
s
o
u
r
c
e
:
 
h
t
t
p
s
:
/
/
d
o
i
.
o
r
g
/
1
0
.
7
8
9
2
/
b
o
r
i
s
.
1
4
4
1
7
0
 
|
 
d
o
w
n
l
o
a
d
e
d
:
 
2
1
.
1
1
.
2
0
2
4

REVIEW Open Access

Fetal sex and maternal pregnancy
outcomes: a systematic review and meta-
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Abstract

Background: Since the placenta also has a sex, fetal sex–specific differences in the occurrence of placenta-
mediated complications could exist.

Objective: To determine the association of fetal sex with multiple maternal pregnancy complications.

Search strategy: Six electronic databases Ovid MEDLINE, EMBASE, Cochrane Central, Web-of-Science, PubMed, and
Google Scholar were systematically searched to identify eligible studies. Reference lists of the included studies and
contact with experts were also used for identification of studies.

Selection criteria: Observational studies that assessed fetal sex and the presence of maternal pregnancy
complications within singleton pregnancies.

Data collection and analyses: Data were extracted by 2 independent reviewers using a predesigned data
collection form.

Main results: From 6522 original references, 74 studies were selected, including over 12,5 million women. Male
fetal sex was associated with term pre-eclampsia (pooled OR 1.07 [95%CI 1.06 to 1.09]) and gestational diabetes
(pooled OR 1.04 [1.02 to 1.07]). All other pregnancy complications (i.e., gestational hypertension, total pre-eclampsia,
eclampsia, placental abruption, and post-partum hemorrhage) tended to be associated with male fetal sex, except
for preterm pre-eclampsia, which was more associated with female fetal sex. Overall quality of the included studies
was good. Between-study heterogeneity was high due to differences in study population and outcome definition.

Conclusion: This meta-analysis suggests that the occurrence of pregnancy complications differ according to fetal
sex with a higher cardiovascular and metabolic load for the mother in the presence of a male fetus.
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Introduction
In pregnancy, the placenta constitutes the active inter-
face between the maternal and fetal blood circulation. It
regulates important physiological changes during preg-
nancy and accounts for fetal development and nutrient
supply. Maternal physiological changes include cardio-
vascular changes in vascular tone, cardiac output, and
plasma volume, providing a better placental perfusion [1,
2]. Impaired placentation leading to abnormal placental
perfusion and hence placental dysfunction is believed to
be the foundation of several pregnancy complications
such as pre-eclampsia [3, 4]. The central role of the pla-
centa in maternal health suggests an intensive interplay
between the mother and the placenta, which might be
sex dependent. During pregnancy, clear fetal sex-specific
differences are noticeable in the occurrence of different
pregnancy complications such as pre-eclampsia and ges-
tational diabetes and even in maternal vascular adapta-
tion to pregnancy [5]. Despite growing speculations that
placentation and maternal adaptation to pregnancy are
influenced by fetal sex, in most studies that assess these
possible pathophysiological mechanisms, fetal sex is not
being taken into account [6–9].
Several systematic reviews and meta-analyses have

been performed to investigate the association between
fetal sex and single pregnancy complications such as
pre-eclampsia or gestational diabetes. It is plausible that
if fetal sex is associated with one maternal pregnancy
complication it might be associated with other preg-
nancy complications as well. However, some of the per-
formed systematic reviews had restrictions concerning
publication date and source population and did not
check the references for additional inclusions. We con-
ducted a systematic review and meta-analysis of observa-
tional studies evaluating the association of fetal sex with
multiple maternal pregnancy complications. To explore
the worldwide impact of fetal sex on these maternal
pregnancy complications, population attributable factors
(PAF) were calculated.

Materials and methods
Data sources and search strategy
This review was conducted using a predefined protocol
and in accordance with PRISMA and MOOSE guidelines
(Additional file 3 and Additional file 4) [10, 11]. Six elec-
tronic databases (Ovid MEDLINE, EMBASE, Cochrane
Central, Web-of-Science, PubMed, and Google Scholar)
were searched until April 5, 2019, without language or
publication date restriction. The computer-based
searches combined terms related to (1) the exposure
such as (gender, sex, fetus, embryo, and baby); (2) mater-
nal pregnancy complications (e.g., gestational hyperten-
sion, pre-eclampsia (total, preterm, term, and postterm),
eclampsia, gestational diabetes, placental abruption,

post-partum hemorrhage, and miscarriage); and (3) rele-
vant population (humans, singleton pregnancy) (Add-
itional file 1). Two independent reviewers screened the
titles and abstracts of all studies initially identified, ac-
cording to the selection criteria. Any disagreement was
resolved through consensus or consultation with a third
independent reviewer. Full texts were retrieved from
studies that satisfied all selection criteria. From each se-
lected manuscript we also searched their individual ref-
erence list for other possible includable studies. For this,
we used a restriction of 20% most recently published
studies.

Study selection and eligibility criteria
Observational studies were eligible if they assessed fetal
sex as primary exposure in singleton pregnancies and
collected end points for maternal pregnancy complica-
tions, including gestational hypertension, pre-eclampsia,
eclampsia, gestational diabetes, placental abruption,
post-partum hemorrhage, and miscarriage. Study popu-
lations in the eligible studies included women recruited
from health care settings or general populations. Studies
on newborns with an abnormal karyogram, congenital
conditions involving sex steroids and/or sex characteris-
tics were excluded.

Data extraction
Two authors independently extracted data and consen-
sus was reached in case of any inconsistency with in-
volvement of a third author. A predesigned electronic
data extraction form was used to collect relevant infor-
mation. The data collection form included questions on
qualitative aspects of the study (such as date of publica-
tion, design, geographical origin and setting, funding
source, selection criteria, patient samplings, and location
of research group), participant characteristics (such as
number included in the analysis, age, ethnicity, comor-
bidities) and information on the reported outcome (type
of outcome, outcome assessment method, statistical ana-
lysis, adjustment variables). In instances of multiple pub-
lications, the most up-to-date and comprehensive
information was extracted.

Assessing study quality
Two reviewers independently rated the quality of studies
using the Newcastle–Ottawa Quality Assessment Scale
(Additional file 2). This quality score system is applicable
for case-control and cohort studies. The system allocates
points for information on participants, comparability,
and outcome with a maximum of eight points.

