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Abstract: Platinum compounds represent the backbone of combined chemotherapy protocols for
advanced lung cancer. The mechanisms responsible for its frequent primary or acquired resistance
to cisplatin (cisPt)-based chemotherapy remains enigmatic. The availability of two cell lines of the
same origin, one resistant and the other sensitive, will facilitate research to reveal the mechanism
of resistance formation. Lung adenocarcinoma cells, A240286S (A24), were cultivated in increasing
cisPt concentrations over a prolonged time. After a significant increase in IC50 was measured,
cultivation of the cells was continued in absence of cisPt and IC50s determined over a long period (>7
months). As a result, a cell line with lasting, high-level cisPt resistance, designated (D-)A24cisPt8.0,
was obtained. The cells were cross-resistant to oxaliplatin and to pemetrexed at a low level. Previous
publications have claimed that Leucine-rich repeat-containing protein 8 (LRRC8A and LRRC8D) of
the volume-regulated anion channels (VRACs) affect cellular resistance to cisPt. Even though cisPt
decreased LRRC8D expression levels, we showed by knockdown and overexpression experiments
with LRRC8A and D that these proteins do not govern the observed cisPt resistance. The tumor cell
sublines described here provide a powerful model to study the mechanisms of resistance to cisPt in
lung cancer cells and beyond.

Keywords: cisplatin; NSCLC; lung cancer; VRAC; resistance

1. Introduction

With nearly 1.5 million new cases diagnosed each year worldwide, lung cancer is the most
frequently diagnosed cancer in men and the leading cause of cancer death [1,2]. There are two main
types of this disease, non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC). Eighty-five
percent of all cases and thus the most abundant form of lung cancer is NSCLC [3]. Nearly 70% of
patients diagnosed with NSCLC are found in the advanced or metastatic disease stage [4]. In spite of
newly developed anti-cancer agents, the effect of platinum-based drugs to patients cannot be neglected.
The use of Bevacizumab, a humanized monoclonal antibody that targets vascular endothelial growth
factor (VEGF) improved responses and survival of patients only in combination with carboplatin and
paclitaxel significantly [5]. As a consequence, platinum-based chemotherapy governs the first-line
treatment [1,6].
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The group around Barnett Rosenberg discovered the robust anti-proliferative effects of cisPt in
the late 1960s. Formation of a complex between Pt(II) and nitrogen atoms of the nucleotide bases
(platinum-DNA adducts) causes kinks and partial unwinding of the DNA helix [7]. This conformational
change of the DNA halts the cell cycle and initiates programmed cell death [5,8]. Passive diffusion was
assumed to be the only mechanism for cisPt entering the cell [9,10]. In recent years, however, alternative
pathways such as the Copper transporter 1 (CTR1) were identified as an important transmembrane
protein involved in cisPt uptake [11]. Furthermore, copper-extruding P-type ATPases were found to
alter the export of cisPt too [12]. Recently, Planells-Cases et al. [13] described that the loss of LRRC8A
and LRRC8D subunits of the volume-regulated anion channel (VRAC) affects cisPt uptake.

Inherent or acquired platinum resistance is a major limitation to improve long-term outcomes
in cancer therapy. Recent discoveries were describing multiple novel resistance mechanisms [14–17].
These mechanisms with an effect on the development of cisPt resistance with clinical implications
include decreased drug import, increased drug export, increased drug inactivation by detoxification
enzymes, increased DNA damage repair, and inactivated cell death signaling, just to name the major
possible mechanisms. To overcome cisPt resistance in cancer patients, numerous approaches have been
undertaken [17]. Unfortunately, none of these approaches has been clinically implemented so far [1].
The recently proposed role of VRACs as entry for cisPt and carboplatin may appear as a promising
new target to circumvent platinum-drug resistance in cancer patients [18,19].

The definition of sensitivity to cisPt used in the present report is based on the first performed
identification of drug concentrations in vitro that correspond to clinical sensitivity of lung tumors.
Ex vivo determined IC50 values for cisPt in endoscopic lung tumor specimens were correlated with
effects of platinum-based combination chemotherapy on the respective primary tumors in vivo.
Pretherapeutic ex vivo IC50 values for cisPt below 5 µM correlated with partial remission. At higher
pretherapeutic IC50 values, the influence of the co-medication increased. Pemetrexed dominated
in NSCLC, etoposide in SCLC [20]. Thus, lung tumors with IC50 values for cisPt below 5 µM are
considered as sensitive to this drug.

