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Abstract: A single male Rottweiler dog with severe footpad hyperkeratosis starting at an age of eight
weeks was investigated. The hyperkeratosis was initially restricted to the footpads. The footpad
lesions caused severe discomfort to the dog and had to be trimmed under anesthesia every 8–10 weeks.
Histologically, the epidermis showed papillated villous projections of dense keratin in the stratum
corneum. Starting at eight months of age, the patient additionally developed signs consistent with
atopic dermatitis and recurrent bacterial skin and ear infections. Crusted hyperkeratotic plaques
developed at sites of infection. We sequenced the genome of the affected dog and compared the
data to 655 control genomes. A search for variants in 32 candidate genes associated with human
palmoplantar keratoderma (PPK) revealed a single private protein-changing variant in the affected
dog. This was located in the DSG1 gene encoding desmoglein 1. Heterozygous monoallelic DSG1
variants have been reported in human patients with striate palmoplantar keratoderma I (SPPK1),
while biallelic DSG1 loss of function variants in humans lead to a more pronounced condition
termed severe dermatitis, multiple allergies, and metabolic wasting (SAM) syndrome. The identified
canine variant, DSG1:c.2541_2545delGGGCT, leads to a frameshift and truncates about 20% of the
coding sequence. The affected dog was homozygous for the mutant allele. The comparative data
on desmoglein 1 function in humans suggest that the identified DSG1 variant may have caused the
footpad hyperkeratosis and predisposition for allergies and skin infections in the affected dog.

Keywords: Canis lupus familiaris; whole-genome sequence; animal model; genodermatosis; skin;
dermatology; keratinocyte; SAM syndrome; precision medicine

1. Introduction

The skin forms an essential barrier against the environment. In humans, the soles of the feet and
the palms of the hands are covered by the specially structured palmoplantar epidermis, which has
to bear the strongest mechanical forces of the entire skin. Genodermatoses characterized by altered
structural and junctional proteins of these specialized regions comprise the palmoplantar keratodermas
(PPK), a diverse group of inherited disorders collectively characterized by excessive or abnormal
thickening of the palmoplantar skin. Variants in at least 32 genes have been shown to cause different
forms of isolated or syndromic PPK in humans (Table 1) [1,2].

Genes 2020, 11, 469; doi:10.3390/genes11040469 www.mdpi.com/journal/genes

http://www.mdpi.com/journal/genes
http://www.mdpi.com
https://orcid.org/0000-0002-8155-0041
https://orcid.org/0000-0003-0553-4880
http://dx.doi.org/10.3390/genes11040469
http://www.mdpi.com/journal/genes
https://www.mdpi.com/2073-4425/11/4/469?type=check_update&version=2


Genes 2020, 11, 469 2 of 10

Table 1. Overview of genetic causes of human palmoplantar keratodermas (PPK).

Gene Phenotype Inheritance a Ref.

AAGAB Palmoplantar keratoderma, punctate type IA; PPKP1A AD [3,4]
AQP5 Palmoplantar keratoderma, Bothnian type AD [5]

CARD5 Pityriasis rubra pilaris AD [6]
COL14A1 Palmoplantar keratoderma, punctate type IB; PPKP1B AD [7]

CTSC Papillon-Lefevre syndrome AR [8]
DSG1 Palmoplantar keratoderma I, striate, focal, or diffuse; PPKS1 AD [9]
DSP Palmoplantar keratoderma II, striate, focal, or diffuse; PPKS2 AD [10]

ENPP1 Cole disease AD [11]
FAM83G Palmoplantar keratoderma and exuberant scalp hair. AR [12]

GJA1 Palmoplantar keratoderma with congenital alopecia AD [13]
GJB2 Keratoderma, palmoplantar, with deafness AD [14]
GJB3 Erythrokeratodermia variabilis et progressiva 1 AD or AR [15]
GJB4 Erythrokeratodermia variabilis et progressiva 2 AD [16]
GJB6 Ectodermal dysplasia 2, Clouston type AD [17]
JUP Naxos disease AR [18]

KANK2 Palmoplantar keratoderma and woolly hair AR [19]
KRT1 Palmoplantar keratoderma, epidermolytic or nonepidermolytic AD [20]

KRT6A Pachyonychia congenita 3 AD [21]
KRT6B Pachyonychia congenita 4 AD [22]
KRT6C Palmoplantar keratoderma, nonepidermolytic, focal or diffuse AD [23]
KRT9 Palmoplantar keratoderma, epidermolytic AD [24]