Statistical Analysis
We evaluated the differences between pregnancies with
a male and female fetus on maternal pregnancy
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complications (including gestational hypertension, pre-
eclampsia (total, preterm, term, and postterm), eclamp-
sia, gestational diabetes, placental abruption, post-
partum hemorrhage, and miscarriage). To enable a con-
sistent approach to the meta-analysis and enhance inter-
pretation of the findings, effect estimates were converted
where appropriate. The inverse variance weighted
method was used to combine summary measures using
random-effects models to minimize effects of between-
study heterogeneity [12]. The summary estimates pre-
sented were calculated using random-effects models
(D+L) and fixed effects (I+V). We also conducted sensi-
tivity analyses using fixed-effects models. Heterogeneity
was assessed using the Cochrane X

2 statistic and the I2

statistic and was distinguished as low (I2 ≤ 25%), moder-
ate (I2 > 25% and < 75%), or high (I2 ≥ 75%) [13].
Sensitivity analyses were performed by restricting the

analysis to studies with very strict in- or exclusion cri-
teria resulting in a specific participant population (e.g.,
only inclusion of nulligravid, or women who were admit-
ted with hyperemesis gravidarum patients or had gesta-
tional diabetes/placental abruption/SGA, etc.). Stratified
analyses were performed on geographical location
(Western vs non-Western), number of participants (<
10.000 vs ≥ 10.000), study design (case-control vs retro-
spective cohorts vs prospective cohort), and on quality
score (< 7 vs ≥ 7), which were pre-specified as character-
istics of assessment of heterogeneity and, in addition to
stratification, were evaluated using random-effects meta-
regression. Population attributable fractions (PAF) were
calculated as PAF = (p (RR − 1))/(p (RR – 1) + 1) [14].
The PAF is an epidemiological measure widely used to
assess the public health impact of exposures in a popula-
tion. It describes the proportional reduction in popula-
tion disease or mortality that would occur if the
exposure to a risk factor was reduced to an alternative
ideal exposure scenario (i.e., female fetal sex). A narra-
tive synthesis and construction of descriptive summary
tables were performed for these studies that could not
be quantitatively pooled.
All tests were 2-tailed; p ≤ 0.05 was considered statisti-

cally significant. Stata release 13 (StataCorp) was used
for all analyses.

Results
Study identification and selection
We identified 6522 relevant citations. After screening titles
and abstracts, 401 articles were selected for detailed evalu-
ation of their full texts. Of those, 74 articles met our inclusion
criteria and were included in the review (Table 1, Fig. 1).

Characteristics of included studies
The 74 included studies reported results for 12.658.554
unique women (Table 1). Forty-seven were retrospective

cohort studies, 10 prospective cohort studies and the
remaining 17 studies were case-control studies. The ma-
jority of studies were performed in Western countries
(22 in Northern America, 25 in Europe, three in
Australia, and one study in both Europe and Australia).
Of the remaining studies, 11 were performed in Asia,
nine in the Middle East, and three in Africa. More than
one outcome was measured in 23 studies, and for these,
the measure of association for each outcome was in-
cluded in the analysis. One study was written in Spanish,
all other studies were in English [75].

Association of fetal sex with maternal pregnancy
outcomes
Fetal sex and gestational hypertension
Of the included studies, 19 investigated gestational
hypertension with a total of 5.752.185 participants (Ta-
bles 1 and 2) [15–30, 76, 77]. Of these studies, five found
an association with male fetal sex dominance, one with
female fetal sex dominance, and 13 found no association.
Four studies stratified their results. One study stratified
for severity of gestational hypertension (mild, moderate,
and severe) [19]. None of the subgroups were associated
with fetal sex. Another study stratified for parity in
which no association was found for both primiparous
and multiparous women. Persson et al. stratified for co-
morbidity (gestational diabetes, diabetes mellitus type 1
or 2) [25]. They observed male fetal sex dominance for
gestational hypertension in the non-diabetic group. No
such association was found for women with diabetes.
The last study stratified for gestational age and found
that gestational hypertension was associated with male
fetal sex only in term and postterm pregnancies [29].
In our pooled meta-analyses which compared the oc-

currence of gestational hypertension in women carrying
a male fetus compared with women carrying a female
fetus, the OR was 1.01 (0.98–1.05) (Fig. 2a). The PAF for
total gestational hypertension was 1.31% (95% CI [-0.22;
2.84], p = 0.09). Assuming a worldwide prevalence of
7%, this resembles almost 200.000 cases worldwide of
gestational hypertension associated to some degree with
the presence of a male fetus [78].

Fetal sex and pre-eclampsia
Of the included studies, 39 investigated pre-eclampsia
with a total of 4.766.334 participants (Tables 1 and 2)
[15, 17, 21–27, 29–55, 77, 79, 80]. Eight studies found
an association with male fetal sex, six with female fetal
sex and the remaining 25 studies did not find a signifi-
cant association. However, the association between fetal
sex and pre-eclampsia was dependent of gestational age.
Ten studies stratified their results for gestational age.
Two studies stratified their results not only in term vs
preterm but additionally investigated several gestational
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Table 1 Associations between fetal sex and maternal pregnancy outcomes
First author Statistical

analyses
Subgroups Tendency towards

which sex (M/F/=)
Crude effect
estimate (95% CI)

p value Covariate
adjustment

Adjusted effect
estimate (95% CI)

p value

Gestational hypertension

Andersen et al.
2016 [15]

Logistic
regression

F 0..69 (0..38–1..25) 0.22

Baibergenova et al.
2006 [16]

Logistic
regression

F 1.06 (0.55–2.50) 0.87

Campbell et al.
1983 [17]

Logistic
regression

M 1.18 (1.09–1.27) <
0.0001

Chien et al. 2011
[18]

Logistic
regression

M 0.97 (0.96–0.98) <
0.0001

Engel et al. 2008
[19]

Chi-square Total M 1.04 (0.94–1.14) 0.46

Mild M 1.04 (0.94–1.16) 0.44

Moderate F 0.99 (0.80–1.24) 0.95

Severe F 0.94 (0.62–1.42) 0.76

Favilli et al. 2013
[20]

Logistic
regression

F 1.69 (0.63–4.57) 0.43 Maternal age > 40 years,
weight gain, BMI,
gestational diabetes

0.98 (0.43–2.25) 0.97

Hou et al. 2014 [21] Logistic
regression

F 0.97 (0.91–1.02) 0.25

Juberg et al. 1976
[22]

Chi-square M 0.03

Li et al. 2016 [23] Logistic
regression

F 0.97 (0.78–1.21) 0.79

Makhseed et al.
1998 [24]

Logistic
regression

Total M 1.01 (0.86–1.20) 0.87

Primiparous F 0.87 (0.65–1.17) 0.36

Multiparous M 1.09 (0.89–1.33) 0.42

Persson et al. 2014
[25]

Logistic
regression

Healthy population M 1.03 (1.01–1.06) 0.003

Gestational diabetes M 1.08 (0.93–1.26) 0.31

Diabetes mellitus type
I

F 0.93 (0.79–1.09) 0.35

Diabetes mellitus type
II

F 0.83 (0.44–1.57) 0.56

Ricart et al. 2009
[76]

Logistic
regression

M 1.22 (0.91–1.63) 0.19

Sheiner et al. 2004
[26]

Logistic
regression

= 1.00 (0.95–1.05) 0.96

Shiozaki et al. 2011
[27]

Logistic
regression

F 0.88 (0.83–0.92) <
0.0001

Sykes et al.
2014 [77]

Logistic
regression

M 1.33 (0.67–2.63) 0.42

Tundidor et al. 2012
[28]