The present report exclusively concerns the in vitro generated resistance to cisPt. Thereby, the
platinum-sensitive lung adenocarcinoma wild-type (wt) cells from a suprarenal metastasis were exposed
to cisPt. Most specimens of NSCLC are adenocarcinomas, but the presented findings are unrelated
to therapeutically naïve tumors and restricted to cisPt resistance resulting from platinum-based
chemotherapy. Sublines with decreasing cisPt responsiveness arose by stepwise increasing drug
concentration. These sublines will facilitate analysis of the development as well as understanding
the nature of mechanism(s) responsible for the acquisition of platinum resistance. Next generation
sequencing analysis could reveal the specific and molecular details of gene expression patterns
responsible for cisplatin resistance formation. In early stages, de-induction in the absence of drug
revealed only temporary effects [21]. Clinically relevant degrees of resistance obtained at inducer
concentrations above 4µM persisted for almost one year and in its absence. This allows the identification
of both therapeutic agents, whether or not they are cross-resistant to cisPt, and mechanisms of resistance
to platinum derivatives that act in NSCLC.

2. Results

2.1. Immunocytochemical Verification of Lung Adenocarcinoma Properties of A24 wt Cells

In the present study, the lung adenocarcinoma origin of A24 wt cells was verified by
immunofluorescence staining. Thyroid transcription factor 1 (TTF-1) was used as a specific marker for
adenocarcinomas, while tumor protein p63 (p63) is a specific marker for squamous cell carcinomas [22].
A24 wt cells were fixed and stained with TTF-1 or p63. These staining demonstrated that A24 wt cells
were positive for TTF-1 but negative for p63 (Figure 1).
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sequentially derived from the wt A24 cell strain and exposed to their defining cisPt concentration for 

several months, followed by a de-induction phase without cisPt exposure as described in materials 

and methods (Figure 2). 

Figure 1. Immunostaining patterns of thyroid transcription factor 1 (TTF-1) and protein p63 in
A24 wt cells.

2.2. Development, Levels, and Stability of Graded cisPt Resistance in A24cisPt and (D-)A24cisPt Sublines

A24cisPt sublines with reduced cisPt sensitivity (A24cisPt2.0, A24cisPt4.0, and A24cisPt8.0) were
sequentially derived from the wt A24 cell strain and exposed to their defining cisPt concentration for
several months, followed by a de-induction phase without cisPt exposure as described in materials
and methods (Figure 2).Pharmaceuticals 2020, 13, x FOR PEER REVIEW 4 of 18 
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Dose-response curves of cisPt for sublines the A24 wt cell strain, for its sublines A24cisPt2.0,
A24cisPt4.0, A24cisPt8.0, and for their de-induced (D-) counterparts were derived from at least three
individual experiments and are shown in Figure 3.
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Figure 3. Dose response curves of induced (A) and de-induced (B) A24 sublines. Cells were seeded
at densities of 2–8 × 104 mL−1 and subsequently grown in cisplatin containing medium (0–512 µM).
Cell densities were measured after three days. A24 (-H-), A24/(D-)A24cisPt2.0 (-N-), A24/(D-)A24cisPt4.0
(-�-), A24/(D-)A24cisPt8.0 (-•-). Data are presented as mean ± standard deviation (SD). n > 10.

Table 1 shows a comparison between IC50 values for cisPt, population doubling time of the A24 wt
adenocarcinoma cell strain subline (column 1), and IC50 values for cisPt of the A24cisPt, (D-)A24cisPt
sublines, and the population times observed in the latter.

There were 13-fold, 20-fold, and 40-fold increases in the IC50 values of the A24cisPt2.0, A24cisPt4.0,
and A24cisPt8.0 sublines, compared to the A24 wt subline. But de-induced (D-)A24cisPt2.0,
(D-)A24cisPt4.0, and (D-)A24cisPt8.0 sublines still showed two-fold, nine-fold, and 30-fold increases
in IC50 values, compared to the A24 wt subline. After almost one year in the absence of cisPt, the
calculated IC50 value was still 12.74 ± 0.78 µM for the (D-)A24cisPt8.0 subline.
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Table 1. Cell pharmacological parameters of the metastatic wt A24 lung adenocarcinoma cell strain and of its sublines with induced and with de-induced resistance
to cisPt.

Starting Subline A24 wt A24 wt A24cisPt0.5 A24cisPt1.0 A24cisPt2.0 A24cisPt4.0

cisPt concentration exposed to [µM] n. a. 0.5 1.0 2.0 4.0 8.0

Branching-off after (months) n. a. 2 2 3 4 12

Resulting subline n. a. A24cisPt0.5 A24cisPt1.0 A24cisPt2.0 A24cisPt4.0 A24cisPt8.0

IC50 cisPt at branching-off time 0.46 ± 0.05 2.13 ± 0.62 2.97 ± 0.81 6.03 ± 1.39 9.09 ± 0.56 18.49 ± 1.96

De-induction period (months) n. a. 3 3 7 7 >7

De-induced subline n. a. (D-)A24cisPt0.5 (D-)A24cisPt1.0 (D-)A24cisPt2.0 (D-)A24cisPt4.0 (D-)A24cisPt8.0