KRT16 Palmoplantar keratoderma, nonepidermolytic, focal 1, FNEPPK1 AD [25,26]
KRT17 Pachyonychia congenita 2 AD [26]
LOR Vohwinkel syndrome with ichthyosis AD [27]

POMP Keratosis linearis with ichthyosis congenita and sclerosing keratoderma AR [28]
SASH1 Cancer, alopecia, pigment dyscrasia, onychodystrophy, and keratoderma AR [29]

SERPINB7 Palmoplantar keratoderma, Nagashima type; PPKN AR [30]
SLURP1 Meleda disease AR [31]

TAT Tyrosinemia, type II AR [32]
TGM1 Ichthyosis, congenital, autosomal recessive 1 AR [33]
TRPV3 Palmoplantar keratoderma, nonepidermolytic, focal 2; FNEPPK2 AD [34]

WNT10A Schöpf–Schulz–Passarge syndrome AR [35]
a AD: autosomal dominant; AR: autosomal recessive.

Footpad hyperkeratosis in dogs is a genetically heterogenous group of inherited diseases
corresponding to human PPK. So far, causative genetic variants for two different forms of canine
footpad hyperkeratosis have been reported. Hereditary footpad hyperkeratosis (HFH) in Irish Terriers
and Kromfohrländer dogs is caused by a variant in the FAM83G gene [36] encoding a protein involved in
BMP and WNT signaling [37–39]. The syndromic HFH phenotype is characterized by an orthokeratotic
hyperplasia of the footpad epidermis in combination with an irregular hair morphology. FAM83G
variants have also been described in human patients with PPK and exuberant scalp hair [12] and the
wooly mouse mutant [40]. A KRT16 frameshift variant has been reported in Dogues de Bordeaux
with focal nonepidermolytic footpad hyperkatosis [41]. Interestingly, this disease is inherited as an
autosomal recessive trait, while the human forms of KRT16-associated focal nonepidermolytic PPK
typically are inherited as autosomal dominant traits [25,26].

This study was initiated after an owner reported a juvenile male Rottweiler dog suffering from
footpad hyperkeratosis. The goal of the study was to characterize the clinical and histopathological
phenotype and to identify a possible underlying causative genetic defect.

2. Materials and Methods

2.1. Ethics Statement

All animal experiments were performed according to local regulations. The dog in this study
is privately owned and was examined with the consent of the owner. The "Cantonal Committee for
Animal Experiments" approved the collection of blood samples (Canton of Bern; permit 75/16).
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2.2. Animal Selection

A male Rottweiler dog with footpad hyperkeratosis was investigated. Footpad biopsies were
collected at initial presentation to rule out infectious and inflammatory causes of hyperkeratosis.
The clinical presentation was inconsistent with other causes of secondary hyperkeratosis. An EDTA
blood sample was collected for genomic DNA isolation. Additionally, we used 15 blood samples from
other Rottweilers, which had been donated to the Vetsuisse Biobank. They represented population
controls without reports of footpad hyperkeratosis. The photo of the control Rottweiler, shown in
Figure 1B, represents a stock photo from the University of Pennsylvania (UPENN) veterinary hospital.
This dog was not genotyped. The biopsy of the control dog, shown in Figure 2A, originates from a
six-month-old healthy Beagle that was part of another IACUC-approved study at the UPENN School
of Veterinary Medicine.

2.3. Histopathological Examinations

Two 6 mm punch biopsies from the footpads were obtained under general anesthesia. The samples
were fixed in 10% neutral buffered formalin and routinely processed, including staining with
hematoxylin and eosin.

2.4. DNA Extraction

Genomic DNA was isolated from EDTA blood with the Maxwell RSC Whole Blood Kit using a
Maxwell RSC instrument (Promega, Dübendorf, Switzerland).

2.5. Whole-Genome Sequencing

An Illumina TruSeq PCR-free DNA library with ~500 bp insert size of the affected dog (RO015)
was prepared. We collected 329 million 2 × 150 bp paired-end reads on a NovaSeq 6000 instrument
(37x coverage). Mapping and alignment were performed as described [42]. The sequence data were
deposited under the study accession PRJEB16012 and the sample accession SAMEA6249501 at the
European Nucleotide Archive.

2.6. Variant Calling

Variant calling was performed using GATK HaplotypeCaller [43] in gVCF mode as described [42].
To predict the functional effects of the called variants, SnpEff [44] software together with NCBI
annotation release 105 for the CanFam3.1 genome reference assembly was used. For variant filtering
we used 655 control genomes (Table S1).

