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Abstract

Introduction

Susceptibility weighted imaging (SWI) is a very sensitive technique that often depicts promi-

nent focal veins (PFV) in patients with acute migraine with aura (MwA). Interpretation of

visual venous asymmetry (VVA) between brain hemispheres on SWI may help support the

clinical diagnosis of MwA. Our goal was to develop an automated algorithm for segmenta-

tion and quantification of cerebral veins using SWI.

Materials and methods

Expert readers visually evaluated SWI of patients with acute MwA for VVA. Subsequently a

fully automated algorithm based on 3D normalization and 2D imaging processing using

SPM and MATLAB image processing software including top-hat transform was used to

quantify cerebral veins and to calculate volumetric differences between hemispheres.

Results

Fifty patients with MwA were examined with SWI. VVA was present in 20 of 50 patients

(40%). In 95% of patients with VVA, the fully automated calculation agreed with the side that

visually harboured more PFV. Our algorithm showed a sensitivity of 95%, specificity of 90%

and accuracy of 92% for detecting VVA. Patients with VVA had significantly larger vein vol-

ume on the hemisphere with more PFV compared to patients without (15.90 ± 5.38 ml vs

11.93 ± 5.31 ml; p = 0.013). The mean difference in venous volume between hemispheres
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in patients with VVA was larger compared to patients without VVA (16.34 ± 7.76% vs 4.31 ±
3.26% p < 1E-10). The average time between aura onset and SWI correlated negatively

with venous volume of the dominant brain hemisphere (r = -0.348; p = 0.038).

Conclusion

A fully automated algorithm can accurately identify and quantify cerebral venous distribution

on SWI. Absolute quantification may be useful for the future assessment of patients with

suspected diseases, which may be associated with a unilateral abnormal degree of venous

oxygenation.

Introduction

Susceptibility weighted imaging (SWI) is a widely used magnetic resonance imaging (MRI)

technique that utilizes the magnetic field inhomogeneity of deoxygenated haemoglobin and

subsequent reduction of T2� weighted signal to visualize the cerebral venous system [1]. It is a

very sensitive technique that has proven to be beneficial in the diagnosis of a variety of intra-

cranial pathologies including vascular malformations, intracranial haemorrhage, neoplasms

and multiple sclerosis [2, 3].

A feature that distinguishes SWI from other MRI sequences is high-resolution demarcation

of cerebral venous architecture, which can be visually enhanced by minimum intensity projec-

tion (MinIP). This technique enables neuroradiologists to gain an accurate overview of the

cortical and subcortical venous distribution of the brain and to make a visual judgement as to

whether the venous distribution is symmetrical or asymmetrical. Studies have shown that SWI

could reveal asymmetry of the cortical venous vasculature in specific regions of the brain fol-

lowing ischemic stroke, epilepsy and migraine [4–6]. Patients who undergo imaging during a

migraine-associated aura characteristically display unilateral brain hypoperfusion and subse-

quent prominent venous vasculature on SWI [7]. Frequently these findings are only very dis-

creet and may go unnoticed on initial image evaluation which is why a computer-assisted

approach may aid in making the correct diagnosis.

Our goal was to create a fully automated algorithm for the quantification of cerebral veins,

which could identify hemispherical venous asymmetry using patients with a clinically proven

episode of acute migraine with aura (MwA).

Methods

Study cohort

From a prospectively maintained clinical database, we retrospectively identified and analysed

all patients who were diagnosed with an acute episode of MwA in an emergency setting

between 01/2014 and 05/2018. Inclusion criteria were a) confirmed MwA according to the

International Classification of Headache Disorders [8], confirmed by a board-certified neurol-

ogist either at discharge or at follow-up visits, b) 1.5-Tesla brain MRI within 24-hours of symp-

tom onset with acquisition of SWI and reconstruction of MinIP and c) exclusion of stroke,

tumor, haemorrhage or sinus vein thrombosis.

Clinical and baseline characteristics of patients are summarized in Table 1. This study

received approval from the local ethics committee (Ethics Commission of the Canton of Bern,

Bern, Switzerland, Project ID: PB_2018–00128). The ethics committee waived the requirement

for informed consent as the data were fully anonymized before being accessed.
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Image acquisition

All imaging studies were performed using a 1.5-Tesla Siemens scanner (Magnetom Avanto or

Magnetom Aera; Siemens Medical Solution, Erlangen, Germany) with a 12-channel head coil.