IC50 cisPt [µM] n. a. 0.89 ± 0.22 2.53 ± 0.84 0.99 ± 0.07 4.02 ± 0.23 12.74 ± 0.78

Population doubling time (h) 20.5 n. d. n. d. 25 31 42

n. a.: not applicable; n. d.: not done; data are presented as mean ± SD. n equal 6 for doubling time and >10 for IC50.
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2.3. Cross Resistance of A24cisPt and (D-)A24cisPt Sublines to Oxaliplatin and Pemetrexed

Figure 4 shows cross-resistance to oxaliplatin of the A24cisPt8.0 and (D-)A24cisPt8.0 sublines.
Corresponding IC50 values for oxaliplatin were 0.12 ± 0.005 µM for wt A24, 0.78 ± 0.11 µM for
A24cisPt8.0 and 0.78 ± 0.05 µM for (D-)A24cisPt8.0. The IC50 values were significantly different form
wt A24, p < 0.0001 (A24cisPt8.0), and p < 0.0001 ((D-)A24cisPt8.0).
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Figure 4. Cross resistance of A24cisPt8.0 and (D-)A24cisPt8.0 cells toward oxaliplatin. Cells were
seeded at densities of 2–8 × 104 mL−1 and subsequently grown in medium containing oxaliplatin
(0–12.8 µM). Cell densities were measured after three days. A24 (-•-), A24cisPt8.0 (-•-), (D-)A24cisPt8.0
(-#-). Data are presented as mean ± SD. n > 10.

Figure 5 shows significant cross-resistance of both the A24cisPt8.0 and the (D-)A24cisPt8.0 sublines
to pemetrexed but at a very low level. IC50 values of pemetrexed were 0.017 ± 0.001 µM for wt A24,
0.033 ± 0.002 µM for A24cisPt8.0 and 0.033 ± 0.002 µM for (D-)A24cisPt8.0. The IC50 values were
significantly different from wt A24, p < 0.0001 for A24cisPt8.0 and (D-)A24cisPt8.0.
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Figure 5. Cross resistance of A24cisPt8.0 and (D-)A24cisPt8.0 cells towards pemetrexed. Cells were
seeded at densities of 2–8 × 104 mL−1 and subsequently grown in medium containing pemetrexed
(0–0.32 µM). Cell densities were measured after three days. (-•-), A24cisPt8.0 (-•-), (D-)A24cisPt8.0
(-#-). Data are presented as mean ± SD. n > 10.

2.4. Expression of VRAC Subunits in A24 wt, A24cisPt, and (D-)A24cisPt Cells

In an initial attempt to shed light on the mechanism of resistance formation, we focused on the LRRC8
proteins of VRACs. LRRC8 transporter proteins of VRACs were claimed by Planells-Cases et al. [13]
to have a significant clinical impact in cellular uptake of platinum, to influence the efficacy of
platinum-based drugs, and to require adjustments of the treatment strategy.
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Western blot analysis of VRAC subunits LRRC8A and LRRC8D expression levels in A24 wt
cells are shown in Figure 6. Expression levels of both subunits were affected differently in A24cisPt
sublines according to cisPt concentrations. The LRRC8D expression strongly decreased with increasing
cisPt levels. In the A24cisPt2.0 subline, LRRC8D was barely detectable and was abolished in the
A24cisPt4.0 and A24cisPt8.0 sublines. Interestingly, LRRC8D expression levels returned to wt level in
all de-induced (D-)A24cisPt sublines. In comparison, expression levels of the LRRC8A subunit was
solely changed in A24cisPt8.0 and the de-induced (D-)A24cisPt8.0. A partial decrease of LRRC8A
suppression was observed and remains unchanged with de-inducing conditions.
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Figure 6. Western Blot illustrating LRRC8A and LRRC8D subunits expression in induced (A) and
de-induced (B) A24 sublines. mRNA levels of LRRC8A (C) and LRRC8D (D) were quantified by
RT-qPCR. Western blots are representative of 3 independent repeated experiments. Data are presented
as mean ± SD. n = 3.

Normalized gene expression of LRRC8A and LRRC8D in resistant cisPt were compared to the
cisPt sensitive A24 wt subline by RT-qPCR. The mRNA levels of LRRC8A in induced or in de-induced
sublines were almost identical (96% or 92%, respectively) compared to the A24 wt (Figure 6C). However,
the average mRNA level of LRRC8D in induced or de-induced sublines dropped significantly to 64%
or 68%, respectively (Dunnett’s test, p Value = 0.0016 or 0.0028, respectively) (Figure 6D).