Relative
risk

F 0.81 (0.55–1.20) NR

Valvi et al.
2017 [109]

Logistic
regression

M 1.03 (0.58–1.85) 0.91

Verburg et al. 2016
[29]

Relative
risk

Total M 1.05 (1.03–1.07) NR

25–29 weeks F 0.69 (0.58–0.81) NR

30–33 weeks F 0.87 (0.79–0.97) NR

34–36 weeks F 0.93 (0.87–0.98) NR

37–39 weeks M 1.06 (1.04–1.09) NR

40–42 weeks M 1.07 (1.04–1.11) NR

Zheng et al. 2016
[30]

Logistic
regression

F 0.54 (0.26–1.14) 0.11
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Table 1 Associations between fetal sex and maternal pregnancy outcomes (Continued)
First author Statistical

analyses
Subgroups Tendency towards

which sex (M/F/=)
Crude effect
estimate (95% CI)

p value Covariate
adjustment

Adjusted effect
estimate (95% CI)

p value

Pre-eclampsia

Aibar et al. 2012
[31]

Logistic
regression

F 0.99 (0.65–1.49) 0.94

Aliyu et al. 2012
[32]

Logistic
regression

F 0.90 (0.79–1.03) 0.12

Andersen et al.
2016 [15]

Logistic
regression

Total F 0.95 (0.69–1.31) 0.76

Preterm F 1.04 (0.42–2.56) 0.94

Term M 1.22 (0.85–1.74) 0.29

Basso et al. 2001
[33]

Logistic
regression

M 0.94 (0.92–0.97) < 0.05

Brettel et al. 2008
[34]

Logistic
regression

F 1.17 (1.01–1.35) 0.03

Campbell et al.
1983 [17]

Logistic
regression

F 1.08 (0.94–1.24) 0.3

Choong et al. 1995
[35]

Logistic
regression

F 1.45 (1.22–1.71) <
0.0001

Chu et al. 2014 [36] Logistic
regression

M 0.60 (0.19–1.83) 0.39

Hadar et al. 2017
[37]

Logistic
regression

F 0.99 (0.68–1.43) 0.95

Hou et al. 2014 [21] Logistic
regression

F 0.95 (0.88–1.02) 0.13

Juberg et al. 1976
[22]

Chi-square M 0.06

Khalil et al. 2013
[38]

Logistic
regression

Total M 1.04 (0.91–1.19) 0.57

Preterm F 1.53 (1.07–2.20) 0.02

Term M 1.08 (0.93–1.25) 0.31

Postterm M 3.46 (1.40–8.53) 0.007

Lao et al. 2011 [39] Logistic
regression

F 0.92 (0.81–1.06) 0.26

Lao et al. 2017 [40] Logistic
regression

M 1.56 (1.41–1.73) <
0.0001

Li et al. 2016 [23] Logistic
regression

F 0.66 (0.45–0.98) 0.04

Lisonkova et al.
2013 [41]

Cox
regression

< 34 weeks M 1.10 (1.07–1.14) NR NR 1.10 (1.06–1.14) NR

> 34 weeks M 1.10 (1.07–1.14) NR NR 1.10 (1.06–1.14) NR

Liu et al. 2016 [42] Logistic
regression

Total 0.96 (0.88–1.04) 0.31

Preterm 1.15 (1.00–1.32) 0.046

Makhseed et al.
1998 [24]

Logistic
regression

Total F 0.92 (0.68–1.24) 0.57

Nulliparous F 0.74 (0.49–1.10) 0.13

Multiparous M 1.20 (0.76–1.90) 0.43

Masoumi et al. 2017
[43]

Logistic
regression

Total M 1.09 (0.90–1.31) 0.40

Severe M 1.43 (0.81–2.51) 0.21

Morsing et al. 2018
[44]

Logistic
regression

F 0.80 (0.59–1.09) 0.16

Myers et al. 2015
[45]

Logistic
regression

= 0.94 (0.65–1.36) 0.74

Peled et al. 2013
[46]

Logistic
regression

M 1.79 (0.42–7.56) 0.43
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Table 1 Associations between fetal sex and maternal pregnancy outcomes (Continued)
First author Statistical

analyses
Subgroups Tendency towards

which sex (M/F/=)
Crude effect
estimate (95% CI)

p value Covariate
adjustment

Adjusted effect
estimate (95% CI)

p value

Persson et al. 2014
[25]

Logistic
regression

Healthy population M 1.03 (1.01–1.06) 0.003

Gestational diabetes M 1.08 (0.93–1.26) 0.31

Diabetes mellitus type
I

F 0.93 (0.79–1.09) 0.35

Diabetes mellitus type
II

F 0.83 (0.44–1.57) 0.56

Quiñones et al.
2005 [47]

Logistic
regression

M 1.15 (0.77–1.70) 0.5

Reynolds et al. 2012
[48]

Logistic
regression

Total F 0.85 (0.71–1.02) 0.08

Preterm F 1.25 (0.79–1.97) 0.34

Term F 0.86 (0.71–1.04) 0.13

Roy et al. 2015 [49] Logistic
regression

Total M 1.28 (0.72–2.29) 0.4

Preterm M 0.77 (0.33–1.81) 0.55

Term M 1.28 (0.66–2.46) 0.46

Sharifzadeh et al.
2012 [50]

F 0.88 (0.33–2.35) 0.8

Sheiner et al. 2004
[26]

Logistic
regression

= 1.00 (0.95–1.05) 0.96

Shiozaki et al. 2011
[27]

Chi-square Pre-eclampsia F 0.84 (0.79–0.89) <
0.001

Pre-eclampsia with
fetal death

M 1.21 (0.70–1.48) 0.95

Severe pre-eclampsia F 1.21 (1.10–1.33) 0.001

Severe pre-eclampsia
with fetal death

F 1.14 (0.67–1.93) 0.63

Sykes et al. 2014
[77]

Logistic
regression

M 1.27 (0.64–2.51) 0.49

Taylor et al. 2018
[51]

Logistic
regression

F 0.94 (0.67–1.30) 0.70

Taylor et al. 2018
[51]

Logistic
regression

PE overall F 0.89 (0.64–1.24) 0.69

Term (> 37 weeks) F 0.92 (0.65–1.30) 0.63

Preterm (<37 weeks) F 0.72 (0.37–1.39) 0.32

Very preterm (<34
weeks)

F 0.38 (0.13–1.07) 0.07

Toivanen et al. 1970
[52]

Logistic
regression

M 1.20 (1.06–1.37) 0.005

Trudel et al. 2015
[53]

Logistic
regression

M 1.01 (0.95–1.07) 0.82

Vatten et al. 2004
[54]

