
s
o
u
r
c
e
:
 
h
t
t
p
s
:
/
/
d
o
i
.
o
r
g
/
1
0
.
7
8
9
2
/
b
o
r
i
s
.
1
4
3
9
8
8
 
|
 
d
o
w
n
l
o
a
d
e
d
:
 
2
0
.
4
.
2
0
2
4

The Cryosphere, 14, 1409–1423, 2020
https://doi.org/10.5194/tc-14-1409-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

Towards a webcam-based snow cover monitoring network:
methodology and evaluation
Céline Portenier1, Fabia Hüsler2, Stefan Härer3, and Stefan Wunderle1

1Institute of Geography and Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland
2Federal Office for the Environment (FOEN), Ittigen, Switzerland
3Professorship Ecoclimatology, Technical University of Munich, Freising, Germany

Correspondence: Céline Portenier (celine.portenier@giub.unibe.ch)

Received: 10 June 2019 – Discussion started: 5 July 2019
Revised: 25 January 2020 – Accepted: 25 February 2020 – Published: 30 April 2020

Abstract. Snow cover variability has a significant impact on
climate and the environment and is of great socioeconomic
importance for the European Alps. Terrestrial photography
offers a high potential to monitor snow cover variability, but
its application is often limited to small catchment scales.
Here, we present a semiautomatic procedure to derive snow
cover maps from publicly available webcam images in the
Swiss Alps and propose a procedure for the georectification
and snow classification of such images. In order to avoid the
effort of manually setting ground control points (GCPs) for
each webcam, we implement a novel registration approach
that automatically resolves camera parameters (camera ori-
entation; principal point; field of view, FOV) by using an es-
timate of the webcams’ positions and a high-resolution digi-
tal elevation model (DEM). Furthermore, we propose an au-
tomatic image-to-image alignment to correct small changes
in camera orientation and compare and analyze two recent
snow classification methods. The resulting snow cover maps
indicate whether a DEM grid is snow-covered, snow-free,
or not visible from webcams’ positions. GCPs are used to
evaluate our novel automatic image registration approach.
The evaluation reveals a root mean square error (RMSE)
of 14.1 m for standard lens webcams (FOV< 48◦) and a
RMSE of 36.3 m for wide-angle lens webcams (FOV≥ 48◦).
In addition, we discuss projection uncertainties caused by the
mapping of low-resolution webcam images onto the high-
resolution DEM. Overall, our results highlight the potential
of our method to build up a webcam-based snow cover mon-
itoring network.

1 Introduction

Snow is an essential natural resource. Because snow has a
much higher albedo compared to other natural land surfaces,
its areal extent plays an important role in the Earth’s en-
ergy balance. In alpine regions, snow plays a key role in the
hydrologic cycle. It acts as water storage and accounts for
a substantial portion of the total runoff. Information about
spatial and temporal snow distribution is therefore essential
for monitoring water resources and predicting runoff (Jonas
et al., 2009), and it is of crucial importance for water sup-
ply and hydropower production. In addition, seasonal snow
cover not only plays an important role for the development of
ecosystems but has a high economic value for winter tourism
as well.

Most commonly used methods to monitor snow cover vari-
ability are based on in situ measurements and satellite re-
mote sensing. In situ measurements, e.g., from ground-based
monitoring networks, provide accurate and long time series
of local snow sites and can be used, for example, for long-
term trend analyses (e.g., Laternser and Schneebeli, 2003;
Marty, 2008; Klein et al., 2016). These measurements, how-
ever, might not capture the spatial variability of snow cover.
In contrast to in situ measurements, remote sensing data can
provide spatially comprehensive information on snow cover
extent. In particular, optical remote sensing is widely used
to study snow cover variability (e.g., Foppa and Seiz, 2012;
Hüsler et al., 2012; Metsämäki et al., 2012; Wunderle et al.,
2016). The main limiting factor of optical remote sensing
techniques is cloud coverage. According to Dumont and Gas-
coin (2016), the yearly average of pixels hidden by clouds
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1410 C. Portenier: Towards a webcam-based snow cover monitoring network

is about 50 % in the Pyrenees and 60 % in the Austrian
Alps. In addition, large uncertainties exist in shadowed or
forested areas. Moreover, the sensor resolution (e.g., 250 m
or 1.1 km resolution of the MODIS and AVHRR sensor re-
spectively) may limit the capture of small-scale variability of
snow cover, especially in complex, mountainous terrain. The
emergence of new techniques based on airborne digital pho-
togrammetry and terrestrial photography enables us to ex-
tract snow cover information with high spatial and temporal
resolutions. Unmanned areal systems (UASs) enable the gen-
eration of high-resolution digital surface models that can be
used to map the small-scale variability of snow depth (e.g.,
Bühler et al., 2016; De Michele et al., 2016). However, UASs
are often associated with high costs, and their spatial cover-
age and temporal resolution is limited. In addition, weather
constraints due to strong winds or precipitation can restrict
the use of UASs, especially at high elevations.

In this work, we suggest the use of publicly available web-
cam images and present a semiautomatic procedure to gener-
ate snow cover maps from such images. This work builds on
and extends the master’s thesis by Dizerens (2015). We focus
on the Swiss Alps, where several thousands of public outdoor
webcams are readily available online, resulting in a relatively
dense sampling to study snow cover variability over a large
area. Webcams are a cost-effective and efficient way to mon-
itor snow cover variability in mountainous regions at high
spatiotemporal scales. Most webcams offer images within a
1-hourly to 10 min interval. The spatial resolution depends
on the image resolution, a webcam’s field of view (FOV), the
distance of the terrain to the webcam, and the slope and ori-
entation of the terrain (see Sect. 5 for an in-depth discussion).
Webcams may offer detailed analyses of snow cover on steep
slopes due to their oblique view on the mountains. More-
over, webcams can provide snow cover information even un-
der cloudy weather conditions as long as cloud cover and
fog do not disturb the view on the ground. Therefore, web-
cams offer an unique potential to complement and evaluate
satellite-derived snow information. For instance, Piazzi et al.
(2019) have shown that webcam images can be leveraged to
assess the consistency of Sentinel-2 snow cover information.
However, the areal coverage of webcam-based snow cover
information depends on the number of cameras used, their
FOV, and their positioning in the field. In addition, public
webcams provide images in the visible spectrum only and
with varying image quality, which makes an accurate classi-
fication of snow cover challenging.

