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ABSTRACT

Infections of the mammary gland in dairy cows are 
commonly accompanied by reduced milk production 
and feed intake and poor milk quality. The metabolic 
status of early-lactating cows is known to affect immune 
response to pathogens and imposed immune challenges. 
We investigated the extent to which metabolic status 
before an intramammary lipopolysaccharide (LPS) 
challenge (LPS-CH) is associated with immune re-
sponse, milk production, and feed intake and the recov-
ery thereof. In 15 Holstein cows, weekly blood sampling 
and daily recording of dry matter intake, milk yield, 
milk composition, and body weight (to calculate energy 
balance) was started immediately after parturition. In 
wk 4 after parturition, cows underwent an intramam-
mary LPS-CH (50 μg of LPS into 1 quarter). Blood and 
milk samples were taken in parallel at 30- and 60-min 
intervals, respectively, until 10 h after the LPS applica-
tion. Plasma concentrations of glucose, nonesterified 
fatty acids, β-hydroxybutyrate (BHB), cortisol, and in-
sulin were analyzed. In milk, serum albumin, IgG con-
centration, somatic cell count (SCC), and lactate dehy-
drogenase (LDH) activity were determined. Dry matter 
intake and milk yield were recorded for an additional 6 
d. Milk of the LPS-treated quarter was sampled at ev-
ery milking for 8 d after the challenge. Based on plasma 
glucose concentrations in wk 1 to 4 after parturition 
before the LPS-CH, cows were retrospectively grouped 
into a high-glucose group (HG; 3.34–3.93 mmol/L, n 
= 7) and a low-glucose group (LG; 2.87–3.31 mmol/L, 
n = 8). Data were evaluated using mixed models with 
time, group, and time × group interaction as fixed ef-
fects and cow as repeated subject. Glucose was lower 
and BHB was higher in LG compared with HG before 
LPS-CH, whereas dry matter intake, energy balance, 
and SCC did not differ. During LPS-CH, SCC and LDH 
increased similarly in HG and LG, body temperature 

increased less in HG, and BHB and nonesterified fatty 
acids were higher in LG compared with HG. Dry mat-
ter intake declined in both groups during the day of the 
LPS-CH but recovered to prechallenge values faster in 
HG. Milk yield recovered within 2 d after the LPS-CH 
with no differences in morning milkings, whereas eve-
ning milk yield increased faster in HG. During 8 d after 
LPS-CH, SCC, LDH, IgG, and serum albumin in milk 
were lower in HG compared with LG. In conclusion, the 
level of circulating glucose and BHB concentrations in 
cows was associated with metabolic responses during 
an LPS-CH as well as the recovery of udder health and 
performance thereafter.
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INTRODUCTION

Infections of the mammary gland in dairy cows are 
commonly accompanied by reduced milk production 
and feed intake and poor milk quality. During mas-
titis, the integrity of the blood–milk barrier decreases 
and thus allows for the transfer of blood components 
(e.g., IgG and serum albumin; SA) into milk. The 
functionality of the blood–milk barrier is essential to 
enable milk secretion and prevent blood components 
from being lost by the lactating animal (Nguyen and 
Neville, 1998); on the other side, milk components (e.g., 
lactose) may appear in blood. Characteristically, SCC 
is elevated in naturally occurring mastitis as well as in 
experimentally induced immune responses of the mam-
mary gland via LPS (Bruckmaier et al., 1993; Hoeben 
et al., 2000; Wellnitz and Bruckmaier, 2012). The re-
covery of the blood–milk barrier after mastitis is crucial 
to regain milk quality. Several blood constituents, SCC, 
activity of lactate dehydrogenase (LDH), SA, and IgG 
present in milk can be used as indicators of the barrier 
integrity (Wellnitz et al., 2011, 2016). Their decline in 
milk most likely indicates recovery of mammary gland 
health. Maintenance of mammary gland health, includ-
ing a functioning blood–milk barrier, requires energy 
and nutrients. It is clear that the activation of an im-
mune response requires energy (Ingvartsen and Moyes, 
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2015). In addition, the recovery from mastitis can be 
assumed to be dependent on the availability of energy 
for the immune system.