Logistic
regression

Total M 1.05 (1.03–1.07) <
0.0001

Preterm (< 37 weeks) F 1.17 (1.11–1.22) <
0.0001

Term (37–42 weeks) M 1.06 (1.04–1.08 <
0.0001

Postterm (> 42 weeks) M 1.07 (0.96–1.18) 0.23

25–29 weeks F 1.55 (1.31–1.83) <
0.0001

30–33 weeks F 1.33 (1.21–1.46) <
0.0001

34–36 wls F 1.07 (1.01–1.14) 0.03

37–39 weeks F 0.98 (0.85–1.01) 0.18
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Table 1 Associations between fetal sex and maternal pregnancy outcomes (Continued)
First author Statistical

analyses
Subgroups Tendency towards

which sex (M/F/=)
Crude effect
estimate (95% CI)

p value Covariate
adjustment

Adjusted effect
estimate (95% CI)

p value

40–42 weeks M 1.10 (1.07–1.13) <
0.0001

Verburg et al. 2016
[29]

Relative
risk

Total M 1.05 (1.03–1.07) NR

25–29 weeks F 0.69 (0.58–0.81) NR

30–33 weeks F 0.87 (0.79–0.97) NR

34–36 weeks F 0.93 (0.87–0.98) NR

37–39 weeks M 1.06 (1.04–1.09) NR

40–42 weeks M 1.07 (1.04–1.11) NR

Wandabwa et al.
2010 [79]

Logistic
regression

F 0.65 (0.45–0.95) 0.03

Weinberg et al.
2017 [55]

Logistic
regression

Total M 1.01 (0.98–1.04) 0.71

Term (> 37 weeks) M 1.05 (1.01–1.08) 0.01

Preterm (<37 weeks) F 0.89 (0.84–0.94) 0.0001

Zheng et al. 2016
[30]

Logistic
regression

Total F 0.49 (0.27–0.89) 0.02

Mild F 0.65 (0.30–1.43) 0.29

Severe F 2.60 (1.18–5.73) 0.02

Eclampsia

Aibar et al. 2012
[31]

Logistic
regression

M 1.54 (0.50–4.72) 0.45

Aliyu et al. 2012
[32]

Logistic
regression

F 0.92 (0.42–2.01) 0.83

Campbell et al.
1983 [17]

Logistic
regression

F 0.89 (0.35–2.32) 0.82

Chien et al. 2011
[18]

Logistic
regression

= 1.00 (0.97–1.04) 0.89

Hou et al. 2014 [21] Chi-square M 0.13

Llopez-Lera et al.
1990 [82]

Chi-square M < 0.05

Persson et al. 2014
[25]

Logistic
regression

Healthy population M 1.03 (1.01–1.06) 0.003

Gestational diabetes M 1.08 (0.93–1.26) 0.31

Diabetes mellitus type
I

F 0.93 (0.79–1.09) 0.35

Diabetes mellitus type
II

F 0.83 (0.44–1.57) 0.56

Wandabwa et al.
2010 [79]

Logistic
regression

F 0.65 (0.45–0.95) 0.03

Gestational diabetes

Aibar et al. 2012
[31]

Logistic
regression

M 1.21 (1.06–1.37) 0.0034

Breschi et al. 1993
[56]

Logistic
regression

F 0.96 (0.36–2.52) 0.93

Cosson et al. 2016
[57]

Logistic
regression

= 1.00 (0.93–1.08) 0.96

Ehrlich et al. 2012
[58]

Logistic
regression

M 1.02 (0.99–1.05) NR Maternal ethnicity 1.02 (0.99–1.05) NR

Maternal ethnicity.
education and age

1.02 (0.99–1.05) NR

Engel et al. 2008
[19]

Logistic
regression

M 1.07 (0.85–1.36) 0.54

Favili et al.
2013 [20]

Logistic
regression

M 2.36 (0.58–9.61) 0.37 Maternal age >
40 years, BMI,

0.95 (0.37–2.46) 0.92
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Table 1 Associations between fetal sex and maternal pregnancy outcomes (Continued)
First author Statistical

analyses
Subgroups Tendency towards

which sex (M/F/=)
Crude effect
estimate (95% CI)

p value Covariate
adjustment

Adjusted effect
estimate (95% CI)

p value

weight gain,
gestational
hypertension

Heckbert et al. 1988
[59]

Logistic
regression

F 0.97 (0.77–1.21) 0.79

Hou et al. 2014 [21] Logistic
regression

M 1.01 (0.96–1.07) 0.61

Janssen et al. 1996
[60]

Logistic
regression

M 1.02 (0.96–1.08) 0.5

Kale et al. 2005 [61] Logistic
regression

M 1.64 (1.12–2.40) 0.01

Khalil et al. 2013
[38]

Logistic
regression

M 1.41 (1.15–1.72) <
0.001

Lao et al. 2011 [39] Logistic
regression

M 1.05 (0.99–1.12 0.12

Lao et al. 2017 [40] Logistic
regression

M 1.06 (1.01–1.11) 0.08

Lawlor et al.
2009 [84]

Logistic
regression

M 1.61 (0.92–2.81) 0.09

Liu et al. 2016 [42] Logistic
regression

M 1.08 (1.00–1.16) 0.048

Macaulay et al.
2018 [86]

Logistic
regression

M 1.16 (0.73–1.84) 0.53

Oken et al. 2016
[62]

Logistic
regression

M 1.39 (0.81–2.36) 0.23

Okereke et al. 2002
[63]

Logistic
regression

M 1.39 (0.81–2.36) 0.23

Peled et al. 2013
[46]

Logistic
regression

M 3.24 (0.65–16.22) 0.15

Retnakaran et al.
2015 [64]

Logistic
regression

M 1.03 (1.00–1.05) 0.047

Retnakaran et al.
2015 [64]

Logistic
regression

M 1.24 (0.92–1.67) 0.16

Ricart et al. 2009
[76]

Logistic
regression

M 1.05 (0.91–1.22) 0.17

Sheiner et al. 2004
[26]

Logistic
regression

M 1.07 (1.01–1.12) 0.01

Spellacy et al. 1985
[65]

Chi-square M NS

Strutz et al. 2018
[66]

Logistic
regression

M 1.80 (0.40–8.18) 0.45

Trudel et al. 2015
[53]

Logistic
regression

F 0.96 (0.90–1.04) 0.32

Verburg et al.
2016 [29]

RR M 1.04 (1.01–1.07) NR

Xiao et al. 2014 [67] Logistic
regression

M 1.29 (0.58–2.89) 0.53

Placental abruption

Aliyu et al. 2012
[32]

Logistic
regression

F 0.98 (0.87–1.12) 0.8

Brettel et al. 2008
[34]

Logistic
regression

M 1.29 (0.97–1.71) 0.08

Engel et al. 2008
[19]

Logistic
regression

F 0.53 (0.28–0.99) 0.049

Hou et al. 2014 [21] Logistic
regression

F 0.98 (0.83–1.15) 0.76

Jakobovits et al.
1988 [68]