Terrestrial photography is an increasingly used observa-
tion method in different research disciplines such as glaciol-
ogy (e.g., Corripio, 2004; Dumont et al., 2011; Huss et al.,
2013; Messerli and Grinsted, 2015) and snow cover studies
(e.g., Schmidt et al., 2009; Farinotti et al., 2010; Härer et al.,
2013, 2016; Pimentel et al., 2014; Liu et al., 2015; Fedorov
et al., 2016; Revuelto et al., 2016; Arslan et al., 2017; Millet
et al., 2018). However, most of these studies use single cam-
eras and thus are limited in areal coverage. In particular, they

either require known camera parameters (i.e., extrinsic and
intrinsic camera parameters such as the camera orientation
or the FOV of the camera) or require significant manual user
input (e.g., ground control points, GCPs) to georectify ter-
restrial photography. Since camera parameters are not readily
available for public webcams, and manually setting GCPs for
a large number of cameras is time-consuming, these meth-
ods are of limited application for our purposes. Therefore,
we implement a processing scheme that minimizes manual
user input by automation. Our georectification approach reg-
isters a webcam image with a digital elevation model (DEM).
This image-to-DEM registration automatically resolves the
required webcam parameters, such as the camera’s orienta-
tion and its FOV, by using an estimate of the webcam’s posi-
tion only.

In literature, many different snow classification techniques
exist to detect snow cover in terrestrial camera images. Some
studies determine the snow-covered area using manual inter-
pretation (Farinotti et al., 2010; Liu et al., 2015) or by man-
ually selecting appropriate threshold values for each single
image (Schmidt et al., 2009) or for a set of images (Floyd
and Weiler, 2008). On the other hand, many automatic ap-
proaches exists as well, such as methods applying image
clustering techniques (Pimentel et al., 2014; Millet et al.,
2018; Rüfenacht et al., 2014), applying other statistical meth-
ods (e.g., Salvatori et al., 2011; Härer et al., 2016), or using
supervised learning classifiers (Fedorov et al., 2016) to dis-
tinguish snow from snow-free areas. The main challenge of
these methods is to detect snow cover in shadowing areas
or to differentiate between dark, shadowed snow pixel, and
other canopy pixels such as bright rock surfaces (Rüfenacht
et al., 2014; Härer et al., 2016; Arslan et al., 2017; Manni-
nen and Jääskeläinen, 2018). The study of Härer et al. (2016)
tackles the problem of undetected snow cover in shadowing
regions. Härer et al. (2016) propose applying the blue-band
classification by Salvatori et al. (2011) and subsequently us-
ing principal component analysis (PCA) to separate shaded
snow cover from sunlit rock surfaces. Recently, Fedorov
et al. (2016) propose training machine learning models to
classify snow cover in terrestrial camera images. While Fe-
dorov et al. (2016) report superior performance to hand-
crafted methods on data that are sufficiently similar to the
training data, such models do not generalize well to data that
deviate significantly from the training data. Moreover, ac-
quiring data suitable for training such models is expensive,
since it requires us to label every single pixel in a set of train-
ing images by hand. In this study, we test and compare the
snow classification approaches proposed by Salvatori et al.
(2011) and Härer et al. (2016) within our framework. Com-
bined with an automatic image-to-image alignment to cor-
rect small changes in the camera orientation, our procedure
can be applied to webcam images to generate snow cover
maps with a minimal effort. To assess the accuracy of our
automatic snow cover mapping, we analyze and evaluate the
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C. Portenier: Towards a webcam-based snow cover monitoring network 1411

components of the processing chain with a focus on auto-
matic image-to-DEM registration.

This work is organized as follows: in Sect. 2, the web-
cam data, DEM, and orthophoto used in this work are de-
scribed. In Sect. 3, we present the proposed methods of our
procedure. Qualitative examples of snow cover maps and a
comparison of the applied snow classification methods are
shown in Sect. 4, followed by a detailed evaluation of the
mapping accuracy in Sect. 5. Finally, we discuss the advan-
tages and limitations of our procedure (Sect. 6), before con-
cluding in Sect. 7.

2 Data

2.1 Webcam images

The website http://www.kaikowetter.ch/ (last access: 22 Apri
l2020) offers a network of about 520 outdoor webcams ob-
serving the current snow conditions in and around Switzer-
land. Most of these webcams were installed by mountain rail-
way operators, restaurants, hotels, and private citizens. Since
November 2011, we have been archiving one image per day
of each webcam from this website and have been extending
our archive continuously with webcam images from other
web sources. To apply our procedure to a given webcam,
two requirements have to be fulfilled: the mountain silhou-
ette has to be visible on the webcam image; i.e., it is not
obscured by trees or buildings. About 70 % of all the web-
cams provided by http://www.kaikowetter.ch/ satisfy this re-
quirement. The other approximately 30 % can not be used
due to obstacles between silhouette and webcams or since no
mountain silhouette is visible at all. In addition, the location
of a webcam has to be known. Up to now, we have man-
ually estimated the locations of 297 webcams in the Swiss
Alps (see Fig. 1). They are located at elevations ranging from
800 m to 3900 m a.s.l. The pixel resolution of these webcam
images ranges from 640 pixels× 480 pixels up to 1920 pix-
els× 1080 pixels (see Fig. 2).

2.2 Swiss geodata

We use the swissALTI3D DEM and the orthophoto SWIS-
SIMAGE, produced by the Swiss Federal Office of To-
pography (swisstopo, 2013a, b). The DEM covers Switzer-
land and Liechtenstein and has a spatial resolution of 2 m.
It was created using airborne laser scanning data (be-
low 2000 m a.s.l.) or stereocorrelation of areal photographs
(above 2000 m a.s.l.) and features an accuracy of 0.5 m and
1 to 3 m on average, respectively. The orthophoto SWIS-
SIMAGE is composed of digital aerial orthophotographs of
Switzerland, featuring a spatial resolution of 0.1 m in the
Swiss lowlands and 0.25 m in the Swiss Alps.