2.5. CisPt Response of siLRRC8A or siLRRC8D Transfected A24 wt Cells

IC50 values for cisPt were determined to test whether siRNA-mediated down regulation of
LRRC8A or LRRC8D affects the phenotypical cisPt response in A24 wt cells. Calculated IC50 values
were 0.47 ± 0.03 µM and 0.61 ± 0.01 µM for LRRC8A and LRRC8D knockdown cells, respectively.
Thus, being almost identical to those observed in siRNA-untreated cells (Figure 7A). Suppression of
LRRC8A or LRRC8D subunits of VRAC resulting of siRNA-mediated knockdown were confirmed by
RT-qPCR and Western blotting (Figure 7B–D).
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Figure 7. W Suppression of LRRC8A or LRRC8D subunits in A24 wt cells by siRNA. A24 wt cells
were cultivated for two days in absence or presence of siRNA, respectively, and subsequently seeded
at densities of 2 × 104 mL−1 and grown in cisPt containing medium (0–3.6 µM). Cell densities were
measured after three days. wt (-#-), LRRC8A-siRNA (-#-), LRRC8D-siRNA (-#-), scrambled siRNA
(-#-) (A). Knock down efficiency of the LRRC8 protein was checked by SDS-PAGE and western blotting
(B). mRNA levels of LRRC8A (C) and LRRC8D (D) was quantified by RT-qPCR. Western blots are
representative of three independent repeated experiments. Data are presented as mean ± SD. n equal 3
for mRNA quantification and > 10 for IC50.

2.6. CisPt Response in Transfected (D-)A24cisPt8.0 Cells Overexpressing LRRC8A or LRRC8D

As reported previously, LRRC8A is required to transport LRRC8D to the plasma membrane [23].
Since LRRC8A is significantly reduced in (D-)A24cisPt8.0 cells (Figure 6B), overexpression experiments
were performed using both wt LRRC8A and D-containing plasmids. The latter was used to exclude
the possibility that the LRRC8D was mutated in the newly developed (D-)A24cisPt8.0 cells.

Cells were transfected as described in material and methods to verify whether cisPt resistance
is reversed in (D-)A24cisPt8.0 cells by overexpression of LRRC8A and/or LRRC8D. Successful
overexpression of LRRC8A and/or LRRC8D subunits of VRAC was tested and confirmed by RT-qPCR
and Western blotting. As depicted in Figure 8A LRRC8A appeared in transfected cells and was highly
overexpressed compared to A24 wt cells as demonstrated with RT-qPCR (Figure 8B). LRRC8D is present
in equivalent amounts in A24 wt and (D-)A24cisPt8.0 cells as judged by Western blot (Figure 6B).
LRRC8D was overexpressed successfully, verified by RT-qPCR. Determination of IC50 values showed
no difference in LRRC8A and/or LRRC8D overexpressing cells compared to the (D-)A24cisPt8.0 wt
cells (Figure 8C). Corresponding IC50 values were 13.1 ± 1.0 µM in (D-)A24cisPt8.0 wt cells and
12.6 ± 1.7 µM and 13.3 ± 2.9 µM in LRRC8A or LRRC8D overexpressing cells, respectively. An IC50

value of 14.5 ± 2.7 µM was measured when LRRC8A and LRRC8D were co-expressed.
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Figure 8. Overexpression of LRRC8A and LRRC8D in (D-)A24cisPt8.0 cells. (D-)A24cisPt8.0 cells were
transfected with LRRC8A and / or LRRC8D cDNAs using Lipofectamine™ 2000. As a control, the cells
were incubated with Lipofectamine only. Expression was tested by either Western Blot analysis (A) or
RT-qPCR (B). Subsequent to expression, the IC50 values for cisPt (C) were determined as described in
materials and methods. Western blots are representative of three independent repeated experiments.
Data are presented as mean ± SD. n equal 3 for mRNA quantification and >10 for IC50.
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3. Discussion

It is a fundamental requirement to fully understand the underlying mechanism of cisPt resistance
in NSCLC. Only this understanding will allow us to successfully deploy cisPt as the treatment of choice
for patients in first-line combination regiments of NSCLC in the future [1].

A24 wt cells were established from a hematogenous suprarenal metastasis of a lung adenocarcinoma.
It is well known that tumors are heterogeneous and, in consequence, cell lines derived thereof are
heterogeneous, too [24]. A24 resistant sublines were obtained by cultivating in presence of cisPt over
a prolonged time allowing divergent evolution for the acquisition of a cisPt resistance. Resistance
could have been acquired by either molecular changes within the entire cell population over time or
alternatively by selection over time of preexisting resistant cells. The latter would certainly lead to a
reduction in heterogeneity.

