). Taken together, our data suggests that

lesional skin of horses with IBH is characterized by alterations in adherens junctions, and not

by deficiency in terminal differentiation in keratinocytes, as in human AD [8]. Yang et al. have

described a fibroblast growth factor receptor 1 and 2 (fgfr1, fgfr2) knock out mouse model that

develops skin lesions similar to those in patients with AD, particularly with regard to the

inflammatory infiltrate and the epidermal thickening. In their work, they elaborately showed

how FGFs regulate tight junction components and how keratinocyte hyperproliferation is

most likely mediated by IL-1F8 (CD36B) and S100A9 [25]. Similarly to this mouse model,

lesional IBH-skin is characterized by epidermal thickening, and, as our data suggests, tight

junction disruption. In IBH-LE skin expression of FGFR1 was significantly downregulated,

while the expression of FGFR2, which is in mice the most important receptor in lesion devel-

opment, was not affected. However, in IBH-LE we found expression of fibroblast growth factor

7 (FGF7), encoding one of the high affinity ligands to FGFR2, as well as FGF9 and FGF1 to be

significantly downregulated, thus impairing FGFR2 signaling Additionally, genes encoding

both IL-1f8 and A100A9 were upregulated in IBH-LE skin, implying that similar mechanisms

might be involved in epidermal thickening and disruption of epithelial barrier in horses with

IBH. However, the exact mechanism remains to be elucidated.

Multiple serine protease as well as matrix metalloproteinase transcripts were upregulated in

IBH-LE, possibly leading to further destruction of the skin integrity. Interestingly, similarly to

human AD, MMP9 was one of the upregulated matrix metalloproteinase genes. In AD patients

overexpression of MMP9, MMP10 and S100A7A was observed, and the link between MMP

function and disruption of epithelial barrier has been shown [9, 26–29]. In particular, MMP9

seems to play a role in the development of epidermal inflammation. Furthermore, it has been

shown that the activity of MMP9 is induced by IL-13 [30]. Interestingly, IL13 was the only Th-

2 cytokine found to be upregulated in IBH-LE compared to healthy skin. These findings indi-

cate similar mechanisms in equine IBH and human AD, where IL-13 has been suggested to be

the key Th-2 cytokine driving inflammation in the periphery while the effect of IL-4 is more

central, as reviewed in Bieber 2019 [31–34].

Fig 5. DEGs classified by gene families influencing immune signatures in the three different transcriptome comparisons we

studied: IBH-LE vs. H and IBH-LE vs. IBH-NL whole skin as well as non-lesional epidermis of IBH horses (EPI-IBH-NL) vs.

epidermis from control horses (EPI-H). Only representative genes are shown. (Pink = statistically significant upregulation;

beige = non-significant upregulation; dark blue = statistically significant downregulation; light blue = non-significant

downregulation; gray = no difference in gene expression; false discovery rate<0.05). Log2 fold changes are noted for all DEGs.

https://doi.org/10.1371/journal.pone.0232189.g005

Table 2. Selected biological processes enriched in EPI-IBH-NL compared to EPI-H of control horses, acquired by gene ontology analysis. Significantly enriched bio-

logical processes were ranked based on classic Fisher p values (p<0.05).

GO ID Term Annotated Significant Classic Fisher

GO:0030216 Keratinocyte differentiation 74 15 1.10E-07

GO:0010718 Positive regulation of epithelial to mes . . . 32 7 0.00017

GO:0045616 Regulation of keratinocyte differentiati . . . 26 6 0.00038

GO:0007179 Transforming growth factor beta receptor . . . 114 13 0.00043

GO:1905331 Negative regulation of morphogenesis of . . . 11 4 0.00058

GO:1905332 Positive regulation of morphogenesis of . . . 21 5 0.00101

GO:0070328 Triglyceride homeostasis 15 4 0.06708

GO:0033153 T cell receptor V(D)J recombination 5 2 0.01369

GO:2001140 Positive regulation of phospholipid tran . . . 5 2 0.01369

https://doi.org/10.1371/journal.pone.0232189.t002
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Our data indicates that both Th-1 and Th-2 responses seem to be involved in IBH-LE (Fig

5). This is similar to human AD skin lesions, where both Th-2 and Th-1 signatures as well as

strong inflammatory mediators were found [9]. Furthermore, a prominent feature of IBH-LE

skin was inflammatory dendritic epithelial cells (IDEC) signature. We found upregulation of

CD209 (DC-SIGN), FCER1, and CD11C (p<0.03); these markers strongly differentiate IDEC

from plasmacytoid DCs. Additionally, we found upregulation of HRH4, encoding the hista-

mine 4 receptor, another receptor correlated with IDECs [22]. On the other hand, genes

encoding markers of LCs such as CD207 (Langerin) or CD83 were not differentially expressed

between IBH-LE and H skin, although previous studies using electron microscopy of skin

lesions had indicated an increase of LCs in IBH [5, 35, 36].