Chi-square Total M NS
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Table 1 Associations between fetal sex and maternal pregnancy outcomes (Continued)
First author Statistical

analyses
Subgroups Tendency towards

which sex (M/F/=)
Crude effect
estimate (95% CI)

p value Covariate
adjustment

Adjusted effect
estimate (95% CI)

p value

17–20 years M <
0.001

21–25 years M < 0.01

26–30 years F NS

31–35 years M < 0.05

36–40 years M < 0.05

41–42 years = NS

Lopez-Llera et al.
1990 [82]

Logistic
regression

M 0.94 (0.54–1.66) 0.84

Peled et al. 2013
[46]

Logistic
regression

M 2.90 (0.76–11.03) 0.12

Raissanen et al.
2013 [110]

Logistic
regression

Total M 1.19 (1.12–1.26) <
0.0001

Nulliparous M 1.23 (1.12–1.36) <
0.0001

NR 1.36 (1.23–1.51)

Multiparous M 1.16 (1.08–1.26) 0.001 NR 1.38 (1.27–1.50)

Schildberger et al.
2016 [69]

Logistic
regression

F 0.84 (0.81–0.87) <
0.0001

Sheiner et al. 2002
[70]

Logistic
regression

F 0.98 (0.78–1.24) 0.88

Sheiner et al. 2004
[26]

Logistic
regression

M 1.15 (0.89–1.49) 0.28

Tikkanen et al. 2013
[90]

Logistic
regression

M 1.18 (1.11–1.25) <
0.0001

Wandabwa et al.
2005 [91]

Logistic
regression

M 2.20 (1.20–4.90) < 0.01 Distance to hospital.
age, type of house,
hypertension, previous
caesarean section,
previous stillbirth

1.90 (1.00–3.80) NR

Weissmann–
Brenner et al. 2015
[71]

Logistic
regression

Total M 1.20 (0.77–1.87) 0.42

Age < 40 years M 1.14 (0.73–1.79) 0.56

Age > 40 years M 5.08 (0.24–106.0) 0.29

Post-partum hemorrhage

Favili et al.
2013 [20]

Logistic
regression

Total M 1.12 (0.34–3.72) 0.85

Age ≥ 40 years M 2.10 (0.40–11.01) 0.38

Age < 40 years F 0.35 (0.04–3.37) 0.36

Weissmann–
Brenner et al. 2015
[71]

Logistic
regression

Total M 1.20 (0.88–1.65) 0.25

Age ≥ 40 years M 1.16 (0.84–1.61) 0.35

Age < 40 years M 4.07 (0.45–36.5) 0.21

Liu et al. 2016 [42] Logistic
regression

F 0.91 (0.83–0.99) 0.0046

Miscarriage

Byrne et al. 1987
[72]

Risk ratio Total M < 0.05

Morphological normal M < 0.05

Morphological
abnormal

F > 0.05

Cheng et al. 2014
[73]

Risk ratio F <
0.001

Del Fabro et al.
2011 [74]

Risk ratio Total F < 0.05
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age periods showing a strong association between female
pregnancies and very early pre-eclampsia [29, 54]. This
association attenuated with gestational age. At term and
postterm, the association is reversed and male fetal sex
is associated with pre-eclampsia. Three studies stratified
into severity of pre-eclampsia [27, 30, 43]. Two of these
studies show that a more severe pre-eclampsia is associ-
ated with a female fetus while one study shows that se-
vere pre-eclampsia is associated with a male fetus.
In our pooled meta-analyses which compared the oc-

currence of overall pre-eclampsia (i.e., preterm, term,
and postterm) in women carrying a male fetus compared
with women carrying a female fetus, the OR was 0.99
(0.95–1.02) (Fig. 2b). For preterm, term, and postterm
pre-eclampsia the pooled ORs were 0.90 (0.78–1.03),
1.07 (1.06–1.09) and 1.76 (0.56–5.48) respectively for a
male fetus compared to a female fetus (Fig. 2 c, d, and e
respectively). The PAF for total pre-eclampsia was 1.23%
(95% CI [− 0.64;3.11], p = 0.20). Assuming a worldwide
prevalence of 5%, this resembles approximately 130.000
cases of pre-eclampsia worldwide associated to some de-
gree with the presence of a female fetus [81].

Fetal sex and eclampsia
Of the included studies, eight investigated eclampsia
with a total of 4.931.754 participants (Tables 1 and 2)
[17, 18, 21, 25, 31, 32, 79, 82]. Two studies found an as-
sociation with male fetal sex, one study with female fetal
sex, the remaining studies did not find a significant
association.
In our pooled meta-analyses which compared the oc-

currence of eclampsia in women carrying a male fetus
compared with women carrying a female fetus, the OR
was 1.00 (0.95–1.04) (Fig. 2e). The PAF for eclampsia
was 0.71% (95% CI [− 3.60;5.02], p = 0.75). Assuming a
worldwide prevalence of 0.01%, this resembles almost
2000 cases of eclampsia worldwide associated to some
degree with the presence of a male fetus [83].

Fetal sex and gestational diabetes
Of the included studies, 28 investigated gestational dia-
betes, with a total of 2.126.446 participants (Tables 1
and 2) [19–21, 26, 29, 31, 38–40, 42, 46, 53, 56–67, 76,
84–86]. Of the included studies seven studies found an
association between fetal sex and gestational diabetes all

showing a higher rate of gestational diabetes within
women carrying a male fetus.
In our pooled meta-analyses which compared the oc-

currence of gestational diabetes in women carrying a
male fetus compared with women carrying a female
fetus, the OR was 1.04 (1.02–1.07) (Fig. 2g). The PAF for
gestational diabetes was 1.75% (95% CI [1.05;2.46], p <
0.001). Assuming a worldwide prevalence of 6%, this re-
sembles almost 225,000 cases of gestational diabetes
worldwide associated to some degree with the presence
of a male fetus [87].

Fetal sex and placental abruption
Of the included studies, 14 investigated placental abrup-
tion, with a total of 3.130.530 participants (Tables 1 and
2) [19, 21, 26, 34, 46, 68–71, 82, 88–91]. All studies that
found a significant association showed a higher rate of
placental abruption within women carrying a male fetus.
Two studies stratified their results according to maternal
age [68, 71]. Despite stratification, in the majority of age
groups, placental abruption was associated with the
presence of a male fetus. One study stratified their ana-
lyses for parity (nulliparous vs multiparous). In both
groups, placental abruption was associated with the
presence of a male fetus.
In our pooled meta-analyses which compared the oc-

currence of placental abruption in women carrying a
male fetus vs women carrying a female fetus, the OR
was 1.07 (0.93–1.23) (Fig. 2h). The PAF for placental
abruption was 1.18% (95% CI [1.05;2.46], p < 0.001). As-
suming a worldwide prevalence of 1%, this resembles al-
most 38.000 cases of placental abruption worldwide
associated so some degree with the presence of a male
fetus [92].

Fetal sex and post-partum hemorrhage
Of the included studies, three investigated post-partum
hemorrhage, with a total of 103.123 participants (Tables
1 and 2) [20, 42, 71]. One study found an association
with the presence of a female fetus. This study however
excluded preterm births. The other two studies did not
find an association.