3 Methods

The proposed procedure consists of four major steps: pre-
processing, automatic image-to-DEM registration, automatic
image-to-image alignment, and automatic snow classifica-
tion (see Fig. 3 for an overview). In the preprocessing step
(Sect. 3.1), manual user input is required to estimate the web-
cam’s location, to select a representative image for image-to-
DEM registration (hereafter referred as master image), and
to provide an image mask. Second, the selected master im-
age is automatically registered with the DEM to derive the
unknown camera parameters, such as orientation and FOV
of the webcam (Sect. 3.2). Successful image-to-DEM reg-
istration results in a transformation matrix that relates each
pixel of the master image to its 3D coordinates. Since an
image series of a webcam is usually not perfectly aligned,
we automatically align images to the selected master image
(Sect. 3.3). This enables the use of the same transformation
matrix for all webcam images. Finally, each image is auto-
matically snow-classified (Sect. 3.4). Using the transforma-
tion matrix, a georeferenced snow cover map can be gener-
ated.

3.1 Preprocessing

First, a webcam’s location and its installation height above
ground is estimated manually. This is achieved by consider-
ing the position of objects visible in the webcam image, the
orthophoto SWISSIMAGE, and additional information pro-
vided by the webcam owner (e.g., the name of a restaurant
where the webcam is mounted). In some cases, touristic pho-
tographs and images from Google Street View help to im-
prove the location estimation. As mentioned in Sect. 2, we
have estimated the locations of 297 webcams (see Fig. 1).
Next, at least one master image per webcam is selected. This
image has to be representative for all other images of the
same webcam and should feature high contrast between the
mountains and the sky for automatic image-to-DEM registra-
tion. Under clear-sky conditions, most webcam images are
suited to serve as master image. Finally, a so-called input
mask can be prepared to define image regions that should be
ignored in the snow map generation procedure. Such regions
can be trees, buildings, or other fixed infrastructure and are
defined on the master image.

3.2 Automatic image-to-DEM registration

The registration of an image with a DEM requires a com-
mon feature space. As in the study of Baboud et al. (2011)
and Fedorov et al. (2016), we make use of mountain silhou-
ettes, which are among the most salient structural features
in mountainous natural environments. Gaussian filtering and
Sobel edge detection are applied to the master image to re-
duce noise and extract the structural features from the im-
ages. Next, the mountain silhouette is automatically detected
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1412 C. Portenier: Towards a webcam-based snow cover monitoring network

Figure 1. Locations of 297 webcams (red points) in the Swiss Alps. Background data: SWISSIMAGE 25 and DHM25/200, © swisstopo.

Figure 2. Image pixel resolution of the selected webcams.

from the edge image (see Fig. 4). Our silhouette extraction is
based on the assumption that the mountain silhouette is the
uppermost edge line that spans the full width of the image.
It starts at the top left pixel in the edge image and looks for
the first edge pixel in the first column. Once a pixel is found,
the algorithm iteratively searches in a 7 pixel× 7 pixel neigh-
borhood for other edge pixels until a continuous line is found
that spans the full width of the image. If no such edge line is
found, the algorithm starts again at the next edge pixel in the
first column of the image.

To derive the unknown camera parameters, the extracted
mountain silhouette is registered with mountain silhouettes
extracted from virtually rendered DEM images. These DEM
images are generated by projecting the DEM point cloud
from its world coordinate system via a camera coordinate
system to an image coordinate system (see Figs. 5 and 6)
by using a pinhole camera model. To reduce the computa-
tional complexity, only DEM points that are visible from the
point of view of the webcam are considered. For this pur-
pose, the viewshed generation module of the Photo Rectifica-

Figure 3. Overview of the proposed procedure. It consists of four
major steps: preprocessing, automatic image-to-DEM registration,
automatic image-to-image alignment, and automatic snow classifi-
cation. Image-to-DEM registration results in a transformation ma-
trix that is used to project the snow-classified pixels onto a map.

tion And ClassificaTIon SoftwarE (PRACTISE V.1.0; Härer
et al., 2013) is used to generate a 360◦ visibility map from the
point of view of the webcam. The projected DEM points p′
of the virtual DEM image are computed by multiplying the
visible DEM points p by the inverse of a camera matrix C, a

The Cryosphere, 14, 1409–1423, 2020 www.the-cryosphere.net/14/1409/2020/



C. Portenier: Towards a webcam-based snow cover monitoring network 1413

Figure 4. Three examples of automatic silhouette extraction.
(a) Webcam images, (b) extracted edges using Sobel edge detec-
tion, (c) detected mountain silhouettes, and (d) mountain silhou-
ettes (red) superimposed on grayscale webcam images. Webcam
images (left to right): La Fouly (© Pays du St. Bernard, #lafouy,
#mypsb), Tschentenalp (© Verein Trainingszentrum Adelboden,
https://www.adelboden.ch/de/s/home, last access: 23 March 2020),
and Axalp (© Sportbahnen Axalp Windegg AG, 3855 Axalp).