2.7. Gene Analysis

We used the CanFam3.1 dog reference genome assembly and NCBI annotation release 105.
Numbering within the canine DSG1 gene corresponds to the NCBI RefSeq accession numbers
NM_001002939.1 (mRNA) and NP_001002939.1 (protein).

2.8. Sanger Sequencing

The DSG1:c.2541_2545delGGGCT variant was genotyped by direct Sanger sequencing of PCR
amplicons. A 402 bp (or 397 bp in case of the mutant allele) PCR product was amplified from genomic
DNA using AmpliTaqGold360Mastermix (Thermo Fisher Scientific, Waltham, MA, USA) together
with primers 5‘-GAG CAC TGA ACC GAT TTG CC -3‘ (Primer F) and 5’- GGC ATA GTC AAA GAG
GTG GGT-3’ (Primer R). After treatment with exonuclease I and alkaline phosphatase, amplicons were
sequenced on an ABI 3730 DNA Analyzer (Thermo Fisher Scientific). Sanger sequences were analyzed
using the Sequencher 5.1 software (GeneCodes, Ann Arbor, MI, USA).
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3. Results

3.1. Clinical Examination

A six-month-old male intact Rottweiler dog presented for evaluation of thick, rapidly growing
footpads and discomfort (shifting stance, unwilling to stand for long periods). An unusual appearance
of the pads (described as “dryness”) had been first noted by the owners when the dog was obtained at
eight weeks of age. At the time of the initial presentation, the patient was otherwise healthy with no
other systemic or dermatologic signs. On examination, all pads on all feet were markedly thickened by
dense mounds of adherent keratin (Figure 1). The digital pads and metatarsal/metacarpal pads were
the most severely affected. Fissures and mobile keratin ridges were present along the edges of the
pads. There was mild diffuse scale over the trunk, which was considered to be within normal limits.

Figure 1. Clinical phenotype at six months of age. (A) Marked expansion of the footpads by thick
projections of dense keratin in the affected Rottweiler. The adjacent haired skin appears unaffected on
this image. (B) Footpads of a normal six-month-old control Rottweiler.

Regular application of moisturizers (urea), keratolytic (propylene glycol), and keratoplastic agents
(salicylic acid/sulfur) and regular home trimming was recommended. The patient was unable to
tolerate oral retinoids (isotretinoin). Initially, physical trimming of footpads under general anesthesia
was performed every 4–6 months. However, the frequency by which this was required increased
over time, and by the third year of life, it was performed every 8–10 weeks. To address significant
discomfort, the patient was also started on gabapentin and codeine for pain control.

Additionally, between 8–12 months of age, the patient developed mild nonseasonal pruritus and
recurrent ear infections. The patient was placed on an isoxazoline (Bravecto®) for parasite control.
A 10-week strict hydrolyzed protein (Royal Canin Ultamino®) diet trial was performed without
improvement, and the patient was presumptively diagnosed with atopic dermatitis. At one year of
age, the patient was started on 0.5 mg/kg Oclacitinib (Apoquel®) for control of pruritus.

Despite control of pruritus, the patient continued to develop recurrent ear infections and
intermittent episodes of bacterial skin infection. Superficial bacterial infections developed most
frequently in areas of heavy wear (elbows, lateral hocks) but were also found occasionally on the
trunk, neck, and glabrous areas. At sites of infection, hyperkeratotic plaques with superficial crusting
were noted (Figure S1). Infections were managed with topical antiseptics and systemic culture-based
antibiotics when indicated.
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Figure 2. Histopathological phenotype of footpad skin. (A) Footpad skin of a normal six-month-old
control dog. (B) In a biopsy taken from the affected dog at six months of age, a dense proliferation of the
stratum corneum (outermost anucleated layer of the skin) markedly expands the epidermis. The stratum
corneum is arranged in papillated villous projections of dense keratin. (C) Higher magnification of the
stratum granulosum and stratum corneum of the affected dog shows an expansion of the granular
cell layer.

3.2. Histopathological Findings

Histologically, the stratum corneum was markedly expanded by villous projections of
orthokeratotic hyperkeratosis. The subtending granular layer of the epidermis was mildly hyperplastic.
The samples had no significant inflammation (Figure 2).

3.3. Genetic Analysis

We sequenced the genome of the affected dog and searched for homozygous and heterozygous
variants in 32 known candidate genes (Table 1) that were not present in the genome sequences of
647 control dogs and 8 wolves (Table 2, Table S2).