The onset of lactation in dairy cows is characterized 
by a tremendous lack of energy and nutrients (Drackley, 
1999; Bruckmaier and Gross, 2017; Gross and Bruck-
maier, 2019). Although mobilization of tissue reserves 
contributes to the maintenance of milk production, the 
prevailing catabolic state is closely associated with the 
inflammatory status, making cows most susceptible to 
metabolic and infectious diseases in the first weeks of 
lactation (Drackley, 1999; Trevisi et al., 2012; Ingvar-
tsen and Moyes, 2015; Aleri et al., 2016). The uptake 
of circulating nutrients, particularly glucose, by the lac-
tating mammary gland (Bruckmaier and Gross, 2017; 
Gross and Bruckmaier, 2019) reduces their availability 
for relevant immune cells, tissues, and organs (Bauman 
and Currie, 1980). Glucose is considered the preferred 
substrate for the immune system (Kvidera et al., 2017), 
but recent investigations revealed that BHB also is 
metabolized in response to immunological challenges 
(Zarrin et al., 2014; Gross et al., 2018). Concentra-
tions of BHB are typically elevated in early lactation, 
when circulating free fatty acids derived from lipolysis 
of depot fat stores exceed hepatic oxidation and re-
esterification capacity (Grummer, 1993; Brickner et al., 
2009; Han van der Kolk et al., 2017). Although the im-
mune system can use ketone bodies as an energy source, 
cows with high serum nonesterified fatty acid (NEFA) 
concentration postpartum had an increased incidence 
of mastitis (Holtenius et al., 2004). This diverse effect 
may be related to a direct effect of plasma metabolites 
on immunocompetent cells independent of the energy 
gain (Targowski and Klucinski, 1983; Suriyasathaporn 
et al., 1999). Thus, the metabolic status of early-lactat-
ing cows as well as the plasma concentrations of various 
metabolites such as glucose, fatty acids, and ketones 
directly corresponds to the defense capability of the 
immune system against pathogens (Vernay et al., 2012; 
Zarrin et al., 2014). However, most previous research 
was performed in mid- to late-lactating cows. Recently, 
Gross et al. (2018) investigated early-lactating cows ex-
posed to an intramammary LPS challenge (LPS-CH).

The recovery from LPS-induced mastitis was oc-
casionally studied in terms of milk production (e.g., 
Hoeben et al., 2000; Lehtolainen et al., 2003). Until 
now, less attention was paid to the recovery pattern of 
performance and reconstitution of udder health and of 
blood–milk barrier integrity under consideration of the 
concomitant metabolic status. Therefore, we investi-
gated early-lactating dairy cows with a different meta-
bolic status exposed to an intramammary LPS-CH and 
followed the recovery of milk production, feed intake, 
and blood–milk barrier integrity.

MATERIALS AND METHODS

Animals and Grouping

Fifteen multiparous Holstein dairy cows were ran-
domly selected from the experimental herd of the 
Agroscope research station (Posieux, Switzerland). The 
study design and all experimental interventions followed 
the Swiss law on animal protection and were approved 
by the Committee of Animal Experiments of the Can-
ton Fribourg, Switzerland (approval no. 2013_18_FR). 
Animals were enrolled after parturition and studied un-
til wk 5 after parturition (pp). Throughout the entire 
study, cows were kept in a tiestall barn and were milked 
twice daily at 0530 and 1600 h. Cows had free access 
to water and hay (chemical composition: crude ash, 97 
g; CP, 146 g; crude fiber, 246 g; 5.7 MJ of NEL/kg of 
DM). Concentrate was applied along with a mineral 
supplement at increasing amounts from 2.8 to 7.3 kg 
(as fed) until wk 5 pp.