Upregulation of SIGLEC8, CSF2RB and IL5RA in IBH-LE skin is in alignment with the

presence of eosinophils in our samples, as demonstrated by the histopathological evaluation.

However, our study did not allow to elucidate which mechanisms might be responsible for

their influx into the skin, as none of the eotaxins were differentially expressed between IBH-LE

and H skin. Recently, Nobs et al. have shown that in the setting of allergic airway inflamma-

tion, together with IL5, GM-CSF intrinsically controls eosinophil accumulation [37]. Interest-

ingly, in IBH-LE, CSF2RA, the gene coding for the GM-CSFRα subunit and CSF2RB, coding

for the GM-CSFRβ subunit, were significantly upregulated. The two GM-CSF transcripts,

Fig 6. KEGG pathway "HIF-1-signaling pathway" in IBH-LE vs H skin comparison. Dark blue indicates downregulated genes (negative log2 fold changed) and red

indicates upregulated genes (positive log2 fold changed).

https://doi.org/10.1371/journal.pone.0232189.g006
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however, were expressed at a very low level and the expression did not differ between the study

groups. Whether this pathway is involved in eosinophil infiltration in IBH-LE should be fur-

ther investigated.

KEGG and Reactome pathway analysis revealed an enrichment of DEGs in the hypoxic

pathway in IBH-LE. In particular HIF1A expression was significantly upregulated in IBH-LE

(Figs 6 and 7). HIF-1α is a major cellular sensor of low oxygen levels (hypoxia), the expression

of which can be induced by hypoxia itself as well as by environmental conditions associated

with pathological stress such as inflammation, bacterial infection or cancer [38]. In a patholog-

ically hypoxic immune environment, such as IBH-LE skin, HIFs can play a crucial role in

modulating immune cell effector functions [39–41], increasing survival and functionality of

eosinophils, mast cells and basophils, the main effector cells of type I hypersensitivities. More-

over, HIF-1α has a major impact on DCs by increasing their survival and functions [42–47].

Additionally, HIFs can induce late stage maturation of ILC2s, which significantly contribute to

allergic inflammation [48, 49]. Taken together, our data suggest that the upregulation of

HIF1A and its impact on downstream targets such as GLUT1, ALDO, LDHA and CA9 strongly

influences and possibly further promotes allergic inflammation. Additionally, it was shown

that HIF-1α is the transcriptional regulator of ADORA2B, the adenosine A2b receptor.

ADORA2B plays a central role in tissue adaptation to hypoxia and its transcript was found to

be among the top five most significantly upregulated genes in IBH-LE (Figs 3 and 7) [50, 51].

Moreover, pharmacologic inhibition of HIFs has proven to ameliorate allergic contact derma-

titis in human patients [52].This approach might thus also be a treatment option for IBH, but

the exact effects of HIF-1α on effector cells in IBH needs first to be investigated. To our knowl-

edge, this is the first indication of HIF-1α-mediated hypoxia pathway involvement in IgE-

mediated skin allergy.

While a high number of genes were differentially expressed in IBH-LE compared to H

whole skin, no significant DEGs were found when comparing IBH-NL whole skin to H control

skin. In contrast, comparison of only the epidermis (EPI-IBH-NL vs EPI-H) revealed 461 sig-

nificantly upregulated and 135 significantly downregulated genes. These genes were partly the

same genes as those identified when comparing IBH-LE skin to IBH-NL or H control skin

(Figs 4, 5 and 7). This finding suggests that there are indeed DEGs between IBH-NL and H

skin, which, however, could not be detected when transcriptomes of whole skin were com-

pared. The most probable causes of this discrepancy are the larger number of genes which are

expressed in the whole skin compared to epidermis only (21,337 and 17,849 genes, respec-

tively) and the more complex cellular composition. The whole skin of horses consists of a rela-

tively thick dermis, comprising different cells and structures such as fibroblasts, adnexal

structures, blood vessels and nerves of which some are probably not involved in the IBH path-

ogenesis. Due the smaller proportion of the relevant cells, weaker differences in gene expres-

sion have to be expected when comparing NL-IBH skin to H control skin and may thus not

reach statistical significance.

In order to study the "baseline state" of epithelial barrier in IBH-affected horses, we com-

pared the transcriptomes of EPI-IBH-NL to EPI-H. Unlike in IBH-LE, hierarchical clustering

of epidermal transcriptomes (Fig 8B) was only partial, reflecting the results of PCA analysis.