Fetal sex and miscarriage
Of the included studies, three investigated miscarriage,
with a total of 1.217 participants (Tables 1 and 2) [72–

Table 1 Associations between fetal sex and maternal pregnancy outcomes (Continued)
First author Statistical

analyses
Subgroups Tendency towards

which sex (M/F/=)
Crude effect
estimate (95% CI)

p value Covariate
adjustment

Adjusted effect
estimate (95% CI)

p value

4–10 weeks F <
0.001

11–15 weeks F 0.07

16–20 weeks F 0.06
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74]. One study found an association between miscar-
riages and female sex. One other study stratified for
morphological normal and abnormal embryos showing
an association with male sex within the morphological
normal embryos. The third study stratified their analyses
for gestational age. In the total group and in the group
4–10 weeks, an association was found for female sex.

Study quality, heterogeneity, and sensitivity analyses
Study quality according to the Newcastle-Ottawa scale
was good. Over 90% of all included studies had a quality
score of ≥ 6 out of 8 and 15% percent of studies had the
maximum score of 8.
In a separate sensitivity analysis, all studies with spe-

cific in- or exclusion criteria were excluded for the
meta-analyses. All results remained the same except for
preterm pre-eclampsia, OR 0.85 (0.81–0.89). Further-
more, all analyses were stratified according to geograph-
ical location, number of participants, study design and
quality score (Table 3). Stratified analysis for gestational
hypertension by the level of quality score showed that
only in the low-quality studies (i.e., quality score < 7) an
association with male fetal sex was found (p < 0.001).
For eclampsia, stratification by the number of partici-
pants showed no association with fetal sex in the larger
studies (i.e., ≥ 10.000 participants) and an association
with female fetal sex in one smaller study (p = 0.02).
When stratifying by study design an association between
female fetal sex and eclampsia was found in the one in-
cluded case-control study. On the contrary, in the one
included prospective cohort study an association with
male fetal sex was found. In the five included retrospect-
ive cohort no association with fetal sex could be found
(p = 0.01).
Four of eight analyses showed high between-study het-

erogeneity, with an I2 estimate exceeding 75% (p < 0.05
for the Cochrane X2 statistic) (Fig. 2). This level of het-
erogeneity could be explained by differences between
studies attributable to heterogeneous study populations,
methods, and outcome definition.

Discussion
This is the first systematic review and meta-analyses in-
vestigating the association between fetal sex and mul-
tiple major pregnancy outcomes showing that sexual
dimorphisms in maternal pregnancy complications exist.
Within pre-eclampsia diverse results were found when

stratifying for gestational age. Pregnancies with a female
fetus were tended to be associated with preterm pre-
eclampsia, while pregnancies with a male fetus were as-
sociated with developing term and postterm pre-
eclampsia. This phenomenon is in line with results pre-
sented in a recent individual patient meta-analysis where
women with a female fetus were more at risk for

preterm pre-eclampsia and women with a male fetus for
term pre-eclampsia [93]. In line with this, sexual di-
morphic differences in vascular adaptation to pregnancy
have been shown [9]. Women carrying a male fetus have
a higher second-trimester uterine artery pulsatility index
and more often present themselves with notching in the
third trimester of pregnancy. This reflects an increased
utero-placental resistance among male pregnancies
which may originate from suboptimal implantation and
placentation. A time diverse pattern was also seen in
previous research on fetal sex-specific differences in
blood pressure patterns during pregnancy [9]. Within
complicated pregnancies (including pre-eclampsia) a dif-
ferent diastolic blood pressure was observed for women
with a male fetus compared with women with a female
fetus, with cross-over in the second trimester. Women
carrying a female fetus started with a higher diastolic
blood pressure compared with women carrying a male
fetus. However, from 24 weeks of gestation onwards
these women had a lower diastolic blood pressure. Al-
though the exact underlying mechanisms of these chan-
ging patterns are still subject of investigation they might
strengthen the hypothesis that pregnancies with a male
embryo are more susceptible to suboptimal implantation
or abnormal placental development which consequently
leads to altered maternal adaptation to pregnancy. Re-
cently Gonzalez et al. reported on the later first-
trimester placental transcriptome [8]. They observed
sexual dimorphic expression patterns of not only X- but
also Y-linked genes in first-trimester placentas. Cell ad-
hesion, ciliogenesis, and cell-cell communication genes
also differed in their study. This suggests sex differences
in how placenta cells interact with their environment
[94–97]. Furthermore, they observed a significant down-
regulation of the ITGB8 gene (encodes integrin-β8). This
gene promotes tumor angiogenesis and invasiveness in
glioblastoma [97] functions necessary for normal first-
trimester development when placental cells invade ma-
ternal tissue and access maternal blood. The results of
Gonzalez et al. underscribe those of previous research by
Cvitic et al. They found fetal sex differentially affected
gene expression in a cell phenotype–dependent manner
among cytotrophoblasts, syncytiotrophoblast, arterial
and venous endothelial cells. The pathways that they ob-
served in male placenta villi were identified to be signal-
ing pathways for graft-versus-host disease as well as the
immune and inflammatory systems that parallel the re-
ported poorer outcome of male fetuses [98]. Orzack
et al. studied the trajectory of the human sex ratio from
conception to birth by analyzing data from 3 to 6 days
old embryos, including abortions, chorionic villus sam-
pling, amniocentesis, fetal deaths, and live births. They
showed a sex ratio among abnormal embryos that was
male biased, and a sex ratio among normal embryos that
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was female biased. This strengthened the study of Buck-
berry et al. who detected a higher female expression
from genes involved in the maintenance of pregnancy
and the maternal immune tolerance of the conceptus
[6]. From this, we, and others, speculate that pregnancies
with a male embryo are more susceptible to impaired
placentation. This would imply that those pregnancies
with a male embryo that are susceptible to develop pre-
eclampsia due to impaired placentation may already
have miscarried in the first trimester [98–100]. The male
fetuses that survive the period of placentation will
thereby represent a relatively healthy group of fetuses
leading to a female-biased prevalence of pre-eclampsia
[99]. Since especially late-onset pre-eclampsia is thought
to originate from abnormal placentation a so-called sex-
ual dimorphic cross-over can be observed for term and
postterm pre-eclampsia [4, 6, 7, 72, 98, 100].
The implication that male embryos are more suscep-

tible to placental development is in line with the results

described in this systematic review since other placental
related pregnancy complications are also mainly associ-
ated with the presence of a male fetus. Although beyond
the scope of this review, this is in line with the associ-
ation of the presence of a male fetus with preterm birth
[101]. Many cases of spontaneous preterm birth appear
to be caused by placental insufficiency, similar to pre-
eclampsia. Other causes of preterm birth including pla-
cental abruption and chronic villitis also have specific
placental pathology related to placental insufficiency and
are also associated with male sex [102]. Furthermore, we
hypothesize that carrying a male fetus demands a higher
degree of metabolic and vascular maternal adaptation to
pregnancy compared with carrying a female fetus. For
example, women carrying a male fetus have poorer pan-
creatic beta-cell function in pregnancy [64]. This is in
line with our finding that women carrying a male fetus
are at higher risk for developing gestational diabetes.
Previous research also showed that within women who