Based on the 50th percentile of the individual aver-
ages of plasma glucose concentrations in wk 1 to 4 pp 
before the LPS-CH, cows were retrospectively grouped 
into a high-glucose group (HG; n = 7; range of average 
plasma glucose concentration in wk 1 to 4 pp: 3.34–3.93 
mmol/L) and a low-glucose group (LG; n = 8; range of 
average plasma glucose concentration in wk 1 to 4 pp: 
2.87–3.31 mmol/L).

Sampling and Data Recording

Beginning directly after parturition, milk yields of 
individual milkings and feed intake were recorded daily 
(difference of feed supplied minus orts), whereas BW 
was determined once per week. Dry matter intake was 
estimated by multiplying the DM content of hay and 
concentrate with the respective fresh matter intakes. 
Milk samples from 4 consecutive milkings of 1 wk were 
pooled proportionally and analyzed for fat, protein, 
lactose, and urea content by Fourier-transform infrared 
spectroscopy (MilkoScan FT 6000, Foss Analytical A/S, 
Hillerød, Denmark). Somatic cell count in weekly com-
posite milk samples was measured using a Fossomatic 
FC (Foss Analytical A/S). Obtained data were used 
for calculation of energy balance on a weekly basis for 
individual animals representing the difference between 
energy intake and energy requirements for maintenance 
and milk production. Yield of ECM was calculated us-
ing the equation given by Sjaunja et al. (1990):

	 [(0.038 × g of fat/kg of milk + 0.024 × g of CP/	  

kg of milk + 0.017 × g of lactose/kg of milk)  

× kg of milk]/3.14.

Gross et al.: RECOVERY FROM AN INTRAMAMMARY LIPOPOLYSACCHARIDE CHALLENGE
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Blood sampling from the jugular vein was performed 
once weekly between 0800 and 0900 h after milking 
and before feeding using evacuated EDTA-coated tubes 
(Vacuette, Greiner Bio One, Frickenhausen, Germany). 
Blood samples in HG were obtained at 3.6 ± 1.0 DIM 
(mean ± SD; range: 2–5 DIM) in wk 1, 11.0 ± 2.2 DIM 
(range: 7–13 DIM) in wk 2, 16.6 ± 2.4 DIM (range: 
13–19 DIM) in wk 3, and 24.6 ± 2.6 DIM (range: 20–27 
DIM) in wk 4. Blood samples in LG were obtained at 
3.8 ± 1.0 DIM (mean ± SD; range: 2–5 DIM) in wk 
1, 10.0 ± 3.0 DIM (range: 6–14 DIM) in wk 2, 16.1 ± 
2.3 DIM (range: 13–19 DIM) in wk 3, and 23.0 ± 2.7 
DIM (range: 20–26 DIM) in wk 4. Samples were kept 
on wet ice and centrifuged at 3,000 × g (+4°C, 20 min), 
and the harvested plasma was stored at −20°C until 
analysis.

Intramammary LPS-CH and Sampling Thereafter

Before the intramammary LPS-CH in wk 4 pp, a 
consistent low SCC (<150,000 cells/mL) and absence 
of clinical mastitis symptoms for 3 d leading up to 
the experimental day were required. Shortly after 
the morning milking at 0600 h, 1 rear quarter was 
injected via the teat canal with 50 μg of LPS (from 
Escherichia coli serotype O26:B6, Sigma-Aldrich, St. 
Louis, MO) dissolved in 10 mL of 0.9% NaCl solution. 
Milk samples from the LPS-treated quarter were taken 
hourly until the afternoon milking at 1600 h. Milk SCC 
was directly determined with a DeLaval cell counter 
(DeLaval International AB, Tumba, Sweden). Blood 
samples were frequently obtained from a jugular vein 
catheter (every 30 min from 0600 to 1400 h; thereafter 
every 60 min until 1600 h). Concomitantly to the blood 
samples, cows were examined by a veterinarian (e.g., 
body temperature, heart and respiratory rate, udder 
and teat conformation). Milk samples (~5 mL) during 
the recovery period were hand-stripped into tubes from 
the challenged quarter (starting at the morning milking 
on d +1 after challenge) for a further 8 d (15 milkings) 
postchallenge. Aliquots of milk and blood plasma were 
frozen at −20°C until further analysis. Milk yield and 
DMI were followed for 6 d following the LPS-CH.