The following SWI parameters were used: TR 49 ms, TE 40 ms, number of averages 1, FoV

read 230 mm, FoV phase 81.3%, voxel size 1.1 × 0.9 × 1.8 mm, FA 15˚. Slice thickness of

MinIP ranged between 12.8 and 16.0 mm (14.21 ± 0.99). SWI images were calculated by the

scanner software using magnitude and high pass filtered phase images. Additionally, diffusion-

(DWI) and perfusion-weighted imaging was performed to rule out acute stroke in an emer-

gency setting. DWI sequence parameters for 1.5 Tesla: TR 3000 ms, TE 89 ms, number of aver-

ages 4, FOV read 230 mm, FOV phase 100%, voxel size 1.2 mm × 1.2 mm × 5.0 mm.

Image analysis by readers

DWI images were read by one board-certified neuroradiologist (Frauke Kellner-Weldon, MD

16 years of experience). SWI images were assessed collectively by one board-certified neurora-

diologist (Frauke Kellner-Weldon, MD 16 years of experience) and two Neuroradiology fel-

lows (Philipe Breiding, MD and Lorenz Grunder, MD each with 2 years of experience). The

readers were blinded to patient clinical data and all imaging studies performed on a different

date. The images were reviewed on a picture archiving and communications system (PACS)

station (R11�4�1, 2009; Philips, Best, Netherlands; Sectra, Linkoping, Sweden). Only SWI and

MinIP sequences were previously arranged and stored on an established, non-modifiable

layout.

The readers reviewed SWI and MinIP images for each patient and distinguished whether

visual venous asymmetry (VVA) between brain hemispheres was absent or present (yes or no).

VVA was defined as present if a single brain hemisphere showed more prominent focal veins

(PFV) than the contralateral hemisphere. If VVA was present, the readers were asked to denote

the hemisphere which harboured most PFV as the pathological side. This side was defined as

Table 1. Baseline characteristics of 50 patients with acute migraine with aura who received a 1.5T MRI.

Acute migraine with aura: No. (%)

Variable No VVA (n = 30) VVA (n = 20) p Value

Age (years) a 36.90 ± 14.18 38.70 ± 15.61 0.676

Female 19 (63.33) 12 (60.0) 0.812

Positive family history of migraine 7 (23.33) 6 (30.0) 0.852

Left-sided VDH N/A 15 (75.0) -

DCVV (ml) a 1.18 ± 1.17 4.56 ± 2.16 < 1E-10 ���

nDCVV (%) a 4.31 ± 3.26 16.34 ± 7.76 < 1E-10 ���

CDH Volume (ml) a 11.93 ± 5.31 15.90 ± 5.38 0.013 �

CNDH Volume (ml) a 10.75 ± 4.60 11.34 ± 4.42 0.66

Time interval btw. aura onset and MRI (hours: min) a (n = 36)

No VVA (n = 22) VVA (n = 14) p Value

05:09 ± 02:25 03:58 ± 01:56 0.132

CDH: Calculated Dominant Hemisphere, CNDH: Calculated Non-dominant Hemisphere, DCVV: Difference in absolute Cerebral Vein Volume, nDCVV: Normalised

Difference in absolute Cerebral Vein Volume, VDH: Visually Dominant Hemisphere, VVA: Visual Venous Asymmetry, N/A: Not available.

� Significant for p < 0.05.

��� Significant for p < 1E-10.
a Values presented as mean ± SD

https://doi.org/10.1371/journal.pone.0233992.t001
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the visually dominant hemisphere (VDH) and the contralateral hemisphere was defined as the

visually non-dominant hemisphere (VNDH) respectively (Fig 1).

Only patients for whom there was a consensus amongst all three readers were included into

the study and these patients were subsequently divided into two groups: (1) Patients with VVA

and (2) patients without VVA.

A total of 50 patients who received a 1.5-Tesla MRI with SWI and MinIP images of suffi-

cient quality within 24-hours of aura onset were included into our study.