Fig. 1 Search strategy for the studies included in the current systematic review (search until April 5, 2019). PRISMA flow diagram of selection
process of eligible studies

Broere-Brown et al. Biology of Sex Differences           (2020) 11:26 Page 12 of 20



Table 2 Pooled odds ratios of the occurrence of maternal pregnancy complications by study characteristics

Subgroup No. of studies Participants OR (95% CI) p value for heterogeneity

Gestational hypertension

Geographical location

Western 11 5.511.340 1.02 (0.98;1.06) 0.3

Non-Western 5 125.016 0.99 (0.95;1.02)

No of participants

< 10.000 8 30.853 1.01 (0.98;1.05) 0.47

≥ 10.000 8 5.605.503 0.96 (0.85;1.10)

Study design

Case-control 1 294 0.54 (0.26;1.14) 0.19

Retrospective cohort 11 5.508.737 1.02 (0.98;1.05)

Prospective cohort 4 127.325 0.98 (0.89;1.08)

Quality score

< 7 11 5.489.916 1.03 (1.01;1.05) < 0.001

≥ 7 5 146.440 0.92 (0.81;1.05)

Pre-eclampsia (total)

Geographical location

Western 15 3.472.444 1.03 (1.00;1.05) < 0.001

Non-Western 14 541.647 0.90 (0.83;0.97)

No. of participants

< 10.000 13 39.373 0.92 (0.78;1.08) 0.84

≥ 10.000 16 3.974.718 0.97 (0.94;1.01)

Study design

Case-control 7 2.174 0.86 (0.64;1.16) 0.12

Retrospective cohort 18 3.884.545 0.98 (0.95;1.02)

Prospective cohort 4 127.372 0.90 (0.81;1.00)

Quality score

< 7 22 1.538.622 0.97 (0.93;1.02) 0.71

≥ 7 7 2.475.469 0.95 (0.88;1.02)

Eclampsia

Geographical location

Western 5 4.820.821 1.02 (1.00;1.04) 0.05

Non-Western 2 110.156 0.82 (0.57;1.18)

No of participants

< 10.000 1 434 0.65 (0.45;0.94) 0.02

≥ 10.000 6 4.930.534 1.01 (0.99;1.04)

Study design

Case-control 1 434 0.65 (0.45;0.95) 0.01

Retrospective cohort 5 4.820.821 0.95 (0.88;1.02)

Prospective cohort 1 109.722 1.02 (1.00;1.04)

Quality score

< 7 6 4.920.963 1.00 (0.95;1.04) 0.84

≥ 7 1 10.014 0.92 (0.42;2.01)

Gestational diabetes

Geographical location
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experienced gestational diabetes, those women who car-
ried a male fetus are at higher risk of developing diabetes
type 2 after delivery compared with women who carried
a female fetus [85].
Not only during pregnancy the consequences of carry-

ing a male fetus for maternal health are evident. Also, long
term adverse health outcomes have been measured. Helle
et al. were the first to suggest a shorter maternal lifespan
is associated with the number of sons born [103]. More
recently research has shown that that women’s post-
reproductive survival declines with the number of sons
they gave birth to [104, 105]. The number of daughters
born was not associated with women’s post-reproductive
survival. Helle et al. validated their results by demonstrat-
ing that this effect was independent on the number of
sons and daughters surviving to adulthood and by show-
ing that the number of sons and daughters was not associ-
ated with post-reproductive survival in men [104]. These
findings support the hypothesis that baring sons is more
energetically costly than baring daughters.

Conclusions on fetal sex and miscarriage rates are dif-
ficult to draw from the included studies. One of our ex-
clusion criteria was an abnormal karyogram, which is
highly prevalent in miscarriages [106]. This could have
introduced a selection bias if an abnormal karyogram
occurs more often in male pregnancies and give rise to a
female dominance in miscarriages with a normal karyo-
gram while in the total group of miscarriages there is a
male dominance. Furthermore, the pregnancy product
after a miscarriage is only investigated in specific cases
like recurrent miscarriages and is not part of daily prac-
tice. To investigate if a sexual dimorphism in miscar-
riages exists, future research should focus on the total
rate of miscarriages, stratified for chromosomal
abnormalities.
To our knowledge, this is the first comprehensive

quantitative review that assessed the association between
fetal sex and multiple major pregnancy outcomes. Our
analyses included over 12 million women and assessed
seven pregnancy outcomes. Some systematic reviews

Table 2 Pooled odds ratios of the occurrence of maternal pregnancy complications by study characteristics (Continued)

Subgroup No. of studies Participants OR (95% CI) p value for heterogeneity

Western 16 1.632.560 1.03 (1.01;1.05) 0.17

Non-Western 8 379.756 1.09 (1.02;1.15)

No of participants

< 10.000 10 15.111 1.16 (1.02;1.33) 0.14

≥ 10.000 14 1.997.205 1.04 (1.02;1.06)

Study design

Case-control 5 1.062 1.15 (0.94;1.40) 0.66

Retrospective cohort 12 2.009.749 1.04 (1.02;1.06)

Prospective cohort 7 1.505 1.16 (1.01;1.33)

Quality score

< 7 18 1.091.263 1.05 (1.02;1.09) 0.75

≥ 7 6 921.053 1.04 (1.01;1.07)

Placental abruption

Geographical location

Western 7 2.876.604 1.03 (0.86;1.23) 0.45

Non-Western 6 227.068 1.10 (0.93;1.31)

No of participants

< 10.000 4 7.801 1.31 (0.85;2.02) 0.4

≥ 10.000 9 3.095.871 1.04 (0.90;1.22)

Study design

Case-control 2 1.090 2.34 (1.25;4.35) 0.08

Retrospective cohort 10 2.992.860 1.05 (0.90;1.22)

Prospective cohort 1 109.722 0.98 (0.83;1.15)

Quality score

< 7 6 224.641 1.21 (0.96;1.51) 0.2

≥ 7 7 2.879.031 1.01 (0.85;1.19)
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Fig. 2 (See legend on next page.)
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Fig. 2 Meta-analyses on the association between fetal sex and maternal pregnancy complications. The boxes are proportional to the weight of
each study in the analysis, and the lines represent their 95% confidence intervals (CIs). Size of data markers are proportional to the inverse of the
variance of the effect estimate. The open diamond represent the pooled odds ratio, and its width represents its 95% CI. The summary estimates
presented were calculated using random-effects models (D + L) and fixed effects (I + V). Assessment of heterogeneity: gestational hypertension
(I2 = 74,8%, p < 0.001) (a); total pre-eclampsia (I2 = 81,8%, p < 0.001) (b); preterm pre-eclampsia (I2 = 93,5%, p < 0.001) (c); term pre-eclampsia (I2