The present study is chiefly concerned with establishing the framework required to analyze, in
NSCLC, the development of resistance to cisPt during platinum-based combination chemotherapy.
Hence, sensitivity as well as resistance to cisPt were considered here as manifestations of the drug’s
systemic toxicity. At the organism level, toxicity is tolerable in drug-sensitive settings and becomes
intolerable in drug-resistant ones. The upper limit of cisPt tolerance in lung cancer patients was shown
to correspond to a plasma level of 6.67 µM cisPt [25]. Different cisPt resistant cell lines have been
already established and described [26–28]. However, to our knowledge, cell lines resistant to cisPt,
which have been growing in absence of drug over a period of more than seven months, have not been
previously published [24]. Strictly observing flavin-protecting procedures to prevent photochemical
artifacts throughout the study should have been decisive for the survival of tumor cells at high cisPt
concentrations [29,30]. The highly resistant A24cisPt8.0 subline is 40-fold more resistant to cisPt when
compared to its parent line. Interestingly, the de-induced (D-)A24cisPt8.0 subline shows a 30% decrease
of resistance as compared to the induced A24cisPt8.0 subline. This finding suggests that acquired cisPt
resistance in A24 sublines is only partial lost in drug free medium. Similar findings were described in
Adriamycin resistant cell lines, where 40 to 50% loss of resistance have been observed [31,32]. However,
this effect is less pronounced in de-induced sublines of lower concentrations such as (D-)A24cisPt2.0
and (D-)A24cisPt4.0. We suggest that there is a threshold of cisPt concentration in induced A24 sublines
which results in an acquired and sustained resistance in de-induced sublines.

In a systematic review of the literature performed by Stordal et al., a cross-resistance between
cisPt and oxaliplatin was suggested. They described cross-resistance in low-level platinum resistant
cell lines and in patients with cisPt resistant cancers [33]. In our study, induction of cisPt resistance
in A24 cells displayed a minimal cross-resistance to oxaliplatin. A four-fold oxaliplatin resistance
was determined in the A24cisPt8.0 subline and the (D-)A24cisPt8.0 subline when compared to their
parent line. High levels of cisPt resistance in cisPt resistant A24 sublines were associated with marginal
level of resistance to oxaliplatin. Similar findings were described by others [34–36]. Zhang et al.
have demonstrated that pemetrexed-resistant NSCLC are 2.1 to 4.2-fold more resistant to cisPt when
compared to its parent line [37]. In our study, a maximum of two-fold pemetrexed resistance was
determined in the A24cisPt8.0 subline and the (D-)A24cisPt8.0 subline when compared to their parent
cell line. These results support the conclusion that the acquired resistance mechanism in A24cisPt
sublines also contributes to an oxaliplatin and pemetrexed resistance albeit to a lesser extent. However,
it is highly speculative to assume that these sublines are multi-drug-resistant.

In a clinical study on advanced, chemotherapeutically naïve lung tumors, pre-therapeutic IC50

values for cisPt were determined in small bioptic tumor specimens, and biometrically compared to
the radiologically determined effects of platinum-based combination chemotherapy on the respective
primary tumors. Procedures used were as in the present study. All tumors with IC50 values of
≤5 µM for cisPt responded to platin-based combination chemotherapy with partial remission. Higher
IC50 values of up to 7 µM corresponded to tumors responding with partial remission or with no
change. The extremely variable therapeutic effects on tumors with pre-therapeutic IC50 values for cisPt
above 7 µM resulted either from action of additional drugs used for the platinum-based combination
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chemotherapy (e.g., pemetrexed) or were due to interaction with the obligatory platinum drugs.
Pre-therapeutic IC50 values above 20 µM for cisPt were frequently observed [20]. Accordingly, in the
present study, lung adenocarcinoma cells with IC50 values for cisPt below 5 µM, between 5 µM and
7 µM, and above 7 µM were respectively considered as being sensitive, intermediately responsive,
or definitively resistant to cisPt.

Numerous cellular mechanisms related to cisPt resistance are known [17,38]. Prevention of drug
uptake by cancer cells is one strategy to become drug resistant. The copper transporter 1 (CTR1) has
been successfully identified as transporter for the uptake of polar cisPt into the cytoplasm by several
studies [39–41]. Conversely, a CTR1 dependent transport was disclaimed by Ivy and Kaplan. Their
observations support a non-protein-mediated pathway [42]. Furthermore, Planells-Cases et al. have
demonstrated that the loss of LRRC8A and LRRC8D subunits of the heteromeric volume-regulated
anion channels (VRACs) in haploid KBM7 cells is related to resistance to cisPt. Similar results were
obtained by Sorensen and collaborators [43–45]. It was suggested that loss of these subunits contribute
to cisPt resistance due to decreased cellular uptake of the cytostatic drug. This is in agreement with
our observation that in cisPt induced A24 sublines the LRRC8D subunit is downregulated on the
protein level (Figure 6A). Downregulation of LRRC8A is less pronounced than LRRC8D (Figure 6B).
Planells-Cases and coworkers [13] also observed, a correlation between LRRC8D downregulation
and poor survival of Pt drug-treated patients, but not so with LRRC8A. Indeed, normalized gene
expression of LRRC8D in induced and de-induced cisPt A24 sublines was downregulated by 33.6 ± 6%.
Therefore, the expression profile of LRRC8D mRNA may predict the sensitivity of cancer cells to cisPt
as described by Planell-Cases and coworkers [13]. In contrast, the gene expression of LRRC8A in
induced and de-induced cisPt A24 sublines remained unaffected when compared to the parental A24
cell line. Taken together these findings so far may suggest that LRRC8 could be involved in cisPt
resistance. However, the fact that in de-induced cells, that remained cisPt resistant protein expression
of LRRC8D fully recovered (Figure 6B) suggested that resistance formation does not go along with the
loss of this protein in the A24 sublines.

