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Summary. In this paper we explore the link between wealth inequality and stability in

a two-sector neoclassical growth model with heterogeneous agents. The stability of the

steady state depends on the various parameters of the model and in particular on individ-

ual preferences. We show that when consumers have identical preferences and the inverse

of absolute risk aversion (or risk tolerance) is a strictly convex function, inequality is a

factor that favors instability. In the opposite case, inequality favors stability. Our charac-

terization also shows that whenever absolute risk tolerance is linear, as when preferences

exhibit hyperbolic absolute risk aversion (HARA), wealth heterogeneity is neutral. As

there is not yet evidence on the concavity of absolute risk tolerance, our results unfortu-

nately do not lead to a unique conclusion on the sign of the effect of wealth inequality on

stability.

Economic growth, Heterogeneity, Wealth and Income Inequality, Instability.

JEL-classification numbers: D30, D50, D90, O41.
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1 Introduction

The relation between wealth or income inequality and growth has been explored in a large

number of theoretical and empirical studies (recent surveys are Aghion, Caroli and Garcia-

Penalosa (1999) and Benabou (2000)). In the present paper we focus on how inequality

affects the dynamics of a two-sector neoclassical growth model. Dynamic considerations

are relevant for this issue as there is no a priori reason to believe that economies are on

their balanced growth path. The channel we consider is rather straightforward. Wealth

heterogeneity affects the ”social” utility function and conesquently the stability proper-

ties of the equilibrium even in the absence of heterogeneity in preferences. The issue is

then to relate plausible specifications of preferences with the direction of the effect of

heterogeneity.

We adopt the simple version of the neoclassical two-sector growth model with a sin-

gle consumption good considered by Boldrin and Deneckere (1990) but we abandon the

representative agent assumption and admit non-linear utility functions. Agents may be

heterogeneous in respect to the share of the initial stock of capital and in labor endow-

ments, as well as in preferences. As labor is provided inelastically labor endowments are

considered as exogenous parameters. Furthermore, due to the structure of the model

individual characteristics and heterogeneity do not affect the steady state values of the

aggregate variables.

The analysis is standard for economies with heterogenous agents. First, we focus on

the properties of the Pareto optimal allocations. These are obtained as solutions to a

social planner’s problem characterized by a utility function depending on the welfare

weights. In the model, these weights are continuous functions of the initial conditions
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(see Ghiglino and Olszak-Duquenne (2001) and Ghiglino (2002)). Consequently, the local

dynamic properties of the general equilibrium model with heterogeneous agents and those

of the planner’s problem with the welfare weights fixed at their steady state values are

identical. We are then able to obtain the dynamic properties of the equilibrium path in

the aggregate variables for exogenously fixed welfare weights. Decentralization of these

equilibria only occurs at a second stage of our analysis where we characterize the effect

of agent’s heterogeneity on dynamics.

Ii is known that for some plausible specification of technology and preferences this model

exhibit instability and fluctuations (Boldrin and Deneckere (1990) and Ghiglino and

Olszak-Duquenne (2001)). Here we give the conditions on the individual utility func-

tions such that wealth heterogeneity favors instability and the conditions such that the

opposite occurs. We find that when the inverse of absolute risk aversion is a concave func-

tion heterogeneity favors stability. The result is driven by the fact that stability depends

monotonously on absolute risk tolerance, at least over the relevant range. Consequently,

the characterization involves the concavity of absolute risk tolerance, i.e. the derivatives

of the utility function as high as the fourth order. Unfortunately there is little direct

empirical evidence concerning their value and sign. Some weak and indirect evidence

in support of the concavity of absolute risk tolerance can be found (see Gollier (2001)).

According to the present paper, this evidence would suggest that agent’s heterogeneity

favors stability. On the other hand, for the class of preferences exhibiting hyperbolic

absolute risk aversion (HARA) income heterogeneity is neutral.

The tractability of the model is based on some simplifying assumptions. First, there

is only one consumption good and one capital good. Second, as the production func-

tions are analytically specified the technology is implicitly restricted to belong to some

class. Finally, labor is provided inelastically. The values of the parameters giving rise to
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fluctuations in the present model are not particularly plausible (see for ex. Boldrin and

Deneckere (1990)). However, we don’t think this is a major weakness as many subsequent

papers have shown that fluctuations are possible with reasonable parameter values in two-

sector growth model. We also believe that our results hold in more general frameworks.