Analysis of Metabolites, Endocrine Factors,  
and Proteins in Plasma and Milk

Concentrations of plasma metabolites (glucose, 
NEFA, and BHB) were determined enzymatically us-
ing commercial kits with an automatic analyzer (Co-
bas Mira 2, Hoffmann-La Roche, Basel, Switzerland) 
as described earlier by Gross et al. (2011a). Insulin 
concentrations were analyzed using RIA (for further 
details and assay descriptions, see Vicari et al., 2008; 

Gross et al., 2011b). Inter- and intra-assay coefficients 
of variation for insulin were 7.8 and 8.9%, respectively. 
Plasma cortisol concentrations were measured with 
RIA as described in more detail by Blum et al. (1985) 
and Schwinn et al. (2016); however, due to technical 
reasons, they were measured only for the first 5.5 h af-
ter LPS application. Inter- and intra-assay coefficients 
of variation for cortisol were 8.4 and 9.2%, respectively.

In milk samples, concentrations of IgG and SA were 
measured using commercially available ELISA kits 
(bovine specific; Bethyl Laboratories, Montgomery, 
TX) according to the manufacturer’s instructions with 
modifications as stated in Lehmann et al. (2013). Inter- 
and intra-assay coefficients of variation for IgG were 
3.9 and 4.1%, respectively, and for SA were 4.3 and 
5.4%, respectively. For LDH measurement, milk serum 
was obtained using a 2-step process (centrifugation at 
4,000 × g, 15 min, +4°C; then 14,000 × g for 30 min 
at +4°C) and then measured with a commercial kit 
(LDH IFCC, Axon Lab AG, Baden, Switzerland) using 
an automated analyzer (Cobas Mira 2, Hoffmann-La 
Roche) according to the manufacturer’s instructions.

Statistical Analysis

Data presented in the manuscript are means ± stan-
dard errors of the mean. Statistical evaluations were 
carried out with the statistical program package SAS 
(version 9.4; SAS Institute Inc., Cary, NC). Data were 
checked for normal distribution using PROC UNIVAR-
IATE. Data of SCC were log-transformed (log10). All 
data were evaluated with PROC MIXED using mixed 
models with time, group, and time × group interaction 
as fixed effects and cow as repeated subject. Pairwise 
LSM comparisons produced from the interaction term 
estimates were adjusted using Bonferroni-corrected 
t-tests, and significant effects were considered at P-
values <0.05.

RESULTS

Metabolic Status, Milk Yield, and DMI Before LPS-CH

Milk yield and DMI increased in both groups from 
wk 1 to 4 pp (Figure 1A and B). With increasing DMI, 
energy balance alleviated but was still negative at the 
end of the study (Figure 1C). Milk yield, DMI, and 
energy balance were not different between HG and LG 
in the early-lactation period before the LPS-CH (P = 
0.25, 0.49, and 0.13, respectively; Figure 1).

Due to the retrospective grouping according to plasma 
glucose concentrations in wk 1 to 4 pp before the LPS-
CH, cows of the HG group had a higher glucose concen-
tration in plasma than cows of the LG group (Figure 

Gross et al.: RECOVERY FROM AN INTRAMAMMARY LIPOPOLYSACCHARIDE CHALLENGE
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2A; P < 0.0001). Plasma concentration of NEFA was 
only higher in LG in wk 2 pp compared with HG (Fig-
ure 2B). Besides differences in glucose concentrations, 
LG concomitantly showed higher plasma BHB concen-
trations up to wk 4 pp compared with HG, indicating 
a higher metabolic load (Figure 2C; P < 0.01). Plasma 
insulin concentration and milk gross composition (fat, 
protein, and lactose contents) were not different among 
groups throughout the study period (data not shown). 
Milk SCC was similar in HG and LG (Figure 3A; P 
= 0.26), whereas milk urea content was higher in LG 
compared with HG (Figure 3B; P = 0.04).