Therefore, knockdown experiments using siRNA against either LRRC8A or LRRC8D were carried
out in wt A24 cells. Success of the knockdown was confirmed by RNA analysis by RT-qPCR and Western
blot (Figure 7A–C). The use of scrambled siRNA showed no effect. Functional testing performed on
these knockdown cells resulted in identical sensitivity of these cells towards cisPt compared to wt
A24 cells. Additionally, no change in response to cisPt was observed when LRRC8A and/or LRRC8D,
were overexpressed in (D-)A24Pt8.0 cells (Figure 8). Co-transfection was performed because LRRC8D
remains intracellular if not co-transfected with LRRC8A [23,46]. Overexpression experiments of
LRRC8D exclude that the developed resistance is due to a mutation affecting these proteins. These
results clearly demonstrate that the putatively mentioned involvement of LRRC8 in resistance referred
to above cannot be sustained in A24 sublines. In summary, it can be stated that loss of LRRC8A or
LRRC8D does not govern the cisPt resistance in A24 cells. Hence, these findings are in contradiction to
previously published studies for other cells [13,43–45]. Currently any explanation of this discrepancy
would be highly speculative.

In conclusion, the here established and described A24cisPt cells might serve as a powerful model to
study the molecular mechanism of the development of resistance to cisPt and potential re-sensitization
mechanisms. In addition, future molecular characterization of these cell lines might also lead to
discovery of biomarkers for cisPt resistance and/or resistance development in NSCLC.

Further, availability of stable resistant de-induced sublines allows for in vitro investigations of the
cellular cross-resistance to cisPt of other cytostatic drugs. However, the limitation of the established
cisPt resistant sublines is that they cannot reflect the microenvironment of a tumor.

In conclusion, we have established cisPt resistant NSCLC sublines. Molecular changes at the
respective intermediate resistance levels of 0–8 µM can be identified by sequencing and analyses of the
effects of knockdown and overexpression in resistant cells with increasing cisPt levels. The obtained
resistance was stable over a period of almost one year and continues. The here established and described
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A24cisPt cells might serve as a powerful model to study the molecular mechanism of the development
of resistance to this drug and potential re-sensitization mechanisms. Further, the availability of stable
resistant de-induced sublines allows in vitro investigations of the cellular cross-resistance of other
cytostatic drugs to cisPt.

4. Materials and Methods

4.1. Platinum Derivatives and Pemetrexed

Pharmaceutical preparations of cisPt (CISplatin Sandoz®, i.v. Infusion concentrate) and oxaliplatin
(OXALIplatin Sandoz®, i.v. Infusion concentrate) were purchased from Galenica AG (Bern, Switzerland).
Pharmaceutical preparation of pemetrexed (Alimata 500 mg) was obtained from Eli Lilly Nederland
B.V. (Houten, Nederland). The aqueous solutions of cisPt were diluted with fresh medium to the
desired concentrations directly before use. pemetrexed was dissolved in sodium chloride solution for
injection to 25 mg/mL and subsequently diluted with fresh medium to the appropriate concentrations
just before use.

4.2. Metastatic Lung Adenocarcinoma Cells and Cell Cultivation

The cell line A240286S (A24) used was provided by Dr. C. Granzow and has been described
previously [30,47]. A24 wt cell strain was mistakenly assumed to origin from the lung metastasis of a
hypernephroma [47]. Subsequent reevaluation of the clinical records, however, attributed the A24
cells to originate form a presumably hematogenous suprarenal metastasis of a lung adenocarcinoma,
though, without molecular proof. [30].

