Deformable image registration uncertainty for inter-fractional dose accumulation of lung cancer proton therapy.

Nenoff, Lena; Ribeiro, Cássia O; Matter, Michael; Hafner, Luana; Josipovic, Mirjana; Langendijk, Johannes A; Persson, Gitte F; Walser, Marc; Weber, Damien Charles; Lomax, Antony John; Knopf, Antje-Christin; Albertini, Francesca; Zhang, Ye (2020). Deformable image registration uncertainty for inter-fractional dose accumulation of lung cancer proton therapy. Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology, 147, pp. 178-185. Elsevier 10.1016/j.radonc.2020.04.046

Full text not available from this repository. (Request a copy)

BACKGROUND AND PURPOSE Non-small cell lung cancer (NSCLC) patients show typically large anatomical changes during treatment, making recalculation or adaption necessary. For report and review, the applied treatment dose can be accumulated on the reference planning CT using deformable image registration (DIR). We investigated the dosimetric impact of using six different clinically available DIR algorithms for dose accumulation in presence of inter-fractional anatomy variations. MATERIALS AND METHODS For seven NSCLC patients, proton treatment plans with 66 Gy-RBE to the planning target volume (PTV) were optimised. Nine repeated CTs were registered to the planning CT using six DIR algorithms each. All CTs were acquired in visually guided deep-inspiration breath-hold. The plans were recalculated on the repeated CTs and warped back to the planning CT using the corresponding DIRs. Fraction doses warped with the same DIR were summed up to six different accumulated dose distributions per patient, and compared to the initial dose. RESULTS The PTV-V95 of accumulated doses decreased by 16% on average over all patients, with variations due to DIR selection of 8.7%. A separation of the dose effects caused by anatomical changes and DIR uncertainty showed a good agreement between the dose degradation caused by anatomical changes and the dose predicted from the average of all DIRs (differences of only 1.6%). CONCLUSION The dose degradation caused by anatomical changes was more pronounced than the uncertainty of employing different DIRs for dose accumulation, with averaged results from several DIRs providing a good representation of dose degradation caused by anatomy. However, accumulated dose variations between DIRs can be substantial, leading to an additional dose uncertainty.

Item Type:

Journal Article (Original Article)

Division/Institute:

04 Faculty of Medicine > Department of Haematology, Oncology, Infectious Diseases, Laboratory Medicine and Hospital Pharmacy (DOLS) > Clinic of Radiation Oncology

UniBE Contributor:

Weber, Damien Charles

Subjects:

600 Technology > 610 Medicine & health

ISSN:

1879-0887

Publisher:

Elsevier

Language:

English

Submitter:

Beatrice Scheidegger

Date Deposited:

13 May 2020 09:19

Last Modified:

24 Jun 2020 01:32

Publisher DOI:

10.1016/j.radonc.2020.04.046

PubMed ID:

32380117

Uncontrolled Keywords:

Deformable image registration Dose accumulation NSCLC Proton therapy

URI:

https://boris.unibe.ch/id/eprint/143986

Actions (login required)

Edit item Edit item
Provide Feedback