Automated quantification of cortical and subcortical veins

SWI and MinIP images were postprocessed using MATLAB (R2018) and SPM 12 (http://

www.fil.ion.ucl.ac.uk/spm/software/spm12) (Fig 2). Native SWI images were normalised into

Montreal Neurological Institute (MNI) space using a T1 template. The resulting transformation

matrix were applied to the MinIP images. The normalized SWI and MinIP images were masked

with a binary brain mask with exclusion of the thalami and the basal ganglia due to low SWI sig-

nal intensity. After normalisation and masking, the resulting SWI and MinIP images were sepa-

rately analysed slice wise (axial) using MATLAB image toolbox functions with a customized

script. Grey value contrast of SWI and MinIP images were enhanced and normalised using the

adapthisteq function by transforming the grey values using contrast-limited adaptive histogram

equalization [9]. Optimal threshold for binarization of each SWI and MinIP slice was found

using the Otsu’s threshold selection method implemented in the function graytresh [10]. The

resulting SWI and MinIP images were inverted (veins white) and binarized using the im2bw
function. Morphological top-hat transform, implemented as bwmorp function with tophat oper-

ation, were used for further vein extraction in SWI and MinIP images by calculating the differ-

ence between the input image and its morphological opening (erosion followed by dilation)

through a standard structuring element [11, 12]. The top-hat transform was important for

removal of the inverted background and of noise. After slice-wise pre-processing with top-hat

transforms, the resulting SWI (I1) and MinIP (I2) images were used to further enhance segmen-

tation of cortical and subcortical veins (V) for each hemisphere (H) by calculating their inter-

sect: V = I1\I2\H (Fig 3). Finally, absolute cerebral vein volume (ACVV) in ml was calculated

for each individual hemisphere over all axial slices. The hemisphere with a higher ACVV was

defined as the calculated dominant hemisphere (CDH) and the hemisphere with a lower ACVV

as the calculated non-dominant hemisphere (CNDH). The difference in absolute cerebral vein

volume between brain hemispheres (DCVV) was expressed in ml by subtracting the CNDH vol-

ume from the CDH volume: DCVV = CDH−CNDH. The normalized DCVV (nDCVV) was

Fig 1. Image analysis procedure by readers. SWI MinIP of two separate patients with acute migraine with aura. Left:

visual venous asymmetry (VVA) with radiological right-sided visually dominant hemisphere (VDH). Right: no VVA and

no VDH.

https://doi.org/10.1371/journal.pone.0233992.g001
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calculated by dividing the DCVV through the sum of the dominant and non-dominant hemi-

spheres: nDCVV ¼ DCVV
CDHþCNDH � 100%:

Statistical analysis

Statistical comparisons of demographic, clinical and imaging characteristics were performed

with SPSS 25 (IBM SPSS Statistics; Armonk, NY: IBM Corp) using independent sample t-tests

for normal distributed parametric and χ2 tests for nonparametric data. For bivariate correla-

tions, we used Pearson’s correlation coefficient. We calculated the sensitivity, specificity and

accuracy of our algorithm to detect VVA after finding an optimal DCVV cut-off using

Receiver Operating Characteristics (ROC) and Youden-Index (J). A ROC curve was generated

using SPSS. For all statistical analyses, the level of significance was set at p< 0.05 (two-tailed).

Results

A total of 50 patients with acute migraine with aura (31 females, 62%) were included into our

study (mean age 37.62 y [14–80 ± 14.64]). Family history of migraine was positive in 26%, neg-

ative in 28% and unknown in 46% of patients. The average time between aura onset and MRI

was 4h 41 min ± 2h 17 min (min: 1h 22min, max: 10h 13min). In addition to aura, headache

symptoms were recorded for a total of 41 patients upon presentation to the emergency room.

68% of these patients expressed unilateral headache, 12% bilateral headache and 20% no head-

ache (Table 2).

Fig 2. Processing pipeline of automated quantification of cortical and subcortical veins.

https://doi.org/10.1371/journal.pone.0233992.g002
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The readers noted VVA in 20 of 50 (40%) of patients and 75% of these patients showed a

VDH on the left side (Table 1). No patients showed any focal areas of diffusion restriction on

DWI as a possible sign of acute stroke and SWI did not reveal any patients with micro- or

macrohaemorrhage.