The A24 subline and any further sublines used in the course of the present study were
cultured in RPMI 1640 without riboflavin, phenol red and antibiotics, buffered with 4.5 mM HEPES
(BioConcept, Allschwil, Switzerland), supplemented with 10% (v/v) fetal bovine serum (FBS) (Thermo
Scientific, Waltham, MA, USA) as the only source of flavins and 13.5 mM NaHCO3. At subcultivation,
cell monolayers were rinsed with PBS and exposed for 3 min to StemPro Accutase Cell Dissociation
Reagent (Thermo Scientific, Waltham, MA, USA) at 36.5 ◦C. Detached cells were re-suspended in
culture medium. Cell densities were determined using Moxi flow cytometer according to manufacturer
instructions (Orflo Technologies, Ketchum, ID, USA). Experiments and subcultivations were performed
using light with wavelengths above 520 nm to prevent photochemical artifacts [29]. Culture vessels
and test plates were incubated in the dark at 36.5 ◦C below 3.5% CO2 (vol/vol) and humidified air.
Absence of mycoplasma was checked regularly.

4.3. Immunofluorescence

A24 wt cells were washed with PBS and fixed with 4% paraformaldehyde. Fixed cells were
incubated with monoclonal anti-TTF-1 antibody or anti- p63 antibody (1:500 dilution, Abcam,
Cambridge, UK) for 1 h at room temperature. After incubation, the cells were washed and stained using
Alexa™ 488-conjugated goat anti-rabbit secondary antibody (1:500 dilution, Molecular Probes, Eugene,
OR, USA) for 1 h at room temperature in the dark. Then, the cells were washed, followed by incubation
with DAPI for 1 min and mounted with Dako fluorescent mounting medium (Dako, Carpinteria, CA,
USA). Fluorescence images were obtained by using confocal laser scanning microscopy with a 63×
magnification objective (Zeiss LSM 880 confocal microscope with Airyscan).

4.4. Induction, Maintenance, and De-Induction of cisPt Resistance

Covering the range of 0.5 µM, 1.0 µM, 2.0 µM, 4.0 µM, and 8.0 µM, five A24cisPt sublines with
reduced cisPt sensitivity (A24cisPt0.5, A24cisPt1.0, A24cisPt2.0, A24cisPt4.0, and A24cisPt8.0) were
sequentially derived from the wt A24 cell strain. The corresponding cisPt concentration was added to
the culture medium during the stepwise duplication at branching-off (Figure 2). After branching-off,
A24cisPt sublines were propagated with the cisPt concentration indicated until the temporarily reduced
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growth rates levelled, thereby indicating successful subline establishment and enabling the next
branching-off. Newly established sublines were then exposed to their defining cisPt concentration
for several months, followed by a de-induction phase without cisPt exposure (Figure 2). In the
present study, A24cisPt2.0, A24cisPt4.0, and A24cisPt8.0 sublines and the corresponding de-induced
(D-)A24cisPt2.0, (D-)A24cisPt4.0, and (D-)A24cisPt8.0 sublines were included, along with the wt
A24 subline.

4.5. IC50 Determination

Cytostatic drug response was quantified as described by Heuser et al. [30] with minor modifications.
Wt A24 single cell suspensions were freshly prepared using Accutase as described above, and diluted
in culture medium to a cell density of 2 × 104 cells/mL. 150 µl of this suspension was combined with
150 µl of twice the cisPt, oxaliplatin or pemetrexed concentration in a 96-well microtiter plate (TPP,
Trasadingen, Switzerland). For the sublines A24cisPt2.0, A24cisPt4.0, A24cisPt8.0, and the de-induced
(D-) counterparts, cell densities of 4 × 104, 8 × 104, and 8 × 104 cells/mL were used. Test plates were
incubated with standard conditions for 72 h. Cell densities were determined in a Casy I cell analyzer
using Casystat software (OLS OMNI Life Science, Bremen, Germany). Drug concentrations leading to
50% growth inhibition compared to controls were calculated using GraphPad Software (La Jolla, CA,
USA). Each experiment was done in triplicates.

4.6. Western Blotting

Protein expression was analyzed by SDS-Page and Western blotting. Briefly, after washing the
cells in ice-cold PBS, the cell pellet was re-suspended in Triton based RIPA lysis buffer supplemented
with the protease inhibitor cocktail, cOmplete Mini, EDTA-free (Merck KGaA, Darmstadt, Germany).
Lysates were centrifuged at 8′609 rcf and the supernatant was mixed with NuPAGE™ LDS Sample
Buffer supplemented with NuPAGE™ Sample Reducing Agent (Thermo Scientific, Waltham, MA, USA).
SDS-PAGE was performed using NuPAGE™ 4–12% Bis-Tris gels and NuPAGE™MOPS SDS running
buffer (Thermo Scientific, Weltham, MA, USA). Proteins were transferred using activated porous
0.45 µm polyvinylidene fluoride (PVDF) membranes (Thermo Scientific, Weltham, MA, USA). After
blocking the membranes in TBS-T (0,15 M NaCl, 50 mM Tris-HCl, 0.1% Tween 20, pH 7.6) containing
5% milk powder and 1% bovine serum albumin (Merck KGaA, Darmstadt, Germany), a mouse
MAb against LRRC8A (8H9) and a mouse MAb against LRRC8D (A-12) (Santa Cruz Biotechnology,
Dallas, TX, USA) were used to detect subunit composition of VRAC. Rabbit PAb to β-Actin (Abcam,
Cambridge, UK) was used as loading control. After washing the membranes with TBS-T, they were
incubated with secondary horse radish-peroxidase conjugated anti-mouse or anti-rabbit antibodies
(Agilent technologies Dako, Santa Clara, CA, USA). Membranes were developed using SuperSignal®