= 7,1%, p = 0.37) (d); postterm pre-eclampsia (I2 = 84.4%, p = 0.011) (e); eclampsia (I2 = 47.0%, p = 0.08) (f); gestational diabetes, (I2 = 36,3%, p =
0.03) (g); placental abruption (I2 = 92.9%, p < 0.001) (h)

Table 3 Pooled odds ratios of the occurrence of maternal pregnancy complications by study characteristics

Subgroup No. studies Participants OR (95% CI) p value for heterogeneity

Gestational hypertension

Geographical location

Western 12 5.511.490 1.02 (0.98;1.06) 0.29

Non-Western 5 125.016 0.99 (0.95;1.02)

No of participants

< 10.000 9 31.003 0,98 (0.86;1.10) 0.56

≥ 10.000 8 5.605.503 1,01 (0.98;1.05)

Study design

Case-control 2 444 0.86 (0.35;2,07) 0.57

Retrospective cohort 11 5.508.737 1.02 (0.98;1.05)

Prospective cohort 4 127.325 0.98 (0.89;1.08)

Quality score

< 7 11 5.489.916 1.03 (1.01;1.05) < 0.001

≥ 7 6 146.590 0.94 (0.82;1.06)

Pre-eclampsia (total)

Geographical location

Western 22 3.970.495 1.02 (1.00;1.05) 0,23

Non-Western 15 636.671 0.93 (0.83;1,04)

No of participants

< 10.000 18 42.194 0.92 (0.82;1.04) 0.27

≥ 10.000 19 4.548.703 1,00 (0.96;1.03)

Study design

Case-control 9 18.593 0.94 (0.75;1.02) 0.50

Retrospective cohort 24 4.461.201 1,00 (0.96;1.04)

Prospective cohort 4 127.372 0.90 (0.81;1.00)

Quality score

< 7 22 1.539.869 0.97 (0.93;1.02) 0.71

≥ 7 7 3.067.297 0.95 (0.88;1.02)

Eclampsia

Geographical location

Western 5 4.820.821 1.02 (1.00;1.04) 0.05

Non-Western 2 110.156 0.82 (0.57;1.18)

No of participants

< 10.000 1 434 0.65 (0.45;0.94) 0.02

≥ 10.000 6 4.930.534 1.01 (0.99;1.04)

Study design
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exist focusing on one pregnancy complication, for ex-
ample on gestational diabetes and pre-eclampsia/
eclampsia by Jaskolka et al. [107, 108]. Eleven of our 25
included studies on gestational diabetes and 22 of our 31
included studies on pre-eclampsia were not included in
these systematic reviews. For pre-eclampsia, this resulted
in one million more participants included. In the sys-
tematic review and meta-analyses on pre-eclampsia, the
authors unfortunately do not take into account that the
effect of fetal sex on the occurrence of pre-eclampsia is
gestational age specific and therefore stratification into

preterm, term and postterm pre-eclampsia was not
performed.
However, strength and limitations in the current study

merit careful consideration. First, all systematic reviews
are prone to reporting bias, owing to the possibility that
studies with more extreme results are more likely to be
published. In this systematic review, multiple included
articles did not primarily investigate the effect of fetal
sex on pregnancy outcome. However, due to the fact
that the information was given anyway in the manu-
script, odds ratios could be calculated. Additionally, all

Table 3 Pooled odds ratios of the occurrence of maternal pregnancy complications by study characteristics (Continued)

Subgroup No. studies Participants OR (95% CI) p value for heterogeneity

Case-control 1 434 0.65 (0.45;0.95) 0.01

Retrospective cohort 5 4.820.821 0.95 (0.88;1.02)

Prospective cohort 1 109.722 1.02 (1.00;1.04)

Quality score

< 7 6 4.920.963 1.00 (0.95;1.04) 0.84

≥ 7 1 10.014 0.92 (0.42;2.01)

Gestational diabetes

Geographical location

Western 18 1.728.325 1.03 (1.01;1.05) 0.13

Non-Western 10 380.388 1.07 (1.03;1.12)

No of participants

< 10.000 13 16.484 1.12 (1.02;1.24) 0.13

≥ 10.000 15 2.092.229 1.04 (1.02;1.06)

Study design

Case-control 6 1.092 1.15 (0.95;1.39) 0.66

Retrospective cohort 14 2.105.377 1.04 (1.02;1.06)

Prospective cohort 8 2.246 1.16 (1.02;1.31)

Quality score

< 7 21 1.092.636 1.05 (1.02;1.09) 0.75

≥ 7 7 1.016.077 1.04 (1.02;1.06)

Placental abruption

Geographical location

Western 7 2.876.604 1.03 (0.86;1.23) 0.45

Non-Western 6 227.068 1.10 (0.93;1.31)

No of participants

< 10.000 4 7.801 1.31 (0.85;2.02) 0.4

≥ 10.000 9 3.095.871 1.04 (0.90;1.22)

Study design

Case-control 2 1.090 2.34 (1.25;4.35) 0.08

Retrospective cohort 10 2.992.860 1.05 (0.90;1.22)

Prospective cohort 1 109.722 0.98 (0.83;1.15)

Quality score

< 7 6 224.641 1.21 (0.96;1.51) 0.2

≥ 7 7 2.879.031 1.01 (0.85;1.19)

Broere-Brown et al. Biology of Sex Differences           (2020) 11:26 Page 17 of 20



meta-analyses are limited by the quality of the individual
published studies. However, the majority of studies in-
cluded in the current analyses were of high quality, with
a low risk of bias. Furthermore, the majority of studies
did not give a clear definition of the pregnancy outcome
which was assessed. Also, definition changed inter-
nationally across time. The publication year of included
studies varies between 1970 and 2019. In this time span,
the definition of several pregnancy complications such
as pre-eclampsia and gestational diabetes have changed
multiple times. Moreover, there might not be inter-
national consensus to a definition which causes other
definition in different continents or countries. This in-
troduces heterogeneity into the analyses.
Most studies that were included did not adjust for any

confounders. From an epidemiological point of view,
when using fetal sex as an exposure we don’t have to
deal with any confounding factors since there are no fac-
tors described influencing fetal sex.

Conclusions
Our findings support the emerging concept of a sexual
dimorphism in the maternal-fetal-placental interplay.
Most importantly all results are consistent with each
other and validate the hypothesis that carrying a male
fetus is accompanied with a higher cardiovascular and
metabolic load for the mother resulting in maternal
pregnancy complications and adverse health in later life.
Although the increases in odds ratios in this meta-
analysis are modest, they hold important implications
for our understanding of maternal-fetal physiology.
Moreover, approximately half of pregnant women world-
wide are exposed to the presence of a male fetus. Hence,
the absolute numbers of pregnancy complications world-
wide occurring due to the presence of a male fetus are
high. Experiencing one of the pregnancy complications
described in this systematic review holds important im-
plications for future life. Fetal sex should therefore be
taken into account as a risk factor when assessing risk of
pregnancy complications and adverse cardiovascular
health in later life.
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