Metabolic and Inflammatory Responses and Blood–
Milk Barrier Integrity During LPS-CH

Following a time lag of approximately 2 to 3 h after 
the intramammary LPS injection, rectal temperature 
increased similarly in both groups to a maximum of 
41.5 ± 0.2°C at 5 to 6 h after LPS application (data 
not shown). Concomitantly with rectal temperature, 
plasma concentrations of cortisol and insulin increased. 
No differences in cortisol and insulin concentrations 
were detected between LG and HG (P = 0.50 and 0.33, 
respectively). During the LPS-CH, there was no group 
effect on plasma concentration of glucose (P = 0.34), 
whereas NEFA and BHB were higher in LG compared 
with HG (P < 0.001 and 0.03, respectively). Data on 
changes in glucose, NEFA, BHB, and insulin are shown 
in Figure 4.

Milk SCC increased and reached its maximum at 
approximately 7 h after LPS application in instilled 
mammary quarters (Figure 5A). No differences for SCC 
were detected between LG and HG on the day of the 
LPS-CH (P = 0.52). Activity of LDH in milk increased 
slightly late compared with the observed SCC increase 
(Figure 5B) but without an effect related to grouping 
according to glucose concentration (P = 0.51). Concen-
tration of SA in milk increased between 2 and 3 h after 
LPS application, reaching a plateau at 4 to 5 h relative 
to the start of the LPS-CH, and decreased thereafter 
(Figure 5C). No differences between LG and HG were 
detected.

Recovery Pattern of Performance and Reconstitution 
of the Blood–Milk Barrier

A sharp decline in milk yield was observed at the 
day of the LPS-CH (Figure 6A). Total daily milk yield 
reached prechallenge values (reference: average of d 5 
to 1 before the LPS-CH) again on d 2 after the LPS-
CH. Only morning milk yield of the first day after the 
challenge was decreased in LG and HG (Figure 6B; P 
< 0.05); the most marked decrease was observed for the 

Gross et al.: RECOVERY FROM AN INTRAMAMMARY LIPOPOLYSACCHARIDE CHALLENGE

Figure 1. (A) Milk yield, (B) DMI, and (C) energy balance in 
dairy cows assigned to the low-glucose (LG; n = 8) and high-glucose 
(HG; n = 7) groups during wk 1 to 4 postpartum. Data are presented 
as means ± SEM.
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evening milk yield at the day of the LPS-CH (Figure 
6C). Milk yield of the first evening milking on the day 
of challenge was decreased in both LG and HG com-
pared with prechallenge values, whereas HG recovered 
faster and reached prechallenge milk production on the 
first day following the LPS-CH (Figure 6C; P < 0.05). 
Evening milk yield of LG achieved prechallenge levels 
only on d 2 (Figure 6C). Similar to milk production, 
DMI decreased in both LG and HG at the day of the 
LPS-CH (Figure 7A). Whereas HG consumed similar 
amounts of feed on the first day after the challenge as 
observed before the immune stimulation, LG required 1 
d more to recover in DMI (Figure 7B; P < 0.05).

Gross et al.: RECOVERY FROM AN INTRAMAMMARY LIPOPOLYSACCHARIDE CHALLENGE

Figure 2. Plasma concentrations of (A) glucose, (B) nonesteri-
fied fatty acids (NEFA), and (C) BHB in dairy cows assigned to the 
low-glucose (LG; n = 8) and high-glucose (HG; n = 7) groups during 
wk 1 to 4 postpartum. Data are presented as means ± SEM. Asterisk 
indicates differences within a week between LG and HG (P < 0.05).