Table 2. Results of variant filtering in the affected Rottweiler dog against 655 control genomes.

Filtering Step Homozygous Variants Heterozygous Variants

All variants in the affected Rottweiler 3,310,269 2,516,875
Private variants 842 3290

Protein-changing private variants 4 25
Private variants in known candidate genes 1 0

This analysis identified a single homozygous private protein-changing variant in DSG1, a known
candidate gene for palmoplantar keratoderma in humans [9]. The variant, a 5 bp deletion, can
be designated as Chr7:58,163,636_58,163,640del5 (CanFam3.1 assembly). It is a frameshift variant,
NM_001002939.1:c.2541_2545delGGGCT, predicted to truncate 207 amino acids from the C-terminus of
the wildtype DSG1 protein, NP_001002939.1:p.(Gly848Trpfs*2). We did not investigate whether any
mutant protein is expressed or whether the premature stop codon caused by the frameshift deletion
leads to nonsense-mediated decay of the transcript.

We confirmed the presence of the 5 bp coding deletion in DSG1 by Sanger sequencing and
genotyped 15 control Rottweiler dogs. The case was homozygous for the mutant allele, while none of
the 15 control dogs carried this allele (Figure 3).
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Figure 3. Details of the DSG1:c.2541_2545delGGGCT variant. Representative electropherograms of
a control and the affected dog are shown. The amino acid translations of the wild-type and mutant
alleles are indicated.

4. Discussion

In this study, we identified a homozygous DSG1:c.2541_2545delGGGCT frameshift variant in a
Rottweiler dog with severe footpad hyperkeratosis. DSG1 encodes desmoglein 1, a calcium-binding
transmembrane glycoprotein of the cadherin family. Desmoglein 1 represents a major component
of desmosomes that mediates cell–cell adhesion between keratinocytes in the upper layers of the
epidermis [45]. Intact desmosomes are essential to maintain the skin barrier function [45]. Desmoglein
1 also represents the major autoantigen in human pemphigus foliaceus [46].

Variants in human DSG1 cause striate palmoplantar keratoderma I (SPPK1). It is interesting
to note that SPKK1 in humans is an autosomal dominant phenotype with the pathogenic variants
being present in a heterozygous state in affected individuals [9,47]. In humans, SPKK1 is caused by
haploinsufficiency of desmoglein 1 [9,47]. The investigated dog of our study was homozygous for
a presumed null allele of DSG1 and unlikely to express any functional desmoglein 1. In humans, a
rare syndromic form of PPK referred to as SAM syndrome has been reported in patients with biallelic
DSG1 loss-of-function variants [48]. Subsequent studies of further human patients with biallelic
DSG1 variants confirmed the dermatitis and multiple allergies but failed to replicate the reported
malabsorption and metabolic wasting [49,50]. The clinical presentation of the affected dog in our study,
including the development of atopic dermatitis and hyperkeratotic lesions at sites of bacterial skin
infection, resembles the phenotype of human SAM syndrome patients without the metabolic wasting,
similar to what has been reported in several human cases [49,50].

The histopathological alterations in the footpad skin of the affected Rottweiler were comparable
to the changes seen in footpad hyperkeratosis of FAM83G mutant Irish Terriers and Kromfohrländer
dogs [36] and KRT16 mutant Dogues de Bordeaux [41]. Thus, the histopathology cannot predict
the specific underlying genetic defect. The clinical phenotype of the studied Rottweiler was more
severe than in the previously described canine inherited footpad hyperkeratoses [36,41] and required
periodical trimming of the excessively hyperkeratotic footpads. In addition to the severely affected
footpads, the DSG1 mutant Rottweiler also had an allergic skin disease and was prone to repeated
bacterial skin infections. Such features have not been reported in FAM83G mutant Irish Terriers or
Kromfohrländer dogs [36] or in KRT16 mutant Dogues de Bordeaux [41].

Unfortunately, we did not have access to the parents of the affected dog or any other heterozygous
dog. It would be interesting to investigate whether heterozygous dogs have completely normal
footpads or whether they exhibit a mild phenotype that might go unnoticed by their owners.

In summary, we identified a Rottweiler dog with severe footpad hyperkeratosis that clinically
and genetically resembled human SAM syndrome without metabolic wasting. To the best of our
knowledge, this dog represents the first nonhuman patient with a spontaneous DSG1 gene defect.
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