West Dura Extended Duration Substrate (Thermo Scientific, Waltham, MA, USA) and visualized by
exposing the membranes to Hyperfilm ECL (GE Healthcare, Buckinghamshire, UK).

4.7. siRNA Cell Assay in A24 wt Cells

siLRRC8A (5′-AAAGUCAUCGACCGUCAGUTT-3′) or siLRRC8D (5′-CCAUGCAACUUAC
CAAAGATT-3′) were diluted in RPMI 1640 supplemented with Lipofectamin® RNAiMAX (Thermo
Scientific, Weltham, MA, USA) to a final concentration of 27 nM in a six-well plate. As negative
control, cells were transfected with scrambled siRNA (5′-GCCACACGAUAACCUAACUTT-3′). Small
interfering ribonucleic acids were purchased from Microsynth, Balgach, Switzerland. Cells were
re-suspended in RPMI 1640 containing 10% FBS. This cell suspension was added to the well and
incubated with standard conditions for 48 h. Transfected cells were used for IC50 determinations for
cisPt as described above.
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4.8. Overexpression Cell Assay in (D-)A24cisPt8.0 Cells

One day before transfection, 8 × 105 cells were plated in a 6- well plate with RPMI 1640 containing
10% FBS. Cells were transfected according to manufacturer’s standard protocols using Lipofectamine™
2000 Transfection Reagent (Thermo Scientific, Waltham, MA, USA) with 4.0 µg Human LRRC8A
or LRRC8D cDNAs cloned into pCMV6 (OriGene Technologies, Rockville, MD, USA). 2.0 µg of
Human LRRC8A and LRRC8D cDNA were used to co-express LRRC8A and LRRC8D. As a control,
(D-)A24cisPt8.0 cells were incubated with Lipofectamine only. IC50 determinations of transfected cells
were carried out as described above.

4.9. Reverse Transcription Real-Time Quantitative Polymerase Chain Reaction (RT-qPCR)

Total poly-A-mRNA was isolated from cells with a Dynabeads mRNA direct Kit- (Thermo
Scientific, Waltham, MA, USA). The mRNA of LRRC8A, LRRC8D and β-actin was quantified with
a one-step RT-qPCR using Luna® Universal Probe One-Step RT-qPCR Kit (Ipswich, MA, USA) on
a BioRad CFX real time system (BioRad, Hercules, CA, USA). Primers were designed to amplify a
128 nt-long LRRC8A fragment, a 122 nt-long LRRC8D cDNA fragment and a 127 β-Actin fragment:

LRRC8A forward (5′-GGTTTGCCAAGTACTTCCCCTAC-3′),
LRRC8A reverse (5′-CTTCAGCAGGATAGACACAAAGTG-3′),
LRRC8D forward (5′-CATGCAACTTACCAAAGATCAGGTG-3′),
LRRC8D reverse (5′-CTGCTTCCATCTTTGGGATGTTG-3′),
β-Actin forward (5′-GATGGTGGGCATGGGTC-3′) and
β-Actin reverse (5′-GATTTTCTCCATGTCGTCCCAG -3′).

LRRC8A and LRRC8D mRNA expression were normalized to β-actin mRNA expression for each
sample using the BioRad CFX Maestro software.

4.10. Statistics

Comparison of IC50 values (wt vs sublines) and mRNA expression values and statistical analysis
were performed using Dunnett’s test and GraphPad Prism 8.0 Software [48].

4.11. Ethical Statements

All experiments were performed with cell cultures. The cell line A240286S (A24) used was
provided by Dr. C. Granzow and has been described previously [30,47]. Since no patients were
involved in these studies, no ethics committee approval is required.
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Abbreviations

cisPt Cisplatin
wt Wild-type
A24 A240286S
NSCLC Non-small cell lung cancer
SCLC Small cell lung cancer
TTF-1 Thyroid transcription factor 1
LRRC8A Leucine-rich repeat-containing protein 8A
LRRC8D Leucine-rich repeat-containing protein 8D
p63 Tumor protein p63
VEGF Vascular endothelial growth factor
VRACs Volume-regulated anion channels
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