Figure 3. (A) Milk SCC and (B) milk urea concentration in dairy 
cows assigned to the low-glucose (LG; n = 8) and high-glucose (HG; 
n = 7) groups during wk 1 to 4 postpartum. Data are presented as 
means ± SEM. Asterisk indicates differences within a week between 
LG and HG (P < 0.05).



5609

Journal of Dairy Science Vol. 103 No. 6, 2020

The reconstitution of the blood–milk barrier integ-
rity after the LPS-CH lasted several days. Although no 
group differences were observed at the challenge day 
itself, SCC in milk continuously decreased and tended 
to be lower in HG than in LG in the days following the 
LPS-CH, indicating a faster recovery of udder health in 
HG (Figure 8A; P = 0.06). Activity of LDH in milk was 
higher in LG compared with HG during the recovery 
period (Figure 8B; P < 0.01). Concentration of IgG in 
milk was higher in LG only at the first morning milk-
ing after the LPS-CH (P < 0.05) and decreased until 
d 4 after the immune challenge (Figure 8C). Serum 
albumin concentration was elevated in milk of LG com-
pared with HG only at the first day postchallenge (P < 
0.05) and higher by trend including all observations for 
the 8 d postchallenge (Figure 8D; P = 0.08).

DISCUSSION

Associations of Metabolic Status with Immediate 
Responses to LPS-CH

Low glucose and elevated BHB concentrations before 
the LPS-CH in the present study persisted throughout 
the day of the intramammary LPS-CH, although initial 
differences in plasma glucose concentrations diminished 
during the inflammatory response. The release of cor-
tisol and temporary development of insulin resistance 
are characteristic adaptations to inflammation aiming 
at maximizing nutrient supply for the immune system 
via elevation of circulating glucose (Vernay et al., 2012; 
Zarrin et al., 2014; Gross et al., 2018). In the present 
study, both LG and HG cows were in early lactation 

Gross et al.: RECOVERY FROM AN INTRAMAMMARY LIPOPOLYSACCHARIDE CHALLENGE

Figure 4. Plasma concentrations of (A) glucose, (B) BHB, (C) nonesterified fatty acids (NEFA), and (D) insulin in dairy cows assigned to 
the low-glucose (LG; n = 8) and high-glucose (HG; n = 7) groups during the LPS challenge day. Data are presented as means ± SEM.
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Figure 5. (A) Somatic cell count, (B) activity of lactate dehydro-
genase (LDH), and (C) serum albumin concentration in milk of the 
LPS-stimulated quarter in dairy cows assigned to the low-glucose (LG; 
n = 8) and high-glucose (HG; n = 7) groups. Data are presented as 
means ± SEM.

Figure 6. (A) Milk yield and changes in the (B) morning and (C) 
evening milkings during the 6 d following the intramammary LPS 
challenge in dairy cows assigned to the low-glucose (LG; n = 8) and 
high-glucose (HG; n = 7) groups. Data are presented as means ± 
SEM. Significant changes within a group at the respective days rela-
tive to the initial values (average d −5 to −1) before the LPS challenge 
are indicated with # for HG and § for LG.
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and had a negative energy balance before the LPS-
CH. The induction of a negative energy balance and a 
concomitant ketotic status by feed restriction increased 
the severity of responses to an experimental E. coli 
mastitis (Kremer et al., 1993). In contrast to the study 
of Kremer et al. (1993) with lower glucose and greater 
BHB concentrations, cows in the LG group in the pres-
ent study experienced only mild hyperketonemia close 
to the thresholds of subclinical ketosis (Suthar et al., 
2013; Brunner et al., 2019). This could explain why 
acute responses to the intramammary LPS-CH did not 
differ between groups in our study, and cows of the 