However, more research is needed to quantify this statement.

Beside Ghiglino and Olszak-Duquenne (2001) the present paper is related to Ghiglino

and Sorger (2002). In that paper, indeterminacy is shown to occur in a continuous time,

endogenous growth model with an externality and heterogeneous agents. However, their

analysis fail to qualify the effects of redistributions on the occurrence of indeterminacy

because the welfare weights cannot be proven to be continuous functions of the initial

conditions.

The paper is organized as follows: In section 2 the model is introduced while the equilibria

are defined in Section 3. Section 4 focuses on the relationship between endowment distri-

bution and instability. In section 5 the occurrence of instability is related to heterogeneity.

Section 6 concludes.

2 The model

In the present paper we consider a competitive two-sector economy with heterogenous

agents. The technology is formalized as in Boldrin and Deneckere (1990). There is no

joint-production and firms produce according to constant returns production functions

so that at the optimum, profits are zero. There are two produced goods, a consumption

good and a capital good. The consumption good cannot be used as capital so it is

entirely consumed. The capital good cannot be consumed. There are two inputs, capital

3



and labor. We also suppose that there is instantaneous capital depreciation and that

labor is inelastically used in production.

There are two firms, one for each sector. The firm in the first sector produces a con-

sumption good from capital and labor according to a production function F 1(k1, l1). We

assume that F 1(k1, l1) = (l1)α(k1)1−α with α ∈ (0, 1) where l1, k1 are the amount of cap-

ital and labor used by the firm of the consumption sector. In a decentralized economy,

the firm maximizes profit

Max p1
t F 1(k1

t , l
1
t )− p2

t−1k
1
t − wtl1t

where p1
t is the present price of the consumption good at period t, p2

t−1 is the present price

of the capital good bought at period t− 1 and wt the present price of labor at period t.

In the second sector, the representative firm produces a capital good according to a

Leontief function F 2(k2, l2) = Min (l2, k2

γ ) with γ ∈ (0, 1). The optimal production plan

for this firm is

l2t =
k2

t

γ

There are n agents. In each period consumers provide inelastically a constant amount of

labor ωi, i = 1, ..., n with
∑n

i=1 ωi = 1. A model in which the amount of labor provided is

endogenously determined could be analyzed but at a much higher cost. At the beginning

of the economy, each agent i is endowed with a fixed share θi of the initial stock k0

of capital, with
∑n

i=1 θi = 1. Consumer’s preferences are characterized by a discounted

utility function of the form

U i(xi) =
∞
∑

t=0
δt ui(xit)

where xit is the consumption of agent i at time t and xi is its intertemporal consumption
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stream. We assume δ > γ. The instantaneous utility function fulfills the Inada condition

lim
xit→0

u′i(xit) = +∞.

In a decentralized economy, an agent i maximizes his utility function subject to a single

budget constraint

∞
∑

t=0
p1

t xit =
∞
∑

t=0
wtωi + θik0 with i = 1, ..., n.

where we have normalized the price of k0 to unity.

3 Competitive equilibria and the path of capital

In the present economy the first welfare theorem holds. Every competitive equilibrium

obtained in the decentralized economy is a Pareto optimum in the sense that it is the

solution to the maximization of a social welfare function. In the current section we first

define competitive equilibria and then characterize the set of Pareto optima.

Definition 1 A competitive equilibrium is a sequence of prices (p1
t , p

2
t , wt)∞t=0 such that

markets clear for every t ≥ 0

• l1t +l2t =
∑n

i=1 ωi= 1

• k 1
t+1+k 2

t+1= F 2(k 2
t , l

2
t )

• ∑n
i=1 xit = F 1 (k1

t , lx 1
t )

• k 1
0 +k 2

0= k 0 with k 0 given

where

• (xit) is a solution to the individual maximization program of agent i, i = 1, ..., n for

(p1
t , p

2
t , wt)∞t=0.
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• (kj
t , l

j
t ) is a solution to profit maximization for firm j, j = 1, 2 for (p1

t , p
2
t , wt)∞t=0.