Figure 5. Sample rendering of the swissALTI3D digital elevation
model (DEM) using a pinhole camera model. DEM data © swis-
stopo.

perspective projection matrix P, and a viewport matrix D:

p′ = DPC−1p. (1)

The camera matrix C transforms from camera coordinates
to world coordinates and is defined by extrinsic camera pa-
rameters, i.e., the camera’s location and orientation with re-
spect to the known world reference frame. It is given by

C=
[
xc yc zc cop
0 0 0 1

]
, (2)

Figure 6. World, camera, and image coordinate systems and their
transformations using camera matrix C, perspective projection ma-
trix P, and viewport matrix D.

where cop is the camera’s location and xc, yc, and zc are the
three vectors of the camera coordinate system that define its
orientation, i.e., the roll, pitch, and yaw angle. The perspec-
tive projection matrix P transforms objects into canonic view
volume (i.e., a cube) so that the image points are normalized
view coordinates in the range [−1,1]× [−1,1]× [−1,1]. It
is defined by intrinsic camera parameters and is given by

P=


1

a·tan(FOV/2) 0 0 0
0 1

tan(FOV/2) 0 0
0 0 near+far

near−far
2·near·far
near−far

0 0 −1 0

 , (3)

where a is the image aspect ratio and “near” and “far” are
the distances to a near and a far plane that limit the infi-
nite viewing volume. To finally transform to pixel coordi-
nates (xim,yim) ∈ [xo. . .x1]× [y0. . .y1], the viewport ma-
trix, given by

D=


(x1− x0)/2 0 0 (x0− x1)/2

0 (y1− y0)/2 0 (y0− y1)/2
0 0 1/2 1/2
0 0 0 1

 , (4)

is applied. It scales the projected pixels to a certain image
size and translates them such that the origin of the image
coordinate system is at the upper left corner. Since we use
homogeneous coordinates, we apply perspective division to
obtain pixel coordinates. Using this camera model, virtual
DEM images can be generated by sampling the unknown pa-
rameters (i.e., the three orientation vectors xc, yc, and zc of
the camera and the FOV).

To estimate the ground truth camera parameters, we pro-
pose a silhouette matching procedure. Similar to before, the
mountain silhouettes are extracted from the rendered DEM
images using the method described above. Given two silhou-
ettes, i.e., the master image silhouette and a silhouette ex-
tracted from a sampled DEM rendering, we define a score

www.the-cryosphere.net/14/1409/2020/ The Cryosphere, 14, 1409–1423, 2020
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function based on 2D cross correlation to quantify how well
the two silhouettes match:

score= α ·w1+ (1−α) ·w2, (5)

where w1 is the normalized maximum response of cross cor-
relation, and w2 is the normalized image space offset defined
by the distance between the pixel location of the maximum
response and the image center. The final score is the weighted
sum using a user-defined parameter α. To estimate the cam-
era parameters, we seek for the parameters that maximize
this score.

To efficiently search for the best matching silhouette pair,
silhouette matching is performed on multiple scales k. On
each scale, the algorithm rotates the camera coordinate sys-
tem horizontally and vertically (see Fig. 7) and searches for
the highest score. On scale i, the estimated parameters of
scale i− 1 are used as initialization and the camera coordi-
nate system is rotated nx times around the z coordinate of the
world coordinate system and ny times around the x axis of
the camera coordinate system. On scale k = 0, the parame-
ters are initialized randomly. The horizontal and vertical ro-
tation steps are called strides sx and sy respectively. On scale
k = 0, we set an initial stride of sx = 360◦/nx (with nx = 20)
and sy = 90◦/ny (with ny = 12). For all scales k > 0, the
horizontal and vertical strides are recursively defined by

sxi =
3sxi−1

nx
and syi =

3syi−1

ny
. (6)

To approximate the roll angle of the camera, we addition-
ally rotate the x coordinate of the camera matrix on each
scale m= 5 times around the viewing direction once the im-
age space offsetw2 is smaller than 10 pixels. An initial stride
of sm = 3◦/m is set and decreases each scale by

smk =
3smk−1

m
. (7)

Instead of estimating the FOV manually, our procedure
can also optimize the FOV of the webcam by first iterating
the horizontal FOV of 30 by 5◦ to a FOV of 90◦ in scale
k = 0. The best matching silhouette pair defines the initial
FOV estimate. Once the image space offsetw2 is smaller than
20 pixels, the FOV can be estimated more accurately by eval-
uating different FOVs at each iteration: the FOV is iterated
at each viewing direction f = 5 times around the initial FOV
with an initial stride sFOV = 2◦, decreasing each scale by

sfk =
3sfk−1

f
. (8)

The weighting parameter α (Eq. 5) is a function of scale
k. On scale k = 0, we set α = 1, such that the final score is
mainly determined by the maximum response of cross corre-
lation w1. The normalized image space offset w2 is ignored,
since it would mainly correspond to an offset of a wrongly

Figure 7. Viewing directions (blue points) of a camera (aster-
isk) during image-to-DEM registration. The green dots indicate the
viewing directions with the best score, and the orange dots indi-
cate the best viewing directions of the previous scale. An exam-
ple is shown for vertical and horizontal rotations from scale k = 0
to k = 3.

matched silhouette pair. w2 becomes important for scales
k > 0, once the viewing direction estimate is reasonably ac-
curate. The smaller the distance of the maximum response to
the image center, the better the two silhouettes match. There-
fore, α is set to a low value (0.1). Once the roll angle and
FOV is resolved, both measures, w1 and w2, are set equally
(α = 0.5), since both the smallest offset and the highest re-
sponse value have to be estimated.

To find the best score efficiently, the virtual DEM images
are rendered with a lower resolution in the first scales. Start-
ing with a width of w = worig/8 and height of h= horig/8
in scale k = 0, the width and height are doubled until the
original image size is reached in scale k = 3. Experiments
have shown that image-to-DEM registration requires around
12 scales until the best matching silhouette pair with an im-
age space offset of 0 is found. This best matching silhouette
pair results in a transformation matrix that relates each pixel
of the master image to its real 3D coordinates.

3.3 Automatic image-to-image alignment

Most webcams are exposed to wind that may lead to small
changes in the camera orientation. Moreover, for a few we-
bcams, major variations in orientation can occur due to hu-
man interaction, intentionally or unintentionally. While small
orientation changes may occur every day, we observe major
camera movements rarely, at most monthly. Because image-
to-DEM registration is computationally expensive and moun-
tain silhouettes cannot be detected on each webcam image

The Cryosphere, 14, 1409–1423, 2020 www.the-cryosphere.net/14/1409/2020/
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Figure 8. SIFT features of a master image and an input image and
corresponding matches between all features. To simplify the illus-
tration, we show a subset of 100 randomly selected SIFT features
per image. Webcam images: Hahnenmoos, © Skiregion Adelboden-
Lenk.

due to cloud cover or low contrast conditions, each webcam
image is automatically aligned to its master image by solving
for a homography H. A homography is a projective transfor-
mation between two images with the same camera position
but different orientation and is used to relate the two images
so that they can be aligned.