poorer metabolic condition could clearly cope well with 
the short-term challenge. Our results are supported by 
observations in mid-lactation cows from Perkins et al. 
(2002). Although Perkins et al. (2002) induced a cata-
bolic status before an LPS-CH through feed restriction, 
acute clinical symptoms following the intramammary 
endotoxin application were not altered compared with 
cows maintaining a positive energy balance. Undernu-
trition before an LPS-CH in early lactation in the study 
of Pires et al. (2019) triggered metabolic differences 
in glucose, NEFA, and BHB concentrations that per-
sisted in a similar manner to our findings throughout 
the day of the LPS-CH but also with limited effects 
on inflammation markers. In contrast, an earlier study 
by Vandeputte-Van Messom et al. (1993) showed that 
cows retrospectively classified as either moderate or 
severe responders to an experimental E. coli mastitis 
differed in their blood and milk composition before the 
infection, where severe responders had lower glucose 
concentrations. Nevertheless, there is a considerable 
risk of infectious diseases due to metabolic stress in 
early lactation as host defense mechanisms might be 
compromised (Sordillo et al., 2009). Excessive adipose 
tissue lipolysis during negative energy balance results 
in elevated concentrations of NEFA that in turn cause 
oxidative stress and elevated circulating ketone bodies 
and, hence, suppress inflammatory responses (Suri-
yasathaporn et al., 1999). Elevated concentrations of 
NEFA were shown to activate Toll-like receptors and 
their mediated signaling pathways involved in immune 
responses (Lee et al., 2003). Similarly, cows fed above 
their requirements and consequently getting overcondi-
tioned during the dry period showed greater concentra-
tions of NEFA and an altered immune response to an 
intramammary LPS-CH after parturition (Graugnard 
et al., 2013). We observed elevated urea concentrations 
in the milk of cows with poorer metabolic condition. 
Because urea concentrations in milk are closely related 
to urea concentrations in blood (DePeters and Fergu-
son, 1992; Gustafsson and Palmquist, 1993), our results 
suggest that the energy-demanding elimination of urea 
is impaired in LG cows. Furthermore, urea was shown 
to increase oxidative stress in blood polymorphonuclear 
neutrophils (Tsunoda et al., 2017) and thus impair the 
immune competence of animals.

Associations of Metabolic Status with the Decline 
and Recovery Pattern of Milk Yield, Feed Intake,  
and Reconstitution of the Blood–Milk Barrier 
Following LPS-CH

Naturally occurring mastitis as well as experimen-
tally induced mammary inflammatory conditions are 
accompanied by reduced animal performance (i.e., de-

Gross et al.: RECOVERY FROM AN INTRAMAMMARY LIPOPOLYSACCHARIDE CHALLENGE

Figure 7. (A) Dry matter intake and (B) changes in DMI dur-
ing the 6 d following the intramammary LPS challenge in dairy cows 
assigned to the low-glucose (LG; n = 8) and high-glucose (HG; n = 
7) groups. Data are presented as means ± SEM. Significant changes 
within a group at the respective days relative to the initial values 
(average d −5 to −1) before the LPS challenge are indicated with # 
for HG and § for LG.
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creased DMI and milk yield; Zamet et al., 1979; Potter 
et al., 2018). Besides the appearance and severity of 
mastitis (subacute or acute), the pathogen responsible 
for the inflammation and the concomitant metabolic 
status particularly affect changes in milk yield and 
composition (Oliver and Calvinho, 1995; Moyes, 2015). 
In experimental studies infusing the bacterial endotoxin 
LPS into the mammary gland, milk yield decreased 
markedly and recovered at the second day after the 
challenge (Hoeben et al., 2000; Lehtolainen et al., 2003). 
However, milk production is reduced not only in the 
quarter infused with LPS but also, to a lesser extent, 
in untreated quarters (Shuster et al., 1991; Bruckmaier 

et al., 1993). Shuster et al. (1991) reported a decline of 
milk yield by more than 30% in quarters infused with 
LPS at the second milking following the LPS infusion, 
whereas noninfused quarters had almost returned to 
their normal production. Although we did not determine 
milk yield at the individual-quarter level, our results 
indicate a partial recovery of milk yield already at the 
second milking following the LPS infusion in the HG 
group, whereas cows with the poorer metabolic condi-
tion before the LPS-CH returned more slowly to initial 
production. Likewise, cows responding more severely to 
an experimental E. coli mastitis and having less circu-
lating glucose showed a more pronounced decrease in 