Every competitive equilibrium is a Pareto optimal allocation. A Pareto optimal allocation

is a solution to the planner’s problem for a given vector of welfare weights µ ∈ [0, 1]n−1:

Max
n−1
∑

i=1
(µi

∞
∑

t=0
δt ui(xit)) + (1−

n−1
∑

i=1
µi)

∞
∑

t=0
δt un(xnt)

s.t.
n

∑

i=1
xit = F 1(k1

t , l
1
t ) for all t

k1
t+1 + k2

t+1 = F 2(k2
t , l

2
t ) for all t

l1t + l2t = 1 for all t

k0 given

The solution to the above program depends on the vector µ and on k0. The set of Pareto

optima is obtained when µ spans [0, 1]n−1 with
∑n−1

i=1 µi ≤ 1. A given competitive equilib-

rium is obtained for a µ such that the associated allocations saturate the budget constraint

of all the consumers.

Note also that the solutions are interior as soon as ωi 6= 0 or θi 6= 0 for i = 1, .... As shown

in Ghiglino and Olszak-Duquenne (2001) this is a consequence of the Inada conditions on

preferences and technology.

Let uµ be a social utility function defined by

uµ(x) = Max
n−1
∑

i=1
µiui(xit) + (1−

n−1
∑

i=1
µi) un(xnt)

s.t
n

∑

i=1
xit = x
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Let T (k, y) be the usual transformation function giving the maximal output in the capital

good compatible with total capital input k and to consumption output at least equal to

y. With the specification of production adopted through the paper T (k, y) = (1−y)α(k−

γ y)1−α. Let the return function be V : R+ × R+ → R defined by V (k, y) = uµ(T (k, y)).

Then the planner’s problem is equivalent to

Max
∞
∑

t=0
δtV (kt, kt+1)

s.t. F 2(kt, 1) ≥ kt+1

k0 given

Note that the solution depends on k0.

In the present framework it is a standard result that the set of interior Pareto optima are

the set of {kt}t that satisfies the transversality condition limt−→∞ δtV1(kt, kt+1)kt = 0 and

are solutions to the system

V2(kt, kt+1) + δV1(kt+1, kt+2) = 0 ∀t ≥ 0

where Vj represents the first order derivative in respect to the jth argument.

An interior aggregate steady state is a sequence kt = k∗, ∀t ≥ 0, that solves the set of

Euler equation. The steady state capital k∗ can be expressed as a function of the discount

factor and the technology parameters only

k∗ =
(1− α)(γ − δ)

γ − α− δ(1− α)
.

The aggregate consumption x∗ can also be obtained

x∗ = T (k∗, k∗) = k∗(k∗−1 − 1)α(1− γ)1−α.

7



Note that at the steady state, aggregate capital and consumption depend only on the

total labor supply. This property is a consequence of the fact that at the steady state the

return function can be eliminated from the Euler equation.

Near the steady state the behavior of the dynamic system is equivalent to the behavior of

the linearized system. The dynamic properties of the steady state are then related to the

eigenvalues of the matrix associated to the linearized system. In particular, the stability

property of the steady state depends on how the modulus of the two eigenvalues compare

to one. In fact, these can be shown to depend on the first and second order derivatives of

the instantaneous utility function.

Definition 2 Let u be the social utility function, u : R+ → R. Let ρ(x) = − u′(x)
u′′(x)

be the

inverse of the absolute risk aversion, also called absolute risk tolerance..

For a given discount factor and technology parameters, the eigenvalues depend on ρ. The

relationship is represented in Fig. 1 where p1 is the eigenvalue with the smallest modulus,

i.e. | p1 |<| p2 |. Note that ρ is positive and that ρ close to zero indicates a high degree

of curvature of the utility function. A property which plays an important role in the

subsequent developments is that at most one of the two graphs p1(ρ) and p2(ρ) intersects

the horizontal line drawn at −1. This is a consequence of the fact that the branches of

pi(ρ) are monotonous for large values of ρ.

The graphs pi(ρ), i = 1, 2, depend on the parameters (α, γ, δ). A change in one of the

parameters modify the graphs. The following Lemma gives the stability properties of the

steady state as a function of the technology parameters, the aggregate endowments, the

discount factor and absolute risk tolerance ρ.
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Lemma 1 Let δc = γ
1−2α , δcc = α+γ

1−α . Then,

1. If α ≥ 0.5(1− γ) then the stability of the steady state is independent of ρ.

2. If α < 0.5(1− γ) and δ /∈]δc, δcc[ then the steady state is (saddle-path) stable.

3. If α < 0.5(1− γ) and δ ∈]δc, δcc[ then

ρ ≥ ρc ⇔ Unstable steady state
ρ ∈ [0, ρc[ ⇔ Stable steady state

with

ρc =
2α(α− 1)(1 + δ)δ

δ2(2α− 1)(α− 1) + δ(2α2 − α(1− 3γ)− 2γ) + γ(α + γ)
k∗(k∗

−1−1)α(1−γ)1−α.