We use the scale-invariant feature transform (SIFT; Lowe,
2004) to detect structural features in a webcam image and its
corresponding master image. It transforms an image into a
collection of local feature vectors that consist of a SIFT key-
point (image location) and a SIFT descriptor that is highly
distinctive and invariant to illumination, position, and scale.
After the feature detection, the features are matched across
the two images (see Fig. 8). The similarity between two fea-
ture vectors is given by their Euclidean distance. Since the
number of potential matching features can be quite large, we
approximate this distance using an algorithm called “best bin
first” (see Lowe, 2004). We use the SIFT implementation
from the open-source library VLFeat (Vedaldi and Fulker-
son, 2010).

A homography H is a 3× 3 matrix. Since scale is arbi-
trary, H has eight unknown parameters. Therefore, at least
four point correspondences (x/y image coordinates) are
needed to solve for H. Since not all matched pairs are cor-
rect, the homography is estimated using the best match-
ing feature points. For this purpose, we use the robust fit-
ting model RANdom SAmple Consensus (RANSAC; Fis-
chler and Bolles, 1981). RANSAC randomly selects four
pairs of corresponding points to calculate the homography,
transforms all points from one image to the other using the
found homography, and searches for the solution that has the
best agreement with all remaining matching pairs. This best

Figure 9. Example of an arbitrary input image that is aligned to
a corresponding master image. The mountain silhouette extracted
from the master image is shown in red. Webcam images: Hahnen-
moos, © Skiregion Adelboden-Lenk.

agreement is found by calculating the mapping error between
each transformed SIFT point of an input image and its cor-
responding SIFT point of the master image. To eliminate the
bias towards any particular set of points, the best matching
image-to-image alignment is achieved by recalculating the
homography using all features with a small mapping error
of the best homography found by RANSAC. Figure 9 shows
an example of an image that is aligned to a corresponding
master image.

3.4 Automatic snow classification

We perform snow classification experiments using the meth-
ods proposed by Salvatori et al. (2011) and Härer et al.
(2016). The method by Salvatori et al. (2011) analyzes the
blue-band digital number frequency histogram to set a snow
threshold DNb. First, the frequency histogram is smoothed
using a moving average window of 5. The snow threshold
is then automatically selected at the histogram’s first local
minimum above or equal to the intensity value 127. If no lo-
cal minimum is found, the snow threshold is set to the value
127. All pixel values equal or higher than this threshold value
are classified as snow, whereas lower values are classified as
snow-free.

The second method is a snow classification routine in-
cluded in PRACTISE V.2.1 (Härer et al., 2016). Since the
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1416 C. Portenier: Towards a webcam-based snow cover monitoring network

Figure 10. Example of a webcam image that is masked for sub-
sequent snow classification using an input mask and a sky mask
derived from the extracted mountain silhouette (a). Snow classifi-
cation is applied using the methods by Salvatori et al. (2011) and
Härer et al. (2016). Detected snow is shown (b) in white in the bi-
nary output image (black: no snow or masked out) and (c) as a trans-
parent green layer on the original webcam image (white transparent
layer: masked region). Webcam image: Juf, © jufferien.ch.

method by Salvatori et al. (2011) only works reasonably well
for nonshadowing areas (Härer et al., 2016; Arslan et al.,
2017), this routine additionally detects snow in the shaded
regions of an image. As a first step, the method of Härer et al.
(2016) applies the blue-band classification proposed by Sal-
vatori et al. (2011). In a second step, Härer et al. (2016) refine
snow classification using PCA for separating shaded snow
cover from sunlit rock surfaces. Standardized RGB values in
PCA space (PC score matrix) are calculated by multiplying
the standardized RGB values (mean of 0 and standard de-
viation of 1) with the principal component (PC) coefficient
matrix (calculated using singular value decomposition). The
PC score matrix is normalized by scaling its values between
0 and 1. The first PC explains the largest variance in the
data, but its frequency histogram is essentially identical to
the blue-band frequency histogram. Therefore, Härer et al.
(2016) use the frequency histograms of the second and third
PC (PC2 and PC3) for separating shaded snow cover from
other surfaces. The pixels are classified as snow if the fol-

lowing two conditions are fulfilled:

PC3 < PC2 and DNb ≥ DNh ≥ 63 . (9)

DNh is an additional condition to exclude very dark pixel
values in the blue-band channel (values< 63) since Härer
et al. (2016) identified them as prone to snow misclassifica-
tion. Moreover, blue-band values with a higher value than
DNb are not considered either since they have been already
identified as snow cover by the blue-band classification in the
first step. As a third and fourth step, the method additionally
identifies sunny rocks and calculates snow probability values
for all the pixels that were not classified as snow in the first
three steps.

We apply this snow classification by classifying all pix-
els detected in the first and second step as “snow” and the
remaining pixel values as “no snow”. A snow classification
example is shown in Fig. 10. The snow classification takes
as input a webcam image, the corresponding input mask de-
scribed in Sect. 3.1, and a sky mask where all sky pixels are
automatically masked out using the mountain silhouette ex-
tracted from the master image (see Fig. 10a). The detected
snow pixels by the method of Salvatori et al. (2011) and
Härer et al. (2016) are shown in white (Fig. 10b) and as a
green transparent layer (Fig. 10c).

4 Snow cover maps

The transformation matrix found for each master image is
used to generate a lookup table that relates all visible DEM
grid cells to the associated image pixel. For each DEM grid
cell in this lookup table, the associated classification result
(i.e., “snow” or “no snow” of the classified webcam image
pixels) is set, which results in a snow cover map of 2 m spa-
tial resolution. Figure 11 shows three webcam images and
resulting snow cover maps in the (a) Lenk, (b) Urnerboden,
and (c) Furka Pass regions.