All SWI and MinIP images were successfully imported and processed by our algorithm.

Our algorithm showed a sensitivity of 95%, specificity of 90% and accuracy of 92% for

Fig 3. Example of extracted veins in normalised MinIP and SWI. Final vein extraction is shown in the red SWI

overlay with a slice thickness of 1 mm.

https://doi.org/10.1371/journal.pone.0233992.g003

Table 2. Crosstabs table of 41 patients for whom headache symptoms were recorded upon presentation to the emergency room. Values represent number of

patients.

Visually Dominant Hemisphere

Headache Side None Right Left Total (n = 41)

None 5 1 2 8

Right 4 4 0 8

Left 15 0 5 20

Both 3 0 2 5

https://doi.org/10.1371/journal.pone.0233992.t002
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detecting VVA using a DCVV cut-off value of 1.95 ml (Fig 4). In 19 of 20 patients with VVA

(95%), the CDH side was the same as the VDH side.

Patients with VVA had a significantly larger CDH volume than patients without VVA

(15.90 ± 5.38 ml vs 11.93 ± 5.31 ml; p = 0.013). The nDCVV was significantly larger in patients

with VVA compared to patients without VVA (16.34 ± 7.76% vs 4.31 ± 3.26%; p< 1E-10).
There were no significant differences in CNDH volume between patients with VVA and

patients without VVA (11.34 ± 4.42 ml vs 10.75 ± 4.60 ml; p = 0.66).
The average time between aura onset and MRI correlated negatively with the CDH volume

for n = 36 (r = -0.348; p = 0.038). Patient age did not correlate significantly with the CDH vol-

ume (r = 0.207; p = 0.15) and did not correlate with the nDCVV (r = 0.017; p = 0.91). Headache

side was significantly associated with the VDH for n = 41 (χ2 = 15.64; p = 0.016).

Discussion

Using a fully automated computer algorithm, we were able to quantify cerebral veins for indi-

vidual brain hemispheres using all SWI and MinIP sequences obtained from 50 patients who

presented to the emergency room with an acute migraine with aura attack and who received

1.5-Tesla MR-imaging within 24-hours of symptom onset.

Our findings show multiple advantages of an automated computer algorithm. The algo-

rithm was firstly able to quantify the absolute venous volume of individual brain hemispheres

using readily available SWI and MinIP sequences. Secondly, show that there is a quantifiable

difference in venous volume between brain hemispheres in patients with acute migraine with

aura. Thirdly, it was able to accurately identify the respective brain hemisphere which har-

boured more prominent focal veins in patients with visual venous asymmetry between brain

hemispheres.

In our cohort of patients with MwA we found that in 20 of 50 patients, SWI would show

visual asymmetry between hemispheres. Migraine with aura may clinically present with acute

deficits mimicking acute ischemic stroke. However, the signal changes, which we observed on

SWI, did not follow a territorial vascular distribution and DWI was normal. Both these find-

ings helped to exclude stroke.

Fig 4. A) ROC curve showing the ability of our automated algorithm to discriminate between VVA and no VVA. B) Scatter plot

graph depicting a negative correlation between time to scan and CDH volume.

https://doi.org/10.1371/journal.pone.0233992.g004
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Only few studies have thus far dealt with the quantification of cerebral veins using SWI.

One fully automated SWI quantification algorithm has been described in literature by Egger

et. al. who developed a voxel-based algorithm using SPM8 and Advanced Normalization Tools

(ANTs) to quantify the absolute cerebral vein volume in ten healthy individuals [16]. Dempfle

et. al. subsequently used this algorithm to quantify deep medullary veins in patients with cere-

bral venous sinus thrombosis [17]. Due to the fact that these studies excluded cortical veins in

the quantification process and did not focus on individual brain hemispheres, it remains diffi-

cult to compare our results to these studies. To the best of our knowledge, automated quantifi-

cation of cerebral veins in individual brain hemispheres with inclusion of cortical veins has

thus far not been described. Our vein segmentation algorithm was applied to SWI data, how-

ever, quantitative susceptilility mapping (QSM) may be useful by its quantitative measurement

for venous vessel segmentation [18]. Ward et al. could show that fusion of QSM and SWI for

automated segmentation resulted in a more robust segmentation of cortical and subcortical

veins [19]. In general, the use of several parameters seems to be advantageous for vein segmen-

tation. Monti et al. achieved good venous segmentation results using a multi-parametric

approach (structural, morphological and relaxiometric information) [20]. Overall, QSM shows

major advantages for venous segmentation, but is not readily implemented in clinical routine.