Proof: The issue is to find ρc such that λ1 = −1. For a proof see Ghiglino and Olszak-

Duquenne [11]. Q.E.D

Remark: For any given set of admissible parameters (α, γ, δ), there exists a value of the

absolute risk aversion of the social utility function, R0, such that for all economies with

a higher curvature, R > R0, the steady state of the reduced model is stable.

4 Instability in the heterogenous agents economy

The steady state value of individual consumption depends on the individual characteristics

because the return function depends on the welfare weights. The exact relationship is

provided by the following Lemma.
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Lemma 2 At a steady state k∗ the individual allocations are

xi
∗(θi, ωi) =

x∗

1− γ
[ (δ(1− α) + α− γ)ωi + (1− δ)(1− α)θi ]

where x∗ = k∗(k∗−1 − 1)α(1− γ)1−α.

Proof: See Ghiglino and Olszak-Duquenne (2001). Q.E.D.

The curvature of the social utility function can now be expressed as a function of the

individual consumptions and therefore of the individual shares of capital and labor en-

dowments. We have the following result

Lemma 3 The absolute risk tolerance of the social utility function computed at the steady

state is given by

ρ((θi, ωi)
n
i=1) = −

n
∑

i=1

u′i
u′′i

(x ∗i (θi, ωi))

Proof: See appendix. Q.E.D

In the present general equilibrium model the social utility function depends on the welfare

weights. Furthermore, these depend on the equilibrium allocations which in turn depend

on the initial conditions and on the distribution of individual endowments. As a conse-

quence the characterization of the dynamic properties of the general equilibrium model

is hard to obtain, even when restricted to a neighborhood of the steady state. However,

in Ghiglino and Olszak-Duquenne (2001) it is shown that the local dynamic properties

of the general equilibrium model are related to the dynamic properties of an appropriate

”optimal growth” model.

10



Lemma 4 The local stability properties of the general equilibrium model with endogenous

weights and of the model with the welfare weights fixed at their steady state values are

equivalent.

Proof: See Ghiglino and Olszak-Duquenne (2001). The proof is based on Kehoe, Levine

and Romer (1990) and Santos (1992). Q.E.D

The following Proposition gives the conditions for which heterogeneity matters. It is the

main result of this section.

Proposition 1 Let ρmin = min((θi,ωi)n
i=1

ρ((θi, ωi)n
i=1) and ρmax = max (θi,ωi)n

i=1
ρ((θi, ωi)n

i=1).

Let also ρc, δc and δcc as defined in Lemma 1. Then

1. If δ /∈]δc, δcc[ then the steady state is (saddle-path) stable.

2. If δ ∈]δc, δcc[ and ρc ∈]ρmin, ρmax[ then the distribution of shares and/or labor en-

dowments matters, i.e. the stability of the steady state is affected by the distribution

of wealth. For ρ > ρc the steady state is unstable while it is stable for ρ ≤ ρc.

3. If δ ∈]δc, δcc[ and ρc /∈]ρmin, ρmax[ then the distribution of shares and/or labor en-

dowments don’t affect stability.

Proof: Obvious considering Lemma 1, Lemma 3 and Lemma 4. Q.E.D

The previous result gives the conditions for which wealth heterogeneity matters for sta-

bility. In these, as we will see, preferences play a crucial role. In some cases, for example

when all consumers are characterized by identical CES utility function, ]ρmin, ρmax[ is

empty and Case 2 in Proposition 1 never occurs.
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5 On the effects of inequality on stability

In this section we establish the link between dynamic instability and agents heterogeneity.

When agents have identical preferences, the spread in individual wealth, i.e. in shares of

capital and/or labor endowments, gives a good indication of the level of heterogeneity of

the economy. Indeed, in this case the agents can be distributed on the real line according

to their wealth. In a purely homogeneous economy all consumers have the same wealth

while in an heterogenous economy actual individual wealth is spread over some interval.