Our procedure facilitates snow cover analyses using public
webcams, as long as location of the camera can be estimated
and a mountain silhouette is visible in the image. Figure 12
reveals the percentage of snow-covered area on a mountain
hill in the Furka Pass region from 14 April to 28 August 2015
and three example images with applied classifications. Web-
cam images containing fog or adverse cloud cover that im-
pede the view on the terrain were manually removed before
processing. The differences caused by the two classification
methods are discussed in Sect. 6.

5 Evaluation

In total, we apply image-to-DEM registration on 50 web-
cams. Our silhouette extraction technique successfully de-
tects all 50 silhouettes. For five webcams, automatic image-
to-DEM registration fails to find the appropriate orienta-
tion of the camera. This failure is either caused by heavy
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Figure 11. Example webcam images and resulting snow cover maps of three webcams: (a) Lenk Betelberg (© Skiregion Adelboden-Lenk),
(b) Urnerboden (© Verkehrsverein Urnerboden, Seilbahngenossenschaft Urnerboden-Fisetengrat), and (c) Blauberg Furka Pass (© Armin
Rist, Institute of Geography, University of Bern). Snow is classified using the method proposed by Salvatori et al. (2011). The white transpar-
ent layer on the webcam images shows the masked regions. The grayscale values of the snow cover maps show the swissALTI3D elevation
values of the area that is not visible from the webcam’s location (© swisstopo).

lens distortions of the camera system or due to several ex-
cerpts of similar-looking mountain silhouettes that lead to a
wrong orientation estimate on scale k = 0. In this section we
evaluate the precision of the mapping between webcam im-
age pixel coordinates and DEM coordinates, which we call
mapping accuracy. This accuracy depends on (1) uncertain-
ties caused by the projection of low-resolution webcam im-
ages on a high-resolution DEM (projection uncertainty) and
(2) the ability of the registration approach to find the correct
silhouette pair (registration accuracy).

5.1 Projection uncertainty

Depending on the distance of the terrain to the webcam, the
slope and aspect of the terrain, and the webcam image res-
olution and its FOV, an image pixel is mapped onto one or
several DEM grid cells. Therefore, image pixels are either
upsampled or downsampled to the DEM’s pixel resolution
(2 m). An approximation of the projected image pixel reso-
lution can be calculated as the root of the number of DEM
grids an image pixel is mapped on times the resolution of
the DEM (i.e., 2 m), assuming that an image pixel is mapped
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Figure 12. Percentage of snow-covered area on a mountain hill in the Furka Pass region from 14 April to 28 August 2015 using the snow
classification proposed by Salvatori et al. (2011) (blue line) and Härer et al. (2016) (red line). Webcam images: Blauberg Furka Pass, © Armin
Rist, Institute of Geography, University of Bern.

onto a rectangular region of DEM grids. Figure 13 shows the
approximated projected pixel resolution of an example web-
cam image at Metschalp. The webcam image has an image
resolution of 640 pixels× 480 pixels and a horizontal FOV
of 47◦. In general, the projected pixel resolution close to the
webcam is high and decreases with increasing distance to
the webcam position. Moreover, the projected pixel resolu-
tion depends on the orientation of the slope with respect to
the viewing direction. It is high for slopes orthogonal to the
viewing direction and low at grazing angles near silhouettes.
The mean projected pixel resolution found for 45 webcams is
4.5 m with a standard deviation of 4.4 m. If only DEM grids
within a distance of 20 km to the webcam are considered,
the mean projected pixel resolution increases to 2.9 m with a
standard deviation of 1.5 m.

5.2 Registration accuracy

To evaluate the accuracy of our automatic image-to-DEM
registration, we select 20 webcams that comprise different
areal extents and lens characteristics. Depending on the pres-
ence of structural image content, we manually select 5 to
15 GCPs per webcam using the SWISSIMAGE orthophoto.
For 142 GCPs in total, we compute relative pixel errors (im-
age space distances) and the root mean square error (RMSE)
of the distance between the real and projected GCPs in world
coordinates (see Table 1). We differentiate between standard
lens webcams (FOV< 48◦) and wide-angle lens webcams
(FOV≥ 48◦). The relative pixel error is calculated as the dis-

tance between the pixel coordinate of a GCP and its pixel
coordinate predicted by the transformation matrix. We re-
port this distance as percentage of image diagonal. It is a
measure to calculate the accuracy of our automatic image-to-
DEM registration. Results show that the relative pixel error
is higher for GCPs of wide-angle webcams than for GCPs
of standard lens webcams (1 % and 0.61 %, respectively).
This difference is mainly caused by lens distortions, which
increase with a larger FOV and therewith lead to a discrep-
ancy of the silhouette matching, mainly at the outer part of
the images. This discrepancy is even more prominent when
considering the relative pixel error by comparing GCPs at
the mountain silhouette, GCPs that are close to the image
border (the outer 25 % of the total image width/height), and
the remaining GCPs in the center region of the image (see
Fig. 14). GCPs at the silhouette indicate how well the image-
to-DEM registration matches the two silhouettes. The further
away GCPs are from the silhouette and the central part of the
image, the more they are affected by the camera model used
for image-to-DEM registration. Therefore, GCPs close to the
image border are affected the most by effects of lens distor-
tions. The relative pixel error is notably higher for GCPs at
the border of the images than the remaining GCPs, especially
for wide-angle lens webcams. Not surprisingly, smallest er-
rors are found for GCPs located at the mountain silhouette,
since this silhouette is used for image-to-DEM registration.

The root mean square error (RMSE) of the distance be-
tween the real and projected GCPs in world coordinates is
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Figure 13. Example of projected pixel resolution for a webcam image at Metschalp (© elsigen-metsch.ch). Digital elevation model (DEM)
data: swissALTI3D, © swisstopo.

Table 1. Projection error of ground control points (GCPs) in standard lens (FOV< 48◦) and wide-angle lens (FOV≥ 48◦) webcam images.