This is probably due to the fact that the differences in the transcriptomes of NL and H

Fig 7. DEGs classified by gene families influencing HIF-1α mediated hypoxia and metabolism in the three different transcriptome comparisons we

studied: IBH-LE vs. H and IBH-LE vs. IBH-NL whole skin as well as non-lesional epidermis of IBH horses (EPI-IBH-NL) vs. epidermis from control

horses (EPI-H). Only representative genes from each family are shown. (Pink = statistically significant upregulation; beige = non-significant upregulation; dark

blue = statistically significant downregulation; light blue = non-significant downregulation; gray = no difference in gene expression; false discovery rate<0.05).

Log2 fold changes are noted for all DEGs.

https://doi.org/10.1371/journal.pone.0232189.g007
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epidermis were substantially smaller than when comparing IBH-LE to H skin and thus inter-

individual differences had a stronger effect. Larger numbers of samples and a better phenotyp-

ing of the individuals included in the study might thus have been needed. Finally, the three

control horses that clustered with the IBH-affected group might have been predisposed for

IBH and might even develop IBH later in life. Two out of three horses clustering with IBH-

affected horses were very young (6 and 24 months old, respectively) leading to low reliability

of their status as controls.

Nevertheless, comparison of the transcriptome between EPI-IBH-NL and EPI-H resulted

in valuable findings for our understanding of the pathogenesis of IBH. GO analysis revealed

that keratinocyte differentiation and lipid homeostasis are enriched with DEGs. KEGG path-

way analysis further confirmed that genes of the glycerolipid metabolism pathway are signifi-

cantly enriched among DEGs (p = 0.04, S8 Table). A functional epidermal skin barrier

requires the formation of a cornified envelope from terminally differentiated keratinocytes

and lipids [53]. The most abundant lipid families in the stratum corneum are ceramides, cho-

lesterol and fatty acids, and disruption in their content may cause permeability defects of the

barrier [54]. Expression of SGPP1, encoding an enzyme involved in sphingolipid de novo syn-

thesis was significantly downregulated, suggesting an impairment in ceramide production. It

has been shown in human AD that decreased epidermal activity of sphingomyelinase (A- and

N-SMase), also involved in ceramide synthesis, is decreased in lesional and nonlesional skin,

correlating with a disturbed barrier function. Moreover, expression of GK5 and GPD2 that

play a role in glycerolipid metabolism was also significantly downregulated in our study. Inter-

estingly, downregulation of GPD1, a member of the GAPDH family, in lesional skin of AD

patients has been shown in multiple studies [55].

Most interestingly, analysis of the transcriptome of EPI-IBH-NL suggests a propensity for

itch development. Even in clinically unaffected skin sites, expression of both genes encoding

the IL-31 receptor subunits, IL-31RA and OSMR, as well as of HTR3A, shown to play a role in

pruritus development were upregulated [24]. Involvement of IL-31 in IBH pathogenesis has

been supported by recent finding of Olomski et al., showing that targeting IL-31 significantly

ameliorates clinical signs of IBH [56]. The authors also found upregulation of IL-31 mRNA in

IBH-LE which we have not observed in our study. Expression of all Th-2 cytokines, except

IL13, was very low in our study (S2 Table). Taken together, our data suggests an impairment

in epidermal lipid synthesis, which can in turn lead to a disruption of the epithelial barrier

and, combined with a propensity for itch development, possibly predisposes horses for IBH.

Furthermore, IL25 upregulation could suggest potential activation of ILC2s that subsequently

contribute to type I hypersensitivity development. Additionally, the gene encoding TNF recep-

tor super family member 11a, TNFRSF11A, was significantly upregulated in EPI-IBH-NL. This

finding is particularly interesting as Velie et al. identified the TNFRSF11A gene as potential

genetic risk factor for IBH development [57].

In conclusion, our study has highlighted common features in human AD and equine IBH,

confirming the value of this disease as a natural model of AD.

New mechanisms identified in our study, such as immune-mediated alterations in the epi-

thelial barrier and IL13 upregulation in IBH-LE, as well as lipid metabolism impairment in

EPI-IBHNL are most probably important in the pathogenesis of IBH and could potentially be

explored as new therapeutic targets, once their relevance is confirmed.

Fig 8. (A) Principal component analysis of top 500 most variable DEGs in EPI-IBH-NL (blue) and EPI-H (red) in the first two component spaces

(p<0.05). (B) Hierarchical clustering of epidermis samples gene expression partially separates samples of EPI-IBH-NL from EPI-H. Three out of nine

epidermis samples from control horses clustered with epidermal samples of IBH-horses (light green: lower mean counts, dark blue: higher mean

counts). Epithelial barrier genes are listed in red and immune signature genes in blue.

https://doi.org/10.1371/journal.pone.0232189.g008
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