There are several possible formal definitions. We chose the following.

Definition 3 Assume there are N types of consumers ordered according to their steady

state allocation, i.e. xi ≤ xj for i < j. Let ni(J) be the number of consumers of type i in

economy J and let n(J) be the corresponding distribution. Furthermore, assume that the

mean of the distribution
∑N

i=1 ni(J)xi is independent of J. Then Economy B is said to be

more heterogenous, or unequal, than Economy A iff B has more weight in the tails than

A, i.e. n(A) �I n(B) where the ordering �I is formally defined in Rothschild and Stiglitz

(1970).

Note that when considering the effect of a redistribution at most N = 2n types need to

be considered as there are at most n types in the initial configuration and at most n types

in the final configuration.

Rothschild and Stiglitz (1970) have shown the equivalence among a class of intuitive

notions of spread. In particular, they show that the notion in Definition 3 is equivalent to

the property that a spread in the distribution of consumer’s type decreases the expected

value of f(x) for any f continuous and concave, i.e.
∑2n

i=1 ni(A)f(xi) ≥
∑2n

i=1 ni(B)f(xi)

12



for all continuous concave functions f .

That heterogeneity may have an effect on stability is a consequence of Proposition 1.

In fact this link is expected to hold under general conditions. However, it may also be

seen that the usual fundamental axioms on preferences don’t limit the sign of the effect.

The reason is that the occurrence of instability depends on the third and fourth order

derivatives of the utility functions. Standard assumptions on preferences do not put any

limitation on these and direct empirical data is also lacking. However, some indirect

evidence on the properties of absolute risk aversion and its inverse, sometimes called

absolute risk tolerance, exist or could be obtained soon. Our condition therefore involves

absolute risk tolerance.

Proposition 2(i) When inequality is good for stability Assume that the inverse of

absolute risk aversion is a strictly concave function. Provided heterogeneity affects stability

(Case 2 of Proposition 1 occurs) there exists a distribution n(0) such that the steady state

is locally stable for any economy J with n(0) �I n(J) and is unstable otherwise.

Proposition 2(ii) When equality is good for stability Assume that the inverse of

absolute risk aversion is a strictly convex function. Provided heterogeneity affects stability

(Case 2 of Proposition 1 occurs) there exists a distribution n(0) such that the steady state

is locally stable for any economy J with n(J) �I n(0) and is unstable otherwise.

Proof: Let ui(x) = v(x). Let i = 1, ..., N be the subscript indicating the type and let ni

indicate the number of consumers of type i. Lemma 3 gives

ρ((θi, ωi)N
i=1) = −

N
∑

i=1
ni

v′

v′′
(x∗i (θi, ωi))

Provided W (x) = − v′(x)
v′′(x) is a concave function, Definition 3 and the discussion thereafter

implies that B is more heterogeneous than A iff
∑N

i=1 ni(A)W (xi) ≥
∑N

i=1 ni(B)W (xi).

13



If we define ρ(J) as the value of ρ((θi, ωi)N
i=1) associated to the distribution ni(J) the

previous condition becomes iff ρ(A) ≥ ρ(B). On the other hand, according to Lemma

1 an increase in ρ favors instability. Therefore, when individual absolute risk tolerance

W (x) is a concave function heterogeneity favors stability (Proposition 2(i)). The second

part of the result is proven similarly. Q.E.D.

The traditional theory of precautionary saving requires the third derivative to be positive

while the fourth derivative is unconstrained. Recent research suggests that a positive third

order derivative is not sufficient for the expected wealth accumulation to be increasing

with the earning risks (see Huggett and Vidon (2002)). A sufficient condition is that

v′(x)v′′′(x)
(v′′(x))2 is a constant k with k > 0, implying that the utility function belongs to a subset

of the HARA class (see Caroll and Kimball (1996)). Note that this class include most

of the commonly used specifications, as the CARA and CRRA. As (R−1(x))′′ = ( v′(x)
v′′(x))

′′

= ( (v′′(x))2−(v′(x)v′′′(x)
(v′′(x))2 )′ = (−v′(x)v′′′(x)

(v′′(x))2 )′ it is straightforward to realize that in all these cases

heterogeneity doesn’t affect stability.

Corollary 1 HARA preferences Assume that individual preferences can be represented

by a utility function of the HARA class, i.e. v(x) = 1−γ
γ ( ax

1−γ + b)γ with a, b and γ as

parameters. Then wealth inequality plays no role in the stability of the steady state.