No. of cams No. of GCPs GCP Minimum Maximum σ RMSE Relative pixel
RMSE (m) residual (m) residual (m) (m) error ( %)

All GCPs 20 142 23.70 2.00 98.48 17.06 0.74
GCPs standard lenses 14 96 14.10 2.00 34.97 8.67 0.61
GCPs wide-angle lenses 6 46 36.31 2.03 98.48 23.63 1.00

Figure 14. Relative pixel error of ground control points (GCPs)
of standard and wide-angle lens webcams. Results are grouped in
GCPs located at the mountain silhouette, the center region of the
image, and the border region of the image (the outer 25 % of the
total image width and height).

shown in Table 1. We find again a significant difference in
the registration accuracy between webcams equipped with
standard lenses and wide-angle lenses. Registration accuracy
reveals an overall RMSE of 23.7 m, with a RMSE of 14.1 m
for standard lens webcams and 36.3 m for wide-angle lens
webcams. We calculate the GCP error distance in world co-
ordinates by projecting the registered pixels onto a map using
the transformation matrix. In Fig. 15, box plots of the error
distances between the real and projected GCPs are shown for
standard and wide-angle lens webcams. Results are grouped
into three categories of GCPs within 0–2, 2–6, and 6–30 km
distance to the webcam. Since it is more difficult to set GCPs
in low-resolution webcam images, we use large structural

features such as mountain peaks to set GCPs far away from
the webcams. This ensures that we can select the appropri-
ate pixel where the given GCP is actually located. We use
the transformation matrix to project this pixel to world co-
ordinates, and, thus, we assume that this GCP is located in
the center of the pixel. However, we have to take into ac-
count that this is not necessarily the real position of the GCP
within the image pixel. As shown in Sect. 5.1, pixel values
are mapped onto a certain area on a map. Therefore, we cal-
culate the projection uncertainty of a GCP as ± the radius of
the bounding volume of the DEM grids where the selected
image pixel is projected on. We use the median to quan-
tify the projection uncertainty of a group of GCPs. Median
projection uncertainties are shown as red numbers on top of
Fig. 15. It can be clearly seen that the largest error distances
are caused by GCPs of wide-angle lens webcams that are lo-
cated close to the webcam (0–2 km) and that the errors are
generally lower further away from the webcams. For stan-
dard lens webcams, there is no considerable difference in the
error distance between GPCs within 0–2, 2–6, and 6–30 km
distance to the webcam. Even though projection uncertainties
are higher for GCPs located further away from the webcams,
for both standard lens and wide-angle lens webcams the map-
ping accuracy of GCPs that are more than 6 km away from
the webcam (mean error distances of 8.6 and 10.2 m with
uncertainties of ±6.4 and ±4.6 m, respectively) is compara-
ble to the mapping accuracy found for GCPs within 0–6 km
distance of normal lens webcams and GCPs within 2–6 km
distance of wide-angle lens webcams.

www.the-cryosphere.net/14/1409/2020/ The Cryosphere, 14, 1409–1423, 2020



1420 C. Portenier: Towards a webcam-based snow cover monitoring network

Figure 15. Distance error of the real and projected ground control
points (GCPs) for standard and wide-angle lens webcams. Results
are grouped in GCPs within 0–2, 2–6, and 6–30 km distance to the
webcam. Median projection uncertainties are shown as red numbers
on top of the figure.

6 Discussion

The performance of our automatic image-to-DEM registra-
tion procedure is promising. With marginal manual user in-
put, we transform a webcam image into a georeferenced map.
With an overall RMSE of about 23.7 m, our method is pre-
cise enough to validate or complement satellite-derived snow
cover maps and offers snow cover analyses with a high spa-
tiotemporal resolution over a large area. However, projection
uncertainties have to be taken into account as well since they
may highly differ depending on the selected webcam. We ex-
pect a lower performance of our image-to-DEM registration
compared to approaches where camera parameters are avail-
able or GCPs are used to align an image to a DEM. How-
ever, having access to intrinsic and extrinsic camera param-
eters, or measuring these parameters using GCPs, is infeasi-
ble for a reasonably large-scale camera network. The large
differences of RMSE between standard lens webcams and
wide-angle lens webcams suggest a further improvement of
our camera model to account for lens distortions. Given the
large amount of webcams, we can also exclude webcams
equipped with wide-angle lenses from analyses to notably
reduce mapping errors (RMSE of 14.1 m found for 14 web-
cams equipped with standard lenses; see Table 1). Another
solution is to use only the central part of an image if the FOV
of the webcam is higher than a certain threshold.

Our method relies on a precise estimation of the webcam
location. Especially when a decreasing slope is visible in the
near field of the webcam, significant mapping errors may oc-
cur. For example, a lower estimate of the installation height
may cause a pixel in 10 m distance to be mapped onto the
counter slope 2 km away. Therefore, we recommend masking
out regions that are on the same slope as the webcam itself
or areas close to edges with huge depth differences. Since we
did not measure the ground truth location of the selected we-
bcams, a direct evaluation of the estimated location accuracy
is not possible. However, we roughly estimate an accuracy of

about 5 m by leveraging the orthophoto SWISSIMAGE and
prior knowledge about the approximate webcam location (for
instance, mounted on a specific wall of a building).

In general, we propose masking out regions that are close
to the webcam to avoid large mapping errors as shown in
Fig. 15 for webcams with wide-angle lenses. These large
mapping errors may be caused by an imprecise location es-
timation. However, this effect was not observed for standard
lens webcams. Hence, the large mapping errors close to the
webcam can be attributed to the fact that close GCPs are gen-
erally more often located at the outer part of the image where
lens distortions increase. In addition, areas closer to a web-
cam may generally have a larger mapping error as only the
mountain silhouette is used for the image-to-DEM registra-
tion. Therefore, these areas are additionally affected by the
selected camera model used for image-to-DEM registration.
Additionally, we propose excluding regions that are far away
from the webcam (i.e., > 15 or 20 km) to avoid large pro-
jection uncertainties and to ensure a high spatial resolution.
Moreover, it has to be taken into account that projection un-
certainties may strongly increase if the slope and aspect of
the DEM grid with respect to the viewing direction is high.
For single image pixels, projection uncertainty can be ex-
tremely high if the pixel is mapped onto several nonadjacent
DEM grids (e.g., if a pixel is projected onto DEM grids on a
hill or peak as well as on the DEM grids behind the hill on
the counter slope).