Gross et al.: RECOVERY FROM AN INTRAMAMMARY LIPOPOLYSACCHARIDE CHALLENGE

Figure 8. (A) Somatic cell count, (B) activity of lactate dehydrogenase (LDH), (C) IgG concentration, and (D) serum albumin concentra-
tion in milk of the LPS-stimulated quarter in dairy cows assigned to the low-glucose (LG; n = 8) and high-glucose (HG; n = 7) groups during 
the 15 milkings after the day of the intramammary LPS challenge. Data are presented as means ± SEM. Asterisks indicate differences within a 
milking between LG and HG (P < 0.05).
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milk yield compared with moderate responders with a 
concomitant better metabolic status (Vandeputte-Van 
Messom et al., 1993).

Reduced feed intake during mastitis increases the 
metabolic load with a further negative effect on the im-
mune system. Concomitantly with a reduced milk yield 
following a mastitis induction, several studies reported 
a decline (Waldron et al., 2006; Moyes et al., 2014; Pires 
et al., 2019) or no changes in DMI (e.g., Shuster et al., 
1991), whereas others did not report changes in DMI 
at all (e.g., Hoeben et al., 2000). Although it is known 
that cows are anorectic during acute coliform mastitis 
(Shuster et al., 1991), data on the associations of the 
concomitant metabolic status and its interactions with 
DMI changes are scarce. A rapid recovery of DMI is 
desirable to support energy intake and supply for the 
immune system. Cows in the present study with low 
glucose concentrations achieved their prechallenge feed 
intake level 2 d after the LPS-CH, whereas HG cows 
had already recovered at the following day. Our results 
demonstrate the importance of glucose availability not 
only for the inflammatory response but also for the 
recovery after inflammation.

In the present study, cows in the HG group recovered 
faster in milk yield and DMI and restored the blood–
milk barrier more rapidly compared with LG cows. It 
is speculated that feed restriction and metabolic stress 
reduce the integrity of the blood–milk barrier by the 
exfoliation of mammary epithelial cells (Stumpf et al., 
2013; Herve et al., 2019). Similarly, LDH activity, IgG, 
and SA concentrations declined earlier in HG compared 
with LG, which suggests a more rapid recovery of the 
blood–milk barrier in cows at a better metabolic condi-
tion. Furthermore, milk SCC was higher in LG after 
the LPS-CH, which supports recent findings of greater 
milk SCC in cows exposed to feed restriction before an 
LPS-CH (Pires et al., 2019). The increased SCC during 
mastitis is mainly represented by polymorphonuclear 
neutrophils (Sarikaya et al., 2006), and they are the 
main effectors in the combat against pathogenic bacte-
ria by a distinct capability of phagocytosis. As glucose 
is the preferred substrate for neutrophils (Pithon-Curi 
et al., 2004), differences in glucose availability in the 
animals of our study can be speculated to be associated 
with respective changes in milk SCC.

CONCLUSIONS

The metabolic status reflected by differences in glu-
cose and BHB concentrations in early-lactating cows 
before the induction of a transient inflammatory state 
via an intramammary LPS-CH persisted throughout 
the experiment. Due to our classification criteria, 
circulating glucose concentration was the main dis-

criminating factor besides ketone body concentration. 
Our results confirm earlier observations that both the 
limited availability of glucose and the inhibitory effect 
of elevated BHB concentrations are associated with 
the responses to an LPS-CH. Furthermore, we could 
demonstrate that a better metabolic condition was as-
sociated with an accelerated recovery pattern of the 
blood–milk barrier as well as milk production and feed 
intake. Therefore, improving the metabolic status in 
early-lactating cows can help limit the negative effect 
of infectious diseases such as mastitis on udder health 
and performance.
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