Nothing in the data indicates that the analysis should be confined to the HARA class.

However, although there are good reasons to believe that absolute risk aversion is convex

the evidence on the concavity of its inverse is not conclusive (see Gollier (2001)). Clearly

more research is needed before we can apply our results to conclude on the sign of the

effect of wealth heterogeneity on stability.

Remark: The conditions in Proposition 2 can be expressed in terms of the derivatives of ab-

solute risk aversion R(x). Indeed, since (v′(x)/v′′(x))′ = (−1/R(x))′ = −(R2(x))−1R′(x)

14



we obtain (−v′(x)/v′′(x))′′ = ((R2(x))−1R′(x))′ = R2(x)−1[R′′(x) − 2R(x)−1R′(x)2].

Therefore, if 2R′2(x)/R(x) < R′′(x) then W (x) = − v′(x)
v′′(x) is strictly convex. Of course

this condition may be fulfilled only if absolute risk aversion is strongly strictly convex.

6 Conclusion

The present paper identifies within the chosen model the conditions on consumer’s pref-

erences such that wealth inequality favor instability and those that favor stability. The

paper also shows that there is a large set of economies such that heterogeneity is neutral,

and this set include all preferences satisfying the HARA property. The characterization

involves the concavity of absolute risk tolerance, i.e. the inverse of absolute risk aversion.

As reviewed by Gollier (2001), properties of the absolute risk tolerance play a crucial role

also in asset pricing theory and some effort is being devoted to find empirical evidence.

However, these findings do not lead to a conclusive evidence on the concavity of absolute

risk tolerance and therefore on the sign of the effect of wealth heterogeneity on stability.

It is an open question whether the results can be extended to a more general framework.

Two properties happened to be crucial. First, the welfare weights need to be continuous

functions of the initial conditions. Second, at most one of the two graphs representing

the eigenvalues of the dynamical system as a function of absolute risk tolerance, should

intersect the horizontal line drawn at −1. And this should occur only once. Provided

these two properties hold, the results can be extended to a completely general two-sector

economy. Similar conditions can be specified so that the result would hold in general

multi-sector models. It should also be pointed out that in our model heterogeneity in

individual productivity are not explicitly taken into account. However, as we allow for

15



heterogeneity in labor endowments, our model can be reinterpreted as to include different

levels of individual labor productivity.
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8 Appendix

8.1 Proof of Lemma 3.

Without loss of generality assume there are three types of consumers. Then the social

utility function is defined by

u(x) = Max µana ua(xa) + µb ubnb(xb) + (1− µa − µb)nc uc((x− naxa + nbxb)/nc)

The first and second order derivatives of the social utility function can be related to

the derivatives of the individual utility function of the agents. Indeed, the first order

conditions associated to the maximization problem that define the social utility function

give

Ψ1(xa, xb, x; µa, µb) = µana u′a(xa)− (1− µa − µb)na u′c((x− naxa + nbxb)/nc) = 0
Ψ2(xa, xb, x; µa, µb) = µbnb u′b(xb)− (1− µa − µb)nb u′c((x− naxa + nbxb)/nc) = 0
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Then the following expressions are easily obtained

u′(x) = (1− µa − µb) u′c((x− naxa + nbxb)/nc) = µana u′a(xa)
u′′(x) = µana u′′a(xa)∂xa

∂x

where x represents the aggregate consumption. The implicit function theorem applied to

Ψ allows to express xa as a function of x near the steady state (x∗a, x
∗
b , x

∗). In matrix form

we can write,

(

∂xa
∂x
∂xb
∂x

)

=





∂Ψ1

∂xa

∂Ψ1

∂xb
∂Ψ2

∂xa

∂Ψ2

∂xb





−1 (

∂Ψ1

∂x
∂Ψ2

∂x

)

Some straightforward computations give

x′a(x
∗) =

∂x∗a
∂x

=
µcµbu′′b (x

∗
b)u

′′
c (x

∗
c)

µaµbncu′′a(x∗a)u′′a(x∗a) + µaµcnbu′′a(x∗a)u′′c (x∗c) + µbµcnau′′b (x∗b)u′′b (x∗b)

where µc = 1− µa − µb.

The result then follows from the definition of ρ.
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