We found a negative correlation between time elapsed and the CDH volume. The most

likely explanation for this is the time-dependent decrease of deoxygenation of venous cerebral

blood throughout the course of MwA, with decreasing conspicuity of the venous vasculature

on SWI over time [13, 14].

Patient age correlated positively with the CDH volume but this correlation was not signifi-

cant. We do not know of any study that has investigated age depended differences of oxygen-

ation fraction (OEF) in venous blood in MwA. However, we think that in clinical practice, we

need to be aware of age depended differences of brain perfusion and OEF in healthy individu-

als, which might contribute to differences in OEF in MwA patients [15].

We found a significant association between headache side and the brain hemisphere that

visually harboured more PFV. Previous studies have shown that migraine with aura is often

associated with unilateral changes in cerebral perfusion which may provoke headache symp-

toms [7, 13]. We believe that the brain hemisphere most affected by these hemodynamic

changes on average show more PFV [21] and may therefore represent the clinically affected

side.

Our study is limited by the cohort size, which is mainly due to the strict inclusion and

exclusion criteria that we implemented. We insisted on using the same Tesla strength for this

feasibility study. The algorithm needs yet to be tested in more clinical circumstances, where

MRI machines of different field strength and vendors are likely to be used.

Another limitation is the presence of magnetic field inhomogeneity artefacts at the cortical

border or other conditions such as microbleeds and calcifications which appear hypointense

on SWI and which were most likely included into the quantification by our automated algo-

rithm as well. Nonetheless, prior to quantification we made sure that all images were of suffi-

cient quality and no patients showed any signs of micro- / macrohemorrhage on SWI. The

results show that the algorithm is potentially robust enough to be of use even under these

circumstances.

A limitation is that we could not compare our quantified volumes to a healthy volunteer

group and that automated volumetric data for cerebral veins currently does not exist in litera-

ture. The quantified absolute cerebral vein volumes in individual brain hemispheres showed a

large range from 3.00 to 24.85 ml, which may be attributable to the presence of above-men-

tioned artefacts or due to differences in cerebral vein anatomy between individual patients.

These differences may stem from blood oxygenation status [21, 22], caffeine intake [23],

PLOS ONE Cerebral vein quantification in patients with acute migraine with aura

PLOS ONE | https://doi.org/10.1371/journal.pone.0233992 June 3, 2020 8 / 11

https://doi.org/10.1371/journal.pone.0233992


haematocrit [17], and other factors that may influence the T2�-weighted signal of venous

blood on SWI. Nevertheless, we aimed at simulating a clinical scenario, where these factors are

routinely not readily modifiable, when emergency MR imaging is performed.

A disadvantage of the automatic approach is the additional time required for computation.

The clinical interpretation of whether venous asymmetry is present only takes seconds. How-

ever, a quantitative approach can be particularly interesting in the context of studies, as it is a

more objective approach. The identification of venous asymmetry can support the clinical

diagnosis of a migraine but not diagnose it. Asymmetry can also occur in other pathologies,

such as epilepsy or stroke. Independent of pathologies, further studies are needed to investigate

the intraindividual characteristics of SWI neuroimaging.

Conclusions

In patients with MwA, an automated computer algorithm can identify and quantify cerebral

veins in individual brain hemispheres and accurately determine the respective brain hemi-

sphere that harbours more prominent focal veins. Volumetry of cerebral veins seems to be a

valuable tool for the future assessment of patients with suspected diseases, which may be asso-

ciated with a unilateral abnormal degree of venous oxygenation. SWI in addition to DWI was

useful in the assessment patients with MwA, to rule out significant differential diagnoses, such

as stroke.
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