For most webcams, an intentional, significant change in
their orientation occurs only occasionally, and, therefore, a
landscape can be analyzed over a long time period in the case
of an available image archive. Our image-to-image alignment
enables us to precisely correct small changes in orientation
of webcam images and works generally well for images with
similar image content. Alignment artifacts from, e.g., logos
in the image are eliminated by using RANSAC. Since some
errors may occur if the image content differs too much, we
propose not to align snowy winter images to snow-free image
scenes and vice versa.

The snow classification method proposed by Salvatori
et al. (2011) has been frequently used and discussed in recent
studies. Many of these studies emphasize the problem of mis-
classification due to snow in shadowing regions (e.g., Härer
et al., 2016; Arslan et al., 2017; Salzano et al., 2019). We
have observed the same issue, especially for winter scenes
with a low solar zenith angle. The comparison with the snow
classification method proposed by Härer et al. (2016) reveals
a similar pattern for all the processed webcams: the method
by Salvatori et al. (2011) underestimates snow cover, mainly
in shadowing areas (see Fig. 12 for an example). For snowy
winter scenes, the PCA method by Härer et al. (2016) per-
forms very well and is able to correctly classify snow cover
in shadowing areas. However, once less than about 50 % of
snow is present in an image, the method overestimates snow
cover and classifies rock, trees, or grass as snow (see Fig. 12).
This is often observed when no shaded snow cover is present
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or in the case of strong illumination conditions. As shad-
ows from structural terrain decrease in spring, the method
of Salvatori et al. (2011) often only weakly underestimates
the snow cover. For rare cases of very low illumination con-
ditions, both methods fail to correctly classify snow. In our
framework, we use a combination of both methods to get
the best possible snow classification result. However, there
is a need for an improved snow classification method. This
method should be able to classify snow under varying illumi-
nation conditions and ideally can distinguish between snow
and clouds or fog.

The differentiation between snow, clouds, and fog cur-
rently remains an unsolved problem for RGB images. Even
though webcams are often located below the cloud cover,
low clouds and fog in front of the landscape are manually re-
moved to not falsify snow classification. Images containing
fog and clouds on a substantial part of the image could be
automatically removed by comparing the edges of a cloud-
free image with edges of a potentially cloud covered image.
However, clouds and fog that impede the view on a smaller
part of the landscape are difficult to distinguish from snow.
A possible method to remove such cloud cover is, for ex-
ample, to aggregate all the images collected by a webcam
in a day as proposed by Fedorov et al. (2016). However,
the aggregated images may loose contrast and contain mixed
pixel information, which in turn will affect snow classifica-
tion. Moreover, long-lasting cloudy conditions may remain
undetected by this approach, and the aggregation will lower
the temporal resolution. Therefore, we consider investigating
cloud and fog detection in webcam images for future work.

Since our image-to-DEM registration requires a visible
mountain silhouette, it is not suited for webcams that observe
flat areas. Moreover, there are geographical limitations since
webcams might not be installed in very remote areas. Gener-
ally, a large-scale coverage of a region might be only possible
in countries with a well-developed infrastructure. Neverthe-
less, the high number of freely available webcams worldwide
combined with our semiautomatic procedure offers a unique
potential to complement and evaluate satellite-derived snow
cover information. For example, our webcam snow cover
maps may facilitate the gap-filling of partly cloud obscured
satellite-based snow cover maps or improve snow classifica-
tion in steep terrain or shadow-affected image scenes.

7 Conclusions

We present a semiautomatic procedure to derive snow cover
maps from freely available webcam images in the Swiss
Alps. Our registration approach automatically estimates we-
bcams’ parameters, which allows us to relate pixels of a we-
bcam image to their real-world coordinates. Additionally, we
use a method for automatic image-to-image alignment and
compare two recent snow classification methods. A detailed
evaluation of the automatic georectification is carried out and

reveals a RMSE of 23.7 m, with a RMSE of 14.1 m for we-
bcams equipped with standard lenses and 36.3 m for web-
cams equipped with wide-angle lenses. To the best of our
knowledge, no other method is able to offer this accuracy
on such a high spatiotemporal resolution over a large area.
Large accuracy differences between standard lens webcams
and webcams equipped with wide-angle lenses suggest the
improvement of our camera model to incorporate effects of
lens distortions or the use of only the central part of an im-
age to generate more accurate snow cover maps. However, an
improvement of RGB snow classification is essential to au-
tomatically derive snow cover maps, i.e., to avoid the manual
removal of cloudy scenes. Nevertheless, our approach offers
snow cover analyses with a high spatiotemporal resolution
over a large area with a minimum of manual user input. Our
webcam-based snow cover monitoring network could not
only serve as a reference for improved validation of satellite-
based approaches, but also complement satellite-based snow
cover retrieval. As an example, webcam-based snow cover
information could be used to improve gap-filling methods
to eliminate cloud cover in satellite-based snow cover prod-
ucts. Especially in spring during the snowmelt period, we-
bcams could help to detect snow that may fall and melt
within several days during cloudy conditions. In addition,
our webcam-based snow cover product can be used to val-
idate Sentinel-2 and Landsat-based snow cover products. We
are therefore planning to extend our webcam archive with ad-
ditional webcams located in the European Alps. Finally, our
procedure, in particular the snow/cloud classification, could
be improved to enable semioperational processing for a near-
real-time service, which could support federal agencies (e.g.,
MeteoSwiss, WSL-SLF) for their weather forecast activities
or avalanche warning.
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www.kaikowetter.ch/ (last access: 22 April 2020; Kaikowetter,
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